WorldWideScience

Sample records for space radiation processing

  1. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  2. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  3. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  4. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  5. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  6. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  7. Space Radiation Risk Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Project A: Integration and Review: A review of current knowledge from space radiation physics was accepted for publication in Reviews of Modern Physics (Durante and...

  8. Radiation processing

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2005-01-01

    This chapter covers the basic principle and application of radiation technology. The topic titled specific application discussed briefly the following subtopics: 1) Polymer modification - crosslinking, polymerisation, degradation, grafting; 2) Medical sterilisation; 3) Food irradiation; 4) Environmental protection - waste processing, pollutants treatment

  9. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  10. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  11. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  12. Radiation biophysics in space

    International Nuclear Information System (INIS)

    Buecker, H.; Horneck, G.

    1983-01-01

    In a demonstration experiment bacterium sporules have been exposed to the space vacuum and to the solar radiation field at 254 nm, with the following results: 1) a short vacuum exposition of 1.3 h does not affect the vitality of the sporules, 2) the survival rate of humid sporules after UV-irradiation is consistent with terrestrial control samples, 3) after a simultaneous exposition to vacuum and solar UV-radiation the effect on the sporules is enhanced by a factor of ten as compared to the situation without vaccum exposition. Additional studies in biophysical simulation systems revealed, that the enhanced UV sensitivity is caused by the dehydration of the sporules. By this process the structure of the essential macromolecules in cell, such as DNA and proteins, is modified such that new photo-products can be formed. For these products the cells have no effective repair systems. (AJ) [de

  13. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  14. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  15. Space radiation environment

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  16. Protection from space radiation

    International Nuclear Information System (INIS)

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-01-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods

  17. Modeling Space Radiation with Bleomycin

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiation is a mixed field of solar particle events (proton) and particles of Galactic Cosmic Rays (GCR) with different energy levels. These radiation events...

  18. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  19. The space radiation environment

    International Nuclear Information System (INIS)

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  20. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  1. Space Radiation Dosimetry

    International Nuclear Information System (INIS)

    Deme, S.

    2003-01-01

    Although partly protected from galactic and solar cosmic radiation by the Earth's magnetosphere in Low Earth Orbit (LEO) astronauts exposure levels during long-term missions (90 days to 180 days) by far exceed with exposures of up to more than 100 mSv the annual exposure limits set for workers in the nuclear industry, but are still below the yearly exposure limits of 500 mSv for NASA astronauts. During solar particle events the short-term limits (300 mSv) may be approached or even exceeded. In the interplanetary space, outside the Earth's magnetic field even relatively benign Solar Particle Events (SPEs) can produce 1 Sv skin-absorbed doses. Although new rocket technologies could reduce astronauts' total exposure to space radiation during a human Mars mission, the time required for the mission, which is now in the order of years. Therefore mission planners will need to consider a variety of countermeasures for the crew members including physical protection (e.g. shelters), active protection (e.g. magnetic protection), pharmacological protection, local protection (extra protection for critical areas of the body) etc. With full knowledge of these facts, accurate personal dose measurement will become increasingly important during human missions to Mars. The new dose limits for radiation workers correspond to excess lifetime risk of 3% (NCRP) and 4% (ICRP). While astronauts accept the whole variety of flight risks they are taking in mission, there is concern about risks that may occur later in life. A risk no greater than the risk of radiation workers would be acceptable. (author)

  2. Perspective of radiation processing

    International Nuclear Information System (INIS)

    Zhang Manwei

    1987-01-01

    The area of the applications of radiation techniques is very wide. This paper only relates to the applications of radiation techniques in industries including radiation chemical industry, radiation processing of foods and environmental protection by radiation, but the nuclear instruments and the instrumentations of radiation are out-side of our study. (author)

  3. Radiation: behavioral implications in space

    International Nuclear Information System (INIS)

    Bogo, V.

    1988-01-01

    Since future space missions are likely to be beyond Earth's protective atmosphere, a potentially significant hazard is radiation. The following behavioural situations are addressed in this paper: (1) space radiations are more effective at disrupting behaviour; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate disruption with drugs or shielding are not satisfactory and the drugs can be behaviourally toxic; and (4) space- and radiation-induced emesis combined may be synergistic. Thus future space travel will be a demanding, exciting time for behavioral toxicologists, and while the circumstances may seem insurmountable at first, creative application of scientific expertise should illicit solutions, similar to demanding situations confronted before. (author)

  4. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  5. Radiation risk in space exploration

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  6. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  7. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  8. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  9. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  10. Radiation processing in Japan

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2001-01-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  11. Radiation processing in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Economic scale of radiation application in the field of industry, agriculture and medicine in Japan in 1997 was investigated to compare its economic impacts with that of nuclear energy industry. Total production value of radiation application accounted for 54% of nuclear industry including nuclear energy industry and radiation applications in three fields above. Industrial radiation applications were further divided into five groups, namely nondestructive test, RI instruments, radiation facilities, radiation processing and ion beam processing. More than 70% of the total production value was brought about by ion beam processing for use with IC and semiconductors. Future economic prospect of radiation processing of polymers, for example cross-linking, EB curing, graft polymerization and degradation, is reviewed. Particular attention was paid to radiation vulcanization of natural rubber latex and also to degradation of natural polymers. (S. Ohno)

  12. Dosimetry for radiation processing

    DEFF Research Database (Denmark)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both...... and sterilization dosimetry, optichromic dosimeters in the shape of small tubes for food processing, and ESR spectroscopy of alanine for reference dosimetry. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading...

  13. Surviving radiation in space

    International Nuclear Information System (INIS)

    Coates, A.

    1990-01-01

    Radiation damage to communications, navigation and weather satellites is common and caused by high energy charged particles, mainly protons and electrons, from the Earth's Van Allen belts. The combined release and radiation effects satellite (CRRES), recently launched by the United States, will allow scientists to create far more realistic computer models of satellite radiation damage than has been the case to date. It is hoped that information thus received will allow satellite builders to protect these essential structures in future. The second aim of the CCRES mission is to study the effect of releasing artificially charged particles into the magnetosphere and the ionosphere. Spacecraft design engineers will benefit from the results produced by the CCRES mission. (UK)

  14. Space radiation dosimetry

    International Nuclear Information System (INIS)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Strauch, K.; Heinrich, W.

    1996-01-01

    Detector packages consisting of plastic nuclear track detectors, nuclear emusions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose measurements, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rate from this exposure are given in this report. The dose equivalent received by the PSs were calculated from the measurements and range from 190 μSv d -1 to 770 μSv d -3 . (orig.) [de

  15. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  16. Industrial processing with radiation

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1976-01-01

    The use of large isotopic radiation sources and accelerators in industry is reviewed. The advantages of various sources of ionizing radiation are indicated, and the development and present status of radiation technology are briefly described. Attention is given to the role played by radiation processing in the cross-linking of polymers as applied to cable insulation, artificial limbs and packaging materials, as well as for improving natural rubber. In addition, attention is given to radiation as a possible means of synthesizing polymers, of hardening non-conventional coatings and of manufacturing polymer-wood composites, thereby improving the properties of softwoods. The possibility of improving natural fibres by means of radiation is discussed, and attention is given to the important role already played by radiation in the sterilization of medical products. Finally, reference is made to the role which radiation can play in reducing food spoilage, as well as in making sewage sludge suitable for agricultural purposes [af

  17. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  18. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  19. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  20. Radiation processes in astrophysics

    CERN Document Server

    Tucker, Wallace H

    1975-01-01

    The purpose of this book is twofold: to provide a brief, simple introduction to the theory of radiation and its application in astrophysics and to serve as a reference manual for researchers. The first part of the book consists of a discussion of the basic formulas and concepts that underlie the classical and quantum descriptions of radiation processes. The rest of the book is concerned with applications. The spirit of the discussion is to present simple derivations that will provide some insight into the basic physics involved and then to state the exact results in a form useful for applications. The reader is referred to the original literature and to reviews for rigorous derivations.The wide range of topics covered is illustrated by the following table of contents: Basic Formulas for Classical Radiation Processes; Basic Formulas for Quantum Radiation Processes; Cyclotron and Synchrotron Radiation; Electron Scattering; Bremsstrahlung and Collision Losses; Radiative Recombination; The Photoelectric Effect; a...

  1. Radiation signal processing system

    International Nuclear Information System (INIS)

    Bennett, M.; Knoll, G.; Strange, D.

    1980-01-01

    An improved signal processing system for radiation imaging apparatus comprises: a radiation transducer producing transducer signals proportional to apparent spatial coordinates of detected radiation events; means for storing true spatial coordinates corresponding to a plurality of predetermined apparent spatial coordinates relative to selected detected radiation events said means for storing responsive to said transducer signal and producing an output signal representative of said true spatial coordinates; and means for interpolating the true spatial coordinates of the detected radiation events located intermediate the stored true spatial coordinates, said means for interpolating communicating with said means for storing

  2. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Miller, Arne

    1986-01-01

    During the past few years significant advances have taken place in the different areas of dosimetry for radiation processing, mainly stimulated by the increased interest in radiation for food preservation, plastic processing and sterilization of medical products. Reference services both by international organizations (IAEA) and national laboratories have helped to improve the reliability of dose measurements. In this paper the special features of radiation processing dosimetry are discussed, several commonly used dosimeters are reviewed, and factors leading to traceable and reliable dosimetry are discussed. (author)

  3. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  4. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Boyd, A.W.; Chadwick, K.H.; McDonald, J.C.; Miller, A.

    1989-01-01

    Radiation processing is a relatively young industry with broad applications and considerable commercial success. Dosimetry provides an independent and effective way of developing and controlling many industrial processes. In the sterilization of medical devices and in food irradiation, where the radiation treatment impacts directly on public health, the measurements of dose provide the official means of regulating and approving its use. In this respect, dosimetry provides the operator with a means of characterizing the facility, of proving that products are treated within acceptable dose limits and of controlling the routine operation. This book presents an up-to-date review of the theory, data and measurement techniques for radiation processing dosimetry in a practical and useful way. It is hoped that this book will lead to improved measurement procedures, more accurate and precise dosimetry and a greater appreciation of the necessity of dosimetry for radiation processing. (author)

  5. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  6. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1997-01-01

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration

  7. Introduction to radiation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2008-01-01

    Nuclear technology such as γ-rays, electron beams and ion beams irradiation is widely used in industrial, medical and agricultural fields. The purpose of radiation application is aiming at increasing welfare and quality of our life. Radiation technology applied to medical care is widely known as X-ray diagnosis but the contribution of radiation processing to our daily life is not well known even though it is effectively used in industry and agriculture. The main radiation processing in industry is the modification of polymers, i.e. heat shrinkable tube, radial tire, plastic foam, etc. in a car, heat resistant wire and cable, semiconductor, floppy disk, etc. in a computer, and sterilization of medical devices. In Agriculture, radiation has been used in various fields such as food irradiation, sterile insect technique, mutation breeding, etc. contributing for human being to supply foods and sustainable environment. (author)

  8. Radiation processed polysaccharide products

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien

    2007-01-01

    Radiation crosslinking, degradation and grafting techniques for modification of polymeric materials including natural polysaccharides have been providing many unique products. In this communication, typical products from radiation processed polysaccharides particularly plant growth promoter from alginate, plant protector and elicitor from chitosan, super water absorbent containing starch, hydrogel sheet containing carrageenan/CM-chitosan as burn wound dressing, metal ion adsorbent from partially deacetylated chitin were described. The procedures for producing those above products were also outlined. Future development works on radiation processing of polysaccharides were briefly presented. (author)

  9. Real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1993-01-01

    The real time process algebra of Baeten and Bergstra [Formal Aspects of Computing, 3, 142-188 (1991)] is extended to real space by requiring the presence of spatial coordinates for each atomic action, in addition to the required temporal attribute. It is found that asynchronous communication

  10. Radiation processing and sterilization

    International Nuclear Information System (INIS)

    Takehisa, M.; Machi, S.

    1987-01-01

    This growth of commercial radiation processing has been largely dependent on the achievement in production of reliable and less expensive radiation facilities as well as the research and development effort for new applications. Although world statistics of the growth are not available, Figure 20-1 shows steady growth in the number of EBAs installed in Japan for various purposes. Growth rate of Co-60 sources supplied by AECL (Atomic Energy of Canada Limited), which supplied approximately 80% of the world market, approximately 10% per year, including future growth estimates. Potential applications of radiation processing under development are in environmental conservation (e.g., treatment of sewage sludge, waste water, and exhaust gases) and bioengineering (e.g., immobilization of bioactive materials). The authors plan to introduce her the characteristics of radiation processing, examples of its industrial applications, the status of its research and development activities, and an economic analysis

  11. Radiation processing of polysaccharides

    International Nuclear Information System (INIS)

    2004-11-01

    Radiation processing is a very convenient tool for imparting desirable effects in polymeric materials and it has been an area of enormous interest in the last few decades. The success of radiation technology for processing of synthetic polymers can be attributed to two reasons namely, their ease of processing in various shapes and sizes, and secondly, most of these polymers undergo crosslinking reaction upon exposure to radiation. In recent years, natural polymers are being looked at with renewed interest because of their unique characteristics, such as inherent biocompatibility, biodegradability and easy availability. Traditionally, the commercial exploitation of natural polymers like carrageenans, alginates or starch etc. has been based, to a large extent, on empirical knowledge. But now, the applications of natural polymers are being sought in knowledge - demanding areas such as pharmacy and biotechnology, which is acting as a locomotive for further scientific research in their structure-function relationship. Selected success stories concerning radiation processed natural polymers and application of their derivatives in the health care products industries and agriculture are reported. This publication will be of interest to individuals at nuclear institutions worldwide that have programmes of R and D and applications in radiation processing technologies. New developments in radiation processing of polymers and other natural raw materials give insight into converting them into useful products for every day life, human health and environmental remediation. The book will also be of interest to other field specialists, readers including managers and decision makers in industry (health care, food and agriculture) helping them to understand the important role of radiation processing technology in polysaccharides

  12. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  13. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  14. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  15. Dosimetric radiation measurements in space

    International Nuclear Information System (INIS)

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  16. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  17. Radiation processing of food

    International Nuclear Information System (INIS)

    Saint-Lebe, L.; Raffi, J.

    1983-06-01

    The ionizing radiations available for food processing are defined, their mode of action and principal effects are described. Toxicological studies (animal tests, radiochemistry) concerning irradiated food are reviewed. The characteristics of the irradiation procedure and the prospects of its industrial development in France are presented [fr

  18. Radiation in industrial processes

    International Nuclear Information System (INIS)

    1959-01-01

    The uses of ionizing radiation can be divided into two broad categories. First, it can be used as a tool of investigation, measurement and testing, and secondly, it can be a direct agent in inducing chemical processes. For example, radiation can help in the detecting and locating of malignant tumours, and it can be employed also for the destruction of those tumours. Again, it can reveal intricate processes of plant growth and, at the same time, can initiate certain processes which result in the growth of new varieties of plants. Similarly in industry, radiation is both a tool of detection, testing and measurement and an active agent for the initiation of useful chemical reactions. The initiation of chemical reactions usually requires larger and more powerful sources of radiation. Such radiation can be provided by substances like cobalt 60 and caesium 137 or by machines which accelerate nuclear particles to very high energies. Of the particle-accelerating machines, the most useful in this field are those which accelerate electrons to energies considerably higher than those possessed by the electrons (beta particles) emitted by radioactive substances. These high-energy radiations produce interesting reactions both in organic life and in materials for industry. Several of the papers presented at the Warsaw conference were devoted to the application of ionizing radiation to polymerization and other useful reactions in the manufacture and treatment of plastics. The polymerization of the ethylene series of hydro-carbons was discussed from various angles and the technical characteristics and requirements were described. It was pointed out by some experts that the cross-linking effect of radiation resulted in a superior product, opening the way to new applications of polyethylene. Irradiated polyethylene film has been sold for several years, and electrical wire has been made with irradiated polyethylene as the insulating jacket. Other reactions discussed included the cross

  19. Process validation for radiation processing

    International Nuclear Information System (INIS)

    Miller, A.

    1999-01-01

    Process validation concerns the establishment of the irradiation conditions that will lead to the desired changes of the irradiated product. Process validation therefore establishes the link between absorbed dose and the characteristics of the product, such as degree of crosslinking in a polyethylene tube, prolongation of shelf life of a food product, or degree of sterility of the medical device. Detailed international standards are written for the documentation of radiation sterilization, such as EN 552 and ISO 11137, and the steps of process validation that are described in these standards are discussed in this paper. They include material testing for the documentation of the correct functioning of the product, microbiological testing for selection of the minimum required dose and dose mapping for documentation of attainment of the required dose in all parts of the product. The process validation must be maintained by reviews and repeated measurements as necessary. This paper presents recommendations and guidance for the execution of these components of process validation. (author)

  20. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  1. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  2. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  3. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  4. Dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Kumar, A.; Reddy, A.R.

    1994-01-01

    The last few years have seen a significant increase in the use of ionising radiation in industrial processes and also international trade in irradiated products. With this, the demand for internationally accepted dosimetric techniques, accredited to international standards has also increased which is further stimulated by the emergence of ISO-9000 series of standards in industries. The present paper describes some of the important dosimetric techniques used in radiation processing, the role of IAEA in evolving internationally accepted standards and work carried out at the Defence Laboratories, Jodhpur in the development of a cheap, broad dose range and simple dosimeter for routine dosimetry. For this polyhydroxy alcohols viz., mannitol, sorbitol and inositol were studied using the spectrophotometric read out method. Out of the alcohols studied mannitol was found to be most promising covering a dose range of 0.01 kGy - 100 kGy. (author). 26 refs., 3 figs., 1 tab

  5. Space Radiation Intelligence System (SPRINTS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Federal Systems proposes an innovative SPace Radiation INTelligence System (SPRINTS) which provides an interactive and web-delivered capability that...

  6. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  7. Radiation sources and process

    International Nuclear Information System (INIS)

    Honious, H.B.; Janzow, E.F.; Malson, H.A.; Moyer, S.E.

    1980-01-01

    The invention relates to radiation sources comprising a substrate having an electrically-conductive non-radioactive metal surface, a layer of a metal radioactive isotope of the scandium group, which in addition to scandium, yttrium, lanthanum and actinium, includes all the lanthanide and actinide series of elements, with the actinide series usually being preferred because of the nature of the radioactive isotopes therein, particularly americium-241, curium-244, plutonium-238, californium-252 and promethium-147, and a non-radioactive bonding metal codeposited on the surface by electroplating the isotope and bonding metal from an electrolytic solution, the isotope being present in the layer in minor amount as compared to the bonding metal, and with or without a non-radioactive protective metal coating covering the isotoype and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating. The invention also relates to a process for providing radiation sources comprising codepositing a layer of the metal radioactive isotope with a non-radioactive bonding metal from an electrolytic solution in which the isotope is present in minor molar amount as compared to the bonding metal such that the codeposited layer contains a minor molar amount of the isotope compared to the bonding metal by electroplating on an electrically-conductive non-radioactive metal surface of a cathode substrate, and with or without depositing a nonradioactive protective metal coating over the isotope and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating

  8. Radiation processing of horticulture produce

    International Nuclear Information System (INIS)

    Khandal, R.K.

    2004-01-01

    The present paper deals with various aspects of radiation processing of horticultural products. The risk and success factors of the radiation processing units would be discussed, based on the experiences gained from the operation of Sac over a period of more than twenty years. Emphasis would be given to gamma radiation processing

  9. Space Environmental Effects on Materials and Processes

    Science.gov (United States)

    Sabbann, Leslie M.

    2009-01-01

    The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.

  10. Complex Cloud and Radiative Processes Unfolding at the Earth's Terminator: A Unique Perspective from the Proposed Deep Space Gateway

    Science.gov (United States)

    Davis, A. B.; Marshak, A.

    2018-02-01

    The Deep Space Gateway offers a unique vantage for Earth observation using reflected sunlight: day/night or night/day terminators slowly marching across the disc. It's an opportunity to improve our understanding of clouds at that key moment in their daily cycle.

  11. Guidance on radiation received in space activities

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of this report, therefore, are to: re-examine the current guidelines and the philosophy adopted by NASA, estimate the risks to both men and women exposed to radiation in space, re-examine the estimates of radiation risks in outer space with special attention to SPE and to exposure to HZE particles, and examine what information may still be required and what research is needed. This report incorporates the changes in estimates of terrestrial radiation risks made since 1970 that appear to be acceptable and appropriate to the particular case of space missions. Since plans for a space station have been established and are a priority for NASA, this space mission will be used as one example for reference. The likely altitude and orbit for the proposed space station are 450 km and 28.5 degree, respectively. Therefore, estimates of the radiation environment for this mission can be made with more confidence than for some of the other missions. In this report, we have chosen to write more fully about certain subjects, for example, the eye, because they are of concern and because they have not been dealt with in such detail in other reports on radiation risks and protection. Since this report covers a number of different disciplines and specialized areas of research, a glossary is included. Radiation protection in space is as international a task as is the protection of radiation workers and the general population on earth. Kovalev, 1983, has noted that radiation protection in space is a pressing but complex problem. The recommendations in this report will require modifications as we learn more about the radiation environment in space and how to estimate radiation risks with greater precision. 450 refs

  12. On the radiation dosimetry in space

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    2005-01-01

    The radiation dosimetry in space is considerably different from that on the earth surface, because, on the earth surface, the quality factor for radiation is roughly given for its energy but, in space, it is defined as a continuous function of LET. Thus, the contribution to the dose equivalent from heavy charged particles included in galactic cosmic rays is more than 50%, because of their high LET values. To evaluate such dose equivalent within an uncertainty of 30%, we must determine the true LET distribution. This paper describes the essence of such a new radiation dosimetry in space. (author)

  13. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  14. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  15. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  16. The Near-Earth Space Radiation Environment

    Science.gov (United States)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  17. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  18. Radiation processing of plastics for decorative purposes

    International Nuclear Information System (INIS)

    Knizhnik, R.I.; Onisko, A.D.

    1982-01-01

    Methods are reviewed for the radiation processing of polymeric films, sheets, plates and panels to form patterns, drawings, images and decorative finishing which have been recently developed in various countries. Methods of beam and radiation processing of transparent plastics are described for making a decorative article with a pattern inside the volume; advantages and shortcomings of the methods are shown. The method of radiation processing of transparent dielectric plastics by electron beam of a Microtron is considered in detail. It provides an economical method of fabrication of large-size highly artistic decorative articles with an original pattern inside the volume. Radiation processing operations are presented which are aimed at creation and visualization of regions of extended thermalized electron space charges stored by irradiation of dielectric. Examples are presented of large-size highly artistic decorative articles of polymethylmethacrylate which were used in interior of buildings and demonstrated at home and international exhibitions. (author)

  19. Space Radiation and Risks to Human Health

    Science.gov (United States)

    Huff, Janice L.; Patel, Zarana S.; Simonsen, Lisa C.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  20. Dosimetry and process control for radiation processing

    International Nuclear Information System (INIS)

    Mod Ali, N.

    2002-01-01

    Complete text of publication follows. Accurate radiation dosimetry can provide quality assurance in radiation processing. Considerable relevant experiences in dosimetry by the SSDL-MINT has necessitate the development of methods making measurement at gamma plant traceable to the national standard. It involves the establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to a primary radiation standard. The effort forms the basis for irradiation process control, the legal approval of the process by the public health authorities (medical product sterilization and food preservation) and the safety and acceptance of the product

  1. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  2. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  3. Radiation investigations during space flight

    International Nuclear Information System (INIS)

    Akatov, A.Yu.; Nevzgodina, L.V.; Sakovich, V.A.; Fekher, I.; Deme, Sh.; Khashchegan, D.

    1986-01-01

    Results of radiation investigations during ''Salyut-6'' orbital station flight are presented. The program of studying the environmental radioactivity at the station included ''Integral'' and ''Pille'' experiments. In the course of the ''Integral'' experiment absorbed dose distributions of cosmic radiation and heavy charged particle fluence for long time intervals were studied. Method, allowing one to study dose distributions and determine individual doses for any time interval rapidity and directly on board the station was tested in the course of ''Pille'' experiment for the first time. Attention is paid to measuring equipment. Effect of heavy charged particles on the cellular structure of air-dry Lactuca sativa lettuce seeds was studied in the course of radiobiological experiments conducted at ''Salyut-6'' station. It is shown, that with the increase of flight duration the frequency of cells with chromosomal aberrations increases

  4. Dosimetry systems for radiation processing

    International Nuclear Information System (INIS)

    McLaughlin, W.L.; Desrosiers, M.F.

    1995-01-01

    Dosimetry serves important functions in radiation processing, where large absorbed doses and dose rates from photon and electron sources have to be measured with reasonable accuracy. Proven dosimetry systems are widely used to perform radiation measurements in development of new processes, validation, qualification and verification (quality control) of established processes and archival documentation of day-to-day and plant-to-plant processing uniformity. Proper calibration and traceability of routine dosimetry systems to standards are crucial to the success of many large-volume radiation processes. Recent innovations and advances in performance of systems that enhance radiation measurement assurance and process diagnostics include dose-mapping media (new radiochromic film and solutions), optical waveguide systems for food irradiation, solid-state devices for real-time and passive dosimetry over wide dose-rate and dose ranges, and improved analytical instruments and data acquisition. (author)

  5. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  6. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  7. On static and radiative space-times

    International Nuclear Information System (INIS)

    Friedrich, H.

    1988-01-01

    The conformal constraint equations on space-like hypersurfaces are discussed near points which represent either time-like or spatial infinity for an asymptotically flat solution of Einstein's vacuum field equations. In the case of time-like infinity a certain 'radiativity condition' is derived which must be satisfied by the data at that point. The case of space-like infinity is analysed in detail for static space-times with non-vanishing mass. It is shown that the conformal structure implied here on a slice of constant Killing time, which extends analytically through infinity, satisfies at spatial infinity the radiativity condition. Thus to any static solution exists a certain 'radiative solution' which has a smooth structure at past null infinity and is regular at past time-like infinity. A characterization of these solutions by their 'free data' is given and non-symmetry properties are discussed. (orig.)

  8. Quality assurance in radiation processing

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2002-01-01

    The growth of the radiation processing industries in Malaysia has presented the SSDL-MINT a new set of parameter for the Quality Assurance (QA) programs. The large massive doses of radiation required for commercial application of sterilization, cross-linking etc needs measurement method outside the scope of familiar radiation detection instruments. This requires establishment of proper calibration procedure and selection of appropriate transfer system/technique to assure adequate traceability to an international radiation standard. The benefit of accurate in-plant dosimetry for the operator, approving authority and purchaser are balanced against the extra dosimetric efforts required for good QA is presented. (Author)

  9. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  10. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  11. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  12. Radiative processes in gauge theories

    International Nuclear Information System (INIS)

    Berends, F.A.; Kleiss, R.; Danckaert, D.; Causmaecker, P. De; Gastmans, R.; Troost, W.; Tai Tsun Wu

    1982-01-01

    It is shown how the introduction of explicit polarization vectors of the radiated gauge particles leads to great simplifications in the calculation of bremsstrahlung processes at high energies. (author)

  13. Rotating film radiators for space applications

    International Nuclear Information System (INIS)

    Koenig, D.R.

    1985-01-01

    A new class of light-weight radiators is described. This radiator consists of a thin rotating envelope that contains the working fluid. The envelope can have many shapes including redundant, foldable configurations. The working fluid, which may be a liquid or a condensable vapor, impinges on the inside surface of the radiator and is driven as a film to the periphery by centrifugal force. Heat is radiated to space by the outer surface of the envelope. Pumps located on the periphery then return the liquid to the power converter. For a 100-MW radiator operating at 800 K, specific mass approx.0.1 kg/kW and mass density approx.2 kg/m 2 may be achievable. 7 refs., 4 figs., 4 tabs

  14. Radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Khairul Zaman; Kamaruddin Hashim; Zulkafli Ghazali; Mohd Hilmi Mahmood; Jamaliah Sharif

    2006-01-01

    Radiation processing of natural polymer has been the subject of interest of countries in this region in the past 5 ∼ 7 years. Although some of the output of the research have been commercialized in particular for the applications in the agriculture and healthcare sectors, the potential applications of radiation processing of natural polymers in the medical sector are yet to be fully understood and developed. (author)

  15. Radiation processing of poultry

    International Nuclear Information System (INIS)

    Niemand, J.G.; Hauser, G.A.M.; Clarke, I.R.; Thomas, A.C.

    1977-06-01

    Gamma irradiation, through its ability to inactivate microorganisms, has been shown to effectively extend the shelf life of commercially slaughtered chickens from 2-4 d to 14-21 d under normal refrigeration temperatures. Although a high percentage of carcasses were contaminated with Salmonella, the level of contamination was relatively low; the doses applied for shelf-life extention thus also served to eliminate this pathogen. Even when carcasses were artificially inoculated with Salmonella of levels several orders of magnitude higher than normal, the recommended radiation doses (3 or 5 kGy) were still capable of rendering the product 'pathogen free'. Irradiated poultry could not be distinguished organoleptically from control samples, even when twice the maximum recommended dose was applied. In conclusion, the irradiation of commercially produced poultry in South Africa with relatively low doses can be of significant benefit by (1) markedly extending the acceptable shelf life and (2) eliminating pathogenic bacteria present on the commercially available product [af

  16. Gamma irradiators for radiation processing

    International Nuclear Information System (INIS)

    2006-01-01

    Radiation technology is one of the most important fields which the IAEA supports and promotes, and has several programmes that facilitate its use in the developing Member States. In view of this mandate, this Booklet on 'Gamma Irradiators for Radiation Processing' is prepared which describes variety of gamma irradiators that can be used for radiation processing applications. It is intended to present description of general principles of design and operation of the gamma irradiators available currently for industrial use. It aims at providing information to industrial end users to familiarise them with the technology, with the hope that the information contained here would assist them in selecting the most optimum irradiator for their needs. Correct selection affects not only the ease of operation but also yields higher efficiency, and thus improved economy. The Booklet is also intended for promoting radiation processing in general to governments and general public

  17. Conceptual designs for 100-MW space radiators

    International Nuclear Information System (INIS)

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  18. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.; Nachtwey, D.S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem)

  19. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  20. Radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan

    2004-01-01

    Radiation processing technology is widely used in industry to enhance efficiency and productivity, improve product quality and competitiveness. Efforts have been made by MINT to expand the application of radiation processing technology for modification of indigenous materials such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide into new and high value added products. This paper described MINT experiences on developing products through R and D from the laboratory to the pilot plant stage and commercialization. The paper also explained some issues and challenges that MINT encountered in the process of commercialization of its R and D results. (author)

  1. Radiation protection considerations in space station missions

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Bolch, W.E.

    1991-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying the degree to which the baseline design of space station Freedom (SSF) would permit its evolution to a transportation node for lunar or Mars expeditions. To accomplish NASA's more ambitious exploration goals, nuclear-powered vehicles could be used in SSF's vicinity. This enhanced radiation environment around SSF could necessitate additional crew shielding to maintain cumulative doses below recommended limits. This paper presents analysis of radiation doses received upon the return and subsequent unloading of Mars vehicles utilizing either nuclear electric propulsion (NEP) or nuclear thermal rocket (NTR) propulsion systems. No inherent shielding by the vehicle structure or space station is assumed; consequently, the only operational parameters available to control radiation doses are the source-to-target distance and the reactor shutdown time prior to the exposure period. For the operations planning, estimated doses are shown with respect to recommended dose limits and doses due solely to the natural space environment in low Earth orbit

  2. 2015 Space Radiation Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Radiation Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 8 - 9, 2015. The SRP met with representatives from the Space Radiation Element and members of the Human Research Program (HRP) to review the updated research plan for the Risk of Radiation Carcinogenesis Cancer Risk. The SRP also reviewed the newly revised Evidence Reports for the Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs) (Acute Risk), the Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), and the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation (Degen Risk), as well as a status update on these Risks. The SRP would like to commend Dr. Simonsen, Dr. Huff, Dr. Nelson, and Dr. Patel for their detailed presentations. The Space Radiation Element did a great job presenting a very large volume of material. The SRP considers it to be a strong program that is well-organized, well-coordinated and generates valuable data. The SRP commended the tissue sharing protocols, working groups, systems biology analysis, and standardization of models. In several of the discussed areas the SRP suggested improvements of the research plans in the future. These include the following: It is important that the team has expanded efforts examining immunology and inflammation as important components of the space radiation biological response. This is an overarching and important focus that is likely to apply to all aspects of the program including acute, CVD, CNS, cancer and others. Given that the area of immunology/inflammation is highly complex (and especially so as it relates to radiation), it warrants the expansion of investigators expertise in immunology and inflammation to work with the individual research projects and also the NASA Specialized Center of Research (NSCORs). Historical data on radiation injury to be entered into the Watson

  3. Some comments on space flight and radiation limits

    International Nuclear Information System (INIS)

    Thornton, W.E.

    1997-01-01

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by 'experts' and the media. Career astronauts' and cosmonauts' views are much more realistic about the risks involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of 'voluntary' participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and 'official' Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure. radiation and all potential effects from such exposure

  4. Current status of radiation processing

    International Nuclear Information System (INIS)

    Silverman, J.

    1979-01-01

    A summary is presented of recent developments and problems in the field of radiation processing. Examples are given of a wide range of industrial products and processes. Irradiation plants are discussed. Cross-linking and sterilization are still the principal areas of success. Some setbacks are mentioned, including the appearance of regulatory codes forbidding the use of high energy electrons in the irradiation of food packing materials. Promising applications, such as food sterilization, treatment of sewage and other wastes, chemical synthesis and the curing of paints. The need for more fundamental work on radiation chemistry is stressed. (U.K.)

  5. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  6. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  7. Radiation processing and market economy

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1998-01-01

    In the system of totalitarian economy, regulated by bureaucracy, the real value of equipment, materials and services is almost completely unknown, what makes impossible the comparison of different technologies, eliminates competition, disturbs research and development. With introduction of market economy in Central and Eastern Europe, the radiation processing has lost doubtful support, becoming an independent business, subject to laws of free market economy. Only the most valuable objects of processing have survived that test. At the top of the list are: radiation sterilization of medical equipment and radiation induced crosslinking of polymers, polyethylene in particular. New elements of competition has entered the scene, as well as questions of international regulations and standards have appeared

  8. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  9. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables

  10. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. The current career limit is 400 rem to the blood forming organs. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation effects and this will be taken into account. In 1973 a committee of the National Research Council made a separate study of HZE particle effects and it was concluded that the attendant risks did not pose a hazard for low inclination near-earth orbit missions. Since that time work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 26 references, 1 figure, 7 tables

  11. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  12. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  13. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  14. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  15. Some new radiation processes in plasmas

    International Nuclear Information System (INIS)

    Wu, C.S.

    1981-01-01

    Some new plasma radiation processes are reviewed, viz., (1) emission near the electron plasma frequency, (2) direct amplification of radiation near the electron cycloton frequency, and (3) parametic amplification of radiation by stimulated scattering. (L.C.) [pt

  16. Global trends in radiation processing

    International Nuclear Information System (INIS)

    Defalco, G.

    2003-01-01

    There will be a brief introduction of the companies of MDS serving the Medical, Biotechnology and Pharmaceutical sectors worldwide. MDS Nordion will be introduced in more detail focused on the products and services of our Nuclear Medicine and Ion Technologies business units. World Trends and issues in Radiation Processing will be discussed on: Sterilization of Medical Devices, Pharmaceuticals, Cosmetics and Consumer products and finally I will present an overview on Food Irradiation progress worldwide

  17. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  18. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  19. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  20. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  1. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  2. Radiation processing activities at OGFL

    International Nuclear Information System (INIS)

    Sarkar, Atish

    2014-01-01

    CONCAST group of Industries has set up the first Radiation Processing Plant in Eastern India as 'VIKIRAN' named as Organic Green Foods Ltd., situated at Dankuni (Durgapur Highway Express) 25 km away from central Kolkata on August 21, 2004. Shri Sanjay Sureka, Managing Director of Organic Green Foods Ltd., Kolkata belongs to the famous CONCAST Group of Industries operates the largest plant of West Bengal engaged in manufacturing of Steel Industry. The facility was aimed at improving the quality of healthcare products and devices as well as Laboratory, Spice, Herbal and Ayurvedic Products of large volumes on an industrial scale. The operation of VIKIRAN for the last ten years, has unambiguously proved that both the above objectives have been fully met and now radiation sterilization has emerged as an efficient and effective industrial process. The irradiator is a panoramic wet storage class-IV type. This Facility is designed for 1000 KCi activity of source and is suitable in medium and high dose range application. VIKIRAN offers radiation sterilization service to more than 100 manufacturers

  3. Radiation microbiology relevant to radiation processing

    International Nuclear Information System (INIS)

    Tallentire, A.

    1979-01-01

    The subject is discussed under the following headings: typical background studies involving laboratory models (measurement of radiation responses of different organisms, alone or on or in products; isolation of radiation resistant organisms from products and product environments; measurement of levels of preirradiation microbial contamination ('bioburden')); supplementary studies involving naturally occurring microbial contaminants (unit medical products; microbiological quality assurance; products in bulk; animal diet study). (U.K.)

  4. Dosimetry standards for radiation processing

    International Nuclear Information System (INIS)

    Farrar, H. IV

    1999-01-01

    For irradiation treatments to be reproducible in the laboratory and then in the commercial environment, and for products to have certified absorbed doses, standardized dosimetry techniques are needed. This need is being satisfied by standards being developed by experts from around the world under the auspices of Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). In the time period since it was formed in 1984, the subcommittee has grown to 150 members from 43 countries, representing a broad cross-section of industry, government and university interests. With cooperation from other international organizations, it has taken the combined part-time effort of all these people more than 13 years to complete 24 dosimetry standards. Four are specifically for food irradiation or agricultural applications, but the majority apply to all forms of gamma, x-ray, Bremsstrahlung and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruits, vegetables, meats, spices, processed foods, plastics, inks, medical wastes and paper. An additional 6 standards are under development. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties. Together, this set of standards covers essentially all aspects of dosimetry for radiation processing. The first 20 of these standards have been adopted in their present form by the International Organization of Standardization (ISO), and will be published by ISO in 1999. (author)

  5. Dose Assurance in Radiation Processing Plants

    DEFF Research Database (Denmark)

    Miller, Arne; Chadwick, K.H.; Nam, J.W.

    1983-01-01

    Radiation processing relies to a large extent on dosimetry as control of proper operation. This applies in particular to radiation sterilization of medical products and food treatment, but also during development of any other process. The assurance that proper dosimetry is performed...... at the radiation processing plant can be obtained through the mediation of an international organization, and the IAEA is now implementing a dose assurance service for industrial radiation processing....

  6. Radiation sterilization: an industrial process

    International Nuclear Information System (INIS)

    Ley, F.J.

    1975-01-01

    A new dimension has been added to the use of radiation in the medical field with the introduction of radiation as a sterilizing agent. Its use in diagnosis through radioactive tracers or X-rays and in therapy administered with the most sophisticated of electrical machines or radioisotope units, is familiar in the hospital world, being well established therein. In contrast, the application of radiation sterilization is in industry where the installation of large radiation sources is already commonplace in many countries. The beginnings in the early 1950's centered on the Van de Graaff machine and linear accelerators and the pioneering efforts of Ethicon Inc. here in the United States must be recognized. However, although sterilization with electron beams is still current practice in a number of plants, the use of gamma rays from cobalt-60 is preferred. The first steps in this direction were taken by the U.K.A.E.A. which, in common with similar organizations elsewhere, was attempting to exploit the tremendous potential for cobalt-60 production arising through the rapid construction of nuclear reactors. The first full-scale commercial gamma plant was commissioned in the U.K. in 1960. It reached a loading of 500,000 curies before its demolition after twelve years of operation. The process gained rapid acceptance within industry and approval by health authorities because it provided a ''cold'' sterilization method combining the property of lethal effect with penetration. Its immediate impact occurred in the introduction of disposable products making it possible, for example, to use heat-labile plastics and new packaging materials and package designs. Certainly, the technique has proved complementary to sterilization methods based on heat and to the use of chemical agents, in particular ethylene oxide gas

  7. Innovative Applications in Radiation Processing

    International Nuclear Information System (INIS)

    Vroom, D.A.

    2006-01-01

    Prior to acquisition by Tyco International, Raychem Corporation initiated several programs to develop new products, reduce the production cost of existing products and identify new market areas that would utilize the skills available in the company in the area of radiation chemistry and radiation technology. Several areas were considered including radiation initiation of specific chemical reactions in polymers at high temperatures, the use of purpose built irradiation equipment for low cost production of specific high volume products and environmental remediation of ground or waste water. In this regard, the Corporation supported a program to improve how material is processed through an electron accelerator and to develop specific equipment to utilize these improvements. The goal was to make the radiation process a single entity as opposed to an accelerator and a material handling system. This paper discusses some of the developments from this program. In the area of radiation induced chemical reactions in polymers at elevated temperatures, a robust accelerator was developed that would allow the irradiation of polymeric materials in the melt as they exited forming equipment such as plastics extruders. Here the goal was to have a low energy, self shielded accelerator in the 300 KeV to 500 KeV range in which extruded polymeric material could be immediately processed in a single pass at melt temperature before it was cooled and allowed to encounter any surfaces. Two machines that met these criteria were constructed and will be discussed. Several of the innovations coming from the high processing temperature, single pass accelerator project were incorporated into the development of purpose built machines to process specific existing products such as wire and heat shrink tubing. Here the goal was to have machines with the minimum acceptable electron energy and compact shielding to reduce cost and foot print. Beam scanning technology developed will be discussed. A major

  8. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  9. Applications of Radiative Heating for Space Exploration

    Science.gov (United States)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  10. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  11. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  12. Ionizing radiation in earth's atmosphere and in space near earth.

    Science.gov (United States)

    2011-05-01

    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  13. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  14. Radiation measurement on the International Space Station

    International Nuclear Information System (INIS)

    Akopova, A.B.; Manaseryan, M.M.; Melkonyan, A.A.; Tatikyan, S.Sh.; Potapov, Yu.

    2005-01-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380km and inclination 51.6 o are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z>=2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during last years it has already been successfully used on board the MIR station, Space Shuttles and 'Kosmos' spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2x103keV/μm and the value of equivalent dose 360μSv/day was estimated. The flux of biologically dangerous heavy particles with Z>=2 was measured (3.85x103particles/cm2)

  15. Radiation -- A Cosmic Hazard to Human Habitation in Space

    Science.gov (United States)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  16. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  17. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  18. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...

  19. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  20. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  1. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection

    International Nuclear Information System (INIS)

    Vogin, G.

    2009-01-01

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  2. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  3. Conditions and constraints of food processing in space

    Science.gov (United States)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  4. Innovative, Lightweight Thoraeus RubberTM for MMOD and Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic offers an innovative manufacturing process to yield ultra-lightweight radiation shielding nanocomposites by exploiting the concept of the Thoraeus filter...

  5. Passive radiation shielding considerations for the proposed space elevator

    Science.gov (United States)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  6. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    Makuuchi, K.; Sasak, T.; Vikis, A.C.; Singh, A.

    1993-12-01

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  7. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  8. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  9. An Overview of Effects of Space Radiation on the Electronics

    International Nuclear Information System (INIS)

    Hwang, Sun Tae; Shin, Dong Kwan; Son, Young Jong; Kim Jin Hong

    2009-01-01

    The first Korean astronaut successfully carried out the scientific experiments at International Space Station (ISS) in April 2008. Due to the government's strong will and support for the field of space, Korea has enhanced its space technology based on the accomplishments in space development. On October 12∼16, 2009 the 60 th International Astronautical Congress (IAC) was held in Daejeon. IAC 2009 must serve as a place for the extensive exchange of global space technology and information in order to speed up the development of space technology in Korea. With regard for space research and development, the radiation effects in space have been reviewed from the viewpoint of electronics

  10. Characterization of Outer Space Radiation Induced Changes in Extremophiles Utilizing Deep Space Gateway Opportunities

    Science.gov (United States)

    Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.

    2018-02-01

    Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.

  11. Status of radiation processing in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Dela Rosa, A M [Philippine Nuclear Research Institute, Diliman, Quezon City (Philippines)

    2001-03-01

    Radiation processing, one of the well established applications of radiation and radioisotopes, has been successfully integrated into the industrial development of many countries worldwide. Environmental considerations embodied in the Montreal Protocol, the need for energy conservation brought about by escalating costs of fossil fuels, and the bright prospect of utilizing indigenous materials for value-added products have catalyzed the rapid development of radiation processing in the Asia region. This paper presents an overview of current developments in research activities and commercial applications of radiation processing in the Philippines. The areas of application include radiation sterilization of medical products, food irradiation, radiation vulcanization of natural rubber latex, radiation modification of the marine polysaccharide, carrageenan, and upgrading of cellulosic agriwaste by irradiation. (author)

  12. Status of radiation processing in the Philippines

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.

    2001-01-01

    Radiation processing, one of the well established applications of radiation and radioisotopes, has been successfully integrated into the industrial development of many countries worldwide. Environmental considerations embodied in the Montreal Protocol, the need for energy conservation brought about by escalating costs of fossil fuels, and the bright prospect of utilizing indigenous materials for value-added products have catalyzed the rapid development of radiation processing in the Asia region. This paper presents an overview of current developments in research activities and commercial applications of radiation processing in the Philippines. The areas of application include radiation sterilization of medical products, food irradiation, radiation vulcanization of natural rubber latex, radiation modification of the marine polysaccharide, carrageenan, and upgrading of cellulosic agriwaste by irradiation. (author)

  13. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  14. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  15. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  16. Status of radiation processing: Indian scenario

    International Nuclear Information System (INIS)

    Niyogi, U.K.

    2013-01-01

    Radiation processing is a technique to process different types of materials by way of providing radiations of different energies for various applications. Depending upon the changes, one needs to select the radiations of appropriate energy. The well established mechanism behind the changes occurring in the material is the excitation of electrons in the molecules and atoms. It is a proven technology for more than five decades which results in the modification in materials, both at the bulk and surface levels. While radiations such as IR and UV have low energy and hence affect the surface of the material only, highly energetic radiations such as gamma and e-beam are useful to modify the material at the bulk level. Radiation processing is the most efficient technique for polymerization, sterilization, disinfestations, etc. which are applied in industries such as wires and cables, healthcare, food processing, pet/animal feed, herbal and ayurvedic, artificial jewellery, etc.

  17. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  18. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  19. Effect of radiation processing on meat tenderisation

    International Nuclear Information System (INIS)

    Kanatt, Sweetie R.; Chawla, S.P.; Sharma, Arun

    2015-01-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour. - Highlights: • Effect of radiation processing on tenderness of three meat systems was evaluated. • Dose dependant reduction in shear force seen in buffalo meat. • Collagen solubility increased with irradiation

  20. Prospects for radiation processing in the Philippines

    International Nuclear Information System (INIS)

    Navarro, Q.O.

    1980-01-01

    A review of the status of current facilities and capabilities for radiation processing is presented together with industrial data from some selected industries. Due to limited accessibility of actual production/consumption data only tentative conclusions could be made regarding radiation technology applications for local industries. The order of priority, based on available information, appears to be medical sterilization, food irradiation, wood products modification, radiation polymerization, and rubber latex ''vulcanization.'' There is still a need for market survey and analyses, upgrading of radiation facilities, enactment of appropriate legislations, training of industrial technologies, and increased financial investment in order to make radiation technology a viable alternative to current local practices. (author)

  1. Radiation processing of Garcinia cambogia

    International Nuclear Information System (INIS)

    Francis, Sanju; Varshney, Lalit

    2001-01-01

    Garcinia Cambogia (GC) extract is used in controlling obesity and many health related problems. Being a natural product, locally known as cocum powder, is often contaminated with various microbiological species. Ability of g-radiation is well established to eliminate such species and it could be used to protect the quality of the product. In the present study, GC extract was subjected to g-radiation dose in order to evaluate the stability of its active ingredients. High Performance Liquid Chromatography (HPLC) with Diode Array Detector (DAD) and Thermo-Gravimetric analysis (TGA) were used to evaluate the product stability. No significant physico-chemical changes were observed in GC at 30 kGy. GC could be sterilized or decontaminated in dry powder form using gamma radiation without affecting its physico-chemical properties. (author)

  2. Abstracts, Third Space Processing Symposium, Skylab results

    Science.gov (United States)

    1974-01-01

    Skylab experiments results are reported in abstracts of papers presented at the Third Space Processing Symposium. Specific areas of interest include: exothermic brazing, metals melting, crystals, reinforced composites, glasses, eutectics; physics of the low-g processes; electrophoresis, heat flow, and convection demonstrations flown on Apollo missions; and apparatus for containerless processing, heating, cooling, and containing materials.

  3. Role of radiations in assuring quality in space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1993-01-01

    Penetrating radiations such as x-rays, gamma rays, neutrons are extensively used for radiographic inspection of various components used in space programmes. Some of these are rocket motor segments, assembled motors, composite nozzles, igniters, pyro devices, and various critical sub systems. These components employ advanced materials like composites, propellants, insulation materials, alloy steels, maraging steel, pyro techniques etc. Often they are in complex geometrical shapes and assemblies. Simulation of radiation environment on a number of components used in satellites is also carried out using radiation sources. This will help in assessing the effect of terrestrial radiation on the components that work in space. Future trends in the exploitation of radiation for space applications include automated radiography and development of expert systems, computed tomography, improvement in realtime radiography, Compton back scatter tomography etc. Adapting some of the advancements in medical radiology to industrial environment is also a welcome step in future. (author). 2 figs

  4. Dose limits for cosmic radiation during space flights

    International Nuclear Information System (INIS)

    Draaisma, F.S.

    1991-01-01

    Astronauts are exposed to raised levels of ionizing radiation, which may cause biologic effects during space flights. Insights in these effects should lead to doselimits for astronauts during their full career. (author). 4 refs.; 4 tabs

  5. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  6. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  7. Radiation resistance of polymer materials for space

    International Nuclear Information System (INIS)

    Miyauchi, Masahiko; Iwata, Minoru; Yokota, Rikio

    2011-01-01

    The thin film of thermoplastic polyimide with a new asymmetric structure is used in the solar sail 'IKAROS'. Here, the relation of its chemical structure to its thermodynamic properties and radiation resistance is introduced. (M.H.)

  8. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  9. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  10. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  11. Validation of radiation sterilization process

    International Nuclear Information System (INIS)

    Kaluska, I.

    2007-01-01

    The standards for quality management systems recognize that, for certain processes used in manufacturing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of sterilization process is monitored routinely and the equipment is maintained according to ISO 13 485. Different aspects of this norm are presented

  12. Space electronics: radiation belts set new challenges

    International Nuclear Information System (INIS)

    Leray, J.L.; Barillot, C.; Boudenot, J.C.

    1999-01-01

    Telecommunications satellites have been in use since 1962 with the first satellite network (constellation) coming into operation in 1966. GPS systems have been available since the mid seventies. Until now, all these systems have avoided orbits which lie within the radiation belts. The latest constellation projects, offering much wider bandwidths, need to use orbits between 1500 and 2000 km, where the proton density is at its highest. The vulnerability of future generations of components can be predicted by extrapolating the behaviour of current devices. Screening is not a viable option due to cost and weight limitations in satellite applications. As a result, satellite and component manufacturers are seeking new methods of hardening components or making them more radiation tolerant in an environment where the radiation levels are ten times those currently experiences. (authors)

  13. NDT using ionising radiation in the Indian space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1997-01-01

    Ionising radiations continue to play a vital role in the Non-Destructive Evaluation (NDE) of various components used in space vehicles and satellites. The different Non-Destructive Testing (NDT) methods which are useful to the Indian space programme are discussed. 4 refs., 5 figs

  14. Acceptability of risk from radiation: Application to human space flight

    International Nuclear Information System (INIS)

    1997-01-01

    This one of NASA's sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  15. Acceptability of risk from radiation: Application to human space flight

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-30

    This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  17. Global trends in radiation processing

    International Nuclear Information System (INIS)

    Defalco, Gerry

    2002-01-01

    A global leader in radioisotope technology with three business units: - Nuclear Medicine supplies about two-thirds of the world requirements for molybdenum-99 and other isotopes used to diagnose disease - Radiation Therapy business unit supplied more than over 2,300 cobalt cancer treatment machines and is a leader in treatment planning - Ion Technologies is the world's leading supplier of cobalt 60 and innovative gamma irradiation systems About Ion Technologies · Supply over 70% of world's cobalt-60 sources · Custom-designed and built irradiation systems · Comprehensive engineering, physics, logistics, installation and marketing services · Canadian Irradiation Center for unique 'hands on' training, R and D product irradiation

  18. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  19. Effect of radiation processing on meat tenderisation

    Science.gov (United States)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  20. New trends in radiation processing of polymers

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.

    2005-01-01

    Nowadays, the modification of polymers covers radiation cross-linking, radiation induced polymerization (graft polymerization and curing) and the degradation of polymers. The success of radiation technology for the processing of synthetic polymers can be attributed to two reasons, namely the easiness of processing in various shapes and sizes and, secondly, most of these polymers undergo cross-linking reaction upon exposure to radiation. years, natural polymers are being looked at again with renewed interest because of their unique characteristics like inherent biocompatibility, biodegradability and easy availability. However the recent progress in the field regards development of new processing methods and technical solutions. No other break trough technologies or products based on synthetic polymers are reported recently. The future progress, both from scientific and practical points of view, concerns nanotechnology and natural polymer processing. Overview of the subject, including the works performed in the Institute of the author is presented in the paper. (author)

  1. Radiation dose assessment in space missions. The MATROSHKA experiment

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2010-01-01

    The exact determination of radiation dose in space is a demanding and challenging task. Since January 2004, the International Space Station is equipped with a human phantom which is a key part of the MATROSHKA Experiment. The phantom is furnished with thousands of radiation sensors for the measurement of depth dose distribution, which has enabled the organ dose calculation and has demonstrated that personal dosemeter at the body surface overestimates the effective dose during extra-vehicular activity by more than a factor two. The MATROSHKA results serve to benchmark models and have therefore a large impact on the extrapolation of models to outer space. (author)

  2. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  3. Decease of accelerator size for radiation processing

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi; Sunaga, Hiromi

    2003-01-01

    The decrease of accelerator size is an essential means to improve the market competition power of the radiation processing industry and to expand the wide application. Trials for the decrease or minimization are increasing steadily including development of irradiation equipments for exclusive uses. Compact irradiation systems were outlined for the significance and recent examples of the decrease in radiation processing, the problems in the industrial application, and the future of compact accelerators. (author)

  4. Study on radiation-induced reaction in microscopic region for basic understanding of electron beam patterning in lithographic process. 2. Relation between resist space resolution and space distribution of ionic species

    International Nuclear Information System (INIS)

    Saeki, Akinori; Kozawa, Takahiro; Yoshida, Yoichi; Tagawa, Seiichi

    2002-01-01

    For basic research on electron beam lithography, the time-dependent distribution was measured. In the case of nano-scale electron beam lithography, the distribution of ionic species is thought to have an influence on the space resolution or the line edge roughness. As a model compound of a resist resin, liquid n-dodecane was used as a sample. The experiment was carried out using the subpicosecond pulse radiolysis. The experimental data was analyzed by Monte Carlo simulation based on the diffusion in an electric field. The simulation data were convoluted by the response function and fitted to the experimental data. By transforming the time-dependent behavior of cation radicals to the distribution function of cation radical-electron distance, the time-dependent distribution was obtained. Subsequently, the relation between the space resolution and the space distribution of ionic species was discussed. (author)

  5. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  6. Radiation processing of polysaccharide derivatives

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2004-01-01

    Carboxymethylcellulose (CMC), carboxymethylstarch (CMS), carboxymethylchitin (CM-chitin) and carboxymethylchitosan (CM-chitosan) form gels when irradiated at paste-like condition. Bedsore prevention mat filled up CMC hydrogel crosslinked by irradiation at paste-like condition was practical applied as a health care products. It was found that CM-chitosan hydrogels have anti-microbial activity and effective as absorbents to remove metal ions. When crosslinked gel sheets of CM-chitin and CM-chitosan were immersed in copper (II) aqueous solution, absorption of Cu (II) were 161 mg/g and 172 mg/g, respectively. Radiation crosslinking of cellulose derivative such as hydroxypropyl methylcellulose phthalate, (HPMCP) kneaded with aqueous alkali solution and methanol was achieved with EB-irradiation at paste-like condition. The HPMCP gel absorbed organic solvents such as chloroform and pyridine. (author)

  7. PAMELA Space Mission: The Transition Radiation Detector

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  8. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  9. Radiation processing of aqueous systems

    International Nuclear Information System (INIS)

    Gehringer, P.

    1997-09-01

    Groundwater contaminated with about 60 μg/L perchloroethylene (PCE) is purified by a combined ozone/electron beam irradiation process for subsequent use as drinking water. The design of the first commercial plant for such a groundwater remediation having a capacity of 108 m 3 /h is described. The mechanism of the combined ozone/electron beam process for PCE decomposition is discussed with respect to other ozone based advanced oxidation processes like ozone/U.V. and ozone/hydrogen peroxide. The formation of trace amounts of trichloroacetic acid as the only organic by-product in all these processes has been interpreted as an indication that PCE decomposition proceeds via the same mechanism in all cases. (author)

  10. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  11. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  12. Radiation processing in the U.S.S.R.

    Science.gov (United States)

    Pikaev, A. K.

    The present paper is a short review of the modern status of radiation processing in the U.S.S.R. Data on ionizing radiation sources used in radiation processing are reported. The main directions of the development of this field of technology: radiation modification of materials, radiation curing of coatings, radiation-chemical methods of synthesis, radiation sterilization of medical products, radiation treatment of food, application of ionizing radiation for the solution of ecological problems etc. -are considered.

  13. Progress in radiation processing of polymers

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  14. Progress in radiation processing of polymers

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-01-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R and D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described

  15. Progress in radiation processing of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, Andrzej G. [International Atomic Energy Agency, Industrial Applications and Chemistry Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, Wagramer Street 5, Vienna 1400 (Austria) and Department of Process and Chemical Engineering, Warsaw University of Technology, Warsaw (Poland)]. E-mail: a-g.chmielewski@iaea.org; Haji-Saeid, Mohammad [International Atomic Energy Agency, Industrial Applications and Chemistry Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, Wagramer Street 5, Vienna 1400 (Austria); Ahmed, Shamshad [Applied Chemistry Laboratories, Pakistan Institute of Nuclear Science and Technology, P.O. Box Nilore, Islamabad (Pakistan)

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R and D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  16. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  17. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  18. Overcoming black body radiation limit in free space: metamaterial superemitter

    Science.gov (United States)

    Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.

  19. Overcoming black body radiation limit in free space: metamaterial superemitter

    International Nuclear Information System (INIS)

    Maslovski, Stanislav I; Simovski, Constantin R; Tretyakov, Sergei A

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff–Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices. (paper)

  20. RVNRL and radiation processing in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, C.

    2000-01-01

    Industrial application of radiation processing in Thailand is gaining wide acceptance. The first private-owned radiation sterilization plant was established in 1984. Commercialization of protective rubber gloves from radiation vulcanized of natural rubber latex (RVNRL) started in 1993. Two new sterilization plants using electron beam accelerator and gamma irradiation were commissioned in 1997 and 1999 respectively. Another gamma sterilization plant is scheduled to operate in the year 2000. Additional electron accelerator is being installed in one operational gamma sterilization plant, for upgrading of gemstones. Research and development at Office of Atomic Energy for Peace (OAEP) and universities has been focused on RVNRL, radiation treatment of sludge, grafting of cassava starch and utilization of irradiated silk protein. Except for RVNRL which has passed to commercial scale, pilot scale of radiation treatment of sludge has achieved its goal to be utilized as new resources for animal feed and fertilizer. (author)

  1. RVNRL and radiation processing in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, C. [Department of Nuclear Technology, Faculty of Engineering, Chulalongkorn University, Bangkok (Thailand)

    2000-03-01

    Industrial application of radiation processing in Thailand is gaining wide acceptance. The first private-owned radiation sterilization plant was established in 1984. Commercialization of protective rubber gloves from radiation vulcanized of natural rubber latex (RVNRL) started in 1993. Two new sterilization plants using electron beam accelerator and gamma irradiation were commissioned in 1997 and 1999 respectively. Another gamma sterilization plant is scheduled to operate in the year 2000. Additional electron accelerator is being installed in one operational gamma sterilization plant, for upgrading of gemstones. Research and development at Office of Atomic Energy for Peace (OAEP) and universities has been focused on RVNRL, radiation treatment of sludge, grafting of cassava starch and utilization of irradiated silk protein. Except for RVNRL which has passed to commercial scale, pilot scale of radiation treatment of sludge has achieved its goal to be utilized as new resources for animal feed and fertilizer. (author)

  2. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  3. Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  4. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  5. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  6. Materials processing in zero gravity. [space manufacturing

    Science.gov (United States)

    Wuenscher, H. F.

    1973-01-01

    Manufacturing processes which are expected to show drastic changes in a space environment due to the absence of earth gravity are classified according to (1) buoyancy and thermal convection sensitive processes and (2) processes where molecular forces like cohesion and adhesion remain as the relatively strongest and hence controlling factors. Some specific process demonstration experiments carried out during the Apollo 14 mission and in the Skylab program are described. These include chemical separation by electrophoresis, the M551 metals melting experiment, the M552 exothermic brazing experiment, the M553 sphere forming experiment, the M554 composite casting experiment, and the M555 gallium arsenide crystal growth experiment.

  7. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  8. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.; Bergstra, J.A.

    1991-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  9. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  10. Radiation processing. Current status and future possibilities

    International Nuclear Information System (INIS)

    Woods, R.J.

    2000-01-01

    Radiation processing developed following the Second World War and employees gamma- or electron-irradiation to process polymers, cure alkene-based inks and coatings, sterilize medical supplies, irradiate food, and manage wastes. The current status of these applications is described with the probable direction of future developments. (author)

  11. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  12. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    Science.gov (United States)

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  13. Effects of space-relevant radiation on pre-osteoblasts

    International Nuclear Information System (INIS)

    Hu, Yueyuan

    2014-01-01

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  14. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  15. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  16. Redox processes in radiation biology and cancer

    International Nuclear Information System (INIS)

    Greenstock, C.L.

    1981-01-01

    Free-radical intermediates, particularly the activated oxygen species OH, O - 2 , and 1 O 2 , are implicated in many types of radiation damage to biological systems. In addition, these same species may be formed, either directly or indirectly through biochemical redox reactions, in both essential and aberrant metabolic processes. Cell survival and adaptation to an environment containing ionizing radiation and other physical and chemical carcinogens ultimately depend upon the cell's ability to maintain optimal function in response to free-radical damage at the chemical level. Many of these feedback control mechanisms are redox controlled. Radiation chemical techniques using selective radical scavengers, such as product analysis and pulse radiolysis, enable us to generate, observe, and characterize individually the nature and reactivity of potentially damaging free radicals. From an analysis of the chemical kinetics of free-radical involvement in biological damage, redox mechanisms are proposed to describe the early processes of radiation damage, redox mechanisms are proposed to describe the early processes of radiation damage, its protection and sensitization, and the role of free radicals in radiation and chemical carcinogenesis

  17. Applications of Radiation Processing in Industry

    International Nuclear Information System (INIS)

    Abad, Lucille V.

    2015-01-01

    Radiation processing has long been known as commercially viable technology that can be beneficially used to enhance the characteristics of many materials. Several gamma irradiators and electron beam accelerators are operating worldwide which are utilized for various established industrial applications. These could be used for the following processes: a) radiation crosslinking e.g. crosslinking of wires and cables, heat shrinkable film and tube productions, manufacture of plastic bags and tubings for medical products, pre-curing of automobile tire components, curing of polymeric coatings, etc. b) radiation degradation e.g. Scrap Teflon (Polytetraflouroethylene) to form powders, disinfestations and pasteurization of agricultural products, sterilization of medical products, etc.; and c) radiation grafting e.g. grafted non-woven fabrics for metal adsorbent. Emerging applications for radiation processing include grafted membranes for fuel cell, electrodes, cell sheet for tissue engineering, nanoparticle production, polymer composite synthesis, and fibrous catalyst for biodiesel production. Current researches at the Philippine Nuclear Research Institute consist of crosslinking of natural and synthetic polymers for medical application e.g. wound dressing, hemostats, and bioimplants for vesicouretal reflux (VUR); grafting of natural and synthetic fabrics for metal adsorbents; and radiation degradation of carrageenan as plant growth promoter. (author)

  18. Radiation processing of wood-plastic composites

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1992-01-01

    There are three main types of radiation-processed composite material derived from plastics and fibrous natural polymers. The first are the monomer-impregnated, radiation-treated wood-plastic composites (WPC). They became a commercial success in the early 1970s. More recently, work has focused on improving the WPCs by creating in them interpenetrating network (IPN) systems by the use of appropriate multifunctional oligomers and monomers. The main kinetic features of radiation-initiated chain polymerization remain applicable even in impregnated wood. The second type are the plastics filled or reinforced with dispersed wood fiber or other cellulosics (WFRP). In their case, radiation processing offers a new opportunity to apply radiation-reactive adhesion promoters between wood or cellulosic fibers and the thermoplastic matrices. The third type are the laminar composites made by electron beam coating of wood-based agglomerate sheets and boards. This chapter reviews the industrial applications and the radiation processing of the three types of the wood-plastic composites and indicates future trends. (orig.)

  19. Controlling criteria for radiation exposure of astronauts and space workers

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1989-01-01

    Space workers likely to suffer from radiation exposure in the outer space are currently limited to the U.S. and Soviet Union, and only a small amount of data and information is available concerning the techniques and criteria for control of radiation exposure in this field. Criteria used in the Soviet Union are described first. The criteria (TRS-75), called the Radiation Safety Criteria for Space Navigation, are tentative ones set up in 1975. They are based on risk assessment. The standard radiation levels are established based on unit flight time: 50rem for 1 month, 80rem for 3 months, 110rem for 6 months and 150rem for 12 months. These are largely different from the emergency exposure limit of 100mSv (10rem) specified in a Japanese law, and the standard annual exposure value of 50mSv (5rem) for workers in nuclear power plants at normal times. For the U.S., J.A. Angelo, Jr., presented a paper titled 'Radiation Protection Issues and Techniques concerning Extended Manned Space Missions' at an IAEA meeting held in 1988. Though the criteria shown in the paper are not formal ones at the national level, similar criteria are expected to be adopted by the nation in the near future. The exposure limits recommended in the paper include a depth dose of 1-4Sv for the whole life span of a worker. (Nogami, K.)

  20. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  1. BioSentinel: Developing a Space Radiation Biosensor

    Science.gov (United States)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  2. Study on biological response to space radiation and its countermeasure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground.

  3. Study on biological response to space radiation and its countermeasure

    International Nuclear Information System (INIS)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu

    2011-12-01

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground

  4. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  5. Lightweight space radiator with leakage control by internal electrostatic fields

    International Nuclear Information System (INIS)

    Kim, H.; Bankoff, S.G.; Miksis, M.J.

    1991-01-01

    An electrostatic liquid film space radiator is proposed. This will employ an internal electrostatic field to prevent leakage of the liquid-metal coolant out of a puncture. This overcomes the major disadvantage of membrane radiators, which is their vulnerability to micrometeorite impacts. Calculations show that leaks of liquid lithium at 700 degree K can easily be stopped from punctures which are several mm in diameter, with very large safety factors. The basic idea lends itself to a variety of radiator concepts, both rotating and non-rotating. Some typical film thickness and pressure calculations in the presence of an electric field are shown

  6. Gamma radiation in ceramic capacitors: a study for space missions

    Science.gov (United States)

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  7. Electromagnetic radiation in a semi-compact space

    Science.gov (United States)

    Iso, Satoshi; Kitazawa, Noriaki; Yokoo, Sumito

    2018-02-01

    In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a compact space. If the point charge is circulating with an angular frequency ω0 on the (x , y)-plane at z = 0 with boundary conditions, x ∼ x + 2 πR and y ∼ y + 2 πR, it emits radiation into the z-direction of z ∈ [ - ∞ , + ∞ ]. We find that the radiation shows discontinuities as a function of ω0 R at which a new propagating mode with a different Fourier component appears. For a small radius limit ω0 R ≪ 1, all the Fourier modes except the zero mode on (x , y)-plane are killed, but an effect of squeezing the electric field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation reduces to the expected Larmor formula.

  8. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  9. Introduction [Radiation processing: Environmental applications

    International Nuclear Information System (INIS)

    2007-01-01

    In recent years, the problems of environmental damage and degradation of natural resources have received increasing attention throughout the world. Population growth, higher standards of living, increased urbanization and enhanced industrial activities all contribute to environmental degradation. For example, fossil fuels - including coal. natural gas, petroleum, shale oil and bitumen - are the main primary sources of heat and electrical energy production, and are responsible for a large number and amount of pollutants emitted to the atmosphere via exhaust gases from industry. power stations, residential heating systems and vehicles. All of these fuels are composed of major constituents such as carbon, hydrogen and oxygen, and other components including sulphur and nitrogen compounds and metals. During the combustion process, different pollutants are emitted, such as fly ash (containing diverse trace elements (heavy metals)), SO x (including SO 2 and SO 3 ). NO x (including NO 2 and NO) and volatile organic compounds (VOCs). Air pollution caused by particulate matter and other pollutants not only directly impacts the atmospheric environment but also contaminates water and soil, leading to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of the environment. These phenomena have a negative impact on human health and on vegetation

  10. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.

    Science.gov (United States)

    Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K

    2017-08-18

    Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation

  11. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  12. Radiation processing of natural polymer in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman; Kamaruddin Hashim; Zulkafli Ghazali; Mohd Hilmi Mahmood; Dahlan Hj. Mohd; Jamaliah Sharif

    2007-01-01

    Research on radiation processing of natural polymer has been carried out by Nuclear Malaysia since 10 years ago. The progress of the research is at various stages. Radiation processing of sago hydrogel has been commercialized. Meanwhile ago film for packaging is at the pilot scale trial. Palm oil products are ready to be further developed for commercialization with any interested industrial partner. On the other hand, some new materials are being developed based on natural rubber such as liquid natural as compatibilizer, natural rubber thermoplastic nanoclay composites and natural rubber magnetic nano particles composites. (author)

  13. Radiation processing of food and agricultural commodities

    International Nuclear Information System (INIS)

    Sharma, Arun

    2014-01-01

    Reducing post-harvest food losses is becoming increasingly important for sustaining food supplies. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for improving food security, food safety and international trade in agricultural commodities. Preservation of food by ionizing radiation involves controlled application of energy of ionizing radiation such as gamma rays, X-rays, and accelerated electrons to agricultural commodities, food products and ingredients, for improving their storage life, hygiene and safety. The process employs either gamma rays emitted by radioisotopes such as cobalt-60 or high-energy electrons or X-rays generated from machine sources

  14. Space radiation dosimetry in low-Earth orbit and beyond

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars

  15. Space radiation interaction mechanisms in materials

    International Nuclear Information System (INIS)

    Wilson, J.W.

    1983-01-01

    Models of charged-particle impact under conditions typical of the space environment are reported, with a focus on impact excitation and nuclear reactions, especially for heavy ions. Impact excitation is studied by using a global model for electronic excitation based on formal relations through the classical dielectric function to derive an approximation related to the local plasma (electron density distribution) within the atoms and molecules and corrections to the model resulting from the nonfluid nature of this plasma are discussed. Nuclear reactions are studied by reducing quantum-mechanical treatment of this general N-body problem to an equivalent two-body problem that is solvable, and by comparing the results with experimental data. The equations for heavy-charged-particle transport are derived and solution techniques demonstrated. Finally, these methods of analysis are applied to study the change in the electrical properties of a GaAs semiconductor for photovoltaic applications. Proton damage to GaAs crystals is found to arise from stable replacement defects and to be nonannealable, in contrast to electron-induced damage. 17 references

  16. Methods utilized in evaluating the profitability of commercial space processing

    Science.gov (United States)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  17. Software Graphics Processing Unit (sGPU) for Deep Space Applications

    Science.gov (United States)

    McCabe, Mary; Salazar, George; Steele, Glen

    2015-01-01

    A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.

  18. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  19. NASA FACILITY FOR THE STUDY OF SPACE RADIATION EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R.

    1963-04-15

    Information on the energies andd fluxes of trapped electrons and protons in space is summarized, and the Space Radiation Effects Laboratory being constructed to simulate most of the space particulate-energy spectrum is described. A 600-Mev proton synchrocyclotron of variable energy and electron accelerators of 1 to 10 Mev will be included. The accelerator characteristics and the arrangement of the experimental and support buildings, particularly the beam facilities, are discussed; and the planned activities of the laboratory are given. (D.C.W.)

  20. Reducing Human Radiation Risks on Deep Space Missions

    Science.gov (United States)

    2017-09-01

    101 Figure 49. Human Health, Life Support, and Habitation System...2013). These same studies reveal that for astronauts returning home, this may result in significant loss of lifespan and quality of life due to...warnings to the satellites in orbit at either planet , or to spacecraft in transit (Phys.org 2010). C. IMPROVEMENTS TO MEASUREMENTS OF SPACE RADIATION

  1. Applications of radiation processing: SRI experiences

    International Nuclear Information System (INIS)

    Rajput, Sanjay

    2014-01-01

    Shriram Applied Radiation Centre (SARC) is a part of Shriram Institute for Industrial Research (SRI), and was established in 1986, in collaboration with Bhabha Atomic Research Centre (BARC), Board of Radiation and Isotope Technology (BRIT), Department of Atomic Energy (DAE), Atomic Energy Regulatory Board (AERB). SARC was established with a objective to popularize the radiation processing technology for various applications. SARC is a fully automatic, computerized plant setup as per the design and norms of BRIT/AERB for round the clock fail safe operations. The capacity of SARC Irradiator is 800 kCi of Cobalt -60 source which can process up to 10,000 cubic meters of material (0.1g/cc) at 25 kGy level

  2. Role of dosimetry in radiation processing applications

    International Nuclear Information System (INIS)

    Mehta, Kishor

    2001-01-01

    Today, radiation processing is a growing technology offering potential technological advantages as well as enhanced safety and economy. It is expanding on two fronts: the variety of applications is exploding as well as the sources of radiation. And with that comes the necessary advances in dosimetry. However, the success of the technology still depends on the assertion that the irradiated products are reliable and safe, whether they are health care products or cables and wires. And this is best assured through quality assurance programmes. The key element in QA in radiation processing is a well-characterised, reliable dosimetry that is traceable to the international measurement system. Traceability is the foundation for international acceptance of the irradiated products; and with international trade of irradiated products on the rise, it becomes absolutely critical. It is thus vital that the industry recognises this pivotal position of good dosimetry and the role a national standards laboratory plays in that connection. (author)

  3. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1990-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  4. NASA Space Radiation Risk Project: Overview and Recent Results

    Science.gov (United States)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  5. Achievements and perspectives for radiation processing

    International Nuclear Information System (INIS)

    Charlcsby, A.

    1992-01-01

    In the last few decades the major practical applications of large radiation sources have been in the irradiation of macromolecular systems. These have risen rapidly to annual outputs of billions of dollars and continue to show steady growth. In other directions such as polymerization and grafting, radiation has been less successful, primarily because in these subjects radiation serves as only one step in a sequence of chemical reactions, and often these can be achieved by more conventional and familiar methods. We envisage future progress along several distinct lines. 1. Reduction in the cost of radiation. 2. The application of radiation technology in areas where valuable modifications are involved and where advantage can be taken of the remarkable control offered by electron beams. 3. Areas where the chemical alternatives do not exist or are difficult to apply. 4. A very different line of approach is to use radiation with its far more complete control and reproducibility to investigate many processes even if in the production stage itself a different technique is later utilized. Present examples are chemical kinetics as with ESR, pulse radiolysis, pulsed NMR, behavior of trapped charges, crystal structure, local modifications, reinforcement and orientation etc. (J.P.N.)

  6. Dosimetry and control of radiation processing

    International Nuclear Information System (INIS)

    1988-01-01

    Eight invited papers on the general theme of 'Dosimetry and Control of Radiation Processing', presented at a one day symposium held at the National Physical Laboratory, are collected together in this document. Seven of the papers are selected and indexed separately. (author)

  7. Radiation processing of polyolefins and compounds

    International Nuclear Information System (INIS)

    Barlow, A.; Biggs, J.; Maringer, M.

    1977-01-01

    Many properties of polyethylene and its copolymers are enhanced by crosslinking. This can be accomplished through the use of either peroxides or radiation. Crosslinking with peroxides is performed at elevated temperatures generally under pressure; catalyst residues remain in the product which have an adverse effect on electrical and possibly other properties. Radiation crosslinking, on the other hand, is performed under ambient conditions, is essentially free of pollution and offers lower overall production costs due to increased processing speed. A cost analysis of the two crosslinking processes applied to wire and cable coating is included. The advantages of radiation curing can be negated by processing problems which lead to inadequate product properties. Problems are described which may be encountered in developing a flame retardant, radiation curable compound for wire and cable coating. Of particular concern is the generation of a microporous structure which is accentuated by the presence of flame retardant ingredients and the absence of pressure inherent to the peroxide curing process. The procedures involved in solving these problems are briefly described. (author)

  8. Optimization of industrial processes using radiation sources

    International Nuclear Information System (INIS)

    Salles, Claudio G.; Silva Filho, Edmundo D. da; Toribio, Norberto M.; Gandara, Leonardo A.

    1996-01-01

    Aiming the enhancement of the staff protection against radiation in operational areas, the SAMARCO Mineracao S.A. proceeded a reevaluation and analysis of the real necessity of the densimeters/radioactive sources in the operational area, and also the development of an alternative control process for measurement the ore pulp, and introduced of the advanced equipment for sample chemical analysis

  9. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  10. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  11. The effect of space radiation of the nervous system

    Science.gov (United States)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  12. The place of radiation processing in polymer technology

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1978-01-01

    A number of polymerisation processes initiated through radiation are discussed, among others the impregnation of wood with a monomer to form wood-polymer composites; radiation crosslinking of cable insulation; radiation degradation; radiation grafting of wool and textiles; and radiation sterilization of medical and pharmaceutical equipment. The last-named process is briefly compared to steam and to ethylene oxide sterlization

  13. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  14. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  15. Flavor profile of radiation processed food commodities

    International Nuclear Information System (INIS)

    Chatterjee, S.; Variyar, Prasad S.; Sharma, Arun

    2006-01-01

    Full text: Flavor is one of the major quality attributes that play an important role in driving consumer choices and preferences for food. Among the several attributes that decide the flavor quality of any food, aroma and taste are the most important. While volatile constituents contribute to aroma, taste is a perception stimulated by non-volatile principles of food. Radiation processing of food has in recent years assumed increasing importance as a method for hygenization. At the doses employed for food irradiation no significant qualitative changes in the aroma constituents have been reported in most cases. An increase in perceived aroma has however been observed in several radiation processed foods. Besides volatile aroma compounds non-volatile aroma precursors are ubiquitous in plant kingdom. These compounds have been reported to exist largely as bound glycosidic conjugates and are known to undergo breakdown during processing and storage. This results in release of free aroma, thereby, modifying the flavor quality of the product. No report, however, exists on the effect of radiation processing on these bound aroma precursors. Four major class of food namely spices, oil seeds, fruits and beverages were therefore taken up for a detailed study. With respect to aroma, an enhanced breakdown of aroma precursors namely isoeugenol and 4-vinyl guaiacol glycosides and release of free aglycones was demonstrated to result in an increased aroma quality of radiation processed monsooned coffee. Breakdown of phenyl ethanol glucoside resulted in a fruitier note to pomegranate while enhanced spicy note of irradiated nutmeg arise as a result of radiolytic break down p-cymene-7-ol rutinoside precursor and release of free p-cymene-7-ol. An increased color quality of irradiated saffron was a result of the formation of free carotene aglycones namely crocetin from its glycosidic precursors while changes in perceived taste quality of radiation processed soybean could be attributed to

  16. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  17. Radiation methods in dairy production and processing

    International Nuclear Information System (INIS)

    Ganguli, N.C.

    1975-01-01

    Various uses of radiotracers and radiation in dairy technology are described. In dairy production, radiotracers are used for studying: (1) rumen metabolism leading to protein synthesis (2) total body water, blood volume and sodium (3) minerals metabolism (4) relation between climatic stress and thyroid functioning of dairy animals (5) volume of milk in mammary glands (6) hormone level in dairy animals and (7) spermatozoa metabolism. In dairy processing, radiotracers are used for studying: (1) compositional analysis of milk and milk products and (2) efficiency of cleaning agents for cleaning dairy equipment. Ionizing radiation is used for: (1) preservation of milk and milk products and (2) sterilization of packaging materials. Radiation source has been used to monitor the over-run in ice-cream and the fill control for fluid in papar cartons. (M.G.B.)

  18. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  19. Ground Processing Affordability for Space Vehicles

    Science.gov (United States)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and

  20. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    Science.gov (United States)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  1. NASA Self-Assessment of Space Radiation Research

    Science.gov (United States)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  2. Blackbody radiation from light cone in flat space time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)

  3. Array element of a space-based synchrotron radiation detector

    International Nuclear Information System (INIS)

    Lee, M.W.; Commichau, S.C.; Kim, G.N.; Son, D.; Viertel, G.M.

    2006-01-01

    A synchrotron radiation detector (SRD) has been proposed as part of the Alpha Magnetic Spectrometer experiment on the International Space Station to study cosmic ray electrons and positrons in the TeV energy range. The SRD will identify these particles by detecting their emission of synchrotron radiation in the Earth's magnetic field. This article reports on the study of key technical parameters for the array elements which form the SRD, including the choice of the detecting medium, the sensor and the readout system

  4. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  5. Radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Saunders, C.B.

    1988-01-01

    The interaction of ionizing radiation with organic substrates to produce useful physical and chemical changes is the basis of the radiation processing industry for plastics. Electron beam (EB) accelerators dominate the industry; however, there are a few small applications that use gamma radiation. The five general product categories that account for over 95% of the worldwide EB capacity used for plastics production are the following: wire and cable insulation; heat-shrinkable film, tubes and pipes; radiation-curable coatings; rubber products; and polyolefin foam. A total of 6.1% of the yearly production of these products in the United States is EB treated. The United States accounts for 59% of the total worldwide EB capacity of 20.5 MW (1984), followed by Europe (16%) and Japan (15%). There are 469 to 479 individual EB units worldwide used for the production of plastics and rubber. The average annual rate of growth (AARG) for the EB processing of plastics in Japan, from 1977 to 1987, was 13.3%. The AARG for Japan has decreased from 20% for 1977 to 198, to 6.4% for 1984 to 1987. Radiation cross-linking, of power cable insulation (cable rating ≥75 kV), thick polyolefin and rubber sheet (≥15 mm), and thick-walled tubing is one fo the potential applications for a 5- to 10-MeV EB system. Other products such as coatings, films and wire insulation may be economically EB-treated using a 5 to 10 MeV accelerator, if several layers of the product could be irradiated simultaneously. Two general product categories that require more study to determine the potential of high-energy EB processing are moulded plastics and composite materials. 32 refs

  6. A new radiochromic film for radiation processing

    International Nuclear Information System (INIS)

    Sidney, L.N.; Lynch, D.C.; Willett, P.S.; Englund, W.J.

    1990-01-01

    Acid-sensitive leuco dyes in combination with a chlorine-containing polymer have been used to make a new kind of radiochromic film for radiation processing. When exposed to gamma, electron beam, or high intensity ultraviolet radiation, these films undergo a color change from colorless to royal blue, fuschia, or black, depending on the dye. The dose response for gamma and electron beam radiation has been characterized using reflection and transmission spectrophotometry over an adsorbed dose range of 1 to 100 kGy. The primary features of the films include improved color stability before and after irradiation and improved moisture resistance. The response and stability of the films make them useful for indicator (qualitative) or dosimeter (quantitative) films or labels for sterilization of medical products, food (especially meat, poultry, and spices), pharmaceuticals, and cosmetics, and the crosslinking of plastics, and the curing of polymer coatings. Large pieces of the film could be used in dose mapping when setting up and validating radiation processes and medical treatments

  7. Launch Processing System. [for Space Shuttle

    Science.gov (United States)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  8. Collisional and radiative processes in fluorescent lamps

    International Nuclear Information System (INIS)

    Lister, Graeme G.

    2003-01-01

    Since electrode life is the major limiting factor in operating fluorescent lamps, many lighting companies have introduced 'electrodeless' fluorescent lamps, using inductively coupled discharges. These lamps often operate at much higher power loadings than standard lamps and numerical models have not been successful in reproducing experimental measurements in the parameter ranges of interest. A comprehensive research program was undertaken to study the fundamental physical processes of these discharges, co-funded by the Electric Power Research Institute (EPRI) and OSRAM SYLVANIA under the name of ALITE. The program included experiments and modeling of radiation transport, computations of electron-atom and atom-atom cross sections and the first comprehensive power balance studies of a highly loaded fluorescent lamp. Results from the program and their importance to the understanding of the physics of fluorescent lamps are discussed, with particular emphasis on the important collisional and radiative processes. Comparisons between results of experimental measurements and numerical models are presented

  9. SOA based intensive support system for space radiation data

    International Nuclear Information System (INIS)

    Goranova, M.; Shishedjiev, B.; Genova, S.; Semkova, J.

    2013-01-01

    Modern data intensive science involves heterogeneous and structured data sets in sophisticated data formats. Scientists need access to distributed computing and data sources and support for remote access to expensive, multinational specialized instruments. Scientists need effective software for data analysis, querying, accessing and visualization. The interaction between computer science and science and engineering becomes essential for the automation of data manipulation. The key solution uses the Service-oriented Architecture (SOA) in the field of science and Grid computing. The goal of this paper is managing the scientific data received by the Lyulin-5 particle telescope used in MATROSHKA-R experiment performed at the International Space Station (ISS). The dynamics of radiation characteristics and their dependency on the time and the orbital parameters have been established. The experiment helps the accurate estimation of the impact of space radiation on human health in long-duration manned missions

  10. Detection of radiation processing in onions

    International Nuclear Information System (INIS)

    Duchacek, V.

    1985-01-01

    Two breeds of onions were used for irradiation. Both breeds were divided into two parts - the first was irradiated with a dose of 80 Gy and the second served as a control. The two parts were stored under the same conditions. Conductometry, liquid chromatography and spectrophotometry were used for detecting the radiation processing of the onions. Only from the spectrophotometric determination of 2-desoxysaccharides it was possible to safely distinguish irradiated onions from non-irradiated controls throughout storage time. (E.S.)

  11. Heat pump processes induced by laser radiation

    Science.gov (United States)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  12. Future of radiation processing of polymers

    International Nuclear Information System (INIS)

    Chapiro, A.; Tabata, Y.; Stannett, V.; Dole, M.; Dobo, J.; Charlesby, A.

    1990-01-01

    The present development of radiation processing in the polymer field including well established technologies, with large scale productions and substantial markets, such as: crosslinking; curing of monomer-polymer formulations; sterilization of plastic supplies; are discussed. The manufacture of sophisticated devices with low volume production but large added value: electronic devices; resistors and several promising applications for which only small commercial productions are on stream today: chain degradation; polymerization; graft copolymerization, are reviewed. (author)

  13. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  14. Dosimetry systems for radiation processing in Japan

    International Nuclear Information System (INIS)

    Tamura, Naoyuki

    1995-01-01

    The present situation of dosimetry systems for radiation processing industry in Japan is reviewed. For gamma-rays irradiation the parallel-plate ionization chamber in TRCRE, JAERI has been placed as a reference standard dosimeter for processing-level dose. Various solid and liquid chemical dosimeters are used as routine dosimeters for gamma processing industries. Alanine dosimeters is used for the irradiation purpose which needs precise dosimetry. For electron-beam irradiation the electron current density meter and the total absorption calorimeter of TRCRE are used for the calibration of routine dosimeters. Plastic film dosimeters, such as cellulose triacetate and radiochromic dye are used as routine dosimeters for electron processing industries. When the official traceability systems for processing-level dosimetry now under investigation is completed, the ionization chamber of TRCRE is expected to have a role of the primary standard dosimeter and the specified alanine dosimeter will be nominated for the secondary or reference standard dosimeter. (author)

  15. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  16. Lightweight Radiator for in Space Nuclear Electric Propulsion

    Science.gov (United States)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  17. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  18. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Science.gov (United States)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  19. Consenting process for radiation facilities. V. 4

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  20. Consenting process for radiation facilities. V. 3

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  1. Consenting process for radiation facilities. V. 1

    International Nuclear Information System (INIS)

    2011-03-01

    Safety codes and standards are formulated on the basis of nationally and internationally accepted safety criteria for design, construction and operation of specific equipment, systems, structures and components of nuclear and radiation facilities. Safety, codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety codes establish the objectives and set requirements that shall be fulfilled to provide adequate assurance for safety. Safety guides elaborate various requirements and furnish approaches for their implementation. Safety manuals deal with specific topics and contain detailed scientific and technical information on the subject. These documents are prepared by experts in the relevant fields and are extensively reviewed by advisory committees of the Atomic Energy Regulatory Board (AERB) before they are published. The documents are revised when necessary, in the light of experience and feedback from users as well as new developments in the field. AERB issued a safety code on Regulation of Nuclear and Radiation Facilities (AERB/SC/G) to spell out the requirements/obligations to be met by a nuclear or radiation facility for the issue of regulatory consent at every stage. This safety guide apprises the details of the regulatory requirements for setting up the radiation facility such as consenting process, the stages requiring consent, wherever applicable documents to be submitted and the nature and extent of review. The guide also gives information on methods of review and assessment adopted by AERB

  2. Assessment of the Radiation Enclosure Models in SPACE and RELAP5 with GOTA Test 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. B.; Lee, G. W.; Choi, T. S. [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    SPACE (Safety and Performance Analysis Code) for nuclear power plant has been developed to calculate the transient thermal-hydraulic response of PWRs that can contain multiple types of fluids. Without explaining 3-D effects such as the change of fuel rod/guide tube thermal behavior as a result of the radiation heat transfer, the 1-D code could predict an unrealistically high peak clad temperature. A useful function to simulate the wall-to-wall radiation heat transfer is implemented in the SPACE and RELAP5 codes. This paper discusses the assessment results of the radiation enclosure model of SPACE and RELAP5. The capability of handling wall-to-wall radiation problem of the SPACE and the RELAP5 codes has been evaluated using the experimental data from the GOTA test facility. At the top of the bundle, the maximum errors of SPACE and RELAP5 are less than 1.6% and 2.3%, respectively. As noted, there is a small discrepancy between the calculated results and experimental data except for the predictions near the top of the test section. The SPACE code is based on the version 2.16 distributed by KHNP. In order to perform the simulation of the GOTA test 27, it was necessary to modify the SPACE code. There was the subroutine for an input process corresponding to the radiation model, the inp{sub c}heck function of the RadEncData Class, contained in a vulnerable algorithm to figure out the reciprocity rule of the view factor.

  3. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  4. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  5. The application of radiation technology in industrial processes

    International Nuclear Information System (INIS)

    Silvermann, J.

    1974-01-01

    The author makes a general survey of current applications for radiation processing such as sterilization of biological and medical supplies, crosslinking of polymers, production of durable press fabrics, radiation-cured coating, production of wood-plastic composites, radiation degradation and chemical synthesis. The adoption of radiation processing on large scale by Western Electric is presented. The trend in costs and the environmental problems has a profound effect on the future of radiation processing. (M.S.)

  6. Public relations and the radiation processing industry

    Science.gov (United States)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  7. Public relations and the radiation processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Coates, T.D. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the ''enemy''. Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. (author).

  8. Development of radiation processes for better environment

    International Nuclear Information System (INIS)

    Majali, A.B.; Sabharwal, S.; Deshpande, R.S.; Sarma, K.S.S.; Bhardwaj, Y.K.; Dhanawade, B.R.

    1998-01-01

    The increasing population and industrialization, worldover, is placing escalating demands for the development of newer technologies that are environment friendly and minimize the pollution associated with the development. Radiation technology can be of benefit in reducing the pollution levels associated with many processes. The sulphur vulcanization method for natural rubber latex vulcanization results in the formation of considerable amounts of nitrosoamines, both in the product as well as in the factory environment. Radiation vulcanization of natural rubber latex has emerged as a commercially viable alternative to produce sulphur and nitrosoamine free rubber. A Co-60 γ-radiation based pilot plant has been functioning since April 1993 to produce vulcanized natural rubber latex (RVNRL) using acrylate monomers as sensitizer. The role of sensitizer, viz. n-butyl acrylate in the vulcanization process has been elucidated using the pulse radiolysis technique. Emission of toxic sulphur containing gases form an inevitable part of viscose-rayon process and this industry is in search of ways to reduce the associated pollution levels. The irradiation of cellulose results in cellulose activation and reduction in the degree of polymerization (DP). These effects can reduce the solvents required to dissolve the paper pulp. There is a keen interest in utilizing radiation technology in viscose rayon production. We have utilized the electron beam (EB) accelerator for reducing the degree of polymerization (DP) of paper pulp. Laboratory scale tests have been carried out to standardize the conditions for production of pulp having the desired DP by EB irradiation. The use of irradiated paper pulp can result in ∼40% reduction in the consumption of CS 2 in the process that can be beneficial in reducing the pollution associated with the process. PTFE waste can be recycled into a low molecular weight microfine powder by irradiation. An EB based process has been standardized to produce

  9. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    Science.gov (United States)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  10. An industrial radiation source for food processing

    International Nuclear Information System (INIS)

    Sadat, R.

    1986-01-01

    The scientific linacs realized by CGR MeV in France have been installed in several research centers, the medical accelerators of CGR MeV have been installed in radiotherapy centers all over the world, and the industrial linacs have been used for radiography in heavy industries. Based on the experience for 30 years, CGR MeV has realized a new industrial radiation source for food processing. CARIC is going to install a new machine of CGR MeV, CASSITRON, as the demand for radiation increased. This machine has been devised specially for industrial irradiation purpose. Its main features are security, simplicity and reliability, and it is easy to incorporate it into a production line. The use of CASSITRON for food industry, the ionizing effect on mechanically separated poultry meat, the capital and processing cost and others are explained. Only 10 % of medical disposable supplies is treated by ionizing energy in France. The irradiation for food decontamination, and that for industrial treatment are demanded. Therefore, CARIC is going to increase the capacity by installing a CASSITRON for sterilization. The capital and processing cost are shown. The start of operation is expected in March, 1986. At present, a CASSITRON is being installed in the SPI food processing factory, and starts operation in a few weeks. (Kako, I.)

  11. Cobalt 60 availability for radiation processing

    International Nuclear Information System (INIS)

    Fraser, F.M.

    1986-01-01

    In the last 20 years, the steady and significant growth in the application of radiation processing to industrial sterilization has been seen. The principal application of this technology is the sterilization of disposable medical products, food irradiation, the irradiation of personal care goods and so on. At present, more than 70 million curies of cobalt-60 supplied by Atomic Energy of Canada Ltd. have been used for gamma processing in these applications. This is estimated to be more than 80 % of the total cobalt-60 in service in the world. Commercial food irradiation has an exciting future, and as to the impact of food irradiation on the availability of cobalt-60 over the next ten years, two principal factors must be examined, namely, the anticipated demand for cobalt-60 in all radiation processing applications, and the supply of cobalt-60 to reliably meet the expected demand. As for the cobalt-60 in service today, 90 % is used for the sterilization of disposable medical products, 5 % for food irradiation, and 5 % for other application. The demand for up to 30 million curies of cobalt-60 is expected over the next 10 years. Today, it is estimated that over 150,000 tons of spices, fruit and fish are irradiated. The potential cobalt-60 production could exceed 110 million curies per year. Gamma processing application will demand nearly 50 million curies in 1990. (Kako, I.)

  12. Recent advances in radiation processing of food

    International Nuclear Information System (INIS)

    Sharma, Arun

    2013-01-01

    Commercial application of radiation technology for food processing started in the nineties after it was approved by FAO/IAEA/WHO and Codex Alimentarius Commission in the eighties. Sanitary applications were initially explored commercially with microbial decontamination of spices and dry ingredients as the primary commodities to be processed on a large scale. Subsequently, with the emergence of E.coli O157:H7 as the potential food poisoning risk in ground beef, irradiation of meat was initiated in the late nineties in the USA. Since then irradiation, has become a very useful food safety tool and the technology has been approved for addressing food safety risks in moluscan shellfish and vegetables like lettuce, spinach, and more recently for raw uncooked meat by USFDA. Phytosanitary applications assumed importance after USFDA approved irradiation as a method of phytosanitary treatment and subsequent endorsement of the process by International Plant Protection Convention (IPPC) in 2003. These approvals were responsible for development of international trade in agricultural commodities. The first to demonstrate the feasibility of the process were India and Australia, the countries that exported mangoes to New Zealand and USA, respectively. As far as the source of radiation is concerned, the world is slowly moving towards deployment of machine sources, thereby reducing its dependence on radioisotopes for commercial irradiation. (author)

  13. Solar terrestrial coupling through space plasma processes

    International Nuclear Information System (INIS)

    Birn, J.

    2000-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations

  14. Mathematical SETI Statistics, Signal Processing, Space Missions

    CERN Document Server

    Maccone, Claudio

    2012-01-01

    This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part...

  15. The space technology demand on materials and processes

    Science.gov (United States)

    Dauphin, J.

    1983-01-01

    Space technology requires a rational and accurate policy of materials and processes selection. This paper examines some areas of space technology where materials and process problems have occurred in the past and how they can be solved in the future.

  16. BioSentinel: Biosensors for Deep-Space Radiation Study

    Science.gov (United States)

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  17. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  18. Genetic risks associated with radiation exposures during space flight

    International Nuclear Information System (INIS)

    Grahn, D.

    1983-01-01

    Although the genetic risks of space radiation do not pose a significant hazard to the general population, the risks may be very important to the individual astronaut. The present paper summarizes some experimental results on the induction of dominant lethal mutations and chromosomal damage in the first generation which may be used in the prediction of the genetic risks of radiation exposures of space crews. Young adult male mice were exposed to single, weekly and continuous doses of gamma rays, neutrons in single doses and weekly exposures and continuous doses of Pu-239 alpha particles. Evaluation of fetal survival rates in females mated to the exposed males shows the mutation rate in individuals exposed to gamma rays to decline as the exposure period is prolonged and the dose rate is reduced, while the response to neutrons is in the opposite direction. Cytological determinations show the rate of balanced chromosomal translocations to drop as gamma ray exposures change from one-time to continuous, however little or no dose rate effect is seen with neutron radiation and alpha particle exposure shows no regular dose-response. Based on the above results, it is predicted that the rate of dominant mutations and transmissible chromosome aberrations in astronauts on a 100-day mission will increase by 4.5 to 41.25 percent over the spontaneous rate. 35 references

  19. Apparatus and method for radiation processing of materials

    International Nuclear Information System (INIS)

    Neuberg, W.B.; Luniewski, R.

    1983-01-01

    A method and apparatus for radiation degradation processing of polytetrafluoroethylene makes use of a simultaneous irradiation, agitation and cooling. The apparatus is designed to make efficent use of radiation in the processing. (author)

  20. Modeling Natural Space Ionizing Radiation Effects on External Materials

    Science.gov (United States)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  1. Dye film dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Humphreys, J.C.; McLaughlin, W.L.

    1981-01-01

    Commercially available plastic films containing dyes or dye precursors are convenient dosimeters and imaging media for electron beams or photons used for industrial radiation processing. As ''grainless'' imaging systems having thicknesses down to a few micrometers, they provide high spatial resolution for determining detailed absorbed dose distributions through microdensitometric analysis. The radiation absorption properties of these systems are adjusted by changing film composition so that the dosimeter materials can be made to simulate the material of interest undergoing irradiation. Other advantages include long-term stability, dose-rate independence, and ease of use and calibration. Radiochromic dye films with thicknesses varying from 0.005 to 1 mm are presently used to monitor electron-beam or gamma-ray doses from 10 to 10 5 Gy (10 3 to 10 7 rad), typical of those encountered in medical applications, radiation curing of polymeric composites, wire and cable insulation, shrinkable plastic tubing and film, as well as sterilization of medical supplies and treatment of municipal and industrial wastes. An NBS calibration service to industry involves the traceability of standard 60 Co gamma ray absorbed dose measurements by means of these films employed as transfer standards

  2. Radiation safety standards: space hazards vs. terrestrial hazards

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1983-01-01

    Policies regarding the setting of standards for radiation exposure for astronauts and other workers in space are discussed. The first recommendations for dose limitation and the underlying philosophy of these recommendations, which were put out in 1970, are examined, and consequences for the standards if the same philosophy of allowing a doubling in overall cancer risk for males aged 30-35 over a 20-year period were applied to more recent risk estimates are calculated, leading to values about a factor of 4 below the 1970 recommendation. Standards set since 1930 for terrestrial occupational exposures, which lead to a maximum lifetime risk of about 2.3 percent, are then considered, and the space and terrestrial exposure risks for fatal cancers at maximum lifetime dose are compared with industrial accidental death rates. Attention is also given to the question of the potential effects of HZE particles in space and to the possibility that HZE particle effects, rather than radiation carcinogenesis, might be the limiting factor. 17 references

  3. Radiation processing facilities and services in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali

    2007-01-01

    It is envisaged that radiation processing will continue to play an important role towards the progress and development of industry in Malaysia. Malaysian Government will continue to play an active role to support R and D in this field by providing the necessary infrastructure, facility, trained manpower and research funds. Additional e-beam accelerator is planned to be installed at Nuclear Malaysia in 2007. The medium energy electron beam accelerator (1 MeV, 50 mA) will be mainly use to evaluate the commercial viability for treating aqueous products such as wastewater. (author)

  4. Evolutionary patterns and processes in the radiation of phyllostomid bats

    Directory of Open Access Journals (Sweden)

    Monteiro Leandro R

    2011-05-01

    Full Text Available Abstract Background The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size and diet during the phyllostomid radiation. Results The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores or the relative size of tooth rows and mandibular processes (sanguivores and frugivores, which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya, larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory. Conclusions The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the

  5. Evolutionary patterns and processes in the radiation of phyllostomid bats

    Science.gov (United States)

    2011-01-01

    Background The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size) and diet during the phyllostomid radiation. Results The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores) or the relative size of tooth rows and mandibular processes (sanguivores and frugivores), which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya), larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory). Conclusions The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the remaining 20 My were

  6. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  7. Nuclear science in the 20th century. Radiation chemistry and radiation processing

    International Nuclear Information System (INIS)

    Fu Tao; Xu Furong; Zheng Chunkai

    2003-01-01

    The application of nuclear science and technology to chemistry has led to two important subjects, radiation chemistry and radiation processing, which are playing important roles in many aspects of science and society. We review the development and major applications of radiation chemistry and radiation processing, including the basic physical and chemical mechanisms involved

  8. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  9. The transition radiation detector of the PAMELA space mission

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  10. The transition radiation detector of the PAMELA space mission

    International Nuclear Information System (INIS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-01-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta

  11. Some features of radiation processing in the plastics industry

    International Nuclear Information System (INIS)

    Dobo, J.

    1985-01-01

    In the last few years, the production of free radicals by radiation became competitive with chemical initiators. Nevertheless radiation processing got only a firm footing, where distinct advantages could be demonstrated as compared with conventional processes, either in the technology or the product quality. This paper is intended to direct attention to some of the special features of radiation processing. (author)

  12. Some features of radiation processing in the plastics industry

    Science.gov (United States)

    D´, J.

    In the last few years, the production of free radicals by radiation became competitive with chemical initiators. Nevertheless, radiation processing got only a firm footing, where distinct advantages could be demonstrated as compared with conventional processes, either in the technology or the product quality. This paper is intended to direct attention to some of the special features of radiation processing.

  13. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  14. A new system for the measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2000-01-01

    Radiation from space mainly consists of charged heavy particles (protons and heavier particles). Due to this fact, the effective dose significantly differs from the physical dose. Current measuring equipment is not fully suitable to measure both of the quantities simultaneously. A combined device for measurement of the mentioned values consists of an on-board thermoluminescence dosimeter reader and a three-axis silicon detector linear energy transfer spectrometer. This paper deals with the main characteristic of the new system. This system can be, applied for dosimetry of air crew as well. (authors)

  15. A new system for measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2001-01-01

    The space radiation mainly consists of heavy charged particles (protons and heavier particles). Due to this fact its effective dose significantly differs from the physical dose. The recently used measuring equipment is not fully suitable to measure both quantities simultaneously. The combined device for measurement of mentioned values consists of an on board thermoluminescent dosimeter reader and a three axis silicon telescope as a linear energy transfer spectrometer. The paper deals with the main characteristics of the new system. This system can be applied for dosimetry of air-crew as well. (authors)

  16. Radiation retinopathy following treatment of posterior nasal space carcinoma

    International Nuclear Information System (INIS)

    Thompson, G.M.; Migdal, C.S.; Whittle, R.J.M.

    1983-01-01

    Posterior nasal space carcinoma has a high mortality and most patents are treated with radiotherapy. Radiation retinopathy was encountered in 7 out of 10 survivors included in this study. Five of the affected patients lost vision as a result of the retinopathy. One patient required laser photocoagulation and responded well to this treatment. There was a variation in the severity of the retinopathy among the patients studied despite the fact that all patients received a similar dose of radiotherapy. We suspect that previously unrecognised factors in the planning of radiotherapy fields may explain this difference. (author)

  17. Advances in ''radiation processing''. Repeat of a symposium

    International Nuclear Information System (INIS)

    Drawe, H.

    1984-01-01

    A symposium entitled ''International Meeting on Radiation Processing'' was held in Dubrovnik from 4th to 8th October, 1982. The current status of and the most recent developments in the field of radiation chemistry were presented. In the report presented here the reader is given a critical review of papers presented at the meeting, the following aspects being treated: Radiation measurements and quality control; radiation source technology; environmental application of radiation technology; radiation chemistry as related to nuclear technology; developments in applied polymer chemistry; radiation sterilization; radiation technological aspects in the food industry; low energy electron radiation applications; applied radiation chemistry and physics; bio-compatible materials, radiation plants; engineering economics and process optimization. (orig./RB) [de

  18. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    Science.gov (United States)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  19. Radiation Processing of Advanced Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Jeun, Joonpyo; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and {gamma}-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose.

  20. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  1. Hawking radiation from black holes in de Sitter spaces

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2007-01-01

    Recently, Hawking radiation has been treated, by Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303), as a compensating flux of the energy-momentum tensor required to cancel a gravitational anomaly at the event horizon (EH) of a Schwarzschild-type black hole. In this paper, motivated by this work, Hawking radiation from the event horizon (EH) and the de Sitter cosmological horizon (CH) of black holes in de Sitter spaces, specifically including the purely de Sitter black hole and the static, spherically symmetric Schwarzschild-de Sitter black hole as well as the rotating Kerr-de Sitter black hole, have been studied by anomalies. The results show that the gauge-current and energy-momentum tensor fluxes, required to restore gauge invariance and general coordinate covariance at the EH and the CH, are precisely equal to those of Hawking radiation from the EH and the CH, respectively. It should be noted that gauge and gravitational anomalies taking place at the CH arise from the fact that the effective field theory is formulated inside the CH to integrate out the classically irrelevant outgoing modes at the CH, which are different from those at the black hole horizon

  2. Human Research Program Space Radiation Standing Review Panel (SRP)

    Science.gov (United States)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  3. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  4. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  5. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  6. Radiation processing with the Messina electron linac

    International Nuclear Information System (INIS)

    Auditore, L.; Barna, R.C.; De Pasquale, D.; Emanuele, U.; Loria, D.; Morgana, E.; Trifiro, A.; Trimarchi, M.

    2008-01-01

    In the last decades radiation processing has been more and more applied in several fields of industrial treatments and scientific research as a safe, reliable and economic technique. In order to improve existing industrial techniques and to develop new applications of this technology, at the Physics Department of Messina University a high power 5 MeV electron linac has been studied and set-up. The main features of the accelerating structure will be described together with the distinctive features of the delivered beam and several results obtained by electron beam irradiations, such as improvement of the characteristics of polymers and polymer composite materials, synthesis of new hydrogels for pharmaceutical and biomedical applications, reclaim of culture ground, sterilization of medical devices, development of new dosimeters for very high doses and dose rates required for monitoring of industrial irradiations

  7. Radiation induced processes in moss cells

    International Nuclear Information System (INIS)

    Doehren, R. v.

    1975-01-01

    The moss F.h. shows apical growth in the protonema cells which spread radially from the spor. Every apical daughter cell during the state of 'Caulonema' and just before in the state of 'Caulonema Primanen' initiates cell division as soon as more than twice the length of the mother cell is reached. All this allows to follow radiation effects in single cells conveniently. UV irradiation on the range of 254 nm and 280 nm delivered at different parts of the cell area delays cell division markedly may suppress it, and is able to stop the process of growing in relation to the delivered dose and to the irradiated area as well. In case of irradiation of the area next to where the membrane is just being formed - that is to say next to the phragmoplast - the new membrane will be wrongly oriented. In particular giant cells are occurring in the case of nucleus irradiation during early prophase. (orig./GSE) [de

  8. Operational experience of gamma radiation processing facility

    International Nuclear Information System (INIS)

    Patel, Nilesh

    2014-01-01

    Universal lSO-MED is now proud to announce an extension of its irradiation service for low-dose applications specifically in agriculture commodities, food and healthcare applications with the start of Gujarat Agro Radiation Processing Facility at Village: Bavla, Ahmedabad (A Government Enterprise) Operated, Maintained and Managed by Universal Medicap Ltd. Availability of hygienic, safe and nutritious food commodities is essential for any sustainable human development. Food stability is an important element of economic stability and self-reliance of a nation. Though the need to preserve food has been felt by the mankind since the time immemorial, it is even stronger in today's context. The rising population and increasing gap between demand and supply, agro-climatic conditions, in adequate post-harvest practices, seasonal nature of produce and long distances between production and consumption centers underscore the need to device improved conservation and preservation strategies

  9. Radiation processing dosimetry - past, present and future

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1999-01-01

    Since the two United Nations Conferences were held in Geneva in 1955 and 1958 on the Peaceful Uses of Atomic Energy and the concurrent foundation of the International Atomic Energy Agency in 1957, the IAEA has fostered high-dose dosimetry and its applications. This field is represented in industrial radiation processing, agricultural programmes, and therapeutic and preventative medicine. Such dosimetry is needed specifically for pest and quarantine control and in the processing of medical products, pharmaceuticals, blood products, foodstuffs, solid, liquid and gaseous wastes, and a variety of useful commodities, e.g. polymers, composites, natural rubber and elastomers, packaging, electronic, and automotive components, as well as in radiotherapy. Improvements and innovations of dosimetry materials and analytical systems and software continue to be important goals for these applications. Some of the recent advances in high-dose dosimetry include tetrazolium salts and substituted polydiacetylene as radiochromic media, on-line real-time as well as integrating semiconductor and diamond-detector monitors, quantitative label dosimeters, photofluorescent sensors for broad dose range applications, and improved and simplified parametric and computational codes for imaging and simulating 3D radiation dose distributions in model products. The use of certain solid-state devices, e.g. optical quality LiF, at low (down to 4K) and high (up to 500 K) temperatures, is of interest for materials testing. There have also been notable developments in experimental dose mapping procedures, e.g. 2D and 3D dose distribution analyses by flat-bed optical scanners and software applied to radiochromic and photofluorescent images. In addition, less expensive EPR spectrometers and new EPR dosimetry materials and high-resolution semiconductor diode arrays, charge injection devices, and photostimulated storage phosphors have been introduced. (author)

  10. Application to the radiation processing of polymer

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Polypropylene (PP) and biodegradable polymer (blend of poly ({epsilon}-caploracton) 30/polybutylenesuccynate 70), PHB02 were irradiated with an electron beam to improve processability for production of thin film and foam. The processability of the polymer was improved due to enhancement of melt strength with irradiation at the dose range between 10 and 100 kGy. Increase of melt strength is due to entanglement of branch structure formed by irradiation. Possibility of high-speed production of thin film and production of foam have been achieved by this process. The soil degradation test showed that biodegradable polymer film buried in the soil was almost entirely degraded (97%) after two months and completely degraded after two and a half months. In the case of foam samples, 65% degradation was achieved after four months. Radiation crosslinked water-soluble polymer form hydrogel, which absorb much water. The hydrogel prepared by irradiation of polymer in aqueous solution was applied as dressing for healing of wound. In order to evaluate the healing effect of the polyethylene oxide (PEO) hydrogel dressing, wounds formed on the back of marmots were covered by the hydrogel. The healing under the wet environment of the hydrogel dressing had three advantages, compared with that of gauze dressing, which gives a dry environment: (1) enhancement of healing rate, (2) facilitation for changing the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated skin surface, and (3) hydrogel dressing material does not remain stuck on the wound. (author)

  11. Application to the radiation processing of polymer

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2003-01-01

    Polypropylene (PP) and biodegradable polymer (blend of poly (ε-caploracton) 30/polybutylenesuccynate 70), PHB02 were irradiated with an electron beam to improve processability for production of thin film and foam. The processability of the polymer was improved due to enhancement of melt strength with irradiation at the dose range between 10 and 100 kGy. Increase of melt strength is due to entanglement of branch structure formed by irradiation. Possibility of high-speed production of thin film and production of foam have been achieved by this process. The soil degradation test showed that biodegradable polymer film buried in the soil was almost entirely degraded (97%) after two months and completely degraded after two and a half months. In the case of foam samples, 65% degradation was achieved after four months. Radiation crosslinked water-soluble polymer form hydrogel, which absorb much water. The hydrogel prepared by irradiation of polymer in aqueous solution was applied as dressing for healing of wound. In order to evaluate the healing effect of the polyethylene oxide (PEO) hydrogel dressing, wounds formed on the back of marmots were covered by the hydrogel. The healing under the wet environment of the hydrogel dressing had three advantages, compared with that of gauze dressing, which gives a dry environment: (1) enhancement of healing rate, (2) facilitation for changing the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated skin surface, and (3) hydrogel dressing material does not remain stuck on the wound. (author)

  12. Fall 2015 NASA Internship, and Space Radiation Health Project

    Science.gov (United States)

    Patience, Luke

    2015-01-01

    This fall, I was fortunate enough to have been able to participate in an internship at NASA's Lyndon B. Johnson Space Center. I was placed into the Human Health & Performance Directorate, where I was specifically tasked to work with Dr. Zarana Patel, researching the impacts of cosmic level radiation on human cells. Using different laboratory techniques, we were able to examine the cells to see if any damage had been done due to radiation exposure, and if so, how much damage was done. Cell culture samples were exposed at different doses, and fixed at different time points so that we could accumulate a large pool of quantifiable data. After examining quantifiable results relative to the impacts of space radiation on the human body at the cellular and chromosomal level, researchers can defer to different areas of the space program that have to do with astronaut safety, and research and development (extravehicular mobility unit construction, vehicle design and construction, etc.). This experience has been very eye-opening, and I was able to learn quite a bit. I learned some new laboratory techniques, and I did my best to try and learn new ways to balance such a hectic work and school schedule. I also learned some very intimate thing about working at NASA; I learned that far more people want to watch you succeed, rather than watch you fail, and I also learned that this is a place that is alive with innovators and explorers - people who have a sole purpose of exploring space for the betterment of humanity, and not for any other reason. It's truly inspiring. All of these experiences during my internship have impacted me in a really profound way, so much that my educational and career goals are completely different than when I started. I started out as a biotechnology major, and I discovered recently toward the end of the internship, that I don't want to work in a lab, nor was I as enthralled by biological life sciences as a believed myself to be. Taking that all into

  13. Concepts of radiation processes selection for industrial realization. Chapter 6

    International Nuclear Information System (INIS)

    1997-01-01

    For selection of radiation processes in industry the processes usually are analyzing by technological and social effects, power-insensitivity, common efficiency. Technological effect is generally conditioned with uniqueness of radiation technologies which allow to obtain new material or certain one but with new properties. Social effect first of all concerns with influence of radiation technologies on consumer's psychology. Implementation of equipment for radiation technological process for both the new material production and natural materials radiation treatment is related with decision of three tasks: 1) Choice of radiation source; 2). Creation of special equipment for radiation and untraditional stages of the process; 3) Selection of radiation and other conditions ensuring of achievement of optimal technological and economical indexes

  14. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  15. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  16. International meeting on radiation chemistry and processing

    International Nuclear Information System (INIS)

    1986-04-01

    The conference heard 76 papers; the abstracts of 74 of them were inputted in INIS. They deal with the basic principles and mechanisms of radiation chemistry, with radiolysis, radiation cross-linking of polymers, with methods and instruments for irradiation beam dosimetry, and with radiation application in the irradiation of foods and wastes. (M.D.)

  17. Radiations and space flight; Quand les radiations font partie du voyage

    Energy Technology Data Exchange (ETDEWEB)

    Maalouf, M.; Vogin, G.; Foray, N. [Groupe de Radiobiologie, Inserm U836, Institut des Neurosciences, 38 - Grenoble (France); Maalouf [CNES, Dept. des Sciences de la Vie, 75 - Paris (France); Vogin, G. [Laboratoire de Radiobiologie, EA3738, Faculte de Medecine de Lyon Sud, 69- Oullins (France)

    2011-02-15

    A space flight is submitted to 3 main sources of radiation: cosmic radiation (4 protons/cm{sup 2}/s and 10000 times less for the heaviest particles), solar radiation (10{sup 8} protons/cm{sup 2}/s in the solar wind), the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm{sup 2}/s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 {mu}Gray per day with an average dose rate of 0.28 {mu}Gray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  18. Radiation protection at radioisotope processing facilities

    International Nuclear Information System (INIS)

    Hillier, L.R.; Decaire, R.

    2002-01-01

    MDS Inc. is Canada's largest diversified health and life sciences company and provides health care services and products to prevent, diagnose and treat disease. MDS Nordion Inc. is a subsidiary of MDS Inc. and is located in Ottawa, Ontario. It provides much of the world's supply of radioisotopes used in nuclear medicine primarily to diagnose, but also to treat disease. MDS Nordion is composed of three major production divisions at its Ottawa location and serves customers in three major markets. These are primarily: radioisotopes used in nuclear medicine (Nuclear Medicine Division), radiation processing for sterilization of medical equipment and supplies, and food (Ion Technologies Division), and teletherapy equipment used in cancer treatment (Therapy Systems Division). MDS Nordion supplies customers in over 100 countries, exporting more than 95 percent of its product processed in Canada. Every year, 15 to 20 million diagnostic imaging tests are carried out in hospitals around the world, using radioisotopes supplied by MDS Nordion. In addition, 150 to 200 million cubic feet (that's enough to cover an entire CFL field - including the end zones - stacked over half a kilometer high) of single use medical products are sterilized using MDS Nordion supplied equipment. MDS Nordion receives medical isotopes from AECL, Chalk River Laboratories and processes the material to purify and quantify the radioisotope product. Sealed sources, comprised of cobalt 60, are supplied from CANDU reactors. Production processes include ventilated shielded cells with remote manipulators, gloveboxes and fumehoods, to effectively control the safety of the workplace and the environment, and to prevent contamination of the products. The facilities are highly regulated by the Canadian Nuclear Safety Commission (CNSC) for safety and environmental protection. Products are also regulated by Health Canada and the US-Food and Drug Administration (FDA). (author)

  19. Predictions of space radiation fatality risk for exploration missions.

    Science.gov (United States)

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  20. Nonthermal Radiation Processes in Interplanetary Plasmas

    Science.gov (United States)

    Chian, A. C. L.

    1990-11-01

    RESUMEN. En la interacci6n de haces de electrones energeticos con plasmas interplanetarios, se excitan ondas intensas de Langmuir debido a inestabilidad del haz de plasma. Las ondas Langmuir a su vez interaccio nan con fluctuaciones de densidad de baja frecuencia para producir radiaciones. Si la longitud de las ondas de Langmujr exceden las condicio nes del umbral, se puede efectuar la conversi5n de modo no lineal a on- das electromagneticas a traves de inestabilidades parametricas. As se puede excitar en un plasma inestabilidades parametricas electromagneticas impulsadas por ondas intensas de Langmuir: (1) inestabilidades de decaimiento/fusi5n electromagnetica impulsadas por una bomba de Lang- muir que viaja; (2) inestabilidades dobles electromagneticas de decai- miento/fusi5n impulsadas por dos bombas de Langrnuir directamente opues- tas; y (3) inestabilidades de dos corrientes oscilatorias electromagne- ticas impulsadas por dos bombas de Langmuir de corrientes contrarias. Se concluye que las inestabilidades parametricas electromagneticas in- ducidas por las ondas de Langmuir son las fuentes posibles de radiacio- nes no termicas en plasmas interplanetarios. ABSTRACT: Nonthermal radio emissions near the local electron plasma frequency have been detected in various regions of interplanetary plasmas: solar wind, upstream of planetary bow shock, and heliopause. Energetic electron beams accelerated by solar flares, planetary bow shocks, and the terminal shock of heliosphere provide the energy source for these radio emissions. Thus, it is expected that similar nonthermal radiation processes may be responsible for the generation of these radio emissions. As energetic electron beams interact with interplanetary plasmas, intense Langmuir waves are excited due to a beam-plasma instability. The Langmuir waves then interact with low-frequency density fluctuations to produce radiations near the local electron plasma frequency. If Langmuir waves are of sufficiently large

  1. Radiation processing in the United States

    International Nuclear Information System (INIS)

    Brynjolfsson, A.

    1986-01-01

    In animal feeding studies, including the huge animal feeding studies on radiation sterilized poultry products irradiated with sterilizing dose of 58 kGy revealed no harmful effects. This finding is corroborated by the very extensive analysis of the radiolytic products, which indicated that the radiolytic products could not in the quantity found in the food be expected to produce any toxic effect. It thus appears to be proven with reasonable certainty that no harm will result from the proposed use of the process. Accordingly, FDA is moving forward with approvals while allowing the required time for hearings and objection. On July 5, 1983 FDA permitted gamma irradiation for control of microbial contamination in dried spices and dehydrated vegetable seasoning at doses up to 10 kGy; on June 19, 1984 the approval was expanded to cover insect infection; and additional seasonings and irradiation of dry or dehydrated enzyme preparations were approved on February 12 and June 4, respectively, 1985. In addition, in July 1985, FDA cleared irradiation of pork products with doses of 0.3 to 1 kGy for eliminating trichinosis. Approvals of other agencies, including Food and Drug Administration, Department of Agriculture, the Nuclear Regulatory Commission, Occupational Safety and Health Administration, Department of Transportation, Environmental Protection Agency, and States and local communities, are usually of a technological nature and can then be obtained if the process is technologically feasible. (Namekawa, K.)

  2. On The Development of Biophysical Models for Space Radiation Risk Assessment

    Science.gov (United States)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  3. 40 Years of Processing Pieces of Space

    Science.gov (United States)

    Satterwhite, C. E.; Funk, R. C.; Righter, K.; Harrington, R. H.

    2016-01-01

    This year marks the 40th year anniversary for the Antarctic Search for Meteorite (ANSMET) program. In 1976, the ANSMET program led the first expedition to Antarctica. The ANSMET program is a US-led field-based science project that recovers meteorite samples from Antarctica. Once a year from late November to late January, a field team consisting of 8 to 12 people, spends 6-8 weeks camping on the ice and collecting meteorites. Since 1976, more than 22,000 meteorite samples have been recovered. These meteorites come from asteroids, planets and other bodies of the solar system. Once collected, the Antarctic meteorites are shipped to NASA/Johnson Space Center (JSC) Houston, TX. in a refrigerated truck and are kept frozen to minimize oxidation until they are ready for initial processing. In Antarctica each meteorite is given a field tag which consists of numbers, once in the lab, this is replaced by an official tag, consisting of the Antarctic field location and year collected. The types and numbers of meteorites that have been classified include 849 carbonaceous chondrites, 135 enstatites, 512 achondrites, 64 stony, 115 irons, 48 others (27 R chondrites, 7 ungrouped), 6,161 H chondrites, 7,668 L chondrites, and 4,589 LL chondrites. Although 80-85 percent of the collected meteorites fall in the ordinary chondrite group, the other approximately 15 percent represent rare types of achondrites and carbonaceous chondrites. These rare meteorites include 25 lunar meteorites, 15 Martian meteorites, scores of various types of carbonaceous chondrites, and unique achondrites. The Antarctic meteorites that have been collected are processed in the Meteorite Processing Lab at JSC in Houston, TX. Initial processing of the meteorites begins with thawing/drying the meteorites in a nitrogen glove box for 24 to 48 hours. The meteorites are then photographed, measured, weighed and a description of the interior and exterior of each meteorite is written. The meteorite is broken and a

  4. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  5. The advances in radiation processing technology and some suggestion

    International Nuclear Information System (INIS)

    Wu Jilan; Wei Genshuan; Ha Hongfei

    1992-01-01

    Radiation processing technology has been made great advances in the last decade especially in the developed countries. According to the conservative evaluation, the total sales of radiation processing products approached about 2-3 billion U.S. dollar in 1981, there after, the processing capacity at least doubles. Now, the intensities of 60 Co in use for radiation processing are (5.55-7.40) x 10 18 Bq and there are about 600 sets of electron accelerators for radiation processing. The total sales of radiation processing products are supposed to be over 10 billion U.S. dollar in 1989. However, there are only several fields commercialized. In great scale, such as radiation crosslinked heat shrinkable materials, radiation crosslinked electric cables and wires, and radiation sterilization of medical articles. In China, the radiation processing technology has been developed rapidly in the past years, but the processing capacity is still lower in comparing with developed countries. We suggest that much attention should be devoted to the training of the workers, technicians and managers. The basic theoretical and new technological researches are the keys for developing radiation processing technology at high speed in our country

  6. Mechanism on radiation degradation of Si space solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Hisamatsu, Tadashi; Matsuda, Sumio

    1998-01-01

    Radiation testing of Si n + -p-p + structure space solar cells has revealed an anomalous increase in short-circuit current Isc, followed by an abrupt decrease and cell failure, induced by high fluence electron and proton irradiations. A model to explain these phenomena by expressing the change in carrier concentration p of the base region is proposed in addition to the well-known model where Isc is decreased by minority-carrier lifetime reduction with irradiation. Change in carrier concentration causes broadening the depletion layer to contribute increase in the generated photocurrent and increase in recombination-generation current in the depletion layer, and increase in the resistivity of the base layer to result in the abrupt decrease of Isc and failure of the solar cell. Type conversion from p-type to n-type in base layer has been confirmed by EBIC (electron-beam induced current) and spectral response measurements. Moreover, origins of radiation-induced defects in heavily irradiated Si and generation of deep donor defects have also been examined by using DLTS (deep level transient spectroscopy) analysis. (author)

  7. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  8. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  9. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    effectiveness of radiation mitigator's. The NSRM- 2014 approaches to model radiation quality dependent lethality and NTE's will be described. CNS effects include both early changes that may occur during long space missions and late effects such as Alzheimer's disease (AD). AD effects 50% of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages and the small number of low LET epidemiology studies undertaken have not identified an association with low dose radiation. However experimental studies in mice suggest GCR may lead to early onset AD. We discuss modeling approaches to consider mechanisms whereby radiation would lead to earlier onset of occurrence of AD. Biomarkers of AD include amyloid beta (A(Beta)) plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyperphosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dentritic spine loss, and neuronal cell loss through apoptosis. Radiation may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuroinflammation. Cell types to be considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3(Beta) (GSK3(Beta)) and neuroinflammation, and considered multi-scale modeling approaches to develop computer simulations of cell interactions and their relationships to A(Beta) plaques and NFTs. Comparison of model results to experimental data for the age specific development of A(Beta) plaques in transgenic mice will be discussed.

  10. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    Science.gov (United States)

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  11. Recent status and progress of radiation processing in the world

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Byoung Hun; Im, Don Sun; Kim, Jae Ho; Nho, Young Chang

    2008-01-01

    Radiation technology is currently used in a number of industrial processes such as sterilization, cross linking of polymer, food irradiation, rubber vulcanization in the tire manufacturing, contaminated medical waste, etc. Gamma ray and electron beam are the key examples of well-established economical applications of radiation processes. The purpose of this paper is to review the recent technological trends and activities for radiation processes in order for the industrial end users to better understand, and obtain useful information about the technology. It is clear that the radiation processing technology has potential for a variety of the industrial applications

  12. Recent status and progress of radiation processing in the world

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Byoung Hun; Im, Don Sun; Kim, Jae Ho; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2008-01-15

    Radiation technology is currently used in a number of industrial processes such as sterilization, cross linking of polymer, food irradiation, rubber vulcanization in the tire manufacturing, contaminated medical waste, etc. Gamma ray and electron beam are the key examples of well-established economical applications of radiation processes. The purpose of this paper is to review the recent technological trends and activities for radiation processes in order for the industrial end users to better understand, and obtain useful information about the technology. It is clear that the radiation processing technology has potential for a variety of the industrial applications.

  13. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    Science.gov (United States)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  14. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  15. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  16. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  17. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  18. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  19. Meeting the Grand Challenge of Protecting Astronaut's Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will seek to test and validate an electrostatic gossamer structure to provide radiation shielding. It will provide guidelines for energy requirements,...

  20. Radiation processing of minimally processed vegetables and aromatic plants

    International Nuclear Information System (INIS)

    Trigo, M.J.; Sousa, M.B.; Sapata, M.M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M.L.; Veloso, M.G.

    2009-01-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander (Coriandrum sativum L.), mint (Mentha spicata L.), parsley (Petroselinum crispum Mill, (A.W. Hill)), lettuce (Lactuca sativa L.) and watercress (Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (≥2 log). Based on the determined D 10 , the amount of radiation necessary to kill 10 5 E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  1. Radiation processing of minimally processed vegetables and aromatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.J. [Instituto Nacional dos Recursos Biologicos, L-INIA, Quinta do Marques, 2784-505 Oeiras (Portugal)], E-mail: mjptrigo@gmail.com; Sousa, M.B.; Sapata, M.M.; Ferreira, A.; Curado, T.; Andrada, L. [Instituto Nacional dos Recursos Biologicos, L-INIA, Quinta do Marques, 2784-505 Oeiras (Portugal); Botelho, M.L. [Instituto Tecnologico e Nuclear, E.N. 10, 2696 Sacavem (Portugal); Veloso, M.G. [Faculdade de Medicina Veterinaria de Lisboa, Av. da Universidade Tecnica, Alto da Ajuda, 1300-477 Lisboa (Portugal)

    2009-07-15

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander (Coriandrum sativum L.), mint (Mentha spicata L.), parsley (Petroselinum crispum Mill, (A.W. Hill)), lettuce (Lactuca sativa L.) and watercress (Nasturium officinale L.). The inactivation level of natural microbiota and the D{sub 10} values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed ({>=}2 log). Based on the determined D{sub 10}, the amount of radiation necessary to kill 10{sup 5}E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  2. Radiation processing of minimally processed vegetables and aromatic plants

    Science.gov (United States)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  3. Energy balance in processes of transition radiation

    International Nuclear Information System (INIS)

    Vladimirov, S.V.; Tsytovich, V.N.

    1985-01-01

    The authors consider the transition radiation arising when a charged particle crosses an interface between two nonabsorbing media. It is shown that energy balance is observed under these circumstances. The fulfillment of energy balance in transition radiation for nonabsorbing media is rigorously demonstrated. This allows one to find the energy of the transition radiation from the change in the energy of the intrinsic field of the charge and the work of forces for volume waves, which in a number of cases of complicated configurations may prove to be considerably simpler than a direct calculation of the radiation power. For surface waves, a calculation of the work of forces enables one to determine the radiation power directly

  4. Nonterrestrial material processing and manufacturing of large space systems

    Science.gov (United States)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  5. Radiation processing of food to ensure food safety and security

    International Nuclear Information System (INIS)

    Gautam, Satyendra

    2016-01-01

    Radiation processing of food utilizes the controlled application of energy from ionizing radiations such as γ-rays , electrons and X-rays on food. Gamma-rays and X-rays are short wavelength radiations of the electromagnetic spectrum. The approved sources of gamma radiation for food processing are radioisotopes (Cobalt-60 and Caesium-137), electron beam (up to 10 MeV) and X-rays (up to 5 MeV) wherein the latter two are generated by machines using electricity. γ-radiation can penetrate deep into the food materials causing the desired effects. Irradiation works by disrupting the biological processes that lead to decay. While interacting with water and other biomolecules that constitute the food and living organisms, radiation energy is absorbed by these molecules. The interactions of radiation and radiolytic products of water with DNA impair the reproduction of microorganism and insects, and thus help in achieving the desired objectives pertaining to food safety and security

  6. Trend and future of radiation processing of polymers

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2000-01-01

    Five Asian countries have been cooperating with Takasaki Radiation Chemistry Research Establishment (TRCRE), Japan, in the field of radiation processing of polymers. The experience of cooperation is summarized. Main processes are polymerization of monomers, cross-linking and degradation of polymers, graft polymerization and curing. The industrial state-of-art of radiation processing in Japan is described. The characteristics of radiation processes are compared with other processes. The future prospect of processing is also described. The growth in cross-linking and degradation are anticipated, whereas graft polymerization and curing are to confront to severe competition with other methods. The possibility of developing new area of radiation processing in Asian counties is pointed out. (A. Yamamoto)

  7. Radiation biology using synchrotron radiation. In relation to radiation chemistry as an initial process

    International Nuclear Information System (INIS)

    Kobayashi, Katsumi

    1995-01-01

    Radiation biology using synchrotron radiation have been investigated, focusing on the mechanism of the formation of molecular damage. This paper introduces recent outcome of these studies. First, the process from imparted energy to the formation of molecular damage is outlined. The previous studies can be largely categorized as dealing with (1) biological effects of inner-shell ionization on elements composing the living body and (2) X-ray energy dependence of biological effects. Bromine and phosphorus are used as elements for the study of inner-cell ionization. In the study on lethal effects of monochromatic soft X-rays on the BrdUMP-incorporated yeast cells, Auger enhancement was found to occur. The first report on the effects of K-shell absorption of cellular phosphorus atoms has revealed that biological effects on cellular lethality and genetic changes was enhanced by 40%. Plasmid DNA and oligonucleotide have been used to study biological effects of vacuum ultraviolet rays to monochromatic soft X-ray, which makes it possible to study strand breaks. Because experimental production of energy required for the formation of double strand breaks has become possible, synchrotron radiation plays a very important role in radiation biological studies. Finally, future issues are presented. (N.K.)

  8. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  9. Process and apparatus for examination by penetrating radiations, particularly by tomography

    International Nuclear Information System (INIS)

    Taylor, S.K.; Erker, J.W.; Carper, R.L.

    1980-01-01

    This invention concerns a process and apparatus for examination by penetrating radiation, particularly by tomography. Specifically, the invention refers to the 'tacography' or computer assisted axial tomography machines and, in particular, the machines working by translational and rotational displacement. Such a translational and rotational scanner is designed so that the radiation source and detectors move by translation on a carriage at non constant speed. Data samples are taken, for unit distances in space and not during unit times [fr

  10. Chemical aspects of radiation damage processes: radiolysis

    International Nuclear Information System (INIS)

    Asmus, K.D.

    1975-01-01

    The formation of primary species and radiation chemical yields are discussed. In a section on chemical scavenging of primary species the author considers scavenging kinetics and competition reactions and gives a brief outline of some experimental methods. The radiation chemistry of aqueous solutions is discussed as an example for polar solvents. Cyclohexane is used as an example for non-polar solvents. The importance of excited states and energy transfer is considered. Reactions in the solid state are discussed and results on linear energy transfer and average ion pair formation for various kinds of radiation are surveyed. (B.R.H.)

  11. What Reliability Engineers Should Know about Space Radiation Effects

    Science.gov (United States)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the

  12. The practice of safety culture construction in radiation processing enterprise

    International Nuclear Information System (INIS)

    Kong Xiangshan; Zhang Yue; Yang Bin; Xu Tao; Liu Wei; Hao Jiangang

    2014-01-01

    Security is an integral part of the process of business operations. The radiation processing enterprises due to their own particularity, more need to focus on the operation of the safety factors, the construction of corporate safety culture is of great significance in guiding carry out the work of the Radiation Protection. Radiation processing enterprises should proceed from their own characteristics, the common attitude of security systems and security construction, and constantly improved to ensure the personal safety of radiation workers in the area of safety performance. (authors)

  13. Processing of space images and geologic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, V S

    1981-01-01

    Using data for standard sections, a correlation was established between natural formations in geologic/geophysical dimensions and the form they take in the imaging. With computer processing, important data can be derived from the image. Use of the above correlations has allowed to make a number of preliminary classifications of tectonic structures, and to determine certain ongoing processes in the given section. The derived data may be used for search of useful minerals.

  14. Development, validation and routine control of a radiation process

    International Nuclear Information System (INIS)

    Kishor Mehta

    2010-01-01

    Today, radiation is used in industrial processing for variety of applications; from low doses for blood irradiation to very high doses for materials modification and even higher for gemstone colour enhancement. At present, radiation is mainly provided by either radionuclides or machine sources; cobalt-60 is the most predominant radionuclide in use. Currently, there are several hundred irradiation facilities worldwide. Similar to other industries, quality management systems can assist radiation processing facilities in enhancing customer satisfaction and maintaining and improving product quality. To help fulfill quality management requirements, several national and international organizations have developed various standards related to radiation processing. They all have requirements and guidelines for development, validation and routine control of the radiation process. For radiation processing, these three phases involve the following activities. Development phase includes selecting the type of radiation source, irradiation facility and the dose required for the process. Validation phase includes conducting activities that give assurance that the process will be successful. Routine control then involves activities that provide evidence that the process has been successfully realized. These standards require documentary evidence that process validation and process control have been followed. Dosimetry information gathered during these processes provides this evidence. (authors)

  15. Principles of interaction of ionizing radiation with matter and basic radiation chemistry processes

    International Nuclear Information System (INIS)

    Santar, I.; Bednar, J.

    1976-01-01

    The basic principles are given of the interaction of ionizing radiation with matter and the main trends are pointed out in radiation chemistry. A brief characteristics is given of the basic radiation chemical processes in gases and in the condensed phase, namely in water and in organic substances. (B.S.)

  16. Radiation processing of carrageenan using electron beam

    International Nuclear Information System (INIS)

    Abad, L.V.; Aranilla, C.T.; Relleve, L.; Dela Rosa, A.M.

    2005-01-01

    Electron beam accelerator has been widely employed in the modification of natural polymers for the development of materials used in biomedical and agricultural applications. The carrageenans are among these materials that show a vast potential for these types of applications. Previous studies at the Philippine Nuclear Research Institute focused on the utilization of gamma radiation to modify the carrageenans. Radiation degradation of carrageenan found valuable use as plant growth promoter. Hydrogels for burn dressing using blends of carrageenan and synthetic polymers have also been made using gamma radiation. While previous studies have been focused on the use of gamma radiation to modify the carrageenans, recent studies expanded the technology to electron beam. Concretely, researches are along the following two areas: a) Degradation studies of aqueous carrageenan using the LEEB and b) Preparation of blend polysaccharide derivatives such as carboxymethylcellulose (CMC), and hydroxypropylcellulose (HPC) with kappa-carrageenan (KC) by EB radiation. These works were done at the Takasaki Radiation Chemistry Research Establishment (TRCRE) by two PNRI colleagues under the nuclear researcher exchange program of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The first area had already been reported and discussed in the last project meeting held in Malaysia. (author)

  17. Growth of Radiation Processing Plant, Vashi - an overview

    International Nuclear Information System (INIS)

    Singh, Ranjeet

    2014-01-01

    Radiation Processing Plant, Vashi (RPP) is the first commercial scale Gamma Irradiator for food processing in India. The facility was commissioned on 1 st January 2000 with the mandate of showcasing commercial viability of food processing using gamma radiation. Some of the food products that are processed at RPP, Vashi include dehydrated onion powder, coriander, turmeric, black pepper, cumin, pet food and dried seafood items. RPP, Vashi is the largest radiation processor of food products in the country. More than 95% of the quantity processed is exported to various countries generating millions of foreign exchange annually

  18. Recent developments in analytical detection methods for radiation processed foods

    International Nuclear Information System (INIS)

    Wu Jilan

    1993-01-01

    A short summary of the programmes of 'ADMIT' (FAO/IAEA) and the developments in analytical detection methods for radiation processed foods has been given. It is suggested that for promoting the commercialization of radiation processed foods and controlling its quality, one must pay more attention to the study of analytical detection methods of irradiated food

  19. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    Science.gov (United States)

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  20. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  1. Radiation chemistry - extravaganza or an integral component of radiation processing of food

    International Nuclear Information System (INIS)

    Simic, M.G.; DeGraff, E.

    1983-01-01

    The role of radiation chemistry in radiation processing of foods is discussed in detail. A few examples demonstrating the relevance of the radiation chemistry of model systems to food-irradiation technology are given. The importance of irradiation parameters such as dose, dose rate, temperature, atmosphere, physical state and additives in achieving acceptable and high quality of irradiated foods are emphasized. A few examples of radiation-induced free radical reactions in model compounds relevant to foods are also discussed. (author)

  2. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    Cheng Weifeng; Li Zheng; Chen Zhiqiang; Zhang Li; Gao Wenhuan

    2002-01-01

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  3. Application of Interval Predictor Models to Space Radiation Shielding

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy,Daniel P.; Norman, Ryan B.; Blattnig, Steve R.

    2016-01-01

    This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.

  4. Hydrologic and cryospheric processes observed from space

    NARCIS (Netherlands)

    Menenti, M.; Li, X.; Wang, J.; Vereecken, H.; Li, J.; Mancini, M.; Liu, Q.; Jia, L.; Li, J.; Kuenzer, C.; Huang, S.; Yesou, H.; Wen, J.; Kerr, Y.; Cheng, X.; Gourmelen, N.; Ke, C.; Ludwig, R.; Lin, H.; Eineder, M.; Ma, Y.; Su, Z.B.

    2015-01-01

    Ten Dragon 3 projects deal with hydrologic and cryosphere processes, with a focus on the Himalayas and Qinghai – Tibet Plateau, but not limited to that. At the 1st Dragon 3 Progress Symposium in 2013 a significant potential for a better and deeper integration appeared very clearly and we worked out

  5. Image Segmentation and Processing for Efficient Parking Space Analysis

    OpenAIRE

    Tutika, Chetan Sai; Vallapaneni, Charan; R, Karthik; KP, Bharath; Muthu, N Ruban Rajesh Kumar

    2018-01-01

    In this paper, we develop a method to detect vacant parking spaces in an environment with unclear segments and contours with the help of MATLAB image processing capabilities. Due to the anomalies present in the parking spaces, such as uneven illumination, distorted slot lines and overlapping of cars. The present-day conventional algorithms have difficulties processing the image for accurate results. The algorithm proposed uses a combination of image pre-processing and false contour detection ...

  6. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  7. [The model of radiation shielding of the service module of the International space station].

    Science.gov (United States)

    Kolomenskiĭ, A V; Kuznetsov, V G; Laĭko, Iu A; Bengin, V V; Shurshakov, V A

    2001-01-01

    Compared and contrasted were models of radiation shielding of habitable compartments of the basal Mir module that had been used to calculate crew absorbed doses from space radiation. Developed was a model of the ISS Service module radiation shielding. It was stated that there is a good agreement between experimental shielding function and the one calculated from this model.

  8. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection.

    Science.gov (United States)

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  9. Shutdown and degradation: Space computers for nuclear application, verification of radiation hardness. Final report

    International Nuclear Information System (INIS)

    Eichhorn, E.; Gerber, V.; Schreyer, P.

    1995-01-01

    (1) Employment of those radiation hard electronics which are already known in military and space applications. (2) The experience in space-flight shall be used to investigate nuclear technology areas, for example, by using space electronics to prove the range of applications in nuclear radiating environments. (3) Reproduction of a computer developed for telecommunication satellites; proof of radiation hardness by radiation tests. (4) At 328 Krad (Si) first failure of radiation tolerant devices with 100 Krad (Si) hardness guaranteed. (5) Using radiation hard devices of the same type you can expect applications at doses of greater than 1 Mrad (Si). Electronic systems applicable for radiation categories D, C and lower part of B for manipulators, vehicles, underwater robotics. (orig.) [de

  10. Space-time description of hard processes

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Khoze, V.A.; Lipatov, L.N.

    1984-01-01

    The authors show that the interaction in deep inelastic scattering processes occurs mainly in a region near the light cone. It is concluded that in all cases studied, the scaling behaviour of the structure functions corresponds to the same light cone singularities of the coordinate functions as in the case of scattering on a free spin-1/2 fermion (or, perhaps, on a spinless boson). (Auth.)

  11. Use of ionising radiation for food processing applications

    International Nuclear Information System (INIS)

    Ninjoor, V.

    1989-01-01

    Food irradiation is a recently developed technique used to sterilize and preserve food. Food products are exposed to ionising radiations such as X-rays, gamma rays or high energy electrons which destroy food borne pathogens and parasites and inhibit sprouting. Shelf life of food is extended. The following aspects of radiation processing of food are discussed in the monograph: radiation sources, choice of dose for specific results, safety and nutritional quality of radiation processed food, international status of acceptance of food irradiation, and cost. (M.G.B.). 6 tabs

  12. Dosimetry control for radiation processing - basic requirements and standards

    International Nuclear Information System (INIS)

    Ivanova, M.; Tsrunchev, Ts.

    2004-01-01

    A brief review of the basic international codes and standards for dosimetry control for radiation processing (high doses dosimetry), setting up a dosimetry control for radiation processing and metrology control of the dosimetry system is made. The present state of dosimetry control for food processing and the Bulgarian long experience in food irradiation (three irradiation facilities are operational at these moment) are presented. The absence of neither national standard for high doses nor accredited laboratory for calibration and audit of radiation processing dosimetry systems is also discussed

  13. State-Space Inference and Learning with Gaussian Processes

    OpenAIRE

    Turner, R; Deisenroth, MP; Rasmussen, CE

    2010-01-01

    18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...

  14. Space structure of hadrons and soft processes

    International Nuclear Information System (INIS)

    Nyiri, J.

    1980-12-01

    A semi-phenomenological description of soft hadronic processes is given based on the picture of spatially separated quarks and on the spectator mechanism. It is pointed out that the data on the production of secondary mesons support the assumption of quark combinatorics. It is shown that the baryon production can be described roughly by the hypothesis of the dominance of the lowest SU(6)baryon multiplet. Two ways of explaining the slight discrepancy between the experimental data and the theoretical predictions on the increase of baryon multiplicities with the increase of energy are given. (P.L.)

  15. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  16. Industrialization drive of radiation processing for economic growth in China

    International Nuclear Information System (INIS)

    Lu Yanxiao

    1996-12-01

    The transfer of research and development achievements of radiation processing to routine industrial applications in China is reviewed. While making a brief survey of historical background, the paper indicates the different roles that various domestic organizations played in the industrialization drive of radiation processing. Among them the Government's role is the most important one. In accordance with recent growth of the number of industrial radiation facilities (e.g. cobalt-60 irradiators and electron beam accelerators) and current application of radiation processing in main fields in different parts of the country, it can be said that a new radiation processing industry is shaping up in its developing stage to satisfy the growing requirements for economic booming in China. (16 refs.)

  17. Wave processes. Auroral kilometer radiowave radiation

    International Nuclear Information System (INIS)

    Safargaleev, V.V.

    1993-01-01

    Characteristics of auroral kilometer radiowave radiation (AKRR) are discussed. AKRR is produced at altitudes 1.5-3 R e (R e is the Earth radius) in the auroral cavity. Electrons at energy 1-15 keV are always observed in AKRR production regions

  18. Statistical data processing with automatic system for environmental radiation monitoring

    International Nuclear Information System (INIS)

    Zarkh, V.G.; Ostroglyadov, S.V.

    1986-01-01

    Practice of statistical data processing for radiation monitoring is exemplified, and some results obtained are presented. Experience in practical application of mathematical statistics methods for radiation monitoring data processing allowed to develop a concrete algorithm of statistical processing realized in M-6000 minicomputer. The suggested algorithm by its content is divided into 3 parts: parametrical data processing and hypotheses test, pair and multiple correlation analysis. Statistical processing programms are in a dialogue operation. The above algorithm was used to process observed data over radioactive waste disposal control region. Results of surface waters monitoring processing are presented

  19. The effect of decreased interletter spacing on orthographic processing.

    Science.gov (United States)

    Montani, Veronica; Facoetti, Andrea; Zorzi, Marco

    2015-06-01

    There is growing interest in how perceptual factors such as the spacing between letters within words modulate performance in visual word recognition and reading aloud. Extra-large letter spacing can strongly improve the reading performance of dyslexic children, and a small increase with respect to the standard spacing seems beneficial even for skilled word recognition in adult readers. In the present study we examined the effect of decreased letter spacing on perceptual identification and lexical decision tasks. Identification in the decreased spacing condition was slower than identification of normally spaced strings, thereby confirming that the reciprocal interference among letters located in close proximity (crowding) poses critical constraints on visual word processing. Importantly, the effect of spacing was not modulated by string length, suggesting that the locus of the spacing effect is at the level of letter detectors. Moreover, the processing of crowded letters was facilitated by top-down support from orthographic lexical representation as indicated by the fact that decreased spacing affected pseudowords significantly more than words. Conversely, in the lexical decision task only word responses were affected by the spacing manipulation. Overall, our findings support the hypothesis that increased crowding is particularly harmful for phonological decoding, thereby adversely affecting reading development in dyslexic children.

  20. Radiation processing of liquid with low energy electron accelerator

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    2003-01-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by γ-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with γ-ray should be carried out. (author)

  1. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  2. UV and EB radiation processing in developing countries

    International Nuclear Information System (INIS)

    Garnett, J.L.

    1991-01-01

    Ultraviolet and electron beams (EB) are to be considered as complementary technologies in the radiation processing field. In many countries, UV processing is used as the pathfinder for EB. In the developing countries the decision to adopt radiation processing techniques to choose between UV and EB will largely be determined by economics, the availability of the chemists and also skilled personnel to service both lines and equipment. (orig./A.B.)

  3. An assessment of prospects for radiation processing in Yugoslavia

    International Nuclear Information System (INIS)

    Razem, D.; Dvornik, I.

    1981-01-01

    The possibilities are reviewed under the headings: food irradiation; sterilization of medical supplies; crosslinking of polymers. It is concluded that radiation sterilization of disposable medical supplies appears most attractive for immediate application; food irradiation can have only a limited success, at least with the present generation of strong inherited attitudes. Processes for radiation crosslinking of polymers are to a large extent subject to industrial secrecy; however, some possibilities are seen. A center for radiation services in Yugoslavia is proposed. (U.K.)

  4. CM Process Improvement and the International Space Station Program (ISSP)

    Science.gov (United States)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  5. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  6. The Wigner phase-space description of collision processes

    International Nuclear Information System (INIS)

    Lee, H.W.

    1984-01-01

    The paper concerns the Wigner distribution function in collision theory. Wigner phase-space description of collision processes; some general consideration on Wigner trajectories; and examples of Wigner trajectories; are all discussed. (U.K.)

  7. Treatment of Municipal and Industrial Waste by Radiation Processing

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    1999-01-01

    In recent years the effort in science and technology is shifting from conventional technologies preventing the pollution of air, water and soil, towards processing by gamma or by electron beam (EB) irradiation in order to prevent pollution, rather than curing the problems caused by production processes, which are not optimized with regard to pollution control. Radiation processing may help to improve the environmental situation in two aspects : It provides alternatives to conventional technologies for the cleaning of air, flue gases and water,...etc, and it also helps to realize clean processes for preventing pollution in the first place. This paper will outline the basic principles of radiation processing for waste streams of environmental relevance, will summarize the state-of -the-art in environmental applications of radiation processing to show both the advantages and the limitations of the radiation processing of waste streams, and to highlight the environmental and economic benefits of clean processes made possible by radiation processing applied to municipal and industrial waste. Reference is made to gamma and EB radiation sources, and description of new technologies is presented

  8. Evolution of the radiation processing industry

    Science.gov (United States)

    Cleland, Marshall R.

    2013-04-01

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  9. Utilization of polysaccharides by radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  10. Evolution of the radiation processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R. [IBA Industrial, Inc., 151 Heartland Boulevard, Edgewood, NY 11717 (United States)

    2013-04-19

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  11. Utilization of polysaccharides by radiation processing

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2000-01-01

    Radiation treatment has been applied for improvement or pasteurization of agro-resources to recycle the resources and to reduce the pollution of environment. By using the radiation effect for pasteurization, upgrading of cellulosic wastes of oil palm to animal feeds and mushroom has been studied under the bilateral research cooperation between JAERI and MINT (Malaysian Institute for Nuclear Technology Research). The necessary dose for pasteurization of oil palm empty fruit bunch (EFB), which is a main cellulosic by-product of palm oil industry, was determined as 10 kGy. After pasteurization, the EFB substrate was inoculated with Pleurotus sajor-caju and fermented for 1 month. The digestibility and nutritional value of fermented products were evaluated as ruminant feeds and the mushroom can be produced as by-product. For the improvement of resources, radiation effects on polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to induce the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities. The anti-bacterial activity and elicitor activity of chitosan were induced by irradiation. The induction of phytoalexins was also observed by irradiated pectin but the higher elicitor activity for pisatin was obtained by chitosan than pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa carrageenan irradiated at 100 kGy. Furthermore, some radiation degraded polysaccharides suppressed the damage of environmental stress on plants. (author)

  12. Review of radiation processing of natural polymer

    International Nuclear Information System (INIS)

    Khairul Zaman

    2007-01-01

    In recent years, natural polymers are being investigated with renewed interest because of their abundant quantity and unique characteristics such as inherent biocompatibility, biodegradability and renewable. It is also known as green polymer. Natural polymers such as carrageen, alginate, chitin/chitosan and starch are traditionally used in food-based industry. But now, the applications of natural polymers are being sought in knowledge-driven areas such as healthcare, agro-technology and industry. Radiation degraded alginates, carrangeenan and chitosan as plant growth promoter and protector have been developed. Radiation degraded chitosan, carraneenan and starch have also been used together with synthetic polymers for hydrogel production to be used for wound dressing, skin moisturization and for biodegradable packaging films and foams. Radiation crosslinking of natural polymer derivatives such as carboxymethyl chitosan, carboxymethyl starch have been successfully developed in Japan and used for various applications such as removal of pollutants, removal of waters from liverstock excrete as well as for bedsores protection mat. (author)

  13. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  14. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  15. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  16. Current Status of Radiation Processing of Natural Polymers in India

    International Nuclear Information System (INIS)

    Ramnani, S.P.

    2010-01-01

    Radiation processing is being used on commercial basis in India since 1974 with the operation of ISOMED plant for radiation sterilization of medical products and Electron beam machine (ILU-6) in 1986. Since then many new products and processes have been investigated and some of them have culminated into useful applications. Many Indian industries produce and process natural polymers for local consumption and export. India exports about 120,000 tons of polysaccharides every year. Natural polysaccharides like guar gum, gum acacia, gum tora, agar, psylium husk etc are treated with gamma radiation mainly for controlling microbial contamination and sterilization. Radiation processing has also been used to reduce molecular weight of the polysaccharides in some applications. Recently, a few new applications have emerged where natural polysaccharides are used as additives and which play important role in controlling basic radiation chemistry reactions to produce useful products. Developed at BARC, radiation processed wound dressings, superabsorbent materials and low molecular weight chitosan are the products which have been used and could find potential applications in health care and agriculture sector. Radiation processed hydrogel wound dressings containing natural polysaccharides have already been commercialized. Some of the applications recently developed at BARC using natural polymers are briefly described below

  17. Space - A unique environment for process modeling R&D

    Science.gov (United States)

    Overfelt, Tony

    1991-01-01

    Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.

  18. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    Science.gov (United States)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  19. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  20. Manual of radiation processing of cassava starch hydrogel

    International Nuclear Information System (INIS)

    Sonsuk, Manit

    2007-01-01

    The radiation processing of natural cassava starch (CS) is described for the improvement of its properties. A series of hydrogels were prepared from gelatinized CS and vinylpyrrolidone by radiation-induced graft copolymerization. Hydrogels were also synthesized from radiation-induced crosslinking of carboxymethyl CS. The optimum condition for the swelling ratio and gel fraction of the obtained hydrogels is irradiation at low dose. The polymeric chelating resins containing the hydroxamic acid groups were synthesized from the polymethyl acrylate (PMA)-grafted CS via gamma radiation. (M.H.)

  1. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  2. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Science.gov (United States)

    Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.

    2018-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.

  3. Utilization of carbohydrates by radiation processing

    International Nuclear Information System (INIS)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-01-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use

  4. Modification of bioplastic by radiation processing

    International Nuclear Information System (INIS)

    Nagasawa, Naotsugu

    2008-01-01

    The application of bioplastic derived from renewable resource is expected to address the problem of global warming. The thermostability of poly(lactic acid) (PLA), of which practical use was especially expected, is improved by radiation-induced crosslinking with additives. The obtained highly heat-resistant and transparent PLA is applied as heat-shrinkable materials, injection molded parts. In addition, the development of the PLA with flexible elasticity by holding plasticizer was succeeded. Therefore, it is proven that crosslinking technology is beneficial to expanding the application of PLA. (author)

  5. Using the longitudinal space charge instability for generation of vacuum ultraviolet and x-ray radiation

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2010-11-01

    Full Text Available Longitudinal space charge (LSC driven microbunching instability in electron beam formation systems of x-ray free-electron lasers (FELs is a recently discovered effect hampering beam instrumentation and FEL operation. The instability was observed in different facilities in infrared and visible wavelength ranges. In this paper we propose to use such an instability for generation of vacuum ultraviolet (VUV and x-ray radiation. A typical longitudinal space charge amplifier (LSCA consists of few amplification cascades (drift space plus chicane with a short undulator behind the last cascade. If the amplifier starts up from the shot noise, the amplified density modulation has a wide band, on the order of unity. The bandwidth of the radiation within the central cone is given by an inverse number of undulator periods. A wavelength compression could be an attractive option for LSCA since the process is broadband, and a high compression stability is not required. LSCA can be used as a cheap addition to the existing or planned short-wavelength FELs. In particular, it can produce the second color for a pump-probe experiment. It is also possible to generate attosecond pulses in the VUV and x-ray regimes. Some user experiments can profit from a relatively large bandwidth of the radiation, and this is easy to obtain in the LSCA scheme. Finally, since the amplification mechanism is broadband and robust, LSCA can be an interesting alternative to the self-amplified spontaneous emission free-electron laser (SASE FEL in the case of using laser-plasma accelerators as drivers of light sources.

  6. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    Science.gov (United States)

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  7. Radiation processing in India. Current status and future program

    International Nuclear Information System (INIS)

    Mittal, Jai Pal

    2003-01-01

    Radiation processing is an alternative to conventional methods such as thermal and chemical processing in many industrial applications. In India, this technology has found extensive applications in area of healthcare, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie Co-60 and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. Five demonstration plants housing a total of 0.5 million curie Co-60 have been set up to assess the techno-commercial viability of the processes such as radiation vulcanization of natural rubber latex, decontamination of spices, hygienization of sewage sludge, shelf-life extension of onions. The new areas being explored include use of electron beam treated pulp for viscose-rayon process, radiation processed 'hydrogel' burn/wound dressings and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology in India is reviewed. (author)

  8. Dosimetry as an integral part of radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    Different connections between high-dose dosimetry and radiation processing are discussed. Radiation processing cannot be performed without proper dosimetry. Accurate high dose and high dose rate dosimetry exhibits several aspects: first of all it is the preservation of the quality of the product, then fulfillment of legal aspects and last but not the least the safety of processing. Further, seldom discussed topics are as follow: dosimetric problems occurring with double-side EB irradiations, discussed in connection with the deposition of electric charge during electron beam irradiation. Although dosimetry for basic research and for medical purposes are treated here only shortly, some conclusions reached from these fields are considered in dosimetry for radiation processing. High-dose dosimetry of radiation has become a separate field, with many papers published every year, but applied dosimetric projects are usually initiated by a necessity of particular application. (author)

  9. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  10. RADIATION ENVIRONMENT AT AVIATION ALTITUDES AND IN SPACE

    Czech Academy of Sciences Publication Activity Database

    Sihver, L.; Ploc, Ondřej; Puchalska, M.; Ambrožová, Iva; Kubančák, Ján; Kyselová, Dagmar; Shurshakov, V.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 477-483 ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : cosmic radiation * radiation field * on-board spacecraft Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  11. Radiation entropy influx as a measure of planetary dissipative processes

    International Nuclear Information System (INIS)

    Izakov, M.N.

    1989-01-01

    Dissipative processes including high flows of matter and energy occur at the planets. Radiation negentropy influx, resulting from difference of entropy fluxes of incoming solar and outgoing thermal radiation of the planet, is a measure of all these processes. Large share of radiation negentropy influx is spent in the vertical thermal fluxes which keep the planet temperature conditions. Next share of radiation negentropy consumption at the Earth is water evaporation. It's rest part is used for the dynamics, which is explained by the efficiency insignificant amount of heat engine, which generates movements in the atmosphere and ocean. Essentially higher share of radiation negentropy influx, than at the Earth, is spent at the Venus, where there are practically no water

  12. Thermal characterization of radiation processed contact lens material

    International Nuclear Information System (INIS)

    Varshney, L.; Choughule, S.V.

    1998-01-01

    Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and thermogravimetry analysis (TGA) were used to characterize radiation processed contact lens gel material of 2-hydroxy ethyl methacrylate(HEMA). DSC revealed two types of water in the gels. DSC and TGA in combination were used to quantitate the percentage of different types of the water in the gel material. Temperature expansion coefficients values indicate more dimensions stability in the radiation processed lenses of similar water contents. (author)

  13. Organoleptic quality and antioxidant status of radiation processed food commodities

    International Nuclear Information System (INIS)

    Chatterjee, S.; Sharma, J.; Arul, A.K.; Variyar, P.S.; Sharma, A.

    2009-01-01

    Effect of radiation processing on the organoleptic qualities such as aroma, taste and colour as well as antioxidant status of various food classes such as beverages (monsooned coffee), spices (nutmeg), fruits (pomegranate), oil seeds (soybean) and vegetables (guar beans) was investigated. The factors responsible for these attributes were shown to be liberated from their glycosidic precursors during radiation processing, thus resulted in an enhancement of organoleptic quality and antioxidant status. (author)

  14. Emerging applications of radiation processing. Proceedings of a technical meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Approximately 160 gamma irradiators and 1200 electron accelerator based processing units are in operation worldwide. In recent years the IAEA has prepared a directory of industrial gamma irradiators and held several meetings on developments in radiation technology applications. Developments involving the engineering of new sources (both isotope and electrical), high power accelerator applications, etc. have been reported recently, making a review and evaluation of this progress timely. Therefore the IAEA organized a technical meeting in Vienna, Austria, from 28 to 30 April 2003 to review the present situation and the potential contribution of radiation technology to sustainable development. Engineering developments and other features of radiation sources, both isotope and accelerator, were discussed. Recent research has concentrated on three fields: medical and food products, polymers, and environmental pollution control. The stability of radiation sterilized medical implants, as well as the uses of radiation processing for sterilization or decontamination of pharmaceuticals and pharmaceutical raw materials, radiation synthesis and modification of polymers for biomedical applications have been studied. Since separation and enrichment technologies play an important role in product recovery and pollution control, the possibility of radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents is being investigated. Finally, aside from the technologies for flue gas and wastewater treatment already in use, further research is ongoing on the treatment of organic contaminants in both gaseous and liquid phases. Environmental applications, which also offer new opportunities, should be carefully reviewed to reflect existing regulations and current knowledge. The increasingly serious problem of polyaromatic hydrocarbons (PAH) emissions may be solved in part by the application of radiation technology. This is being studied on a pilot scale for the removal of

  15. Emerging applications of radiation processing. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2004-01-01

    Approximately 160 gamma irradiators and 1200 electron accelerator based processing units are in operation worldwide. In recent years the IAEA has prepared a directory of industrial gamma irradiators and held several meetings on developments in radiation technology applications. Developments involving the engineering of new sources (both isotope and electrical), high power accelerator applications, etc. have been reported recently, making a review and evaluation of this progress timely. Therefore the IAEA organized a technical meeting in Vienna, Austria, from 28 to 30 April 2003 to review the present situation and the potential contribution of radiation technology to sustainable development. Engineering developments and other features of radiation sources, both isotope and accelerator, were discussed. Recent research has concentrated on three fields: medical and food products, polymers, and environmental pollution control. The stability of radiation sterilized medical implants, as well as the uses of radiation processing for sterilization or decontamination of pharmaceuticals and pharmaceutical raw materials, radiation synthesis and modification of polymers for biomedical applications have been studied. Since separation and enrichment technologies play an important role in product recovery and pollution control, the possibility of radiation synthesis of stimuli-responsive membranes, hydrogels and adsorbents is being investigated. Finally, aside from the technologies for flue gas and wastewater treatment already in use, further research is ongoing on the treatment of organic contaminants in both gaseous and liquid phases. Environmental applications, which also offer new opportunities, should be carefully reviewed to reflect existing regulations and current knowledge. The increasingly serious problem of polyaromatic hydrocarbons (PAH) emissions may be solved in part by the application of radiation technology. This is being studied on a pilot scale for the removal of

  16. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    Science.gov (United States)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  17. Controlling of degradation effects in radiation processing of polymers

    International Nuclear Information System (INIS)

    2009-05-01

    The interest of Member States of the IAEA in introducing radiation technology into the polymer and plastics industry is growing. This publication summarizes a number of studies conducted in the framework of a coordinated research project (CRP) on controlling of degradation effects on polymers by radiation processing technologies. It reviews a variety of applications and details the most important results and achievements of the participating centres and laboratories during the course of the CRP. The publication is intended to be of use to scientists implementing the technology and managers of radiation processing facilities

  18. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-04-13

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  19. Designing and Securing an Event Processing System for Smart Spaces

    Science.gov (United States)

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  20. Embedding a State Space Model Into a Markov Decision Process

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren

    2011-01-01

    In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...

  1. State Space Reduction of Linear Processes using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  2. State Space Reduction of Linear Processes Using Control Flow Reconstruction

    NARCIS (Netherlands)

    van de Pol, Jan Cornelis; Timmer, Mark; Liu, Zhiming; Ravn, Anders P.

    2009-01-01

    We present a new method for fighting the state space explosion of process algebraic specifications, by performing static analysis on an intermediate format: linear process equations (LPEs). Our method consists of two steps: (1) we reconstruct the LPE's control flow, detecting control flow parameters

  3. Multi-scale Dynamical Processes in Space and Astrophysical Plasmas

    CERN Document Server

    Vörös, Zoltán; IAFA 2011 - International Astrophysics Forum 2011 : Frontiers in Space Environment Research

    2012-01-01

    Magnetized plasmas in the universe exhibit complex dynamical behavior over a huge range of scales. The fundamental mechanisms of energy transport, redistribution and conversion occur at multiple scales. The driving mechanisms often include energy accumulation, free-energy-excited relaxation processes, dissipation and self-organization. The plasma processes associated with energy conversion, transport and self-organization, such as magnetic reconnection, instabilities, linear and nonlinear waves, wave-particle interactions, dynamo processes, turbulence, heating, diffusion and convection represent fundamental physical effects. They demonstrate similar dynamical behavior in near-Earth space, on the Sun, in the heliosphere and in astrophysical environments. 'Multi-scale Dynamical Processes in Space and Astrophysical Plasmas' presents the proceedings of the International Astrophysics Forum Alpbach 2011. The contributions discuss the latest advances in the exploration of dynamical behavior in space plasmas environm...

  4. Radiation processing of polymer emulsion, (4)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Katakai, Akio; Ito, Hiroshi; Hayakawa, Naohiro; Araki, Kunio

    1983-01-01

    Methyl methacrylate was polymerized in emulsion by Co-60 γ-rays below 19 deg C in a batch reactor by using sodium lauryl sulfate as emulsifier. The conversion-time curves of the polymerization system showed two rate regions, i.e., a fact conversion rate in early stage, and a much slower rate in latter stage. The change in rate occurred at about 70 % conversion. The molecular weight of product polymer decreased with increasing conversion during the course of polymerization in latter stage, in contrast to the behavior in early stage. The distribution of the monomer in emulsion in latter stage was evaluated by nuclear magnetic resonance technique. The decrease of the molecular weight with conversion is due to the radiation-induced degradation of product polymer accelerated by the monomers absorbed in the polymer particles. (author)

  5. Radiation processing of polymer emulsion, 8

    International Nuclear Information System (INIS)

    Makuuchi, Keizo; Katakai, Akio; Hagiwara, Miyuki

    1983-01-01

    Radiation induced emulsion copolymerization of strong acid monomer was investigated to reduce the curing temperature of core shell particle emulsion having N-(n-butoxymethyl) acrylamide (NBM) moities in shell part. The strong acid monomers used were 3-chloro-2-acidphosphoxypropyl methacrylate, acid-phosphoxyethyl methacrylate, 2-acrylamide-2-methyl-propane sulfonic acid, and sodium p-styrenesulfonate. Curing was remarkably promoted by the presence of copolymerized strong acid monomer in shell part. Tensile strength of the film cured at 120 0 C was identical with that of conventional NBM core-shell emulsion film cured at 160 0 C. However, the water absorbing capacity of the film cured at 120 0 C was extremely high. The water resistance was found to increase with decreasing the amount of adsorbed polyelectrolyte on the particle surface. (author)

  6. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    Science.gov (United States)

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The

  7. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  8. High Resolution, Radiation Tolerant Focal Plane Array for Lunar And Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerius Photonics and its partners propose the development of a high resolution, radiation hardened 3-D FLASH Focal Plane Array (FPA), with performance expected to be...

  9. Multifunctional Carbon Nanotube/Polyethylene Complex Composites for Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene (PE), due to its high hydrogen content relative to its weight, has been identified by NASA as a promising radiation shielding material against galactic...

  10. LGM2605 as a mitigator of space radiation-induced vascular damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LignaMed, LLC is a drug development company with a fast track strategy to approval of LGM2605, an oral small molecule for use as a radiation mitigating agent that...

  11. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  12. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  13. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  14. Present status of radiation processing in Japan

    International Nuclear Information System (INIS)

    Tabata, Y.

    1984-01-01

    Crosslinking of insulating materials including cables, tubes, sheets, pipes and polymer foam, curing of coating, surface treatment and other processes developed recently will be presented. Future prospects in this field will be discussed. (Author) [pt

  15. Defining process design space for monoclonal antibody cell culture.

    Science.gov (United States)

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  16. Influence of radiation processing of grapes on wine quality

    International Nuclear Information System (INIS)

    Gupta, Sumit; Padole, Rupali; Variyar, Prasad S.; Sharma, Arun

    2015-01-01

    Grapes (Var. Shiraz and Cabernet) were subjected to radiation processing (up to 2 kGy) and wines were prepared and matured (4 months, 15 °C). The wines were analyzed for chromatic characteristics, total anthocyanin (TA), phenolic (TP) and total antioxidant (TAC) content. Aroma of wines was analyzed by GC/MS and sensory analysis was carried out using descriptive analysis. TA, TP and TAC were 77, 31 and 37 percent higher for irradiated (1500 Gy) Cabernet wines, while irradiated Shiraz wines demonstrated 47, 18 and 19 percent higher TA, TP and TAC, respectively. HPLC-DAD analysis revealed that radiation processing of grapes resulted in increased extraction of phenolic constituents in wine with no qualitative changes. No major radiation induced changes were observed in aroma constituents of wine. Sensory analysis revealed that 1500 Gy irradiated samples had higher fruity and berry notes. Thus, radiation processing of grapes resulted in wines with improved organoleptic and antioxidant properties. - Highlights: • Grapes were subjected to radiation processing before wine making. • Wines from irradiated grapes had higher antioxidant and phenolics compared to control. • HPLC analysis confirmed improved extraction of phenolics due to radiation processing. • Aroma profile and sensory quality of control and irradiated wines were similar

  17. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    Science.gov (United States)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  18. The new development of radiation processing in China

    International Nuclear Information System (INIS)

    Chen Dianhua

    1998-12-01

    China Isotope and Radiation Association (CIRA) investigated the status of radiation processing in China's mainland. There are 45 accelerators each with beam power over 5 kW, the total beam power is 2005 kW. There are 48 γ facilities each with designed capacity over 1.11 x 10 4 TBq (0.3 million curies) and other 75 units with designed capacity less than 1.11 x 10 4 TBq. The total loaded capacity is 4.63 x 10 5 TBq, more than one third of the designed capacity. radiation processing is mainly used in producing chemical-industrial products (as heat-shrinkable products and radiation cross-linked wire and cable) in China. Some enterprises with annual output value over a hundred million RMB have emerged. Radiation processing is also used in preservation and disinfection of food. In 1977, six kinds of hygienic standards for irradiated food were authorized. Radiation sterilization of disposable medical products, radiation desulphurization and denitration are also being developed in China

  19. Packaging materials for use in radiation processing of foods

    International Nuclear Information System (INIS)

    Dragusin, M.; Rotaru, P.R.

    1999-01-01

    In radiation processing of food, the product often has to be prepackaged to prevent microbial recontamination during and after irradiation. The packaging material is exposed to radiation during radiation processing and radiation stability is a key consideration in the selection of packaging materials. The effects of ionizing radiation on many food packaging materials at the dose levels recommended for food precessing can be minimized by selecting appropriate radiation resistant materials. It is important to select materials in which chemicals formed as a result of the radiation treatment do not migrate and interact with the food, affecting its organoleptic and toxicological aspects. It is also important to select materials in which the physical properties are not altered to the extent they cannot resist damage during commercial production, shipment and storage. Radiation treatment of food may be classified broadly into two categories: 1. Processes requiring doses less than 10 kGy; 2. Processes requiring doses from 25 to 40 kGy for production of commercial sterility. In radiation processing of foods, gamma radiation from radioisotopes Co-60 and Cs-137 is most widely used because of its high penetrating power. Electron beam irradiation (E<10 MeV) and X-rays (E<5 MeV) can also be used for certain speciality food and packaging to the food. Because the public acceptance of irradiated foods is a major problem in marketing such products, we have developed in our laboratory an alternative techniques. These techniques are based on applying films on the surfaces of foods. The films are edible, i.e. they are an aqueous solution based on caseine, glycerine, poly-etilene-glycol (PEG), crosslinked by radiation processing. So, our techniques implies no longer the food irradiation but instead its isolation from the environmental biological attacks by means of edible films obtained by irradiation. The protective properties of films, as special humidity, oxygen and fat barriers, are

  20. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  1. Calculation of the relative efficiency of thermoluminescent detectors to space radiation

    International Nuclear Information System (INIS)

    Bilski, P.

    2011-01-01

    Thermoluminescent (TL) detectors are often used for measurements of radiation doses in space. While space radiation is composed of a mixture of heavy charged particles, the relative TL efficiency depends on ionization density. The question therefore arises: what is the relative efficiency of TLDs to the radiation present in space? In the attempt to answer this question, the relative TL efficiency of two types of lithium fluoride detectors for space radiation has been calculated, based on the theoretical space spectra and the experimental values of TL efficiency to ion beams. The TL efficiency of LiF:Mg,Ti detectors for radiation encountered at typical low-Earth’s orbit was found to be close to unity, justifying a common application of these TLDs to space dosimetry. The TL efficiency of LiF:Mg,Cu,P detectors is significantly lower. It was found that a shielding may have a significant influence on the relative response of TLDs, due to changes caused in the radiation spectrum. In case of application of TLDs outside the Earth’s magnetosphere, one should expect lower relative efficiency than at the low-Earth’s orbit.

  2. Estimation of Radiation Limit from a Huygens' Box under Non-Free-Space Conditions

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Bonev, Ivan Bonev

    2013-01-01

    The recently studied Huygens' box method has difficulties when radiation of an electronic module is to be determined under non-free-space conditions, i.e. with an enclosure. We propose an estimate on radiation limit under such conditions based only on the Huygens' box data from free...

  3. Space Weather Action Plan Ionizing Radiation Benchmarks: Phase 1 update and plans for Phase 2

    Science.gov (United States)

    Talaat, E. R.; Kozyra, J.; Onsager, T. G.; Posner, A.; Allen, J. E., Jr.; Black, C.; Christian, E. R.; Copeland, K.; Fry, D. J.; Johnston, W. R.; Kanekal, S. G.; Mertens, C. J.; Minow, J. I.; Pierson, J.; Rutledge, R.; Semones, E.; Sibeck, D. G.; St Cyr, O. C.; Xapsos, M.

    2017-12-01

    Changes in the near-Earth radiation environment can affect satellite operations, astronauts in space, commercial space activities, and the radiation environment on aircraft at relevant latitudes or altitudes. Understanding the diverse effects of increased radiation is challenging, but producing ionizing radiation benchmarks will help address these effects. The following areas have been considered in addressing the near-Earth radiation environment: the Earth's trapped radiation belts, the galactic cosmic ray background, and solar energetic-particle events. The radiation benchmarks attempt to account for any change in the near-Earth radiation environment, which, under extreme cases, could present a significant risk to critical infrastructure operations or human health. The goal of these ionizing radiation benchmarks and associated confidence levels will define at least the radiation intensity as a function of time, particle type, and energy for an occurrence frequency of 1 in 100 years and an intensity level at the theoretical maximum for the event. In this paper, we present the benchmarks that address radiation levels at all applicable altitudes and latitudes in the near-Earth environment, the assumptions made and the associated uncertainties, and the next steps planned for updating the benchmarks.

  4. Technology Assessment of Laser-Assisted Materials Processing in Space

    Science.gov (United States)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  5. 21 CFR 179.39 - Ultraviolet radiation for the processing and treatment of food.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ultraviolet radiation for the processing and..., PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.39 Ultraviolet radiation for the processing and treatment of food. Ultraviolet radiation for the processing and treatment of food may be...

  6. Application of radiation in industrial processes (Paper No. IT-01)

    International Nuclear Information System (INIS)

    Murthy, T.S.

    1990-02-01

    The application of radiations both from gamma irradiation sources and electron beams has immense potential in diverse fields of industry and public health care programmes. The technical and economic effectiveness of radiation technology has been well demonstrated in different parts of the world and in India over last few years. The major applications for using this technology favourably considered all over the world include radiation sterilisation of medical products, hygienisation of sewage sludge, radiation processing of wood plastic composites, vulcanisation of natural rubber latex, cross linking of wires and cables using radiation, production of bio materials and drugs release systems and treatment of flue gases. Some of the areas which have been successfully exploited on an industrial or semi industrial scale in India and the current status of this programme is high lighted in this paper. (author). 9 refs

  7. Some novel concepts in radiation processing technology applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2014-01-01

    Search for better materials and processes has been a part of the evolution of mankind and it still continues to be so as it is being realized that earth's resources are not everlasting and effect of rapid growth on environment may adversely affect the future development. Sustainable development is the only choice for today for long term survival. Better quality and high functional materials, made by superior technologies are being demanded by the society. Radiation processing technology has significantly contributed to meet the expectation of the people in providing superior products and processes while preserving the environment. Processes are being developed where resources are fully utilized with maximum advantages and little disturbance to the environment. More than 1500 electron beam accelerators and about 500 Gamma Irradiators are presently in use and many are being deployed for radiation processing of medical supplies, pharmaceuticals and herbal materials, treat effluents and preserve food and agricultural products and several industrial products. DAE has an ambitious plan to deploy radiation technology for societal benefits in India. In the presentations some interesting applications of Radiation Processing Technology will be discussed which includes (1) Radiation Processing of Cashew Apple fruit for bio-ethanol production (2) High Energy Battery separators (3) Plant Growth Promoters and (4) Tunable biodegradability. The discussion would reveal how a waste product like cashew apple can be converted to useful materials and advanced materials like HEB separators and Tunable Biodegradable films can be made using radiation technology. Use of radiation de-polymerized polysaccharides in some experiments have shown unexpected increase in agriculture output giving new concepts to increase the productivity. (author)

  8. ASPECTS OF QMS IN RADIATION PROCESSING FACILITIES

    Directory of Open Access Journals (Sweden)

    LUNGU Ion Bogdan

    2016-05-01

    there are numerous factors that influence the effectiveness of service process, the objective is to analyze few important criteria like traceability, maintenance, and control of nonconform products and how it influence the desired results. The expected results show the necessity and utility of such an assessment in order to achieve improved results and implicitly, the increase in customer satisfaction.

  9. Reactor design concepts for radiation processing

    International Nuclear Information System (INIS)

    Berejka, A.J.

    2004-01-01

    During the formative years of irradiation processing, the 1950s and 1960s, there was laboratory and academic interest in the use of this form of energy transfer to initiate polymerization for the manufacture of plastics and in other chemical processes. Studies were often based on low-dose-rate Cobalt-60 systems. The electron beam (EB) accelerator technology of the time was not as yet at the robust and industrially reliable state that it is now at the beginning of the twenty-first century. A series of reactor designs illustrate how an electron beam can be incorporated into reactor vessels for initiating gas and liquid phase polymerizations on a continuous basis. Development of such approaches, which would rely upon contemporary, high current electron beams to initiate polymerization, would help the chemical processing industry alleviate its problems of catalyst disposal and its related environmental concerns. Systems for treating materials in bulk at low doses, such as those typically used for grain disinfection, at high through-put rates, are also illustrated. Simplified shielding is envisioned in each proposed process system

  10. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  11. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  12. Radiation processing of food and allied products

    International Nuclear Information System (INIS)

    Sharma, Arun

    2009-01-01

    Assuring adequate food security to citizens of the country requires deployment of strategies for augmenting agricultural production while reducing post-harvest losses. Appropriate post-harvest processing, handling, storage and distribution practices are as important as the efforts to increase productivity for sustained food security, food safety and international trade in agricultural commodities. Nuclear energy has played a significant role both in the improvement of crop productivity, as well as, in the preservation and hygienization of agricultural produce

  13. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  14. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  15. Perception and acceptance of risk from radiation exposure in space flight

    International Nuclear Information System (INIS)

    Slovic, P.

    1997-01-01

    There are a number of factors that influence how a person views a particular risk. These include whether the risk is judged to be voluntary and/or controllable, whether the effects are immediate or delayed, and the magnitude of the benefits that are to be gained as a result of being exposed to the risk. An important aspect of the last factor is whether those who suffer the risks are also those who stand to reap the benefits. The manner in which risk is viewed is also significantly influenced by the manner in which it is framed and presented. In short, risk does not exist in the world independent of our minds and cultures, waiting to be measured. Assessments of risk are based on models whose structure is subjective and associated evaluations are laden with assumptions whose inputs are dependent on judgments. In fact, subjectivity permeates every aspect of risk assessment. The assessment of radiation risks in space is no exception. The structuring of the problem includes judgments related to the probability, magnitude, and effects of the various types of radiation likely to be encountered and assumptions related to the quantitative relationship between dose and a range of specific effects, all of which have associated uncertainties. For these reasons, there is no magic formula that will lead us to a precise level of acceptable risk from exposure to radiation in space. Acceptable risk levels must evolve through a process of negotiation that integrates a large number of social, technical, and economic factors. In the end, a risk that is deemed to be acceptable will be the outgrowth of the weighing of risks and benefits and the selection of the option that appears to be best

  16. Effects of gamma radiation in cauliflower (Brassica spp) minimally processed

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Thomaz, Fernanda S.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H.; Alencar, Severino M.

    2007-01-01

    Consumers demand for health interests and the latest diet trends. The consumption of vegetables worldwide has increased every year over the past decade, consequently, less extreme treatments or additives are being required. Minimally processed foods have fresh-like characteristics and satisfy the new consumer demand. Food irradiation is an exposure process of the product to controlled sources of gamma radiation with the intention to destroy pathogens and to extend the shelf life. Minimally processed cauliflower (Brassica oleraceae) exposed to low dose of gamma radiation does not show any change in sensory attributes. The aim of this study was to analyze the effects of the low doses of gamma radiation on sensorial aspects like appearance, texture and flavor of minimally processed cauliflower. (author)

  17. Radiation decontamination of dry food ingredients and processing aids

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J

    1984-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives and is highly efficient. Its dose requirement is moderate. Radiation doses of 3-10 kGy (0.3-1 mrad) have proved sufficient to reduce the viable counts to a satisfactory level. Ionising radiations do not cause any significant rise in temperature. The flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for satisfactory decontamination, and radiation obviates the chemical residue problem. The microflora surviving radiation decontamination of dry ingredients are more susceptible to subsequent antimicrobial treatments. Recontamination can be prevented as the product can be irradiated in its final packaging. Irradiation could be carried out in commercial containers and would result in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of these commodities is an established technology in several countries and more clearances on irradiated foods are expected to be granted in the near future.

  18. Radiation shielding estimates for manned Mars space flight

    International Nuclear Information System (INIS)

    Dudkin, V.E.; Kovalev, E.E.; Kolomensky, A.V.; Sakovich, V.A.; Semenov, V.F.; Demin, V.P.; Benton, E.V.

    1992-01-01

    In the analysis of the required radiation shielding for spacecraft during a Mars flight, the specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low-and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons. (author)

  19. Lightweight, High-Temperature Radiator for Space Propulsion

    Science.gov (United States)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  20. The effect of low radiation doses on DNA repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1978-08-01

    Error free DNA repair processes are an important preprequisite for the maintenance of genetic integrity of cells. They are of special importance for persons therapeutically or occupationally exposed to radiation. Therefore the effect of radiation therapy and elevated natural background radiation on unscheduled DNA synthesis was tested in peripheral lymphocytes of exposed persons. Both, autoradiographic studies of unscheduled DNA synthesis and measurement of 3 H-thymidine uptake into double stranded and single-strand containing DNA fractions revealed an increase of capacity for DNA repair. (author)

  1. Present status and expected progress in radiation processing dosimetry

    DEFF Research Database (Denmark)

    Kovács, A.; Miller, A.

    2004-01-01

    The paper describes the present status of radiation processing dosimetry including the methods used most widely in gamma- and electron processing as well as the new methods under development or introduction. The recent trends with respect to calibrationof routine dosimetry systems as well...

  2. Physicochemical processes occurring under action of ionizing radiation in sarcophagus

    International Nuclear Information System (INIS)

    Azarov, S.I.; Pshenichny, V.A.; Vilenskaya, L.N.; Korchevnaya, O.V.; Martseniuk, L.S.

    1998-01-01

    The result of analysis of environment ionization process inside Sarcophagus owing to alpha-, beta- and gamma-radiation processes with forming of ions. It is shown that as a result of ionization and physicochemical transformations gaseous mixtures, which are dangerous for personnel's health and can influence upon general technical safety of Sarcophagus, can release into atmosphere

  3. Radiation Processed Materials in Products from Polymers for Agricultural Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    This publication results from a technical meeting on radiation processed materials in products from polymers for agricultural applications, which was held from 8 to 12 July 2013 at the IAEA in Vienna. The meeting provided a forum for the sharing of practical experiences and lessons learned, and reviewed the recent developments in the use of radiation technologies for the preparation of environmental friendly products based on polymers for agricultural applications.

  4. Radiation processing for PTFE composite reinforced with carbon fiber

    International Nuclear Information System (INIS)

    Akihiro Oshima; Akira Udagawa; Yousuke Morita

    1999-01-01

    The present work is an attempt to evaluate the performance of crosslinked PTFE as a polymer matrix for carbon fiber-reinforced composite materials. The carbon fiber-reinforced PTFE pre-composite, which is laminated with PTFE fine powder, is crosslinked by electron beam irradiation. Mechanical and frictional properties of the crosslinked PTFE composite obtained are higher than those of PTFE resin. The crosslinked PTFE composite with high mechanical and radiation resistant performance is obtained by radiation crosslinking process

  5. Radiation Processed Materials in Products from Polymers for Agricultural Applications

    International Nuclear Information System (INIS)

    2014-07-01

    This publication results from a technical meeting on radiation processed materials in products from polymers for agricultural applications, which was held from 8 to 12 July 2013 at the IAEA in Vienna. The meeting provided a forum for the sharing of practical experiences and lessons learned, and reviewed the recent developments in the use of radiation technologies for the preparation of environmental friendly products based on polymers for agricultural applications

  6. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space

    International Nuclear Information System (INIS)

    Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T.

    2013-01-01

    During their occupational activities in space, astronauts are exposed to ionising radiation from natural radiation sources present in this environment. They are, however, not usually classified as being occupationally exposed in the sense of the general ICRP system for radiation protection of workers applied on Earth. The exposure assessment and risk-related approach described in this report is clearly restricted to the special situation in space, and should not be applied to any other exposure situation on Earth. The report describes the terms and methods used to assess the radiation exposure of astronauts, and provides data for the assessment of organ doses. Chapter 1 describes the specific situation of astronauts in space, and the differences in the radiation fields compared with those on Earth. In Chapter 2, the radiation fields in space are described in detail, including galactic cosmic radiation, radiation from the Sun and its special solar particle events, and the radiation belts surrounding the Earth. Chapter 3 deals with the quantities used in radiological protection, describing the Publication 103 (ICRP, 2007) system of dose quantities, and subsequently presenting the special approach for applications in space; due to the strong contribution of heavy ions in the radiation field, radiation weighting is based on the radiation quality factor, Q, instead of the radiation weighting factor, w R . In Chapter 4, the methods of fluence and dose measurement in space are described, including instrumentation for fluence measurements, radiation spectrometry, and area and individual monitoring. The use of biomarkers for the assessment of mission doses is also described. The methods of determining quantities describing the radiation fields within a spacecraft are given in Chapter 5. Radiation transport calculations are the most important tool. Some physical data used in radiation transport codes are presented, and the various codes used for calculations in high

  7. Real Time Space Radiation Effects in Electronic Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The effects that solar particle events can have on operational electronic systems is a significant concern for all missions, but especially for those beyond Low...

  8. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  9. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  10. Space radiation measurement of plant seeds boarding on the Shijian-8 satellite

    International Nuclear Information System (INIS)

    Lv Duicai; Huang Zengxin; Zhao Yali; Wang Genliang; Jia Xianghong; Guo Huijun; Liu Luxiang; Li Chunhua; Zhang Long

    2008-01-01

    In order to identify cause of mutagenesis of plant seeds induced by space flight, especially to ascertain the interrelation between space radiation and mutagenesis, a 'photograph location' experimental setup was designed in this study. CR-39 solid-state nuclear track detectors were used to detect space heavy particles. The plant seeds and their position hit by space heavy ions were checked based on relative position between track and seeds in the setup. The low LET part of the spectrum was also measured by thermoluminescence dosemeter (TLD, LiF). The results showed that the 'photograph location' experimental method was convenient, practicable and economical. This new method also greatly saved time for microscopical analysis. On Shijian-8 satellite, the average ion flux of space heavy ions was 4.44 ions/cm 2 ·d and the average dosage of low LET space radiation to the plant seeds was 4.79 mGy. (authors)

  11. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection

    Directory of Open Access Journals (Sweden)

    Cary eZeitlin

    2016-03-01

    Full Text Available The transport of so-called HZE particles (those having high charge, Z, and energy, E through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss and nuclear. Models of transport such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from Galactic Cosmic Rays (GCRs and potentially higher short-term doses from sporadic, unpredictable Solar Energetic Particles (SEPs. GCRs include HZE particles; SEPs typically do not and we therefore exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk reduced by fragmentation, but it can be argued that fragmentation also reduces the

  12. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  13. Space Plasma Ion Processing of Ilmenite in the Lunar Soil: Insights from In-Situ TEM Ion Irradiation Experiments

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.

    2007-01-01

    Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.

  14. Gamma radiation in space and in the atmosphere

    International Nuclear Information System (INIS)

    Rocchia, R.

    1966-01-01

    We have shown that the γ radiation existing in the atmosphere is caused mainly by the Bremsstrahlung of the electrons of the electromagnetic cascades (∼ 50 per cent of the measured radiation), by the 511 keV radiation produced by the annihilation of positrons created in cascades (8 per cent of the measured intensity) and by the Compton γ degradation of this line (30 per cent of the measured intensity). The rest, slightly over 10 per cent, must be attributed to secondary causes such as the nuclear de-excitation γ to the internal Bremsstrahlung of charged particles created in nuclear stars, and to charged particles crossing our detector, since the latter was not fitted with a device for rejecting these particles. Experiments carried out in rockets at Colomb-Bechar confirm these results and have made it possible to detect and measure a primary γ radiation having an intensity of ∼ 2 γ cm 2 s -1 above 100 keV. The primary spectrum obeys an approximate E -2 law. (author) [fr

  15. Quality control through dosimetry at a contract radiation processing facility

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Roediger, A.H.A.

    1985-01-01

    Reliable dosimetry procedures constitute a very important part of process control and quality assurance at a contract gamma radiation processing facility that caters for a large variety of different radiation applications. The choice, calibration and routine intercalibration of the dosimetry systems employed form the basis of a sound dosimetry policy in radiation processing. With the dosimetric procedures established, detailed dosimetric mapping of the irradiator upon commissioning (and whenever source modifications take place) is carried out to determine the radiation processing characteristics and peformance of the plant. Having established the irradiator parameters, routine dosimetry procedures, being part of the overall quality control measures, are employed. In addition to routine dosimetry, independent monitoring of routine dosimetry is performed on a bi-monthly basis and the results indicate a variation of better than 3%. On an annaul basis the dosimetry systems are intercalibrated through at least one primary standard dosimetry laboratory and to date a variation of better than 5% has been experienced. The company also participates in the Pilot Dose Assurance Service of the International Atomic Energy Agency, using the alanine/ESR dosimetry system. Routine calibration of the instrumentation employed is carried out on a regular basis. Detailed permanent records are compiled on all dosimetric and instrumentation calibrations, and the routine dosimetry employed at the plant. Certificates indicating the measured absorbed radiation doses are issued on request and in many cases are used for the dosimetric release of sterilized medical and pharmaceutical products. These procedures, used by Iso-Ster at its industrial gamma radiation facility, as well as the experience built up over a number of years using radiation dosimetry for process control and quality assurance are discussed. (author)

  16. Radiation processing of biodegradable polymer and hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Poly({epsilon}-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  17. Radiation processing of biodegradable polymer and hydrogel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2000-01-01

    Poly(ε-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  18. [Anthropogenic sources of radiation hazard in the near-Earth space].

    Science.gov (United States)

    Fedoseev, G A

    2004-01-01

    All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.

  19. Concept of space NPP radiation safety and its realization in the Kosmos-1900 satellite

    International Nuclear Information System (INIS)

    Gryaznov, G.M.; Nikolaev, V.S.; Serbin, V.I.; Tyugin, V.M.

    1989-01-01

    A standard NPP for a space vehicle, radioactivity composition and radiation safety systems are considered. Plausible accidents on board the space vehicle and requirements to system operation reliability are discussed. The main reactor characteristics situation on board the Kosmos-1900 satellite and completion of its flight are described. The experience in providing radiation safety of space NPP has shown that it is sufficient to use two independent systems: a drift system and a reactor dispersion system based on separation of its structure by active means

  20. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.