WorldWideScience

Sample records for space radiation measurement

  1. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  2. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  3. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  4. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  5. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  6. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  7. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  8. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  9. A new system for measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2001-01-01

    The space radiation mainly consists of heavy charged particles (protons and heavier particles). Due to this fact its effective dose significantly differs from the physical dose. The recently used measuring equipment is not fully suitable to measure both quantities simultaneously. The combined device for measurement of mentioned values consists of an on board thermoluminescent dosimeter reader and a three axis silicon telescope as a linear energy transfer spectrometer. The paper deals with the main characteristics of the new system. This system can be applied for dosimetry of air-crew as well. (authors)

  10. Space radiation measurement of plant seeds boarding on the Shijian-8 satellite

    International Nuclear Information System (INIS)

    Lv Duicai; Huang Zengxin; Zhao Yali; Wang Genliang; Jia Xianghong; Guo Huijun; Liu Luxiang; Li Chunhua; Zhang Long

    2008-01-01

    In order to identify cause of mutagenesis of plant seeds induced by space flight, especially to ascertain the interrelation between space radiation and mutagenesis, a 'photograph location' experimental setup was designed in this study. CR-39 solid-state nuclear track detectors were used to detect space heavy particles. The plant seeds and their position hit by space heavy ions were checked based on relative position between track and seeds in the setup. The low LET part of the spectrum was also measured by thermoluminescence dosemeter (TLD, LiF). The results showed that the 'photograph location' experimental method was convenient, practicable and economical. This new method also greatly saved time for microscopical analysis. On Shijian-8 satellite, the average ion flux of space heavy ions was 4.44 ions/cm 2 ·d and the average dosage of low LET space radiation to the plant seeds was 4.79 mGy. (authors)

  11. Radiation measurement on the International Space Station

    International Nuclear Information System (INIS)

    Akopova, A.B.; Manaseryan, M.M.; Melkonyan, A.A.; Tatikyan, S.Sh.; Potapov, Yu.

    2005-01-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380km and inclination 51.6 o are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z>=2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during last years it has already been successfully used on board the MIR station, Space Shuttles and 'Kosmos' spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2x103keV/μm and the value of equivalent dose 360μSv/day was estimated. The flux of biologically dangerous heavy particles with Z>=2 was measured (3.85x103particles/cm2)

  12. A new system for the measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2000-01-01

    Radiation from space mainly consists of charged heavy particles (protons and heavier particles). Due to this fact, the effective dose significantly differs from the physical dose. Current measuring equipment is not fully suitable to measure both of the quantities simultaneously. A combined device for measurement of the mentioned values consists of an on-board thermoluminescence dosimeter reader and a three-axis silicon detector linear energy transfer spectrometer. This paper deals with the main characteristic of the new system. This system can be, applied for dosimetry of air crew as well. (authors)

  13. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    Science.gov (United States)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  14. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  15. Dosimetric radiation measurements in space

    International Nuclear Information System (INIS)

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  16. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  17. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    International Nuclear Information System (INIS)

    Murthy, S.N.

    1990-01-01

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed. 12 refs

  18. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  19. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  20. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  1. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  3. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  4. Exploiting different active silicon detectors in the International Space Station: ALTEA and DOSTEL galactic cosmic radiation (GCR) measurements

    Science.gov (United States)

    Narici, Livo; Berger, Thomas; Burmeister, Sönke; Di Fino, Luca; Rizzo, Alessandro; Matthiä, Daniel; Reitz, Günther

    2017-08-01

    The solar system exploration by humans requires to successfully deal with the radiation exposition issue. The scientific aspect of this issue is twofold: knowing the radiation environment the astronauts are going to face and linking radiation exposure to health risks. Here we focus on the first issue. It is generally agreed that the final tool to describe the radiation environment in a space habitat will be a model featuring the needed amount of details to perform a meaningful risk assessment. The model should also take into account the shield changes due to the movement of materials inside the habitat, which in turn produce changes in the radiation environment. This model will have to undergo a final validation with a radiation field of similar complexity. The International Space Station (ISS) is a space habitat that features a radiation environment inside which is similar to what will be found in habitats in deep space, if we use measurements acquired only during high latitude passages (where the effects of the Earth magnetic field are reduced). Active detectors, providing time information, that can easily select data from different orbital sections, are the ones best fulfilling the requirements for these kinds of measurements. The exploitation of the radiation measurements performed in the ISS by all the available instruments is therefore mandatory to provide the largest possible database to the scientific community, to be merged with detailed Computer Aided Design (CAD) models, in the quest for a full model validation. While some efforts in comparing results from multiple active detectors have been attempted, a thorough study of a procedure to merge data in a single data matrix in order to provide the best validation set for radiation environment models has never been attempted. The aim of this paper is to provide such a procedure, to apply it to two of the most performing active detector systems in the ISS: the Anomalous Long Term Effects in Astronauts (ALTEA

  5. BioSentinel: Developing a Space Radiation Biosensor

    Science.gov (United States)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  6. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  7. Radiation risk in space exploration

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  8. The space radiation environment

    International Nuclear Information System (INIS)

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  9. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  10. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space

    International Nuclear Information System (INIS)

    Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T.

    2013-01-01

    During their occupational activities in space, astronauts are exposed to ionising radiation from natural radiation sources present in this environment. They are, however, not usually classified as being occupationally exposed in the sense of the general ICRP system for radiation protection of workers applied on Earth. The exposure assessment and risk-related approach described in this report is clearly restricted to the special situation in space, and should not be applied to any other exposure situation on Earth. The report describes the terms and methods used to assess the radiation exposure of astronauts, and provides data for the assessment of organ doses. Chapter 1 describes the specific situation of astronauts in space, and the differences in the radiation fields compared with those on Earth. In Chapter 2, the radiation fields in space are described in detail, including galactic cosmic radiation, radiation from the Sun and its special solar particle events, and the radiation belts surrounding the Earth. Chapter 3 deals with the quantities used in radiological protection, describing the Publication 103 (ICRP, 2007) system of dose quantities, and subsequently presenting the special approach for applications in space; due to the strong contribution of heavy ions in the radiation field, radiation weighting is based on the radiation quality factor, Q, instead of the radiation weighting factor, w R . In Chapter 4, the methods of fluence and dose measurement in space are described, including instrumentation for fluence measurements, radiation spectrometry, and area and individual monitoring. The use of biomarkers for the assessment of mission doses is also described. The methods of determining quantities describing the radiation fields within a spacecraft are given in Chapter 5. Radiation transport calculations are the most important tool. Some physical data used in radiation transport codes are presented, and the various codes used for calculations in high

  11. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  12. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  13. Space radiation dosimetry in low-Earth orbit and beyond

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars

  14. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  15. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  16. Space Radiation Dosimetry

    International Nuclear Information System (INIS)

    Deme, S.

    2003-01-01

    Although partly protected from galactic and solar cosmic radiation by the Earth's magnetosphere in Low Earth Orbit (LEO) astronauts exposure levels during long-term missions (90 days to 180 days) by far exceed with exposures of up to more than 100 mSv the annual exposure limits set for workers in the nuclear industry, but are still below the yearly exposure limits of 500 mSv for NASA astronauts. During solar particle events the short-term limits (300 mSv) may be approached or even exceeded. In the interplanetary space, outside the Earth's magnetic field even relatively benign Solar Particle Events (SPEs) can produce 1 Sv skin-absorbed doses. Although new rocket technologies could reduce astronauts' total exposure to space radiation during a human Mars mission, the time required for the mission, which is now in the order of years. Therefore mission planners will need to consider a variety of countermeasures for the crew members including physical protection (e.g. shelters), active protection (e.g. magnetic protection), pharmacological protection, local protection (extra protection for critical areas of the body) etc. With full knowledge of these facts, accurate personal dose measurement will become increasingly important during human missions to Mars. The new dose limits for radiation workers correspond to excess lifetime risk of 3% (NCRP) and 4% (ICRP). While astronauts accept the whole variety of flight risks they are taking in mission, there is concern about risks that may occur later in life. A risk no greater than the risk of radiation workers would be acceptable. (author)

  17. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  18. Radiation: behavioral implications in space

    International Nuclear Information System (INIS)

    Bogo, V.

    1988-01-01

    Since future space missions are likely to be beyond Earth's protective atmosphere, a potentially significant hazard is radiation. The following behavioural situations are addressed in this paper: (1) space radiations are more effective at disrupting behaviour; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate disruption with drugs or shielding are not satisfactory and the drugs can be behaviourally toxic; and (4) space- and radiation-induced emesis combined may be synergistic. Thus future space travel will be a demanding, exciting time for behavioral toxicologists, and while the circumstances may seem insurmountable at first, creative application of scientific expertise should illicit solutions, similar to demanding situations confronted before. (author)

  19. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  20. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Amgad

    2012-07-18

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N{sub 2}, Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  1. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  2. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  3. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  4. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  5. Modeling Space Radiation with Bleomycin

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiation is a mixed field of solar particle events (proton) and particles of Galactic Cosmic Rays (GCR) with different energy levels. These radiation events...

  6. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  7. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  8. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  9. Radiation measuring instrument

    International Nuclear Information System (INIS)

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  10. Distribution measurement of radiation intensity with optical fiber at narrow space

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Chizuo [Nagoya Univ. (Japan). School of Engineering

    1998-07-01

    Recently, in the field or radiation measurement, optical fiber and scintillation fiber are also begun to use. In order to investigate a new application method of the optical fiber to radiation measurement, a lithium compound for neutron converter and a ZnS(Ag) scintillator are kneaded with epoxy type adhesives, and much few weight of them is coated at an end of optical fiber with 1 to 2 mm in diameter, which is further overcoated with black paint or an aluminum cap for its shielding light to produce a thermal neutron detector. The thermal neutron detector is found to be measurable to neutron flux distribution very rapidly and in high position resolution by moving with computer automatically. This method can be measured selctively aimed radiation such as thermal neutron, rapid neutron, {gamma}-ray, and so forth by means of changing the neutron converter. And, the developed fiber method could be widely used for measurement of neutron and {gamma}-ray intensity distribution at fine interval in the nuclear radiation facilities such as neighbors of accelerator facilities, medical radiation facilities. (G.K.)

  11. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.; Nachtwey, D.S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem)

  12. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  13. Calculation of the relative efficiency of thermoluminescent detectors to space radiation

    International Nuclear Information System (INIS)

    Bilski, P.

    2011-01-01

    Thermoluminescent (TL) detectors are often used for measurements of radiation doses in space. While space radiation is composed of a mixture of heavy charged particles, the relative TL efficiency depends on ionization density. The question therefore arises: what is the relative efficiency of TLDs to the radiation present in space? In the attempt to answer this question, the relative TL efficiency of two types of lithium fluoride detectors for space radiation has been calculated, based on the theoretical space spectra and the experimental values of TL efficiency to ion beams. The TL efficiency of LiF:Mg,Ti detectors for radiation encountered at typical low-Earth’s orbit was found to be close to unity, justifying a common application of these TLDs to space dosimetry. The TL efficiency of LiF:Mg,Cu,P detectors is significantly lower. It was found that a shielding may have a significant influence on the relative response of TLDs, due to changes caused in the radiation spectrum. In case of application of TLDs outside the Earth’s magnetosphere, one should expect lower relative efficiency than at the low-Earth’s orbit.

  14. BioSentinel: Biosensors for Deep-Space Radiation Study

    Science.gov (United States)

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  15. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  16. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  17. Space Radiation Risk Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Project A: Integration and Review: A review of current knowledge from space radiation physics was accepted for publication in Reviews of Modern Physics (Durante and...

  18. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    Energy Technology Data Exchange (ETDEWEB)

    Bottollier-Depois, J.F. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de la Sante de l`Homme et de Dosimetrie; Siegrist, M. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France); Duvivier, E.; Almarcha, B. [STEEL Technologies, Mazeres sur Salat (France); Dachev, T.P.; Semkova, J.V. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Solar Energy and New Energy Sources; Petrov, V.M.; Bengin, V.; Koslova, S.B. [Institute of Biomedical Problems, Moscow (Russian Federation)

    1995-12-31

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs.

  19. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Duvivier, E.; Almarcha, B.; Dachev, T.P.; Semkova, J.V.

    1995-01-01

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs

  20. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  1. Guidance on radiation received in space activities

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of this report, therefore, are to: re-examine the current guidelines and the philosophy adopted by NASA, estimate the risks to both men and women exposed to radiation in space, re-examine the estimates of radiation risks in outer space with special attention to SPE and to exposure to HZE particles, and examine what information may still be required and what research is needed. This report incorporates the changes in estimates of terrestrial radiation risks made since 1970 that appear to be acceptable and appropriate to the particular case of space missions. Since plans for a space station have been established and are a priority for NASA, this space mission will be used as one example for reference. The likely altitude and orbit for the proposed space station are 450 km and 28.5 degree, respectively. Therefore, estimates of the radiation environment for this mission can be made with more confidence than for some of the other missions. In this report, we have chosen to write more fully about certain subjects, for example, the eye, because they are of concern and because they have not been dealt with in such detail in other reports on radiation risks and protection. Since this report covers a number of different disciplines and specialized areas of research, a glossary is included. Radiation protection in space is as international a task as is the protection of radiation workers and the general population on earth. Kovalev, 1983, has noted that radiation protection in space is a pressing but complex problem. The recommendations in this report will require modifications as we learn more about the radiation environment in space and how to estimate radiation risks with greater precision. 450 refs

  2. Radiation dose assessment in space missions. The MATROSHKA experiment

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2010-01-01

    The exact determination of radiation dose in space is a demanding and challenging task. Since January 2004, the International Space Station is equipped with a human phantom which is a key part of the MATROSHKA Experiment. The phantom is furnished with thousands of radiation sensors for the measurement of depth dose distribution, which has enabled the organ dose calculation and has demonstrated that personal dosemeter at the body surface overestimates the effective dose during extra-vehicular activity by more than a factor two. The MATROSHKA results serve to benchmark models and have therefore a large impact on the extrapolation of models to outer space. (author)

  3. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  4. NASA Self-Assessment of Space Radiation Research

    Science.gov (United States)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  5. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  6. Space radiation environment

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  7. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  8. On the radiation dosimetry in space

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    2005-01-01

    The radiation dosimetry in space is considerably different from that on the earth surface, because, on the earth surface, the quality factor for radiation is roughly given for its energy but, in space, it is defined as a continuous function of LET. Thus, the contribution to the dose equivalent from heavy charged particles included in galactic cosmic rays is more than 50%, because of their high LET values. To evaluate such dose equivalent within an uncertainty of 30%, we must determine the true LET distribution. This paper describes the essence of such a new radiation dosimetry in space. (author)

  9. Gamma radiation in ceramic capacitors: a study for space missions

    Science.gov (United States)

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  10. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  11. Radiation measurements on the Mir Orbital Station

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Atwell, W.; Reitz, G.; Beaujean, R.; Heinrich, W.

    2002-01-01

    Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250x10 4 Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 μGy day -1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0±0.5 deg. W, and 1.6±0.5 deg. N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources

  12. Space Radiation and Risks to Human Health

    Science.gov (United States)

    Huff, Janice L.; Patel, Zarana S.; Simonsen, Lisa C.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  13. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  14. Radiation practices and radiation measurements

    International Nuclear Information System (INIS)

    2008-03-01

    The guide presents the principal requirements on accuracy of radiation measurements and on the approval, calibration and operating condition inspections of radiation meters, together with requirements for dosimetric services measuring the individual radiation doses of workers engaged in radiation work (approved dosimetric services). The Guide also sets out the definitions of quantities and units used in radiation measurements. The radiation protection quantities used for assessing the harmful effects of radiation and for expressing the maximum values for radiation exposure (equivalent dose and effective dose) are set out in Guide ST 7.2. This Guide concerns measurements of ionizing radiation involved in radiation practices, the results of which are used for determining the radiation exposure of workers engaged in radiation work and members of the public, and of patients subject to the use of radiation in health services, or upon the basis of which compliance with safety requirements of appliances currently in use and of their premises of use or of the workplaces of workers is ensured. The Guide also concerns measurements of the radon concentration of inhaled air in both workplaces and dwellings. The Guide does not apply to determining the radiation exposure of aircrews, determination of exposure caused by internal radiation, or measurements made to protect the public in the event of, or in preparation for abnormal radiation conditions

  15. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  16. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  17. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  18. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  19. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  20. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  1. Passive radiation shielding considerations for the proposed space elevator

    Science.gov (United States)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  2. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  3. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  4. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  5. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  6. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  7. Reducing Human Radiation Risks on Deep Space Missions

    Science.gov (United States)

    2017-09-01

    101 Figure 49. Human Health, Life Support, and Habitation System...2013). These same studies reveal that for astronauts returning home, this may result in significant loss of lifespan and quality of life due to...warnings to the satellites in orbit at either planet , or to spacecraft in transit (Phys.org 2010). C. IMPROVEMENTS TO MEASUREMENTS OF SPACE RADIATION

  8. An Experiment in Radiation Measurement Using the Depron Instrument

    Science.gov (United States)

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  9. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, Kerry

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after irradiation, at least for space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts' blood lymphocytes assessed by FISH painting and collected at various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  10. Phase space determination from measured dose data for intraoperative electron radiation therapy.

    Science.gov (United States)

    Herranz, E; Herraiz, J L; Ibáñez, P; Pérez-Liva, M; Puebla, R; Cal-González, J; Guerra, P; Rodríguez, R; Illana, C; Udías, J M

    2015-01-07

    A procedure to characterize beams of a medical linear accelerator for their use in Monte Carlo (MC) dose calculations for intraoperative electron radiation therapy (IOERT) is presented. The procedure relies on dose measurements in homogeneous media as input, avoiding the need for detailed simulations of the accelerator head. An iterative algorithm (EM-ML) has been employed to extract the relevant details of the phase space (PHSP) of the particles coming from the accelerator, such as energy spectra, spatial distribution and angle of emission of particles. The algorithm can use pre-computed dose volumes in water and/or air, so that the machine-specific tuning with actual data can be performed in a few minutes. To test the procedure, MC simulations of a linear accelerator with typical IOERT applicators and energies, have been performed and taken as reference. A solution PHSP derived from the dose produced by the simulated accelerator has been compared to the reference PHSP. Further, dose delivered by the simulated accelerator for setups not included in the fit of the PHSP were compared to the ones derived from the solution PHSP. The results show that it is possible to derive from dose measurements PHSP accurate for IOERT MC dose estimations.

  11. On static and radiative space-times

    International Nuclear Information System (INIS)

    Friedrich, H.

    1988-01-01

    The conformal constraint equations on space-like hypersurfaces are discussed near points which represent either time-like or spatial infinity for an asymptotically flat solution of Einstein's vacuum field equations. In the case of time-like infinity a certain 'radiativity condition' is derived which must be satisfied by the data at that point. The case of space-like infinity is analysed in detail for static space-times with non-vanishing mass. It is shown that the conformal structure implied here on a slice of constant Killing time, which extends analytically through infinity, satisfies at spatial infinity the radiativity condition. Thus to any static solution exists a certain 'radiative solution' which has a smooth structure at past null infinity and is regular at past time-like infinity. A characterization of these solutions by their 'free data' is given and non-symmetry properties are discussed. (orig.)

  12. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1997-01-01

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration

  13. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection

    International Nuclear Information System (INIS)

    Vogin, G.

    2009-01-01

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  14. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  15. Characterization of radiations field in Earth space in term of linear energy transfer (L.E.T.) for the radiation protection and the radiobiology

    International Nuclear Information System (INIS)

    Lebaron-Jacobs, L.

    1994-01-01

    The space missions on orbital stations are becoming longer and the radiological risk constitutes a factor limiting the space flights. The tissue-equivalent proportional counters, (CIRCE in 1988 and 1990, then NAUSICAA from 1992), have been conceived to ensure the monitoring and the dosimetry of space travellers. They measure in real time, different parameters of dosimetry and evaluate the microdosimetric spectrum of space radiations on the board of the Mir spatial station. The equivalent of middle day dose measured by CIRCE was situated between 0.6 and 0.8 mSv associated to a quality factor of 1.9; that one measured by NAUSICAA is higher, between 0.9 and 1.0 mSv with a steady quality factor. These systems measure the time and spatial variations of cosmic radiations, in function of solar activity, orbit, and shielding thickness of space vehicles. Values of high doses equivalent (upper than 1 mSv), associated to quality factor of 1.4 have been measured during the South Atlantic Anomaly crossing and during solar eruptions. That is the same for polar regions. The evaluation of Relative Biological Effectiveness (R.B.E.) of the space radiations on Mir station board, in term of carcinogenesis of the Harder gland in the mouse, is here an extrapolation of a relation based on experimental data; the average R.B.E. allows to suppose that radiological risk is low. (N.C.). 69 refs., 74 figs., 19 tabs

  16. Radiation -- A Cosmic Hazard to Human Habitation in Space

    Science.gov (United States)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  17. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  18. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    Science.gov (United States)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  19. Global real-time dose measurements using the Automated Radiation Measurements for Aerospace Safety (ARMAS) system

    Science.gov (United States)

    Tobiska, W. Kent; Bouwer, D.; Smart, D.; Shea, M.; Bailey, J.; Didkovsky, L.; Judge, K.; Garrett, H.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R.; Bell, D.; Mertens, C.; Xu, X.; Wiltberger, M.; Wiley, S.; Teets, E.; Jones, B.; Hong, S.; Yoon, K.

    2016-11-01

    The Automated Radiation Measurements for Aerospace Safety (ARMAS) program has successfully deployed a fleet of six instruments measuring the ambient radiation environment at commercial aircraft altitudes. ARMAS transmits real-time data to the ground and provides quality, tissue-relevant ambient dose equivalent rates with 5 min latency for dose rates on 213 flights up to 17.3 km (56,700 ft). We show five cases from different aircraft; the source particles are dominated by galactic cosmic rays but include particle fluxes for minor radiation periods and geomagnetically disturbed conditions. The measurements from 2013 to 2016 do not cover a period of time to quantify galactic cosmic rays' dependence on solar cycle variation and their effect on aviation radiation. However, we report on small radiation "clouds" in specific magnetic latitude regions and note that active geomagnetic, variable space weather conditions may sufficiently modify the magnetospheric magnetic field that can enhance the radiation environment, particularly at high altitudes and middle to high latitudes. When there is no significant space weather, high-latitude flights produce a dose rate analogous to a chest X-ray every 12.5 h, every 25 h for midlatitudes, and every 100 h for equatorial latitudes at typical commercial flight altitudes of 37,000 ft ( 11 km). The dose rate doubles every 2 km altitude increase, suggesting a radiation event management strategy for pilots or air traffic control; i.e., where event-driven radiation regions can be identified, they can be treated like volcanic ash clouds to achieve radiation safety goals with slightly lower flight altitudes or more equatorial flight paths.

  20. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  1. The Near-Earth Space Radiation Environment

    Science.gov (United States)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  2. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  3. Radiation measurement

    International Nuclear Information System (INIS)

    Go, Sung Jin; Kim, Seung Guk; No, Gyeong Seok; Park, Myeong Hwan; Ann, Bong Seon

    1998-03-01

    This book explains technical terms about radiation measurement, which are radiation, radiation quantity and unit such as prefix of international unit, unit for defence purposes of radiation, coefficient of radiation and interaction, kinds and principles of radiation detector, ionization chamber, G-M counter, G-M tube, proportional counter, scintillation detector, semiconductor radiation detector, thermoluminescence dosimeter, PLD, others detector, radiation monitor, neutron detector, calibration of radiation detector, statistics of counting value, activation analysis and electronics circuit of radiation detector.

  4. Radiation protection considerations in space station missions

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Bolch, W.E.

    1991-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying the degree to which the baseline design of space station Freedom (SSF) would permit its evolution to a transportation node for lunar or Mars expeditions. To accomplish NASA's more ambitious exploration goals, nuclear-powered vehicles could be used in SSF's vicinity. This enhanced radiation environment around SSF could necessitate additional crew shielding to maintain cumulative doses below recommended limits. This paper presents analysis of radiation doses received upon the return and subsequent unloading of Mars vehicles utilizing either nuclear electric propulsion (NEP) or nuclear thermal rocket (NTR) propulsion systems. No inherent shielding by the vehicle structure or space station is assumed; consequently, the only operational parameters available to control radiation doses are the source-to-target distance and the reactor shutdown time prior to the exposure period. For the operations planning, estimated doses are shown with respect to recommended dose limits and doses due solely to the natural space environment in low Earth orbit

  5. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  6. 2015 Space Radiation Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Radiation Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 8 - 9, 2015. The SRP met with representatives from the Space Radiation Element and members of the Human Research Program (HRP) to review the updated research plan for the Risk of Radiation Carcinogenesis Cancer Risk. The SRP also reviewed the newly revised Evidence Reports for the Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs) (Acute Risk), the Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), and the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation (Degen Risk), as well as a status update on these Risks. The SRP would like to commend Dr. Simonsen, Dr. Huff, Dr. Nelson, and Dr. Patel for their detailed presentations. The Space Radiation Element did a great job presenting a very large volume of material. The SRP considers it to be a strong program that is well-organized, well-coordinated and generates valuable data. The SRP commended the tissue sharing protocols, working groups, systems biology analysis, and standardization of models. In several of the discussed areas the SRP suggested improvements of the research plans in the future. These include the following: It is important that the team has expanded efforts examining immunology and inflammation as important components of the space radiation biological response. This is an overarching and important focus that is likely to apply to all aspects of the program including acute, CVD, CNS, cancer and others. Given that the area of immunology/inflammation is highly complex (and especially so as it relates to radiation), it warrants the expansion of investigators expertise in immunology and inflammation to work with the individual research projects and also the NASA Specialized Center of Research (NSCORs). Historical data on radiation injury to be entered into the Watson

  7. Microdosimetry measurements with the RME-III on the space shuttle

    International Nuclear Information System (INIS)

    Hardy, K.; Golightly, M.J.; Atwell, W.; Quam, W.

    1994-01-01

    Since December 1988 (STS-27) the USAF Armstrong Laboratory, in conjunction with the NASA Space Radiation Analysis Group, has been conducting microdosimetry measurements on selected high-altitude, high-inclination Space Shuttle mission with the RME-III. The RME-III is a portable, self-contained, active dosimeter system featuring a three-channel tissue equivalent proportional counter (TEPC) which measures particle fluence and computes dose and dose equivalent at operator selected time intervals. The total accumulated absorbed dose and dose equivalent are displayed real time, while the data and the time of the interval dose readings are stored in memory modules for later analysis. Analysis of the time-resolved data permits correlation of the radiation exposure with geographic position, altitude, and spacecraft shielding and orientation. The RME-III has flown on 15 Shuttle missions to date and measurements are in good agreement with other dosimetry measurements made on the Shuttle

  8. Circuit and Measurement Technique for Radiation Induced Drift in Precision Capacitance Matching

    Science.gov (United States)

    Prasad, Sudheer; Shankar, Krishnamurthy Ganapathy

    2013-04-01

    In the design of radiation tolerant precision ADCs targeted for space market, a matched capacitor array is crucial. The drift of capacitance ratios due to radiation should be small enough not to cause linearity errors. Conventional methods for measuring capacitor matching may not achieve the desired level of accuracy due to radiation induced gain errors in the measurement circuits. In this work, we present a circuit and method for measuring capacitance ratio drift to a very high accuracy (<; 1 ppm) unaffected by radiation levels up to 150 krad.

  9. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  10. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  11. Space Radiation Intelligence System (SPRINTS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Federal Systems proposes an innovative SPace Radiation INTelligence System (SPRINTS) which provides an interactive and web-delivered capability that...

  12. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  13. Situational awareness of hazards: Validation of multi-source radiation measurements

    Science.gov (United States)

    Hultquist, C.; Cervone, G.

    2016-12-01

    Citizen-led movements producing scientific hazard data during disasters are increasingly common. After the Japanese earthquake-triggered tsunami in 2011, and the resulting radioactive releases at the damaged Fukushima Daiichi nuclear power plants, citizens monitored on-ground levels of radiation with innovative mobile devices built from off-the-shelf components. To date, the citizen-led SAFECAST project has recorded 50 million radiation measurements worldwide, with the majority of these measurements from Japan. The analysis of data which are multi-dimensional, not vetted, and provided from multiple devices presents big data challenges due to their volume, velocity, variety, and veracity. While the SAFECAST project produced massive open-source radiation measurements at specific coordinates and times, the reliability and validity of the overall data have not yet been assessed. The nuclear disaster provides a case for assessing the SAFECAST data with official aerial remote sensing radiation data jointly collected by the governments of the United States and Japan. A spatial and statistical assessment of SAFECAST requires several preprocessing steps. First, SAFECAST ionized radiation sensors collected data using different units of measure than the government data, and they had to be converted. Secondly, the normally occurring radiation and decay rates of Cesium from deposition surveys were used to properly compare measurements in space and time. Finally, the GPS located points were selected within overlapping extents at multiple spatial resolutions. Quantitative measures were used to assess the similarity and differences in the observed measurements. Radiation measurements from the same geographic extents show similar spatial variations and statistically significant correlations. The results suggest that actionable scientific data for disasters and emergencies can be inferred from non-traditional and not vetted data generated through citizen science projects. This

  14. Protection from space radiation

    International Nuclear Information System (INIS)

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-01-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods

  15. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  16. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  17. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  18. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  19. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  20. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  1. Dose measurements and LET-determination in space station MIR during the Russian long term flight RLF

    International Nuclear Information System (INIS)

    Vana, N.; Schoener, N.; Fugger, M.; Akatov, Y.; Shurshakov, V.

    1996-01-01

    For determination of the absorbed dose and the dose equivalent in complex mixed radiation fields, new methods were developed in the frame of the Austrian-Soviet space mission AUSTROMIR in October 1991. The method utilizes the changes of peak height ratios in thermoluminescence glowcurves. Peak height ratios depend on the linear energy transfer (LET) of absorbed radiation. This effect was calibrated in different radiation fields (alpha-, beta-, gamma-, neutron fields and heavy charged particle beams). The method was approached for dose measurements during several space programs (DOSIMIR, BION-10, PHOTONS). During the Russian long term flight RLF six dosemeter packets were exposed in three different periods. Two positions with different shielding (the working area and the cabin of the board engineer) were chosen for the exposition of the dosemeters during each period in order to measure the variation of absorbed dose as well as the variation of average LET of absorbed radiation within the habitable part of space station MIR. These results will be compared with the results during two former periods of measurements on space station MIR (AUSTROMIR/DOSIMIR) and results obtained inside of biosatellite BION-10 and during the space shuttle mission STS-60. (author)

  2. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  3. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  4. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  5. Measuring Earth's Radiation Budget from the Vicinity of the Moon

    Science.gov (United States)

    Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.

    2018-02-01

    We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.

  6. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  7. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Science.gov (United States)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  8. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  9. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  10. Fluence-based and microdosimetric event-based methods for radiation protection in space

    International Nuclear Information System (INIS)

    Curtis, S.B.

    2002-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has recently published a report (Report no.137) that discusses various aspects of the concepts used in radiation protection and the difficulties in measuring the radiation environment in spacecraft for the estimation of radiation risk to space travelers. Two novel dosimetric methodologies, fluence-based and microdosimetric event-based methods, are discussed and evaluated, along with the more conventional quality factor/linear energy transfer (LET) method. It was concluded that for the present, any reason to switch to a new methodology is not compelling. It is suggested that because of certain drawbacks in the presently-used conventional method, these alternative methodologies should be kept in mind. As new data become available and dosimetric techniques become more refined, the question should be revisited and that in the future, significant improvement might be realized. In addition, such concepts as equivalent dose and organ dose equivalent are discussed and various problems regarding the measurement/estimation of these quantities are presented. (author)

  11. Radon and its decay products in living spaces: estimation of radiation exposure and risks for radon levels measured in Switzerland

    International Nuclear Information System (INIS)

    Burkart, W.

    1984-03-01

    After a general introduction to radiation levels, radon and its daughter products are considered. Radon in living spaces is discussed, in particular the radon concentration in family houses. The influence of energy saving characteristics on the radon concentration in the indoor air includes a 'matched pair' analysis and ventilation installations and dwell duration of indoor air noxious agents. Estimation of the radiation risks are determined, including risks of lung cancer, human epidemiological investigations (miners and radiation levels in living spaces), and possible results of energy saving characteristics. Finally characteristics and recommendations in general are given. (A.N.K.)

  12. Role of radiations in assuring quality in space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1993-01-01

    Penetrating radiations such as x-rays, gamma rays, neutrons are extensively used for radiographic inspection of various components used in space programmes. Some of these are rocket motor segments, assembled motors, composite nozzles, igniters, pyro devices, and various critical sub systems. These components employ advanced materials like composites, propellants, insulation materials, alloy steels, maraging steel, pyro techniques etc. Often they are in complex geometrical shapes and assemblies. Simulation of radiation environment on a number of components used in satellites is also carried out using radiation sources. This will help in assessing the effect of terrestrial radiation on the components that work in space. Future trends in the exploitation of radiation for space applications include automated radiography and development of expert systems, computed tomography, improvement in realtime radiography, Compton back scatter tomography etc. Adapting some of the advancements in medical radiology to industrial environment is also a welcome step in future. (author). 2 figs

  13. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  14. A review of ground-based heavy-ion radiobiology relevant to space radiation risk assessment: Part II. Cardiovascular and immunological effects

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2007-02-26

    The future of manned space flight depends on an analysis of the numerous potential risks of travel into deep space. Currently no radiation dose limits have been established for these exploratory missions. To set these standards more information is needed about potential acute and late effects on human physiology from appropriate radiation exposure scenarios, including pertinent radiation types and dose rates. Cancer risks have long been considered the most serious late effect from chronic daily relatively low-dose exposures to the complex space radiation environment. However, other late effects from space radiation exposure scenarios are under study in ground-based accelerator facilities and have revealed some unique particle radiation effects not observed with conventional radiations. A comprehensive review of pertinent literature that considers tissue effects of radiation leading to functional detriments in specific organ systems has recently been published (NCRP National Council on Radiation Protection and Measurements, Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit, Report 153, Bethesda, MD, 2006). This paper highlights the review of two non-cancer concerns from this report: cardiovascular and immunological effects.

  15. Rotating film radiators for space applications

    International Nuclear Information System (INIS)

    Koenig, D.R.

    1985-01-01

    A new class of light-weight radiators is described. This radiator consists of a thin rotating envelope that contains the working fluid. The envelope can have many shapes including redundant, foldable configurations. The working fluid, which may be a liquid or a condensable vapor, impinges on the inside surface of the radiator and is driven as a film to the periphery by centrifugal force. Heat is radiated to space by the outer surface of the envelope. Pumps located on the periphery then return the liquid to the power converter. For a 100-MW radiator operating at 800 K, specific mass approx.0.1 kg/kW and mass density approx.2 kg/m 2 may be achievable. 7 refs., 4 figs., 4 tabs

  16. Radiation measured for ISS-Expedition 12 with different dosimeters

    International Nuclear Information System (INIS)

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Weyland, M.

    2007-01-01

    Radiation in low Earth orbit (LEO) is mainly from Galactic Cosmic Rays (GCR), solar energetic particles and particles in South Atlantic Anomaly (SAA). These particles' radiation impact to astronauts depends strongly on the particles' linear energy transfer (LET) and is dominated by high LET radiation. It is important to investigate the LET spectrum for the radiation field and the influence of radiation on astronauts. At present, the best active dosimeters used for all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors; the best passive dosimeters are thermoluminescence dosimeters (TLDs) or optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation for space mission Expedition 12 (ISS-11S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the mission with these different dosimeters. This paper introduces the operation principles for these dosimeters, describes the method to combine the results measured by CR-39 PNTDs and TLDs/OSLDs, presents the experimental LET spectra and the radiation quantities

  17. Alpha radiation gauge for the measurement of gas density

    International Nuclear Information System (INIS)

    Lech, M.

    1977-01-01

    Alpha gauge for the measurement of gas density with thick alfa source, has been developed. The gauge is based on radiation transmission through a space filled with gas and total-count principle. Air density can be measured in the range 1,2 - 1,27 kg m -3 with a maximum standard deviation of 2 x 10 -3 kg m -3 . (author)

  18. Determination of electron bunch shape using transition radiation and phase-energy measurements

    International Nuclear Information System (INIS)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.

    1995-01-01

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E(var-phi) = E o + E acc cos(var-phi), where E o is the energy of an electron entering the field, E acc is the peak energy gain, and var-phi is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods

  19. Determination of electron bunch shape using transition radiation and phase-energy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Crosson, E.R.; Berryman, K.W.; Richman, B.A. [Stanford Univ., CA (United States)] [and others

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  20. A unified approach to deconvolution radiation spectra measured by radiochromic films

    CERN Document Server

    Stancic, V; Ljubenov, V

    2002-01-01

    A method for the evaluation of energy distribution of a radiation source on the basis of measured space distribution of deposited energy is proposed. The measured data were obtained by using radiochromic films. Mathematical modeling is defined as a Fredholm integral equation inversion problem. Negative solutions were treated as an additional condition expressed through undefined energy group boundaries, caused by virtue of the physical phenomenon of statistical uncertainty. Examples are given of the electron source and neutron radiation field.

  1. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  2. What Threats to Human Health Does Space Radiation Pose in Orbit

    Science.gov (United States)

    Wu, Honglu; Semones, Eddie; Weyland, Mark; Zapp, Neal; Cucinotta, Francis A.

    2011-01-01

    The Space Shuttle program spanned more than the entire length of a solar cycle. Investigations aimed towards understanding the health risks of the astronauts from exposures to space radiation involved mostly physical measurements of the dose and the linear energy transfer (LET) spectrum. Measurement of the dose rate on the Shuttle provided invariable new data for different periods of the solar cycle, whereas measurement of the LET spectrum using the tissue equivalent proportional counter (TEPC) produced the most complete mapping of the radiation environment of the low Earth orbits (LEO). Exposures to the Shuttle astronauts were measured by the personal dosimeter worn by the crewmembers. Analysis of over 300 personal dosimeter readings indicated a dependence on the mission duration, the altitude and inclination of the orbit, and the solar cycle, with the crewmembers on the launch and repair of the Hubble telescope receiving the highest doses due to the altitude of the mission. Secondary neutrons inside the Shuttle were determined by recoil protons or with Bonner spheres, and may contribute significantly to the risks of the crewmembers. In addition, the skin dose and the doses received at different organs were compared using a human phantom onboard a Shuttle mission. A number of radiobiology investigations wer e also performed. The biological doses were determined on six astronauts/cosmonauts on long-duration Shuttle/Mir missions and on two crewmembers on a Hubble repair mission by analyzing the damages in the chromosomes of the crewmembers? white blood cells. Several experiments were also conducted to address the question of possible synergistic effects of spaceflight, microgravity in particular, on the repair of radiation-induced DNA damages. The experimental design included exposure of cells before launch, during flight, or after landing. These physical and biological studies were invaluable in predicting the health risks for astronauts on ISS and future

  3. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-04-13

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  4. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Science.gov (United States)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  5. Space dosimetry measurements in the stratosphere using different active and passive dosimetry systems

    International Nuclear Information System (INIS)

    Zabori, Balazs; Hirn, Attila; Deme, Sandor; Apathy, Istvan; Csoke, Antal; Pazmandi, Tamas; Szanto, Peter

    2016-01-01

    Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Mueller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra

  6. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  7. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  8. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  9. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  10. Implications for space radiation environment models from CREAM and CREDO measurements over half a solar cycle

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Peerless, C.L.; Watson, C.J.; Evans, H.E.; Knight, P.; Cosby, M.; Underwood, C.; Cousins, T.; Noulty, R.; Maag, C.

    1999-01-01

    Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM and CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment and radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model

  11. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  12. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  13. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  14. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  15. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  16. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  17. Space radiation studies. Final report, 22 July 1983-30 June 1989

    International Nuclear Information System (INIS)

    1989-01-01

    Two Active Radiation Dosimeters (ARD's) flown on Spacelab 1, performed without fault and were returned to Space Science Laboratory, MSFC for recalibration. During the flight, performance was monitored at the Huntsville Operations Center (HOSC). Despite some problems with the Shuttle data system handling the verification flight instrumentation (VFI), it was established that the ARD's were operating normally. Postflight calibrations of both units determined that sensitivities were essentially unchanged from preflight values. Flight tapes were received for approx. 60 percent of the flight and it appears that this is the total available. The data was analyzed in collaboration with Space Science Laboratory, MSFC. Also, the Nuclear Radiation Monitor (NRM) was assembled and tested at MSFC. Support was rendered in the areas of materials control and parts were supplied for the supplementary heaters, dome gas-venting device and photomultiplier tube housing. Performance characteristics of some flight-space photomultipliers were measured. The NRM was flown on a balloon-borne test flight and subsequently performed without fault on Spacelab-2. This data was analyzed and published

  18. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  19. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  20. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  1. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection; La NASA space radiation summer school, une formation d'excellence en radiobiologie et radioprotection spatiale

    Energy Technology Data Exchange (ETDEWEB)

    Vogin, G. [Centre Alexis-Vautrin, 54 - Nancy (France)

    2009-10-15

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  2. Characterization of Outer Space Radiation Induced Changes in Extremophiles Utilizing Deep Space Gateway Opportunities

    Science.gov (United States)

    Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.

    2018-02-01

    Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.

  3. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  4. Evaluation of the space scattered dose according to the position of the radiation workers in mammography room

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Yeon [Dept. of Radiation Oncology, Dongnam Inst. of Radiological and Medical Science, Busan (Korea, Republic of); Lee, Jin Soo [Dept. of Radiology, Inje University Heaundae Paik Hospital, Busan (Korea, Republic of)

    2016-09-15

    This study was conducted to evaluate the dose of the space to the controller located within the mammography room conducted a research on ways to the reduction exposure to the radiation workers. Results, the dose of 6.18 mGy/year was measured when there is no difference in the hilar area of the controller position, the dose of 2.35E-11 mGy/year was measured when installing the Shielding door. In addition, when the direction of the X-ray tube anode be heading this direction controller, low average level measured was 0.30 mGy/year. Based on this study, the mammography should be considered when installing the anode and cathod directions. And, by installing the shielding door, it must be able to completely separate shooting space and control room. This is the best way radiation protection method in radiation workers.

  5. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    Science.gov (United States)

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  6. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  7. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  8. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  9. Verification of Dosimetry Measurements with Timepix Pixel Detectors for Space Applications

    Science.gov (United States)

    Kroupa, M.; Pinsky, L. S.; Idarraga-Munoz, J.; Hoang, S. M.; Semones, E.; Bahadori, A.; Stoffle, N.; Rios, R.; Vykydal, Z.; Jakubek, J.; hide

    2014-01-01

    The current capabilities of modern pixel-detector technology has provided the possibility to design a new generation of radiation monitors. Timepix detectors are semiconductor pixel detectors based on a hybrid configuration. As such, the read-out chip can be used with different types and thicknesses of sensors. For space radiation dosimetry applications, Timepix devices with 300 and 500 microns thick silicon sensors have been used by a collaboration between NASA and University of Houston to explore their performance. For that purpose, an extensive evaluation of the response of Timepix for such applications has been performed. Timepix-based devices were tested in many different environments both at ground-based accelerator facilities such as HIMAC (Heavy Ion Medical Accelerator in Chiba, Japan), and at NSRL (NASA Space Radiation Laboratory at Brookhaven National Laboratory in Upton, NY), as well as in space on board of the International Space Station (ISS). These tests have included a wide range of the particle types and energies, from protons through iron nuclei. The results have been compared both with other devices and theoretical values. This effort has demonstrated that Timepix-based detectors are exceptionally capable at providing accurate dosimetry measurements in this application as verified by the confirming correspondence with the other accepted techniques.

  10. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    Science.gov (United States)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate

  11. The transition radiation detector of the PAMELA space mission

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  12. The transition radiation detector of the PAMELA space mission

    International Nuclear Information System (INIS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-01-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta

  13. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  14. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  15. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  16. Radiation durability and functional reliability of polymeric materials in space systems

    International Nuclear Information System (INIS)

    Haruvy, Y.

    1990-01-01

    Polymeric materials are preferred for the light-weight construction of space-systems. Materials in space systems are required to fulfill a complete set of specifications, at utmost reliability, throughout the whole period of service in space, while being exposed to the hazardous influence of the space environment. The major threats of the space environment in orbits at the geostationary altitude (GSO) arise from ionizing radiations, the main constituents of which are highly energetic protons (affecting mainly the surface) and fast electrons (which produce the main threat to the electronic components). The maximum dose of ionizing radiation (within the limits of uncertainty of the calculations) at the surface of a material mounted on a space system, namely the ''Skin-Dose'', is ca. 2500 Mrads/yr. Space systems such as telecommunication satellites are planned to serve for prolonged periods of 30 years and longer. The cumulative predicted dose of ionizing-radiation over such periods presents a severe threat of chemical degradation to most of the polymeric construction materials commonly utilized in space systems. The reliability of each of the polymeric materials must be evaluated in detail, considering each of the relevant typical threats, such as ionizing-radiation, UV radiation, meteoroides flux, thermal cycling and ultra-high vacuum. For each of the exposed materials, conservation of the set of functional characteristics such as mechanical integrity, electrical and thermo-optical properties, electrical conductivity, surface charging and outgassing properties, which may cause contamination of neighboring systems, is evaluated. The reliability of functioning of the materials exposed to the space environment can thus be predicted, utilizing data from the literature, experimental results reported from space flights and laboratory simulations, and by chemical similarity of untested polymers to others. (author)

  17. Space radiation dosimetry

    International Nuclear Information System (INIS)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Strauch, K.; Heinrich, W.

    1996-01-01

    Detector packages consisting of plastic nuclear track detectors, nuclear emusions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose measurements, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rate from this exposure are given in this report. The dose equivalent received by the PSs were calculated from the measurements and range from 190 μSv d -1 to 770 μSv d -3 . (orig.) [de

  18. Measurement of Thermal Radiation Properties of Solids

    Science.gov (United States)

    Richmond, J. C. (Editor)

    1963-01-01

    The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.

  19. Some comments on space flight and radiation limits

    International Nuclear Information System (INIS)

    Thornton, W.E.

    1997-01-01

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by 'experts' and the media. Career astronauts' and cosmonauts' views are much more realistic about the risks involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of 'voluntary' participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and 'official' Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure. radiation and all potential effects from such exposure

  20. [Anthropogenic sources of radiation hazard in the near-Earth space].

    Science.gov (United States)

    Fedoseev, G A

    2004-01-01

    All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.

  1. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  2. Web-based description of the space radiation environment using the Bethe–Bloch model

    International Nuclear Information System (INIS)

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  3. Acceptability of risk from radiation: Application to human space flight

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-30

    This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Acceptability of risk from radiation: Application to human space flight

    International Nuclear Information System (INIS)

    1997-01-01

    This one of NASA's sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  5. Determination of Dose-Equivalent Response of A Typical Diamond Microdosimeter in Space Radiation Fields

    Directory of Open Access Journals (Sweden)

    firouz payervand

    2018-01-01

    Conclusion: The reasonable agreement between the dose equivalents calculated in this study and the results reported by other researchers confirmed that this type of microdosimeter could be a promising candidate suitable for the measurement of the dose equivalent in space radiation fields.

  6. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection.

    Science.gov (United States)

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  7. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Science.gov (United States)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  8. Radiation biophysics in space

    International Nuclear Information System (INIS)

    Buecker, H.; Horneck, G.

    1983-01-01

    In a demonstration experiment bacterium sporules have been exposed to the space vacuum and to the solar radiation field at 254 nm, with the following results: 1) a short vacuum exposition of 1.3 h does not affect the vitality of the sporules, 2) the survival rate of humid sporules after UV-irradiation is consistent with terrestrial control samples, 3) after a simultaneous exposition to vacuum and solar UV-radiation the effect on the sporules is enhanced by a factor of ten as compared to the situation without vaccum exposition. Additional studies in biophysical simulation systems revealed, that the enhanced UV sensitivity is caused by the dehydration of the sporules. By this process the structure of the essential macromolecules in cell, such as DNA and proteins, is modified such that new photo-products can be formed. For these products the cells have no effective repair systems. (AJ) [de

  9. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  10. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  11. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  12. Lightweight Radiator for in Space Nuclear Electric Propulsion

    Science.gov (United States)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  13. Radiation protection, measurements and methods

    International Nuclear Information System (INIS)

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  14. Detailed Characteristics of Radiation Belt Electrons Revealed by CSSWE/REPTile Measurements

    Science.gov (United States)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D. T.; Millan, R. M.

    2016-12-01

    The outer radiation belt electrons are highly dynamic. We study the detailed characteristics of the relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit Cubesat, which transverses the radiation belt four times in one orbit ( 1.5 hr) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitations. Among the features of the relativistic electrons, we show the measured electron distribution as a function of geomagnetic activities and local magnetic field strength. Moreover, a specific precipitation band, which happened on 19 Jan 2013, is investigated based on the conjunctive measurement of CSSWE and the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL). In this precipitation band event, the net loss of the 0.58 1.63 MeV electrons (L=3.5 6) is estimated to account for 6.84% of the total electron content.

  15. Device for measuring absorption of radiation in a slice of a body

    International Nuclear Information System (INIS)

    Kowalski, G.

    1978-01-01

    In third-generation computer tomography apparatus measuring values must be intermediately stored partly for the total scanning time in order to enable processing of all measuring values with a given projection angle. This involves high expenditures for storage means. Moreover, the applied dose is larger than required for obtaining the measuring value per se. The invention consists in that there is provided a shield which moves with the radiator but whose direction does not change in space during the measurement, but does change relative to the radiation beam. As a result, it is achieved that all measuring values with a given projection angle can be obtained within a part of the scanning time, the said part corresponding to the ratio between the opening angle of the radiation beam and the total scanning time. As a result, the cost of intermediate storage as well as the patient dose can be reduced

  16. A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence

    International Nuclear Information System (INIS)

    Liu Yanping; Du Yanzhao; Chen Zhaoyang; Ba Weizhen; Fan Yanwei; Pan Shilie; Guo Qi

    2008-01-01

    The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity. Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-access and hazardous. In addition, optical fiber dosimeters are immune to electrical and radio-frequency interference. In this paper, a novel remote optical fiber radiation dosimeter is described. The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL. The measuring range of the dosimeter is from 0.1 to 100 Gy. The equipment is relatively simple and small in size, and has low power consumption. This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions. (authors)

  17. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  18. Controlling criteria for radiation exposure of astronauts and space workers

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1989-01-01

    Space workers likely to suffer from radiation exposure in the outer space are currently limited to the U.S. and Soviet Union, and only a small amount of data and information is available concerning the techniques and criteria for control of radiation exposure in this field. Criteria used in the Soviet Union are described first. The criteria (TRS-75), called the Radiation Safety Criteria for Space Navigation, are tentative ones set up in 1975. They are based on risk assessment. The standard radiation levels are established based on unit flight time: 50rem for 1 month, 80rem for 3 months, 110rem for 6 months and 150rem for 12 months. These are largely different from the emergency exposure limit of 100mSv (10rem) specified in a Japanese law, and the standard annual exposure value of 50mSv (5rem) for workers in nuclear power plants at normal times. For the U.S., J.A. Angelo, Jr., presented a paper titled 'Radiation Protection Issues and Techniques concerning Extended Manned Space Missions' at an IAEA meeting held in 1988. Though the criteria shown in the paper are not formal ones at the national level, similar criteria are expected to be adopted by the nation in the near future. The exposure limits recommended in the paper include a depth dose of 1-4Sv for the whole life span of a worker. (Nogami, K.)

  19. Electromagnetic radiation in a semi-compact space

    Science.gov (United States)

    Iso, Satoshi; Kitazawa, Noriaki; Yokoo, Sumito

    2018-02-01

    In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a compact space. If the point charge is circulating with an angular frequency ω0 on the (x , y)-plane at z = 0 with boundary conditions, x ∼ x + 2 πR and y ∼ y + 2 πR, it emits radiation into the z-direction of z ∈ [ - ∞ , + ∞ ]. We find that the radiation shows discontinuities as a function of ω0 R at which a new propagating mode with a different Fourier component appears. For a small radius limit ω0 R ≪ 1, all the Fourier modes except the zero mode on (x , y)-plane are killed, but an effect of squeezing the electric field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation reduces to the expected Larmor formula.

  20. Benchmark studies of the effectiveness of structural and internal materials as radiation shielding for the international space station

    Science.gov (United States)

    Miller, J.; Zeitlin, C.; Cucinotta, F. A.; Heilbronn, L.; Stephens, D.; Wilson, J. W.

    2003-01-01

    Accelerator-based measurements and model calculations have been used to study the heavy-ion radiation transport properties of materials in use on the International Space Station (ISS). Samples of the ISS aluminum outer hull were augmented with various configurations of internal wall material and polyethylene. The materials were bombarded with high-energy iron ions characteristic of a significant part of the galactic cosmic-ray (GCR) heavy-ion spectrum. Transmitted primary ions and charged fragments produced in nuclear collisions in the materials were measured near the beam axis, and a model was used to extrapolate from the data to lower beam energies and to a lighter ion. For the materials and ions studied, at incident particle energies from 1037 MeV/nucleon down to at least 600 MeV/nucleon, nuclear fragmentation reduces the average dose and dose equivalent per incident ion. At energies below 400 MeV/nucleon, the calculation predicts that as material is added, increased ionization energy loss produces increases in some dosimetric quantities. These limited results suggest that the addition of modest amounts of polyethylene or similar material to the interior of the ISS will reduce the dose to ISS crews from space radiation; however, the radiation transport properties of ISS materials should be evaluated with a realistic space radiation field. Copyright 2003 by Radiation Research Society.

  1. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity.

    Science.gov (United States)

    Chylack, Leo T; Peterson, Leif E; Feiveson, Alan H; Wear, Mary L; Manuel, F Keith; Tung, William H; Hardy, Dale S; Marak, Lisa J; Cucinotta, Francis A

    2009-07-01

    The NASA Study of Cataract in Astronauts (NASCA) is a 5-year longitudinal study of the effect of space radiation exposure on the severity/progression of nuclear, cortical and posterior subcapsular (PSC) lens opacities. Here we report on baseline data that will be used over the course of the longitudinal study. Participants include 171 consenting astronauts who flew at least one mission in space and a comparison group made up of three components: (a) 53 astronauts who had not flown in space, (b) 95 military aircrew personnel, and (c) 99 non-aircrew ground-based comparison subjects. Continuous measures of nuclear, cortical and PSC lens opacities were derived from Nidek EAS 1000 digitized images. Age, demographics, general health, nutritional intake and solar ocular exposure were measured at baseline. Astronauts who flew at least one mission were matched to comparison subjects using propensity scores based on demographic characteristics and medical history stratified by gender and smoking (ever/never). The cross-sectional data for matched subjects were analyzed by fitting customized non-normal regression models to examine the effect of space radiation on each measure of opacity. The variability and median of cortical cataracts were significantly higher for exposed astronauts than for nonexposed astronauts and comparison subjects with similar ages (P=0.015). Galactic cosmic space radiation (GCR) may be linked to increased PSC area (P=0.056) and the number of PSC centers (P=0.095). Within the astronaut group, PSC size was greater in subjects with higher space radiation doses (P=0.016). No association was found between space radiation and nuclear cataracts. Cross-sectional data analysis revealed a small deleterious effect of space radiation for cortical cataracts and possibly for PSC cataracts. These results suggest increased cataract risks at smaller radiation doses than have been reported previously.

  2. Biological effects of space radiation on human cells. History, advances and outcomes

    International Nuclear Information System (INIS)

    Maalouf, M.; Foray, N.; Durante, M.

    2011-01-01

    Exposure to radiation is one of the main concerns for space exploration by humans. By focusing deliberately on the works performed on human cells, we endeavored to review, decade by decade, the technological developments and conceptual advances of space radiation biology. Despite considerable efforts, the cancer and the toxicity risks remain to be quantified: the nature and the frequency of secondary heavy ions need to be better characterized in order to estimate their contribution to the dose and to the final biological response; the diversity of radiation history of each astronaut and the impact of individual susceptibility make very difficult any epidemiological analysis for estimating hazards specifically due to space radiation exposure. Cytogenetic data undoubtedly revealed that space radiation exposure produce significant damage in cells. However, our knowledge of the basic mechanisms specific to low-dose, to repeated doses and to adaptive response is still poor. The application of new radiobiological techniques, like immunofluorescence, and the use of human tissue models different from blood, like skin fibroblasts, may help in clarifying all the above items. (author)

  3. Radiation Calibration Measurements

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  4. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...

  5. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    International Nuclear Information System (INIS)

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  6. Development and Characterization of Tissue Equivalent Proportional Counter for Radiation Monitoring in International Space Station

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    2013-06-01

    Full Text Available Tissue equivalent proportional counter (TEPC can measure the Linear Energy Transfer (LET spectrum and calculate the equivalent dose for the complicated radiation field in space. In this paper, we developed and characterized a TEPC for radiation monitoring in International Space Station (ISS. The prototype TEPC which can simulate a 2 μm of the site diameter for micro-dosimetry has been tested with a standard alpha source (241Am, 5.5 MeV. Also, the calibration of the TEPC was performed by the 252Cf neutron standard source in Korea Research Institute of Standards and Science (KRISS. The determined calibration factor was kf = 3.59×10-7 mSv/R.

  7. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    International Nuclear Information System (INIS)

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurny, F.; Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.

    2006-01-01

    The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the general behaviour of model bacteria. To measure the radiation doses received by the bacteria, different detectors accompanied the microbiological experiments. The results obtained during two space flight missions are discussed. This dosimetry experiment was a collaboration between different institutes so that the doses could be estimated by different techniques. For measurement of the high linear energy transfer (LET) doses (>10 keV μm -1 ), two types of etched track detectors were used. The low LET part of the spectrum was measured by three types of thermoluminescent detectors ( 7 LiF:Mg,Ti; 7 LiF:Mg,Cu,P; Al 2 O 3 :C) and by the optically stimulated luminescence technique using Al 2 O 3 :C detectors. (authors)

  8. NDT using ionising radiation in the Indian space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1997-01-01

    Ionising radiations continue to play a vital role in the Non-Destructive Evaluation (NDE) of various components used in space vehicles and satellites. The different Non-Destructive Testing (NDT) methods which are useful to the Indian space programme are discussed. 4 refs., 5 figs

  9. Effects of space-relevant radiation on pre-osteoblasts

    International Nuclear Information System (INIS)

    Hu, Yueyuan

    2014-01-01

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  10. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  11. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  12. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  13. Radiation safety standards: space hazards vs. terrestrial hazards

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1983-01-01

    Policies regarding the setting of standards for radiation exposure for astronauts and other workers in space are discussed. The first recommendations for dose limitation and the underlying philosophy of these recommendations, which were put out in 1970, are examined, and consequences for the standards if the same philosophy of allowing a doubling in overall cancer risk for males aged 30-35 over a 20-year period were applied to more recent risk estimates are calculated, leading to values about a factor of 4 below the 1970 recommendation. Standards set since 1930 for terrestrial occupational exposures, which lead to a maximum lifetime risk of about 2.3 percent, are then considered, and the space and terrestrial exposure risks for fatal cancers at maximum lifetime dose are compared with industrial accidental death rates. Attention is also given to the question of the potential effects of HZE particles in space and to the possibility that HZE particle effects, rather than radiation carcinogenesis, might be the limiting factor. 17 references

  14. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  15. Radiation tolerance of a spin-dependent tunnelling magnetometer for space applications

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2011-01-01

    To meet the increasing demand for miniaturized space instruments, efforts have been made to miniaturize traditional magnetometers, e.g. fluxgate and spin-exchange relaxation-free magnetometers. These have, for different reasons, turned out to be difficult. New technologies are needed, and promising in this respect are tunnelling magnetoresistive (TMR) magnetometers, which are based on thin film technology. However, all new space devices first have to be qualified, particularly in terms of radiation resistance. A study on TMR magnetometers' vulnerability to radiation is crucial, considering the fact that they employ a dielectric barrier, which can be susceptible to charge trapping from ionizing radiation. Here, a TMR-based magnetometer, called the spin-dependent tunnelling magnetometer (SDTM), is presented. A magnetometer chip consisting of three Wheatstone bridges, with an angular pitch of 120°, was fabricated using microstructure technology. Each branch of the Wheatstone bridges consists of eight pairs of magnetic tunnel junctions (MTJs) connected in series. Two such chips are used to measure the three-dimensional magnetic field vector. To investigate the SDTM's resistance to radiation, one branch of a Wheatstone bridge was irradiated with gamma rays from a Co 60 source with a dose rate of 10.9 rad min −1 to a total dose of 100 krad. The TMR of the branch was monitored in situ, and the easy axis TMR loop and low-frequency noise characteristics of a single MTJ were acquired before and after irradiation with the total dose. It was concluded that radiation did not influence the MTJs in any noticeable way in terms of the TMR ratio, coercivity, magnetostatic coupling or low-frequency noise

  16. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  17. Shutdown and degradation: Space computers for nuclear application, verification of radiation hardness. Final report

    International Nuclear Information System (INIS)

    Eichhorn, E.; Gerber, V.; Schreyer, P.

    1995-01-01

    (1) Employment of those radiation hard electronics which are already known in military and space applications. (2) The experience in space-flight shall be used to investigate nuclear technology areas, for example, by using space electronics to prove the range of applications in nuclear radiating environments. (3) Reproduction of a computer developed for telecommunication satellites; proof of radiation hardness by radiation tests. (4) At 328 Krad (Si) first failure of radiation tolerant devices with 100 Krad (Si) hardness guaranteed. (5) Using radiation hard devices of the same type you can expect applications at doses of greater than 1 Mrad (Si). Electronic systems applicable for radiation categories D, C and lower part of B for manipulators, vehicles, underwater robotics. (orig.) [de

  18. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  19. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  20. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  1. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  2. Ionizing radiation in earth's atmosphere and in space near earth.

    Science.gov (United States)

    2011-05-01

    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  3. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  4. Deviating measurements in radiation protection. Legal assessment of deviations in radiation protection measurements

    International Nuclear Information System (INIS)

    Hoegl, A.

    1996-01-01

    This study investigates how, from a legal point of view, deviations in radiation protection measurements should be treated in comparisons between measured results and limits stipulated by nuclear legislation or goods transport regulations. A case-by-case distinction is proposed which is based on the legal concequences of the respective measurement. Commentaries on nuclear law contain no references to the legal assessment of deviating measurements in radiation protection. The examples quoted in legal commentaries on civil and criminal proceedings of the way in which errors made in measurements for speed control and determinations of the alcohol content in the blood are to be taken into account, and a commentary on ozone legislation, are examined for analogies with radiation protection measurements. Leading cases in the nuclear field are evaluated in the light of the requirements applying in case of deviations in measurements. The final section summarizes the most important findings and conclusions. (orig.) [de

  5. NASA Space Radiation Risk Project: Overview and Recent Results

    Science.gov (United States)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  6. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    Science.gov (United States)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  7. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  8. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Science.gov (United States)

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  9. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    International Nuclear Information System (INIS)

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  10. Study on biological response to space radiation and its countermeasure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground.

  11. Study on biological response to space radiation and its countermeasure

    International Nuclear Information System (INIS)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu

    2011-12-01

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground

  12. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2015-01-01

    This fourth edition reflects recent major developments that have occurred in radiation detector materials, systems, and applications. It continues to provide the most practical and up-to-date introduction to radiation detector technology, proper measurement techniques, and analysis of results for engineers and scientists using radiation sources. New chapters emphasize the expanded use of radiation detection systems in nuclear non-proliferation, homeland security, and nuclear medicine. The book also discusses the correct ways to perform measurements following current health physics procedures.

  13. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  14. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  15. Radiations and space flight; Quand les radiations font partie du voyage

    Energy Technology Data Exchange (ETDEWEB)

    Maalouf, M.; Vogin, G.; Foray, N. [Groupe de Radiobiologie, Inserm U836, Institut des Neurosciences, 38 - Grenoble (France); Maalouf [CNES, Dept. des Sciences de la Vie, 75 - Paris (France); Vogin, G. [Laboratoire de Radiobiologie, EA3738, Faculte de Medecine de Lyon Sud, 69- Oullins (France)

    2011-02-15

    A space flight is submitted to 3 main sources of radiation: cosmic radiation (4 protons/cm{sup 2}/s and 10000 times less for the heaviest particles), solar radiation (10{sup 8} protons/cm{sup 2}/s in the solar wind), the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm{sup 2}/s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 {mu}Gray per day with an average dose rate of 0.28 {mu}Gray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  16. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  17. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  18. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  19. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  20. Dose limits for cosmic radiation during space flights

    International Nuclear Information System (INIS)

    Draaisma, F.S.

    1991-01-01

    Astronauts are exposed to raised levels of ionizing radiation, which may cause biologic effects during space flights. Insights in these effects should lead to doselimits for astronauts during their full career. (author). 4 refs.; 4 tabs

  1. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    Science.gov (United States)

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]). - Highlights: • Absolute determination of radiation burst. • Proportional counters space charge effect. • Radiation measurements on pulsed devices.

  3. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  4. Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL

    International Nuclear Information System (INIS)

    Holdridge, D. J.

    2002-01-01

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and

  5. GaAs Led based NIEL spectrometer for the space radiation environment

    International Nuclear Information System (INIS)

    Houdayer, A.J.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.

    1999-01-01

    A NIEL (non-ionizing-energy-loss) spectrometer for the Mir space station is described. The NIEL spectrometer package contained 20 GaAs LEDs, 10 SiC LEDs and 13 locations for TLD-700s. In order to probe different energy regions of the radiation field, the package is divided into 4 compartments covered by absorbers of varying thicknesses. This device has been submitted to proton irradiation. The effects on both the response time and the intensity of the light were measured as a function of the fluence. One of the advantages of LEDs as radiation monitors is their sensitivity and it is shown that it would be possible to detect a fluence of 4*10 7 p/cm 2 of 10 MeV protons, with sensitivity scaled as 1/E for other energies. (A.C.)

  6. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection

    Directory of Open Access Journals (Sweden)

    Cary eZeitlin

    2016-03-01

    Full Text Available The transport of so-called HZE particles (those having high charge, Z, and energy, E through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss and nuclear. Models of transport such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from Galactic Cosmic Rays (GCRs and potentially higher short-term doses from sporadic, unpredictable Solar Energetic Particles (SEPs. GCRs include HZE particles; SEPs typically do not and we therefore exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk reduced by fragmentation, but it can be argued that fragmentation also reduces the

  7. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  8. Radiation flux measuring device

    International Nuclear Information System (INIS)

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  9. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  10. A Sensitivity Study on the Radiation Shield of KSPR Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cerba, S.; Lee, Hyun Chul; Lim, Hong Sik; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The idea of a space reactor was realised some decades ago and since that time several research activities have been performed into this field. The US National Aeronautics and Space Administration (NASA) has been developing a small fast reactor called as fission power system (FPS) for deep space mission, where highly enriched uranium (HEU) is used as fuel. On the other hand, other researchers have also surveyed a thermal reactor concept with low enriched uranium (LEU) for space applications. One of the main concerns in terms of a space reactor is the total size and the mass of the system including the reactor itself as well as the radiation shield. Since the reactor core is a source of neutrons and gamma photons of various energies, which may cause severe damage on the electronics of the space stations, the questions related to the development of a radiation shield should be address appropriately. The proposal of a radiation shield for a small space reactor is discussed in this paper. The requirements for the radiation shield have been addressed in terms of maximal absorbed doses and neutron flounces during 10 years of operation. In this study a radiation shield design for a small space reactor was investigated. All the presented calculations were performed using the multi-purpose stochastic MCNP code with temperature dependent continuous energy ENDF/B VII.0 neutron and photon cross section libraries. The aim of this study was to design a neutron and gamma shield that can meet the requirements of 250 Gy absorbed during 10 years of reactor operation. The comparison with a fast reactor design showed that high content of {sup 238}U strongly influences the shielding mass. This phenomenon is due to the higher photon production in case of the KSPR design and therefore the use of high {sup 235}U enrichments and the operation in fast neutron spectrum may be more desirable. In case if the KSPR space reactor the best shielding performance was achieved while utilizing a multi

  11. Nuclear instrumentation for radiation measurement

    International Nuclear Information System (INIS)

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  12. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  13. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.

    Science.gov (United States)

    Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K

    2017-08-18

    Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation

  14. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    Science.gov (United States)

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  15. NASA FACILITY FOR THE STUDY OF SPACE RADIATION EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R.

    1963-04-15

    Information on the energies andd fluxes of trapped electrons and protons in space is summarized, and the Space Radiation Effects Laboratory being constructed to simulate most of the space particulate-energy spectrum is described. A 600-Mev proton synchrocyclotron of variable energy and electron accelerators of 1 to 10 Mev will be included. The accelerator characteristics and the arrangement of the experimental and support buildings, particularly the beam facilities, are discussed; and the planned activities of the laboratory are given. (D.C.W.)

  16. An Overview of Effects of Space Radiation on the Electronics

    International Nuclear Information System (INIS)

    Hwang, Sun Tae; Shin, Dong Kwan; Son, Young Jong; Kim Jin Hong

    2009-01-01

    The first Korean astronaut successfully carried out the scientific experiments at International Space Station (ISS) in April 2008. Due to the government's strong will and support for the field of space, Korea has enhanced its space technology based on the accomplishments in space development. On October 12∼16, 2009 the 60 th International Astronautical Congress (IAC) was held in Daejeon. IAC 2009 must serve as a place for the extensive exchange of global space technology and information in order to speed up the development of space technology in Korea. With regard for space research and development, the radiation effects in space have been reviewed from the viewpoint of electronics

  17. Conceptual designs for 100-MW space radiators

    International Nuclear Information System (INIS)

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  18. Radiation ray measuring device

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  19. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    Science.gov (United States)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  20. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  1. Sensor and method for measurment of select components of a material based on detection of radiation after interaction with the material

    International Nuclear Information System (INIS)

    Chase, L.M.; Anderson, L.M.; Norton, M.K.

    1993-01-01

    A sensor is described for measuring one or more select components of a sheet, comprising: a radiation source for emitting radiation toward the sheet; a plurality of detecting means, wherein at least one detecting means is offset from the source, for detecting radiation after interaction with the sheet; means for directing the radiation so that the radiation makes multiple interactions with the sheet in moving from the source to the detecting means, wherein the directing means includes a first reflector and second reflector defining a sheet space for the sheet to occupy; means for computing a ratio of the intensity of the detected radiation when the sheet is absent from the sheet space and the intensity of the detected radiation when the sheet occupies the sheet space; and means for computing the absorption power of the sheet from the intensity of the detected radiation

  2. Radiation protection measures in the case of incidents and radiation accidents

    International Nuclear Information System (INIS)

    Herzberg, B.

    1976-01-01

    Measures to be taken in the case of radiation accidents connected with an unusually high radiation exposure to persons, the amounts of which exceed the limiting values, with depend on whether there has been an external or an internal exposure. In order to give further treatment in the case of whole-body or partial-body irradiation, it is necessary to estimate the exposure dose. In nuclear medicine the accident doses are generally low, i.e. acute radiation damage does not occur here, and immediate measures are not necessary. Therapeutic measures in the case of incorporation accidents are only necessary when the maximum amounts for the nuclide in question recommended by the ICRP has been reached or exceeded in the organism. However, decorporation measures ought to be carried out only by qualified radiation protection physicians. The type of radiation accident which occurs most frequently in nuclear medicine is radiation exposure as a result of contamination. If in the case of contamination of a person the measurement exceeds the radioactivity limit, the decontamination measures are necessary. In the present contribution, these measures for cases without injuries are described in detail. (orig./HP) [de

  3. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  4. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sun, Ke-Xun; MacNeil, Lawrence; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-01-01

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 10 15 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 10 12 protons/cm 2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2 x 10 12 protons/cm 2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have

  5. Mechanism on radiation degradation of Si space solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Hisamatsu, Tadashi; Matsuda, Sumio

    1998-01-01

    Radiation testing of Si n + -p-p + structure space solar cells has revealed an anomalous increase in short-circuit current Isc, followed by an abrupt decrease and cell failure, induced by high fluence electron and proton irradiations. A model to explain these phenomena by expressing the change in carrier concentration p of the base region is proposed in addition to the well-known model where Isc is decreased by minority-carrier lifetime reduction with irradiation. Change in carrier concentration causes broadening the depletion layer to contribute increase in the generated photocurrent and increase in recombination-generation current in the depletion layer, and increase in the resistivity of the base layer to result in the abrupt decrease of Isc and failure of the solar cell. Type conversion from p-type to n-type in base layer has been confirmed by EBIC (electron-beam induced current) and spectral response measurements. Moreover, origins of radiation-induced defects in heavily irradiated Si and generation of deep donor defects have also been examined by using DLTS (deep level transient spectroscopy) analysis. (author)

  6. Ionizing radiation risks to Satellite Power Systems (SPS) workers in space

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

  7. Characterization of radiations field in Earth space in term of linear energy transfer (L.E.T.) for the radiation protection and the radiobiology; Caracterisation du champ de radiation dans l`espace circumterrestre en terme de transfert lineique d`energie (T.L.E.) pour la radioprotection et pour la radiobiologie

    Energy Technology Data Exchange (ETDEWEB)

    Lebaron-Jacobs, L

    1994-07-07

    The space missions on orbital stations are becoming longer and the radiological risk constitutes a factor limiting the space flights. The tissue-equivalent proportional counters, (CIRCE in 1988 and 1990, then NAUSICAA from 1992), have been conceived to ensure the monitoring and the dosimetry of space travellers. They measure in real time, different parameters of dosimetry and evaluate the microdosimetric spectrum of space radiations on the board of the Mir spatial station. The equivalent of middle day dose measured by CIRCE was situated between 0.6 and 0.8 mSv associated to a quality factor of 1.9; that one measured by NAUSICAA is higher, between 0.9 and 1.0 mSv with a steady quality factor. These systems measure the time and spatial variations of cosmic radiations, in function of solar activity, orbit, and shielding thickness of space vehicles. Values of high doses equivalent (upper than 1 mSv), associated to quality factor of 1.4 have been measured during the South Atlantic Anomaly crossing and during solar eruptions. That is the same for polar regions. The evaluation of Relative Biological Effectiveness (R.B.E.) of the space radiations on Mir station board, in term of carcinogenesis of the Harder gland in the mouse, is here an extrapolation of a relation based on experimental data; the average R.B.E. allows to suppose that radiological risk is low. (N.C.). 69 refs., 74 figs., 19 tabs.

  8. Measurement uncertainty in broadband radiofrequency radiation level measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2014-01-01

    Full Text Available For the evaluation of measurement uncertainty in the measurement of broadband radio frequency radiation, in this paper we propose a new approach based on the experience of the authors of the paper with measurements of radiofrequency electric field levels conducted in residential areas of Belgrade and over 35 municipalities in Serbia. The main objective of the paper is to present practical solutions in the evaluation of broadband measurement uncertainty for the in-situ RF radiation levels. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  9. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  10. High Fidelity Measurement of Free Space Solar Particle Event and Galactic Cosmic Ray Environments at Intermediate Energies

    Science.gov (United States)

    Leitgab, M.

    2018-02-01

    A charged particle measurement experiment mounted externally to the Deep Space Gateway is proposed, contributing to improving astronaut radiation exposure management during Solar Particle Events and Extra Vehicular Activities.

  11. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  12. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  13. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  14. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  15. Radiation measurements and quality control

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1977-01-01

    Accurate measurements are essential to research leading to a successful radiation process and to the commissioning of the process and the facility. On the other hand, once the process is in production, the importance to quality control of measuring radiation quantities (i.e., absorbed dose, dose rate, dose distribution) rather than various other parameters of the process (i.e. conveyor speed, dwell time, radiation field characteristics, product dimensions) is not clearly established. When the safety of the product is determined by the magnitude of the administered dose, as in radiation sterilization, waste control, or food preservation, accuracy and precision of the measurement of the effective dose are vital. Since physical dose measurements are usually simpler, more reliable and reproducible than biological testing of the product, there is a trend toward using standardized dosimetry for quality control of some processes. In many industrial products, however, such as vulcanized rubber, textiles, plastics, coatings, films, wire and cable, the effective dose can be controlled satisfactorily by controlling process variables or by product testing itself. In the measurement of radiation dose profiles by dosimetry, it is necessary to have suitable dose meter calibrations, to account for sources of error and imprecision, and to use correct statistical procedures in specifying dwell times or conveyor speeds and source and product parameters to achieve minimum and maximum doses within specifications. (author)

  16. A three-dimensional phase space dynamical model of the Earth's radiation belt

    International Nuclear Information System (INIS)

    Boscher, D. M.; Beutier, T.; Bourdarie, S.

    1996-01-01

    A three dimensional phase space model of the Earth's radiation belt is presented. We have taken into account the magnetic and electric radial diffusions, the pitch angle diffusions due to Coulomb interactions and interactions with the plasmaspheric hiss, and the Coulomb drag. First, a steady state of the belt is presented. Two main maxima are obtained, corresponding to the inner and outer parts of the belt. Then, we have modelled a simple injection at the external boundary. The particle transport seems like what was measured aboard satellites. A high energy particle loss is found, by comparing the model results and the measurements. It remains to be explained

  17. Multichannel bolometer for radiation measurements on the TCA tokamak

    International Nuclear Information System (INIS)

    Joye, B.; Marmillod, P.; Nowak, S.

    1986-01-01

    A multichannel radiation bolometer has been developed for the Tokamak Chauffage Alfven (TCA) tokamak. It has 16 equally spaced chords that view the plasma through a narrow horizontal slit. Almost an entire vertical plasma cross section can be observed. The bolometer operates on the basis of a semiconducting element which serves as a temperature-dependent resistance. A new electronic circuit has been developed which takes advantage of the semiconductor characteristics of the detector by using feedback techniques. Measurements made with this instrument are discussed

  18. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2017-01-01

    Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016

  19. OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation

    Science.gov (United States)

    Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.

    2011-01-01

    The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.

  20. A three-dimensional radiation image display on a real space image created via photogrammetry

    Science.gov (United States)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  1. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  2. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables

  3. Measurement and detection of radiation

    CERN Document Server

    Tsoulfanidis, Nicholas

    2011-01-01

    This is an update of the standard textbook for the field of radiation measurement. It includes illustrative examples and new problems. The research and applications of nuclear instrumentation have grown substantially since publication of the previous editions. With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines, including nuclear nonproliferation, homeland security, and nuclear medicine. Continuing in the tradition of its bestselling predecessors, "Measurement and Detection of Radiation, Third Edition" illustrates the fundamentals of nuclear interactions and radiation detection with a multitude of examples and problems. It offers a clearly written, accessible introduction to nuclear instrumentation concepts. The following are new to the third edition: a new chapter on the latest applications of radiation detection, covering nuclear medicine, dosimetry, health physics, no...

  4. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  5. Radiation risk from the nuclear power installation of space vehicle in case of reentry to the atmosphere

    International Nuclear Information System (INIS)

    Mikheenko, S.G.

    1994-01-01

    Main directions of space using of nuclear power are considered. Nuclear energy has found many applications in space projects. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear power for propulsion purposes in space flight. History of usage nuclear power systems in space technic is shown. Today there are 54 satellites with NPS in space near the Earth. The main principle of radical solution of the problem of radiation safety is based on the accommodation of space objects with nuclear units in orbits, such that the ballistic lifetime is greater than the time necessary for complete decay of the accumulated radioactivity. Radiation safety on various stages of space nuclear systems exploitation is discussed. If Main System Ensuring Radiation Safety is failed, it must operates Reserved System Ensuring Radiation Safety. Concrete development of a booster system for nuclear unit and a system for the reactor destruction in order to ensure aerodynamic destruction of fuel has been realized in satellite of 'Cosmos' series. The investigations on reserved system ensuring radiation safety in Moscow Physical - Engineering Institute are discussed. The results show that we can in principle ensure the radiation safety in accordance to ICRP recommendations. (author)

  6. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  7. Apparatus for housing radiation measuring material housed in a plastic insert

    International Nuclear Information System (INIS)

    Collica, C.; Epifano, L.; Farella, R.

    1977-01-01

    An apparatus for housing radiation measuring material is described. First and second members having generally flat and opposing surfaces are provided, the members being joined with their surfaces in spaced relationship. The first surface has a plurality of circular recessed areas. The second surface has a plurality of recessed areas positionally aligned with the plurality of recessed areas in the first surface. A generally flat insert member is provided, the insert member proportioned to removably fit between the surfaces. The insert member has a plurality of circular apertures positionally aligned with the recessed areas, the apertures being adapted to removably receive and retain dosimetry discs. The recessed areas in the first and second surfaces are adapted to removably receive filter elements. The apparatus can be used for housing many of the various types of commercially available radiation measuring material

  8. Measuring Solar Radiation Incident on Earth: Solar Constant-3 (SOLCON-3)

    Science.gov (United States)

    Crommelynck, Dominique; Joukoff, Alexandre; Dewitte, Steven

    2002-01-01

    Life on Earth is possible because the climate conditions on Earth are relatively mild. One element of the climate on Earth, the temperature, is determined by the heat exchanges between the Earth and its surroundings, outer space. The heat exchanges take place in the form of electromagnetic radiation. The Earth gains energy because it absorbs solar radiation, and it loses energy because it emits thermal infrared radiation to cold space. The heat exchanges are in balance: the heat gained by the Earth through solar radiation equals the heat lost through thermal radiation. When the balance is perturbed, a temperature change and hence a climate change of the Earth will occur. One possible perturbation of the balance is the CO2 greenhouse effect: when the amount of CO2 in the atmosphere increases, this will reduce the loss of thermal infrared radiation to cold space. Earth will gain more heat and hence the temperature will rise. Another perturbation of the balance can occur through variation of the amount of energy emitted by the sun. When the sun emits more energy, this will directly cause a rise of temperature on Earth. For a long time scientists believed that the energy emitted by the sun was constant. The 'solar constant' is defined as the amount of solar energy received per unit surface at a distance of one astronomical unit (the average distance of Earth's orbit) from the sun. Accurate measurements of the variations of the solar constant have been made since 1978. From these we know that the solar constant varies approximately with the 11-year solar cycle observed in other solar phenomena, such as the occurrence of sunspots, dark spots that are sometimes visible on the solar surface. When a sunspot occurs on the sun, since the spot is dark, the radiation (light) emitted by the sun drops instantaneously. Oddly, periods of high solar activity, when a lot of sunspot numbers increase, correspond to periods when the average solar constant is high. This indicates that

  9. Radiation detection and measurement

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1979-01-01

    The book is a complete, clear and up-to-date text that provides a basic review of instruments and methods of ionizing radiation. The text covers detailed discussion of all detector types introductory discussions of radiation sources, interactions, and counting statistics functional analysis of the electronics and pulse processing aspects of radiation detectors in instrumentation systems and consideration of shielding and background potentially vital in low-level counting. A total of 350 figures and approximately 900 references to current scientific literature is included. The book is largely intended as a textbook for a junior/senior or first-year graduate course in nuclear instrumentation and radiation measurements

  10. Results of environmental radiation monitoring and meteorology measurements (material prepared for obtaining the licence for RA reactor experimental operation)

    International Nuclear Information System (INIS)

    1980-10-01

    According to the demands for obtaining the licence for restarting the Ra reactor and the experimental operation this document includes the radiation monitoring measured data in the working space and environment of the RA reactor, i.e. Boris Kidric Institute. The meteorology measured data are included as well. All the measurements are performed according to the radiation protection program applied actually from the first reactor start-up at the end of 1959 [sr

  11. Measurement of gamma natural background radiation at Chamaraja Nagar, Karnataka state, India

    International Nuclear Information System (INIS)

    Nagaraju, K.M.; Chandrashekara, M.S.; Paramesh, L.

    2012-01-01

    The radioactive elements and their radiation are ubiquitous in the environment. The Influence of radiation on living organisms is imminent and very important to study. The ocean, the mountains, the air, and our food all expose us to small amounts of natural background radiation. Cosmic rays from outer space are another large contributor of natural background radiation. Much of the earth's natural background radiation is in the form of gamma radiation, a part of which comes from outer space. Some part of cosmic ray is filtered out by the presence of earth's atmosphere, so there are natural controls for the amount of radiation that people receive. The amount of radiation received by an individual depends on altitude, latitude type of building and the building construction materials. In the present study, measurements of natural background radiation were made in the temples, schools, dwellings, and hill stations in Chamaraja Nagar area, Karnataka state, India by using environmental dosimeter technique. The results show that, absorbed dose rate of background radiations at inside schools varies from 93.96 to 120.93 nGyh -1 with a standard deviation of 10.62 nGyh -1 and outside schools it varies from 60.9 to 113.1 nGyh -1 with a standard deviation of 15.1 nGyh -1 . In temples, the absorbed dose rate varies from 104.4 to 244.91 nGyh - 1 with a standard deviation of 48.34 nGyh -1 and outside the temples it varies from 87.9 to 176.61 nGyh -1 with a standard deviation of 30.896 nGyh -1 . The absorbed dose rate of background radiations at dwellings in indoor varies from 94.0 to 139.2 nGyh -1 with a standard deviation of 16.6 nGyh -1 and in outdoor it varies from 60.9 to 118.32 nGyh -1 with a standard deviation of 19.41 nGyh -1 . The measurements were also carried out in dwellings on hill stations in Chamaraja Nagar district. Indoor gamma dose rate varies from 103.53 to 236.64 nGyh -1 with a standard deviation of 59.8 nGyh -1 and outdoor gamma dose rate varies from 78.3 to 119

  12. Dosimetry of a Deep-Space (Mars) Mission using Measurements from RAD on the Mars Science Laboratory

    Science.gov (United States)

    Hassler, D.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Guo, J.; Matthiae, D.; Reitz, G.

    2017-12-01

    The space radiation environment is one of the outstanding challenges of a manned deep-space mission to Mars. To improve our understanding and take us one step closer to enabling a human Mars to mission, the Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been characterizing the radiation environment, both during cruise and on the surface of Mars for the past 5 years. Perhaps the most significant difference between space radiation and radiation exposures from terrestrial exposures is that space radiation includes a significant component of heavy ions from Galactic Cosmic Rays (GCRs). Acute exposures from Solar Energetic Particles (SEPs) are possible during and around solar maximum, but the energies from SEPs are generally lower and more easily shielded. Thus the greater concern for long duration deep-space missions is the GCR exposure. In this presentation, I will review the the past 5 years of MSL RAD observations and discuss current approaches to radiation risk estimation used by NASA and other space agencies.

  13. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  14. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  15. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  16. Array element of a space-based synchrotron radiation detector

    International Nuclear Information System (INIS)

    Lee, M.W.; Commichau, S.C.; Kim, G.N.; Son, D.; Viertel, G.M.

    2006-01-01

    A synchrotron radiation detector (SRD) has been proposed as part of the Alpha Magnetic Spectrometer experiment on the International Space Station to study cosmic ray electrons and positrons in the TeV energy range. The SRD will identify these particles by detecting their emission of synchrotron radiation in the Earth's magnetic field. This article reports on the study of key technical parameters for the array elements which form the SRD, including the choice of the detecting medium, the sensor and the readout system

  17. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  18. Characteristics and correlation of various radiation measuring methods in spatial radiation measurement

    International Nuclear Information System (INIS)

    Yoneda, Kazuhiro; Tonouchi, Shigemasa

    1992-01-01

    When the survey of the state of natural radiation distribution was carried out, for the purpose of examining the useful measuring method, the comparison of the γ-ray dose rate calculated from survey meter method, in-situ measuring method and the measuring method by sampling soil was carried out. Between the in-situ measuring method and the survey meter method, the correlation Y=0.986X+5.73, r=0.903, n=18, P<0.01 was obtained, and the high correlation having the inclination of nearly 1 was shown. Between the survey meter method and the measuring method by sampling soil, the correlation Y=1.297X-10.30, r=0.966, n=20 P<0.01 was obtained, and the high correlation was shown, but as for the dose rate contribution, the disparities of 36% in U series, 6% in Th series and 20% in K-40 were observed. For the survey of the state of natural radiation distribution, the method of using in combination the survey meter method and the in-situ measuring method or the measuring method by sampling soil is suitable. (author)

  19. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Science.gov (United States)

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  20. Gamma radiation in space and in the atmosphere

    International Nuclear Information System (INIS)

    Rocchia, R.

    1966-01-01

    We have shown that the γ radiation existing in the atmosphere is caused mainly by the Bremsstrahlung of the electrons of the electromagnetic cascades (∼ 50 per cent of the measured radiation), by the 511 keV radiation produced by the annihilation of positrons created in cascades (8 per cent of the measured intensity) and by the Compton γ degradation of this line (30 per cent of the measured intensity). The rest, slightly over 10 per cent, must be attributed to secondary causes such as the nuclear de-excitation γ to the internal Bremsstrahlung of charged particles created in nuclear stars, and to charged particles crossing our detector, since the latter was not fitted with a device for rejecting these particles. Experiments carried out in rockets at Colomb-Bechar confirm these results and have made it possible to detect and measure a primary γ radiation having an intensity of ∼ 2 γ cm 2 s -1 above 100 keV. The primary spectrum obeys an approximate E -2 law. (author) [fr

  1. Development of High Energy Particle Detector for the Study of Space Radiation Storm

    Directory of Open Access Journals (Sweden)

    Gyeong-Bok Jo

    2014-09-01

    Full Text Available Next Generation Small Satellite-1 (NEXTSat-1 is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of 33.4° was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of 0°,45°,90° against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

  2. Radiation-induced effects on the XAA1.2 ASIC chip for space application

    Energy Technology Data Exchange (ETDEWEB)

    Del Monte, Ettore [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy) and Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica 1, I-00133 Rome (Italy)]. E-mail: delmonte@rm.iasf.cnr.it; Pacciani, Luigi [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Porrovecchio, Geiland [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Soffitta, Paolo [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Costa, Enrico [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Di Persio, Giuseppe [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Feroci, Marco [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Mastropietro, Marcello [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Roma, Via Salaria km 29.300, I-00016 Monterotondo Scalo (RM) c.p. 10 (Italy); Morelli, Ennio [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Bologna, Via P. Gobetti 101, I-40129 Bologna (Italy); Rapisarda, Massimo [ENEA C.R. Frascati, Via Enrico Fermi 45, I-00044 Frascati, RM (Italy); Rubini, Alda [Istituto di Astrofisica Spaziale e Fisica Cosmica, CNR, Roma, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Bisello, Dario; Candelori, Andrea [Dipartimento di Fisica, Universita di Padova, INFN Sezione di Padova, Via Marzolo 8, I-35100 Padova (Italy); Kaminski, Alexandre [Dipartimento di Fisica, Universita di Padova, INFN Sezione di Padova, Via Marzolo 8, I-35100 Padova (Italy); Wyss, Jeffery [DIMSAT, Universita di Cassino, Via Di Biasio 43, I-03043 Cassino, FR (Italy)

    2005-02-11

    The XAA1.2 is a custom ASIC chip for space applications built using a 0.8{mu}m complementary metal oxide semiconductor technology on epitaxial layer. It has been selected as the front-end electronics chip of the SuperAGILE experiment on board the AGILE space mission, although it is not specifically designed as a radiation hard device. To study the XAA1.2 sensitivity to Single Event Effects and Total Dose Effects we irradiate this chip at the SIRAD facility of the Laboratori Nazionali INFN of Legnaro. In this paper we describe the experimental set-up and the measurements. We then discuss how the results can be scaled to the cosmic rays environment in a low-Earth orbit.

  3. Radiation-induced effects on the XAA1.2 ASIC chip for space application

    International Nuclear Information System (INIS)

    Del Monte, Ettore; Pacciani, Luigi; Porrovecchio, Geiland; Soffitta, Paolo; Costa, Enrico; Di Persio, Giuseppe; Feroci, Marco; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo; Rubini, Alda; Bisello, Dario; Candelori, Andrea; Kaminski, Alexandre; Wyss, Jeffery

    2005-01-01

    The XAA1.2 is a custom ASIC chip for space applications built using a 0.8μm complementary metal oxide semiconductor technology on epitaxial layer. It has been selected as the front-end electronics chip of the SuperAGILE experiment on board the AGILE space mission, although it is not specifically designed as a radiation hard device. To study the XAA1.2 sensitivity to Single Event Effects and Total Dose Effects we irradiate this chip at the SIRAD facility of the Laboratori Nazionali INFN of Legnaro. In this paper we describe the experimental set-up and the measurements. We then discuss how the results can be scaled to the cosmic rays environment in a low-Earth orbit

  4. Space Radiation Environment Prediction for VLSI microelectronics devices onboard a LEO Satellite using OMERE-Trad Software

    Science.gov (United States)

    Sajid, Muhammad

    This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.

  5. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  6. Quality assurance in field radiation measurements

    International Nuclear Information System (INIS)

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  7. SOA based intensive support system for space radiation data

    International Nuclear Information System (INIS)

    Goranova, M.; Shishedjiev, B.; Genova, S.; Semkova, J.

    2013-01-01

    Modern data intensive science involves heterogeneous and structured data sets in sophisticated data formats. Scientists need access to distributed computing and data sources and support for remote access to expensive, multinational specialized instruments. Scientists need effective software for data analysis, querying, accessing and visualization. The interaction between computer science and science and engineering becomes essential for the automation of data manipulation. The key solution uses the Service-oriented Architecture (SOA) in the field of science and Grid computing. The goal of this paper is managing the scientific data received by the Lyulin-5 particle telescope used in MATROSHKA-R experiment performed at the International Space Station (ISS). The dynamics of radiation characteristics and their dependency on the time and the orbital parameters have been established. The experiment helps the accurate estimation of the impact of space radiation on human health in long-duration manned missions

  8. Weighted semiconvex spaces of measurable functions

    International Nuclear Information System (INIS)

    Olaleru, J.O.

    2001-12-01

    Semiconvex spaces are intermediates between locally convex spaces and the non locally convex topological vector spaces. They include all locally convex spaces; hence it is a generalization of locally convex spaces. In this article, we make a study of weighted semiconvex spaces parallel to weighted locally convex spaces where continuous functions are replaced with measurable functions and N p family replaces Nachbin family on a locally compact space X. Among others, we examine the Hausdorffness, completeness, inductive limits, barrelledness and countably barrelledness of weighted semiconvex spaces. New results are obtained while we have a more elegant proofs of old results. Furthermore, we get extensions of some of the old results. It is observed that the technique of proving theorems in weighted locally convex spaces can be adapted to that of weighted semicovex spaces of measurable functions in most cases. (author)

  9. A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases as Medical Counter Measures

    Science.gov (United States)

    Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David

    2012-01-01

    Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.

  10. Assessment of the Radiation Enclosure Models in SPACE and RELAP5 with GOTA Test 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. B.; Lee, G. W.; Choi, T. S. [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    SPACE (Safety and Performance Analysis Code) for nuclear power plant has been developed to calculate the transient thermal-hydraulic response of PWRs that can contain multiple types of fluids. Without explaining 3-D effects such as the change of fuel rod/guide tube thermal behavior as a result of the radiation heat transfer, the 1-D code could predict an unrealistically high peak clad temperature. A useful function to simulate the wall-to-wall radiation heat transfer is implemented in the SPACE and RELAP5 codes. This paper discusses the assessment results of the radiation enclosure model of SPACE and RELAP5. The capability of handling wall-to-wall radiation problem of the SPACE and the RELAP5 codes has been evaluated using the experimental data from the GOTA test facility. At the top of the bundle, the maximum errors of SPACE and RELAP5 are less than 1.6% and 2.3%, respectively. As noted, there is a small discrepancy between the calculated results and experimental data except for the predictions near the top of the test section. The SPACE code is based on the version 2.16 distributed by KHNP. In order to perform the simulation of the GOTA test 27, it was necessary to modify the SPACE code. There was the subroutine for an input process corresponding to the radiation model, the inp{sub c}heck function of the RadEncData Class, contained in a vulnerable algorithm to figure out the reciprocity rule of the view factor.

  11. Application of microprocessors to radiation protection measurements

    International Nuclear Information System (INIS)

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  12. Space Radiation Heart Disease Risk Estimates for Lunar and Mars Missions

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori; Kim, Myung-Hee

    2010-01-01

    The NASA Space Radiation Program performs research on the risks of late effects from space radiation for cancer, neurological disorders, cataracts, and heart disease. For mortality risks, an aggregate over all risks should be considered as well as projection of the life loss per radiation induced death. We report on a triple detriment life-table approach to combine cancer and heart disease risks. Epidemiology results show extensive heterogeneity between populations for distinct components of the overall heart disease risks including hypertension, ischaemic heart disease, stroke, and cerebrovascular diseases. We report on an update to our previous heart disease estimates for Heart disease (ICD9 390-429) and Stroke (ICD9 430-438), and other sub-groups using recent meta-analysis results for various exposed radiation cohorts to low LET radiation. Results for multiplicative and additive risk transfer models are considered using baseline rates for US males and female. Uncertainty analysis indicated heart mortality risks as low as zero, assuming a threshold dose for deterministic effects, and projections approaching one-third of the overall cancer risk. Medan life-loss per death estimates were significantly less than that of solid cancer and leukemias. Critical research questions to improve risks estimates for heart disease are distinctions in mechanisms at high doses (>2 Gy) and low to moderate doses (<2 Gy), and data and basic understanding of radiation doserate and quality effects, and individual sensitivity.

  13. Lightweight space radiator with leakage control by internal electrostatic fields

    International Nuclear Information System (INIS)

    Kim, H.; Bankoff, S.G.; Miksis, M.J.

    1991-01-01

    An electrostatic liquid film space radiator is proposed. This will employ an internal electrostatic field to prevent leakage of the liquid-metal coolant out of a puncture. This overcomes the major disadvantage of membrane radiators, which is their vulnerability to micrometeorite impacts. Calculations show that leaks of liquid lithium at 700 degree K can easily be stopped from punctures which are several mm in diameter, with very large safety factors. The basic idea lends itself to a variety of radiator concepts, both rotating and non-rotating. Some typical film thickness and pressure calculations in the presence of an electric field are shown

  14. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  15. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  16. Concept of space NPP radiation safety and its realization in the Kosmos-1900 satellite

    International Nuclear Information System (INIS)

    Gryaznov, G.M.; Nikolaev, V.S.; Serbin, V.I.; Tyugin, V.M.

    1989-01-01

    A standard NPP for a space vehicle, radioactivity composition and radiation safety systems are considered. Plausible accidents on board the space vehicle and requirements to system operation reliability are discussed. The main reactor characteristics situation on board the Kosmos-1900 satellite and completion of its flight are described. The experience in providing radiation safety of space NPP has shown that it is sufficient to use two independent systems: a drift system and a reactor dispersion system based on separation of its structure by active means

  17. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  18. Establishment of a procedure to calculate the measurement uncertainties in radiation survey meters calibration

    International Nuclear Information System (INIS)

    Manzoli, J.E.; Potiens, M.P.A.

    2000-01-01

    The Calibration Laboratory of Sao Paulo calibrates more than one thousand gamma ray survey meters a year; beside other kinds of radiotherapy, radiodiagnostic and radiation protection instruments. It has a standard (600 cm 3 ) cylinder ionization chamber (Nuclear Enterprises Ltd. model 2511/3) traceable to the Brazilian Secondary Standard Dosimetry Laboratory (SSDL) whose instruments are traceable to the BIPM. Annually the beam dosimetry is performed using this chamber and the results are used as the true values for calibration purposes. The uncertainties present in every direct or indirect measurement during the calibration procedure must be evaluated for purposes of laboratory quality control. All calculation steps in the propagation of errors are presented in this work staging from the ionization chamber charge measured with the standard instrument. Such a propagation was made in space and time, considering even the environmental quantities uncertainties. The propagation was necessary in space, because the ionization chamber measurements were performed at only one space position. The time propagation was essential due to the fact that the activity is a peculiar physical quantity which changes with time according to precise relations for a specific radionuclide. The clear indication of every measurement uncertainty is always important to quantify the quality of this measurement. Nowadays the achievement of calibration laboratory quality systems requires the expression of all uncertainties and the procedure used to evaluate it. An example of this procedure in the case of the calibration of a typical portable radiation survey meter is presented. The direct exposure rate instrument measurement was compared with the true value given by the standard instrument properly propagated and all quantities used have their uncertainties shown. (author)

  19. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  20. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. The current career limit is 400 rem to the blood forming organs. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation effects and this will be taken into account. In 1973 a committee of the National Research Council made a separate study of HZE particle effects and it was concluded that the attendant risks did not pose a hazard for low inclination near-earth orbit missions. Since that time work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 26 references, 1 figure, 7 tables

  1. The RAVAN CubeSat Mission: A Pathfinder for a New Measurement of Earth's Radiation Budget

    Science.gov (United States)

    Swartz, W.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Deglau, D.; Reynolds, E.; Carvo, J.; Papadakis, S.; Wu, D. L.; Wiscombe, W. J.; Dyrud, L. P.

    2016-12-01

    The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat is a pathfinder for a constellation to measure the Earth's radiation imbalance (ERI), which is the single most important quantity for predicting the course of climate change over the next century. RAVAN demonstrates a small, accurate radiometer that measures top-of-the-atmosphere Earth-leaving fluxes of total and solar-reflected radiation. Coupled with knowledge of the incoming radiation from the Sun, a constellation of such measurements would aim to determine ERI directly. Our objective with RAVAN is to establish that a compact radiometer that is absolutely calibrated to climate accuracy can be built and operated in space for low cost. The radiometer, hosted on a 3U CubeSat, relies on two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as the radiometer absorber. VACNT forests are some of the blackest materials known and have an extremely flat spectral response over a wide wavelength range. The second key technology is a gallium fixed-point blackbody calibration source, embedded in RAVAN's sensor head contamination cover, that serves as a stable and repeatable reference to track the long-term degradation of the sensor. Absolute calibration is also maintained by regular solar and deep space views. We present the scientific motivation for the NASA-funded mission, design and characterization of the spacecraft, and mission operations concept. Pending a successful launch in fall 2016, we will also present the first results on-orbit. RAVAN will help enable the development of an Earth radiation budget constellation mission that can provide the measurements needed for superior predictions of future climate change.

  2. Non-ionizing and ionizing dosimetry in a space radiation environment with GaAs and SiC LEDs

    International Nuclear Information System (INIS)

    Houdayer, A.; Hinrichsen, P.F.; Barry, A.L.; Ng, A.C.; Carlone, C.; Simard, JF.

    1996-01-01

    This paper describes a dosimetry experiment that will be carried onboard the Russian MIR space station. The experiment will compare the ionizing and Non-ionizing Energy Loss (NEL) in semiconductors of the radiation encountered in space. The ionizing dose will be detected using ThermoLuminescent Dosimeter (TLD) whereas SiC and GaAs LEDs will be used to measure the nonionizing component. The tray will be mounted on the outside of the station for a minimum period of 4 months. The goal of the experiment is to determine the feasibility of using SiC and GaAs LEDs as NEL dosimeters in space. (author)

  3. Meeting the Grand Challenge of Protecting Astronaut's Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will seek to test and validate an electrostatic gossamer structure to provide radiation shielding. It will provide guidelines for energy requirements,...

  4. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Science.gov (United States)

    Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.

    2018-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.

  5. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-15

    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  6. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-01

    Ο KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. Ο Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. Ο Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation Ο Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established

  7. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  8. A new approach to reduce uncertainties in space radiation cancer risk predictions.

    Directory of Open Access Journals (Sweden)

    Francis A Cucinotta

    Full Text Available The prediction of space radiation induced cancer risk carries large uncertainties with two of the largest uncertainties being radiation quality and dose-rate effects. In risk models the ratio of the quality factor (QF to the dose and dose-rate reduction effectiveness factor (DDREF parameter is used to scale organ doses for cosmic ray proton and high charge and energy (HZE particles to a hazard rate for γ-rays derived from human epidemiology data. In previous work, particle track structure concepts were used to formulate a space radiation QF function that is dependent on particle charge number Z, and kinetic energy per atomic mass unit, E. QF uncertainties where represented by subjective probability distribution functions (PDF for the three QF parameters that described its maximum value and shape parameters for Z and E dependences. Here I report on an analysis of a maximum QF parameter and its uncertainty using mouse tumor induction data. Because experimental data for risks at low doses of γ-rays are highly uncertain which impacts estimates of maximum values of relative biological effectiveness (RBEmax, I developed an alternate QF model, denoted QFγAcute where QFs are defined relative to higher acute γ-ray doses (0.5 to 3 Gy. The alternate model reduces the dependence of risk projections on the DDREF, however a DDREF is still needed for risk estimates for high-energy protons and other primary or secondary sparsely ionizing space radiation components. Risk projections (upper confidence levels (CL for space missions show a reduction of about 40% (CL∼50% using the QFγAcute model compared the QFs based on RBEmax and about 25% (CL∼35% compared to previous estimates. In addition, I discuss how a possible qualitative difference leading to increased tumor lethality for HZE particles compared to low LET radiation and background tumors remains a large uncertainty in risk estimates.

  9. Experimental Investigation of Space Radiation Processing in Lunar Soil Ilmenite: Combining Perspectives from Surface Science and Transmission Electron Microscopy

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.; Rahman, Z.; Baragiola, R.

    2010-01-01

    Energetic ions mostly from the solar wind play a major role in lunar space weathering because they contribute structural and chemical changes to the space-exposed surfaces of lunar regolith grains. In mature mare soils, ilmenite (FeTiO3) grains in the finest size fraction have been shown in transmission electron microscope (TEM) studies to exhibit key differences in their response to space radiation processing relative to silicates [1,2,3]. In ilmenite, solar ion radiation alters host grain outer margins to produce 10-100 nm thick layers that are microstructurally complex, but dominantly crystalline compared to the amorphous radiation-processed rims on silicates [1,2,3]. Spatially well-resolved analytical TEM measurements also show nm-scale compositional and chemical state changes in these layers [1,3]. These include shifts in Fe/Ti ratio from strong surface Fe-enrichment (Fe/Ti >> 1), to Fe depletion (Fe/Ti < 1) at 40-50 nm below the grain surface [1,3]. These compositional changes are not observed in the radiation-processed rims on silicates [4]. Several mechanism(s) to explain the overall relations in the ilmenite grain rims by radiation processing and/or additional space weathering processes were proposed by [1], and remain under current consideration [3]. A key issue has concerned the ability of ion radiation processing alone to produce some of the deeper- penetrating compositional changes. In order to provide some experimental constraints on these questions, we have performed a combined X-ray photoelectron spectroscopy (XPS) and field-emission scanning transmission electron (FE-STEM) study of experimentally ion-irradiated ilmenite. A key feature of this work is the combination of analytical techniques sensitive to changes in the irradiated samples at depth scales going from the immediate surface (approx.5 nm; XPS), to deeper in the grain interior (5-100 nm; FE-STEM).

  10. An experiment to measure the one-way velocity of propagation of electromagnetic radiation

    Science.gov (United States)

    Kolen, P.; Torr, D. G.

    1982-01-01

    An experiment involving commercially available instrumentation to measure the velocity of the earth with respect to absolute space is described. The experiment involves the measurement of the one-way propagation velocity of electromagnetic radiation down a high-quality coaxial cable. It is demonstrated that the experiment is both physically meaningful and exceedingly simple in concept and in implementation. It is shown that with currently available commercial equipment one might expect to detect a threshold value for the component of velocity of the earth's motion with respect to absolute space in the equatorial plane of approximately 10 km/s, which greatly exceeds the velocity resolution required to detect the motion of the solar system with respect to the center of the galaxy.

  11. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    International Nuclear Information System (INIS)

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  12. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  13. A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures

    Directory of Open Access Journals (Sweden)

    Schoenfeld Michael P

    2012-04-01

    Full Text Available Abstract Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is biological damage that is associated with increased oxidative stress. It is therefore important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as chemical radioprotectors for radical scavenging and as biological signaling molecules for management of the body's response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it can be concluded that this approach may have therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion (IR injury, acute respiratory distress syndrome, Parkinson's and Alzheimer's disease, cataracts, and aging. We envision applying these therapies through inhalation of gas mixtures or ingestion of water with dissolved gases.

  14. Perception and acceptance of risk from radiation exposure in space flight

    International Nuclear Information System (INIS)

    Slovic, P.

    1997-01-01

    There are a number of factors that influence how a person views a particular risk. These include whether the risk is judged to be voluntary and/or controllable, whether the effects are immediate or delayed, and the magnitude of the benefits that are to be gained as a result of being exposed to the risk. An important aspect of the last factor is whether those who suffer the risks are also those who stand to reap the benefits. The manner in which risk is viewed is also significantly influenced by the manner in which it is framed and presented. In short, risk does not exist in the world independent of our minds and cultures, waiting to be measured. Assessments of risk are based on models whose structure is subjective and associated evaluations are laden with assumptions whose inputs are dependent on judgments. In fact, subjectivity permeates every aspect of risk assessment. The assessment of radiation risks in space is no exception. The structuring of the problem includes judgments related to the probability, magnitude, and effects of the various types of radiation likely to be encountered and assumptions related to the quantitative relationship between dose and a range of specific effects, all of which have associated uncertainties. For these reasons, there is no magic formula that will lead us to a precise level of acceptable risk from exposure to radiation in space. Acceptable risk levels must evolve through a process of negotiation that integrates a large number of social, technical, and economic factors. In the end, a risk that is deemed to be acceptable will be the outgrowth of the weighing of risks and benefits and the selection of the option that appears to be best

  15. Computational methods for industrial radiation measurement applications

    International Nuclear Information System (INIS)

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  16. Radiation hardening of InP solar cells for space applications

    International Nuclear Information System (INIS)

    Vilela, M. F.; Freundlich, A.; Monier, C.; Newman, F.; Aguilar, L.

    1998-01-01

    The aim of this work is to develop a radiation resistant thin InP-based solar cells for space applications on more mechanically resistant, lighter, and cheaper substrates. In this paper, we present the development of a p + /nn + InP-based solar cell structures with very thin emitter and base layers. A thin emitter helps to increase the collection of carriers generated by high energy incident photons from the solar spectrum. The use of a thin n base structure should improve the radiation resistance of this already radiation resistant technology. A remarkable improvement of high energy photons response is shown for InP solar cells with emitters 400 A thick

  17. Using the human eye to image space radiation or the history and status of the light flash phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fuglesang, C [European Astronaut Centre, ESA, Cologne, Germany and Royal Institute of Technolgy (KTH), Stockholm (Sweden)], E-mail: Christer.fuglesang@esa.int

    2007-10-01

    About 80% of people who travel in space experience sudden phosphenes, commonly called light flashes (LF). Although the detailed physiological process is still not known, the LFs are caused by particles in the cosmic radiation field. Indeed, by counting LFs one can even make a crude image of the radiation environment around the Earth. Studies on the space station Mir with the SilEye experiment correlated LFs with charged particles traversing the eye. It was found that a nucleus in the radiation environment has roughly a 1% probability of causing a light flash, whereas the proton's probability is almost three orders of magnitude less. As a function of linear energy transfer (LET), the probability increased with ionization above 10 keV/{mu}m, reaching about 5% at 50 keV/{mu}m. The investigations are continuing on the International Space Station (ISS) with the Alteino/SileEye-3 detector, which is also a precursor to the large Anomalous Long Term Effects on Astronauts (ALTEA) facility. These detectors are also measuring-imaging-the radiation environment inside the ISS, which will be compared to Geant4 simulations from the DESIRE project. To further the understanding of the LF phenomena, a survey among current NASA and ESA astronauts was recently conducted. The LFs are predominantly noticed before sleep and some respondents even thought it disturbed their sleep. The LFs appear white, have elongated shapes, and most interestingly, often come with a sense of motion. Comparing the shapes quoted from space observations with ground experiments done by researchers in the 1970s, it seems likely that some 5-10% of the LFs in space are due to Cherenkov light in the eye. However, the majority is most likely caused by some direct interaction in the retina.

  18. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    Mapper, D.; Stephen, J.H.; Farren, J.; Stimpson, B.P.; Bolus, D.J.; Ellaway, A.M.

    1987-12-01

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  19. Measurement of solar radiation at the Earth's surface

    Science.gov (United States)

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  20. Radiation dose measurements

    International Nuclear Information System (INIS)

    1960-01-01

    About 200 scientists from 28 countries and 5 international organizations met at a symposium on radiation dosimetry held by the International Atomic Energy Agency in June 1960. The aim of the symposium was not so much the description of a large number of measuring instruments as a discussion of the methods used, with special emphasis on those problems which had become important in the context of recent developments, such as the measurement of mixed or very large doses

  1. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  2. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Science.gov (United States)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  3. CARS Measurement of Vibrational/Rotational Temperatures with Total Radiation Visualization behind Strong Shock Waves of 5-7 km/s

    Science.gov (United States)

    Sakurai, K.; Bindu, V. Hima; Niinomi, S.; Ota, M.; Maeno, K.

    2011-05-01

    In the development of aerospace technology the design of space vehicles is important in phase of reentry flight. The space vehicles reenter into the atmosphere with range of 6-8 km/s. The non-equilibrium flow with radiative heating from strongly shocked air ahead of the vehicles plays an important role on the heat flux to the wall surface structure as well as convective heating. The experimental data for re-entry analyses, however, have remained in classical level. Recent development of optical instruments enables us to have novel approach of diagnostics to the re-entry problems. We employ the CARS (Coherent Anti-Stokes Raman Spectroscopy) method for measurement of real gas temperatures of N2 with radiation of the strong shock wave. The CARS signal can be acquired even in the strong radiation area behind the strong shock waves. In addition, we try to use the CCD camera to obtain 2D images of total radiation simultaneously. The strong shock wave in front of the reentering space vehicles is experimentally realigned by free-piston, double-diaphragm shock tube with low density test gas.

  4. Relations between radiation risks and radiation protection measuring techniques

    International Nuclear Information System (INIS)

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  5. Quality assurance in radiation measurement

    International Nuclear Information System (INIS)

    Noriah Mod Ali

    2002-01-01

    The achievement of traceability to recognize measurement standards for ionizing radiation posses special requirements. Methods of transferring reference standard to the working situation are devised through calibration and appropriate traceability, which optimize the accuracy attainable with the method of dose determination in routine use. Appropriate procedures are developed by the SSDL-MINT to establish accurate dose measurement in wide range of radiation fields such as in medicine, agriculture and industrial application. The status of work including effort towards ISO 9000 certification of SSDL dosimetry services will be summarized. (Author)

  6. Genetic risks associated with radiation exposures during space flight

    International Nuclear Information System (INIS)

    Grahn, D.

    1983-01-01

    Although the genetic risks of space radiation do not pose a significant hazard to the general population, the risks may be very important to the individual astronaut. The present paper summarizes some experimental results on the induction of dominant lethal mutations and chromosomal damage in the first generation which may be used in the prediction of the genetic risks of radiation exposures of space crews. Young adult male mice were exposed to single, weekly and continuous doses of gamma rays, neutrons in single doses and weekly exposures and continuous doses of Pu-239 alpha particles. Evaluation of fetal survival rates in females mated to the exposed males shows the mutation rate in individuals exposed to gamma rays to decline as the exposure period is prolonged and the dose rate is reduced, while the response to neutrons is in the opposite direction. Cytological determinations show the rate of balanced chromosomal translocations to drop as gamma ray exposures change from one-time to continuous, however little or no dose rate effect is seen with neutron radiation and alpha particle exposure shows no regular dose-response. Based on the above results, it is predicted that the rate of dominant mutations and transmissible chromosome aberrations in astronauts on a 100-day mission will increase by 4.5 to 41.25 percent over the spontaneous rate. 35 references

  7. Intercomparison of Environmental Nuclear Radiation Measuring

    Institute of Scientific and Technical Information of China (English)

    GAO; Fei; NI; Ning; HOU; Jin-bing; SONG; Ming-zhe

    2015-01-01

    In 2015,Radiation Metrology Division of China Institute of Atomic Energy organized an environmental monitoring of nuclear radiation measuring intercomparison,and 9laboratories attended.The intercomparison included environmental level dosemeters and protection level

  8. About Solar Radiation Intensity Measurements and Data Processing

    Directory of Open Access Journals (Sweden)

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  9. Multi-channel Waveform Sampling ASIC for radiation detection and measurement

    International Nuclear Information System (INIS)

    Shimazoe, K.; Takahashi, H.; Yeom, J.Y.; Furumiya, T.; Ohi, J.

    2013-01-01

    We have designed and fabricated a 16-channel Waveform Sampling ASIC for radiation detection and measurement. Waveform sampling is very important for the pulse shape analysis and discrimination, which is often used in radiation detection to discriminate different radiations such as alpha, beta and gamma rays. One channel of the fabricated ASIC consists of a charge-sensitive preamplifier, a VGA (Variable Gain Amplifier), an ADC (Analog to Digital Converter) and digital circuits. The preamplifier converts the current signal to the voltage signal, and the VGA amplifies the signal to appropriate level for the ADC. The ADC was designed to digitize the waveform with a frequency of 100 MHz and a resolution of 6bits. Digital circuits consist of a free-running ADC and a multiplexer which were designed to convert a digitized 100 MHz/6bit signal to a 200 MHz/3bit one, which is effective for the reduction of the number and for the achievement of the high integration in one chip. This chip was designed and fabricated with 0.35 μm CMOS technology by ROHM and the size of the ASIC is 4.9 mm by 4.9 mm. The design concept and some experimental results are shown in this paper. -- Highlights: ► Waveform sampling (WS) ASIC is newly developed for pulse shape discrimination. ► WS ASIC can be used for radiation measurement and discrimination. ► WS ASIC is fabricated by submicron CMOS technology for 5 mm × 5 mm area. ► WS ASIC achieves high integration and can be used in very limited space

  10. Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Baoping; Fu, Lin; Di, Hongfa [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (China)

    2008-07-01

    The objective of this paper is to develop a model for simulating the thermal and hydraulic behavior of space heating systems with radiators controlled by thermostat valves (TRVs) in multi-family buildings. This is done by treating the building and the heating system as a complete entity. Sub-models for rooms, radiators, TRVs, and the hydraulic network are derived. Then the suggested sub-models are combined to form an integrated model by considering interactions between them. The proposed model takes into account the heat transfer between neighboring rooms, the transport delay in the radiator, the self-adjusting function of the TRV, and the consumer's regulation behavior, as well as the hydraulic interactions between consumers. To test the model, two space heating systems in Beijing and Tianjin were investigated, and the model was validated under three operation modes. There was good agreement between the measured and simulated values for room temperature, return water temperature, and flow rate. A modeling analysis case was given based on an existing building and heating system. It was found that when the set value of the TRVs were kept on 2-3, about 12.4% reduction of heat consumption could be gained, compared with the situation in which the TRVs were kept fully open. The water flow rate was an important index that truly reflected the heat load change. It was also noted that if the flow rate or supply water temperature changed much during the transport delay time in the radiator, ignoring the transport delay would introduce an obvious deviation of the simulation results. Additionally, when an apartment stopped using the heating system during a heating season, the heat consumption of its neighboring apartments would be increased about 6-14%. (author)

  11. 0.25μm radiation tolerant technology for space applications

    International Nuclear Information System (INIS)

    Haddad, N.; Brady, F.; Scott, T.; Yoder, J.

    1999-01-01

    Lockheed Martin federal systems has developed a state-of-the-art radiation tolerant 0,25 μm CMOS capability that is compatible with commercial foundries as well as radiation hardened fabrication. A technology test chip was designed, fabricated and evaluated for performance, power and radiation hardness in order to validate the methodology and evaluate the technology. Testing results show that -) the active transistor threshold shift is negligible for 0.25 μm CMOS, -) the hardened STI (shallow trench isolation) can support Mega-rad applications, and -) the holding voltage is well beyond the operating voltage of 2.5 V. This technology is intended to support high density, high performance and low power space applications

  12. Space and military radiation effects in silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Schwank, J.R.

    1996-09-01

    Advantages in transient ionizing and single-event upset (SEU) radiation hardness of silicon-on-insulator (SOI) technology spurred much of its early development. Both of these advantages are a direct result of the reduced charge collection volume inherent to SOI technology. The fact that SOI transistor structures do not include parasitic n-p-n-p paths makes them immune to latchup. Even though considerable improvement in transient and single-event radiation hardness can be obtained by using SOI technology, there are some attributes of SOI devices and circuits that tend to limit their overall hardness. These attributes include the bipolar effect that can ultimately reduce the hardness of SOI ICs to SEU and transient ionizing radiation, and charge buildup in buried and sidewall oxides that can degrade the total-dose hardness of SOI devices. Nevertheless, high-performance SOI circuits can be fabricated that are hardened to both space and nuclear radiation environments, and radiation-hardened systems remain an active market for SOI devices. The effects of radiation on SOI MOS devices are reviewed

  13. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  14. Space Weather Action Plan Ionizing Radiation Benchmarks: Phase 1 update and plans for Phase 2

    Science.gov (United States)

    Talaat, E. R.; Kozyra, J.; Onsager, T. G.; Posner, A.; Allen, J. E., Jr.; Black, C.; Christian, E. R.; Copeland, K.; Fry, D. J.; Johnston, W. R.; Kanekal, S. G.; Mertens, C. J.; Minow, J. I.; Pierson, J.; Rutledge, R.; Semones, E.; Sibeck, D. G.; St Cyr, O. C.; Xapsos, M.

    2017-12-01

    Changes in the near-Earth radiation environment can affect satellite operations, astronauts in space, commercial space activities, and the radiation environment on aircraft at relevant latitudes or altitudes. Understanding the diverse effects of increased radiation is challenging, but producing ionizing radiation benchmarks will help address these effects. The following areas have been considered in addressing the near-Earth radiation environment: the Earth's trapped radiation belts, the galactic cosmic ray background, and solar energetic-particle events. The radiation benchmarks attempt to account for any change in the near-Earth radiation environment, which, under extreme cases, could present a significant risk to critical infrastructure operations or human health. The goal of these ionizing radiation benchmarks and associated confidence levels will define at least the radiation intensity as a function of time, particle type, and energy for an occurrence frequency of 1 in 100 years and an intensity level at the theoretical maximum for the event. In this paper, we present the benchmarks that address radiation levels at all applicable altitudes and latitudes in the near-Earth environment, the assumptions made and the associated uncertainties, and the next steps planned for updating the benchmarks.

  15. A Robust Algorithm to Determine the Topology of Space from the Cosmic Microwave Background Radiation

    OpenAIRE

    Weeks, Jeffrey R.

    2001-01-01

    Satellite measurements of the cosmic microwave back-ground radiation will soon provide an opportunity to test whether the universe is multiply connected. This paper presents a new algorithm for deducing the topology of the universe from the microwave background data. Unlike an older algorithm, the new algorithm gives the curvature of space and the radius of the last scattering surface as outputs, rather than requiring them as inputs. The new algorithm is also more tolerant of erro...

  16. measurement of indoor background ionizing radiation in some

    African Journals Online (AJOL)

    Administrator

    Measurement of the background ionizing radiation profile within the. Chemistry Research Laboratory and Physics Laboratory III all of the. University of Jos and their immediate neighbourhood were carried out. These science laboratories also harbour a number of active radiation sources. The radiation levels were measured ...

  17. Estimation of Radiation Limit from a Huygens' Box under Non-Free-Space Conditions

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Bonev, Ivan Bonev

    2013-01-01

    The recently studied Huygens' box method has difficulties when radiation of an electronic module is to be determined under non-free-space conditions, i.e. with an enclosure. We propose an estimate on radiation limit under such conditions based only on the Huygens' box data from free...

  18. Blackbody radiation from light cone in flat space time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)

  19. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  20. Atmospheric Radiation Measurement Program plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs

  1. Ground-based spectral measurements of solar radiation, (2)

    International Nuclear Information System (INIS)

    Murai, Keizo; Kobayashi, Masaharu; Goto, Ryozo; Yamauchi, Toyotaro

    1979-01-01

    A newly designed spectro-pyranometer was used for the measurement of the global (direct + diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation component which leads to the spectral distribution of the optical thickness (extinction coefficient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorption by the aerosols. Very strong absorption in the ultraviolet region was recognized. (author)

  2. Method and apparatus for determining accuracy of radiation measurements made in the presence of background radiation

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1977-01-01

    A radioactivity measuring instrument, and a method related to its use, for determining the radioactivity of a sample measured in the presence of significant background radiation, and for determining an error value relating to a specific probability of accuracy of the result are presented. Error values relating to the measurement of background radiation alone, and to the measurement of sample radiation and background radiation together, are combined to produce a true error value relating to the sample radiation alone

  3. Radiation protection measurement. Philosophy and implementation

    International Nuclear Information System (INIS)

    Recht, P.; Lakey, J.R.A.

    1975-01-01

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  4. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  5. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  6. Space radiation evaluation of 16Mbit DRAMs for mass memory applications

    International Nuclear Information System (INIS)

    Calvel, P.; Lamothe, P.; Barillot, C.; Ecoffet, R.; Duzellier, S.; Stassinopoulos, E.G.

    1994-01-01

    In the frame of Mass Memory Applications for space missions, 16 Mbit DRAM from IBM and TEXAS INSTRUMENTS have been evaluated to space radiation, by the CECIL heavy ions testing coordination group. This paper presents heavy ions, protons and total dose data results for 16 Mbit DRAMs from IBM and TEXAS INSTRUMENTS, including a 'built-in ECC' DRAM. Single Event Phenomena rate are calculated for low earth orbits

  7. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  8. Radiation measurement of civil air flight

    International Nuclear Information System (INIS)

    Winter, M.

    1999-01-01

    In order to aquire knowledge of the radiation exposure of civil aircrew members in common flight altitudes, it was necessary to develop a practicable measurement system. Radiation exposure was hereby estimated by using the ACREM-System, which is patented by the Austrian Research Centres Seibersdorf (OEFZS). Total Equivalent Dose could be estimated in a simple way by combining a measured component of the radiation field in flight altitudes and the results of simulation with LUIN 94 particle transport code (Keran O'Brian). To verify the results of the measurement system, a tissue equivalent proportional counter (TEPC) was used. Because of the difficult measurement conditions in cargo airplanes, special attention had to be taken to make the measurement equipment easy to use and transport. Special software has been developed to automate the measurement and the evaluation of the large amount of collected data. Measurements in standard calibration photon fields for the characterization of the equipment could be performed at the Primary Dosimetry Laboratory for Austria at the Austrian Research Centre (OEFZS) in Seibersdorf. Additional measurements were performed at Physikalisch Technische Bundesanstalt Braunschweig (PTB, Germany) and Paul Scherer Institute (PSI, Switzerland) to determine the reponse of the instruments to high energy photon and standard neutron fields. (author)

  9. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as 'Key Component' for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  10. Optical fibers and their applications for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  11. Interference Pattern Formation between Bounded-Solitons and Radiation in Momentum Space: Possible Detection of Radiation from Bounded-Solitons with Bose-Einstein Condensate of Neutral Atoms

    OpenAIRE

    Fujishima, Hironobu; Okumura, Masahiko; Mine, Makoto; Yajima, Tetsu

    2012-01-01

    We propose an indirect method to observe radiation from an incomplete soliton with sufficiently large amplitude. We show that the radiation causes a notched structure on the envelope of the wave packet in the momentum space. The origin of this structure is a result of interference between the main body of oscillating solitons and the small radiation in the momentum space. We numerically integrate the nonlinear Schr\\"odinger equation and perform Fourier transformation to confirm that the predi...

  12. Radiation quantities, units and measurements. Final report 1999

    International Nuclear Information System (INIS)

    Wambersie, A.; Allisy, A.; Caswell, R.S.

    2000-01-01

    The determination of human exposure to radiation and radioactivity, whether arising from environmental exposures, medical practice or industrial activities, requires a fundamental set of quantities and units with which exposures can be specified and the means and ability to make measurements which yield results in terms of these quantities and units. Radiation protection then, as well as effective use of radiation in medical applications, requires the capability to accurately quantify the characteristics and extent of radiation exposure, so that appropriate and useful assessments of the potential health consequences and risks, whether for protection of the public and workers or for diagnosis and treatment of disease, can be formulated. The work carried out via this concerted action on ''Radiation quantities, units and measurements'' has addressed these needs. Measurement of radiation is a complex subject and is a science in itself. Yet many users of radiation who need to make radiation measurements cannot be expected to become experts in this particular field. They need authoritative guidance on how to deal with the measurement problems connected with their particular use of radiation. The work carried out pursuant to this concerted action has resulted in publications that meet this need. Important achievements include the publication of seven new ICRU reports, the completion of all but the printing of three other ICRU reports, completion of the drafting work on two other reports, the development of many others reports and the initiation of seven new activities that will result in ICRU reports representing important future contribution to the needs identified in this project. (orig.)

  13. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  14. [The model of radiation shielding of the service module of the International space station].

    Science.gov (United States)

    Kolomenskiĭ, A V; Kuznetsov, V G; Laĭko, Iu A; Bengin, V V; Shurshakov, V A

    2001-01-01

    Compared and contrasted were models of radiation shielding of habitable compartments of the basal Mir module that had been used to calculate crew absorbed doses from space radiation. Developed was a model of the ISS Service module radiation shielding. It was stated that there is a good agreement between experimental shielding function and the one calculated from this model.

  15. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    Science.gov (United States)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  16. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  17. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  18. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  19. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  20. Automated Radiation Measurements for Aviation Safety (ARMAS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Commercial aircrew members and frequent flyers face radiation hazards from the effects of cosmic rays and solar energetic particles. During significant solar events,...

  1. Measurement of Fragment Production Cross Sections in the $^{12}$C+$^{12}$C and $^{12}$C+$^{197}$Au Reactions at 62 $A$ MeV for Hadrontherapy and Space Radiation Protection

    CERN Document Server

    Tropea, S; Agodi, C; Blancato, A A; Bondì, M; Cappuzzello, F; Carbone, D; Cavallaro, M; Cirrone, G A P; Cuttone, G; Giacoppo, F; Nicolosi, D; Pandola, L; Raciti, G; Rapisarda, E; Romano, F; Sardina, D; Scuderi, V; Sfienti, C

    2014-01-01

    Over the last twenty years, there has been a renewed interest in nuclear fragmentation studies for both hadrontherapy applications and space radiation protection. In both fields, fragmentation cross sections are needed to predict the effects of the ions nuclear interactions within the patient’s and the astronaut’s body. Indeed, the Monte Carlo codes used in planning tumor treatments and space missions must be tuned and validated by experimental data. However, only a limited set of fragmentation cross sections are available in literature, especially at Fermi energies. Therefore, we have studied the production of secondary fragments in the 12 C+ 12 C and 12 C+ 197 Au reactions at 62 A MeV. In this work, the measured 4 He cross sections angular distributions at four selected angles are presented and compared.

  2. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  3. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  4. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  5. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  6. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  7. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  8. Automated Radiation Measurements for Aviation Safety (ARMAS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The existing state-of-the-art for physics-based, data-driven, climatological specification of the global radiation environment is the capability embodied by Nowcast...

  9. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  10. Radiation investigations during space flight

    International Nuclear Information System (INIS)

    Akatov, A.Yu.; Nevzgodina, L.V.; Sakovich, V.A.; Fekher, I.; Deme, Sh.; Khashchegan, D.

    1986-01-01

    Results of radiation investigations during ''Salyut-6'' orbital station flight are presented. The program of studying the environmental radioactivity at the station included ''Integral'' and ''Pille'' experiments. In the course of the ''Integral'' experiment absorbed dose distributions of cosmic radiation and heavy charged particle fluence for long time intervals were studied. Method, allowing one to study dose distributions and determine individual doses for any time interval rapidity and directly on board the station was tested in the course of ''Pille'' experiment for the first time. Attention is paid to measuring equipment. Effect of heavy charged particles on the cellular structure of air-dry Lactuca sativa lettuce seeds was studied in the course of radiobiological experiments conducted at ''Salyut-6'' station. It is shown, that with the increase of flight duration the frequency of cells with chromosomal aberrations increases

  11. In Vitro Studies on Space Radiation-Induced Delayed Genetic Responses: Shielding Effects

    Science.gov (United States)

    Kadhim, Munira A.; Green, Lora M.; Gridley, Daila S.; Murray, Deborah K.; Tran, Da Thao; Andres, Melba; Pocock, Debbie; Macdonald, Denise; Goodhead, Dudley T.; Moyers, Michael F.

    2003-01-01

    Understanding the radiation risks involved in spaceflight is of considerable importance, especially with the long-term occupation of ISS and the planned crewed exploration missions. Several independent causes may contribute to the overall risk to astronauts exposed to the complex space environment, such as exposure to GCR as well as SPES. Protons and high-Z energetic particles comprise the GCR spectrum and may exert considerable biological effects even at low fluence. There are also considerable uncertainties associated with secondary particle effects (e.g. HZE fragments, neutrons etc.). The interaction of protons and high-LET particles with biological materials at all levels of biological organization needs to be investigated fully in order to establish a scientific basis for risk assessment. The results of these types of investigation will foster the development of appropriately directed countermeasures. In this study, we compared the biological responses to proton irradiation presented to the target cells as a monoenergetic beam of particles of complex composition delivered to cells outside or inside a tissue phantom head placed in the United States EVA space suit helmet. Measurements of chromosome aberrations, apoptosis, and the induction of key proteins were made in bone marrow from CBA/CaJ and C57BL/6 mice at early and late times post exposure to radiation at 0, 0.5, 1 and 2 Gy while inside or outside of the helmet. The data showed that proton irradiation induced transmissible chromosomal/genomic instability in haematopoietic stem cells in both strains of mice under both irradiation conditions and especially at low doses. Although differences were noted between the mouse strains in the degree and kinetics of transforming growth factor-beta 1 and tumor necrosis factor-alpha secretion, there were no significant differences observed in the level of the induced instability under either radiation condition, or for both strains of mice. Consequently, when

  12. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  13. Radiation monitoring system for astronauts

    International Nuclear Information System (INIS)

    Thomson, I.; MacKay, G.; Ng, A.; Tomi, L.

    1996-01-01

    Astronauts in space are constantly under the bombardment of radiation particles from trapped electrons, and trapped proton. In addition, cosmic rays, while penetrating the spacecraft shell, generate secondary radiation of neutrons. As astronauts' stay in space is getting longer, the need for a real-time radiation monitoring device has become critical. Thermoluminescent dosemeter (TLD), used onboard both the MIR and the Space Transportation System (STS), cannot provide real-time dose reading. This paper describes a real-time direct read-out device, currently under development, which can measure skin, eye, and Blood Forming Organ (BFO) doses separately. (author)

  14. Control measures in industrial and medical applications of radiation

    International Nuclear Information System (INIS)

    Akinloye, M. K.

    1999-01-01

    Radiation and radioactive substances are natural and permanent features of the environment; additionally the use of human made radiation is widespread. Sources of radiation are essential to modern health care, disposable medical supplies sterilized by intense radiation have been central to combating disease, radiology is a vital diagnostic tool and radiotherapy is commonly part of the treatment of malignancies. Nuclear techniques are in growing use in industry, agriculture, medicine and many fields of research, benefiting hundreds of millions of people and giving employment to millions of people in the related occupations, Irradiation is used around the world to preserve and reduce wastage and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds and detect cracks and help prevent the failure of engineered structures. It is also known that exposure to ionizing radiation can result to injuries that manifest themselves in the individual and his descendants. It is therefore imperative that the use of radiation sources be accompanied with the methods necessary for the prevention of the harmful effects of the radiation. These methods are referred to as control measures. Control measures that have been applied in establishments can be classified into physical control measures and administrative control measures. Physical control measures involve the technical aspects while administrative control measures augment physical measures. The guidelines and recommendations for the safe use of radiation and radioactive materials are provided through legislative and regulatory controls

  15. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  16. Mathematical simulation of gamma-radiation angle distribution measurements

    International Nuclear Information System (INIS)

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  17. Position of cytogenetic examination of cosmonauts for the space radiation exposure estimate

    Science.gov (United States)

    Snigiryova, Galina; Novitskaya, Natalia; Fedorenko, Boris

    The cytogenetic monitoring was carried out to evaluate of radiation induced stable and un-stable chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). In the period of 1992 -2008 chromosome aberrations in 202 blood samples from 48 cosmonauts were analyzed using the conventional method. In addition 23 blood samples from 12 cosmonauts were analyzed using FISH (fluorescence in situ hybridization) technique. Whole chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. Samples taken before and after the flights were analyzed. Long-term space flights led to an increase of stable (FISH method) and unstable (conventional method) chromosome aber-ration frequencies. The frequencies of dicentrics and centric rings depend on the space flight duration and accumulated dose value. Extravehicular activity also adds to chromosome aber-ration frequency in blood lymphocytes of cosmonauts. Several years after the space flight the increased level of unstable chromosome aberrations is still apparent. The radiation load was decreased for cosmonauts after taking ISS over from MIR station. The cytogenetic results were in agreement with data of physical dosimetry. The dose interval after the first flight, estimated by the frequency of dicentrics, was 113-227 mSv for long-term flights (73 -199 days) and 53-107 mSv for short-term flights (1 -21 days). According to the frequency of FISH translocations, the average dose after the first long-term flight was 186 mSv, which is comparable with estimates made from the dicentric assay. Cytogenetic examination of cosmonauts, including analysis of dicentrics (conventional method) and translocations (FISH method) should find wider applica-tion to assessment of radiation effects associated with long-term space flights such as flights to Mars.

  18. Measurement of radiation damage on an optical reflector

    International Nuclear Information System (INIS)

    Peng, K.C.; Sahu, S.K.; Huang, H.C.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical white fluorocarbon reflector called Goretex, which is to be used for aerogel threshold counters and crystal calorimeters of the BELLE detector of the KEK B-factory. Reflectance of the Goretex surface was monitored to see any effect of the radiation damage. Maximum equivalent dose was 8.6 Mrad. No radiation damage is observed within measurement errors. (orig.)

  19. Multifunctional Carbon Nanotube/Polyethylene Complex Composites for Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene (PE), due to its high hydrogen content relative to its weight, has been identified by NASA as a promising radiation shielding material against galactic...

  20. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  1. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  2. Chernobyl accident: Causes, consequences and problems of radiation measurements

    International Nuclear Information System (INIS)

    Kortov, V.; Ustyantsev, Yu.

    2013-01-01

    General description of Chernobyl accident is given in the review. The accident causes are briefly described. Special attention is paid to radiation situation after the accident and radiation measurements problems. Some data on Chernobyl disaster are compared with the corresponding data on Fukushima accident. It is noted that Chernobyl and Fukushima lessons should be taken into account while developing further measures on raising nuclear industry safety. -- Highlights: ► The short comparative analysis of accidents at Chernobyl and Fukushima is given. ► We note the great effect of β-radiation on the radiation situation at Chernobyl. ► We discuss the problems of radiation measurements under these conditions. ► The impact of shelter on the radiation situation near Chernobyl NPS is described

  3. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  4. Measurement tolerance analysis of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cimo, J.; Maderkova, L.; Horak, J.; Igaz, D.; Pasztorova, S. [Department of Biomereorlogy and Hydrology, Slovak Agriculture University, Nitra (Slovakia)

    2012-07-01

    Solar radiant energy is bane and almost the only one source of heat for Earth 's surface and for atmosphere, and almost the only one source of energy for physical processes. Solar energy is one of the most available and the most ecological energy source. Currently the firm Kipp and Zonen belongs to prominent producer of sensors for measuring of global radiation. These sensors are the most used in our country and also in network of meteorological measurements of WMO. Therefore the two types of measuring sensors for global radiation (pyranometer PMP6, CMP 11) in comparison with calculation method Savin-Angstrom are analysed. (author)

  5. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  6. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    Science.gov (United States)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  7. Mapping lightning discharges on Earth with lightning-generated whistlers wave emission in space and their effects on radiation belt electrons

    Science.gov (United States)

    Farges, T.; Ripoll, J. F.; Santolik, O.; Kolmasova, I.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2017-12-01

    It is widely accepted that the slot region of the Van Allen radiation belts is sculpted by the presence of whistler mode waves especially by plasmaspheric hiss emissions. In this work, we investigate the role of lightning-generated whistler waves (LGW), which also contribute to scatter electrons trapped in the plasmaphere but, in general, to a lesser extent due to their low mean amplitude and occurrence rate. Our goal is to revisit the characterization of LGW occurrence in the Earth's atmosphere and in space as well as the computation of LGW effects by looking at a series of particular events, among which intense events, in order to characterize maximal scattering effects. We use multicomponent measurements of whistler mode waves by the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft as our primary data source. We combine this data set with local measurements of the plasma density. We also use the data of the World Wide Lightning Location Network in order to localize the source of lightning discharges on Earth and their radiated energy, both locally at the footprint of the spacecraft and, globally, along the drift path. We discuss how to relate the signal measured in space with the estimation of the power emitted in the atmosphere and the associated complexity. Using these unique data sets we model the coefficients of quasi-linear pitch angle diffusion and we estimate effects of these waves on radiation belt electrons. We show evidence that lightning generated whistlers can, at least in some cases, influence the radiation belt dynamics.

  8. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  9. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  10. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    International Nuclear Information System (INIS)

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-01-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10 19 cm -2 fast neutron (E > 1 MeV) fluence and 8.7 x 10 8 Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research

  11. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  12. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich Hochtemperatur- und Vakuumphysik; Hartmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Hochtemperaturskala; Gutschwager, B. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Infrarot-Strahlungsthermometrie; Struss, O. [HEITRONICS Infrarot Messtechnik GmbH (Germany)

    2007-09-15

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  13. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Energy Technology Data Exchange (ETDEWEB)

    Hollandt, J.; Hartmann, J.; Gutschwager, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Struss, O. [HEITRONICS Infrarot Messtechnik GmbH, Wiesbaden (Germany)

    2006-07-01

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  14. Current situation and prospect of market on the latest radiation measuring instrument

    International Nuclear Information System (INIS)

    Ha, Chang Ho; Kim, Wang Geum; Cho, Gyu Seong

    2009-12-01

    This book deals with current situation and prospect of market on the latest radiation measuring instrument. The contents of this book are basic of technology on radiation measuring instrument with basic principle of various measuring instrument, current situation of technology and prospect of radiation measuring instrument, effect of spreading and application field of radiation measuring instrument, facility for making and research and development of radiation measuring instrument, prospect of market about radiation measuring instrument, strategy for market entry with the latest radiation measuring instrument and general prospect for the future.

  15. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  16. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Energy Technology Data Exchange (ETDEWEB)

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  17. Detection and measurement of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  18. Measurements of the cosmic background radiation

    International Nuclear Information System (INIS)

    Weiss, R.

    1980-01-01

    Measurements of the attributes of the 2.7-K microwave background radiation (CBR) are reviewed, with emphasis on the analytic phase of CBR studies. Methods for the direct measurement of the CBR spectrum are discussed. Attention is given to receivers, antennas, absolute receiver calibration, atmospheric emission and absorption, the galactic background contribution, the analysis of LF measurements, and recent HF observations of the CBR spectrum. Measurements of the large-angular-scale intensity distribution of the CBR (the most convincing evidence that the radiation is of cosmological origin) are examined, along with limits on the linear polarization of the CBR. A description is given of the NASA-sponsored Cosmic Background Explorer (COBE) satellite mission. The results of the COBE mission will be a set of sky maps showing, in the wave number range from 1 to 10,000 kaysers, the galactic background radiation due to synchrotron emission from galactic cosmic rays, to diffuse thermal emission from H II regions, and to diffuse thermal emission from interstellar and interplanetary dust, as well as a residue consisting of the CBR and whatever other cosmological background might exist

  19. Irradiation of the Bulgarian population with secondary cosmic radiation

    International Nuclear Information System (INIS)

    Vasilev, G.

    1983-01-01

    The radiation of the Bulgarian population was estimated, the former being due to secondary space radiation. A method of calculation was applied using the values for dose powers at different heights, proposed by the Research Committee on Atomic Radiation Action (UNO, 1976). Parallelly with that comparative measurements were taken using counters for space radiation VA-Z-232. The stay of the population in different type buildings was taken into account. The mean annual dose of radiation of the Bulgarian population from the secondary space radiation is 245μGy, and the collective effective equivalent dose is 2, 2.10 3 hum sv. (authors)

  20. Environmental Gamma Radiation Measurements in Baskil District

    International Nuclear Information System (INIS)

    Canbazoglu, C.

    2008-01-01

    In this study, we have determined environmental gamma radiation dose rate in Baskil district which has very high granite content in its geographical structure. Gamma radiation dose rate measurements were achieved by portable radiation monitoring equipment based on the energy range between 40 keV and 1.3 MeV. The measurements were performed on asphalt and soil surface level and also one meter above the ground surface. The gamma dose rate was also performed inside and outside of buildings over the district. The dose rates were found to be between 8.46μR/h and 34.66 μR/h. Indoor and outdoor effective dose rate of the gamma radiation exposure has been calculated to be 523μSv/y and 196μSv/y, respectively

  1. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  2. R-B measurements and their implications : solar UV radiation trends

    International Nuclear Information System (INIS)

    Basher, R.

    1993-01-01

    There is a wide variety of needs for UV information, including: (i) real-time monitoring and other public information; (ii) trend detection and policy-maker needs; (iii) space/time/wavelength information for health and biological impacts research; and (iv) atmospheric research, e.g. effects of clouds on UV, transmission model development, etc. The way each need is satisfied will vary. High quality spectral data for research purposes requires expensive equipment and close, on-site scientific supervision and hence will be restricted to a few locations, while conversely, measurements of spatial patterns will require numerous simple instruments, such a the Robertson-Berger Meter or International Light instrument, or the use of satellite methods. Trend detection will lay great store on long-term stability of instrumentation. It is important to recognise that to deal with the variety of needs, we need the combined use of spectral measurement, broadband measurement, radiation modelling, and satellite techniques. (author). 13 refs., 3 figs

  3. Automated System of Area Radiation Measurement (ASARM)

    International Nuclear Information System (INIS)

    Hernandez G, J.

    2013-10-01

    The realized activities in nuclear facilities involve the determination of the presence of ionizing radiation fields in the workspaces. The instruments designed to detect and to measure these radiation fields provide useful information (specific type of radiation, intensity, etc.) to take the appropriate radiological protection measures, with the purpose of reducing to the minimum the workers exposition and the people in general. The radiological protection program of Reactor TRIGA Mark III contains the instructions and procedures to implement a periodic radiological monitoring, surveillance, rising of contamination levels, type and number of the instruments required for the radiological monitoring of areas and personal. The ana logical monitoring system model Rms II used to detect and measuring exposition speed and neutron radiation fields in several areas of the installation, provides the information in a logarithmic scale measurer of 4 or 5 decades located in a shelf where the previously mentioned measurement channels are centralized. Also inside the reactor monitoring system are two monitors of radioactive material concentration in the air: The particles continuous monitor and the gaseous effluents monitor which present the referred information of the diverse detectors through ana logical readers. These monitors when operating with an ana logical indication does not present the possibility to generate historical files electronically of each monitor previously mentioned neither to generate visual and audible indications of the alarms. This work presents the Automated System of Area Radiation Measurement which potentiated the functionality of the area monitors for gamma and neutron radiation, as well as of the particles continuous monitor and the gaseous effluents of reactor TRIGA Mark III, when being developed a computer system that captures in real time the information of all the monitors, generating this way an electronic binnacle, a visual and audible alarm

  4. Environmental radiation measurements and remedial actions (Hantepe/Ezine/Canakkale)

    International Nuclear Information System (INIS)

    2009-01-01

    There are some regions in the world that are known as high background radiation areas. Intensive scientific investigations in the field of radiation dose and health effects, risk estimates, radiation protection, environmental transportation routes and ecological effects related with natural radiation have been carried out in these regions. Also natural radiation dosimetry, in vitro and in vivo biological studies which take into account the measurements in the field of low level radiation, radon, thoron and cosmic rays have been carried out, again in these regions. The well-known high natural background radiation areas in the world are Guarapari in Brazil, Ramsar in Iran, Kerala in India and Yangjiang in China. In addition to above mentioned areas, other relatively lower high background radiation areas are exist. Since 1960s, radiological, geological, epidemiological and ecological studies have been carried out in order to determine the risks and possible health effects of long-term low level natural radiation exposure. In the framework of surveying the background radiation of Turkey, the background radiation measurements were carried out in 56 different points around the area of Canakkale city. The radiation levels at Hantepe beach of Geyikli which is located in Ezine town of Canakkale was found higher than the mean background radiation level of the region. The radiation dose rates were measured in between 0.20 and 10.88 Gy h-1 in contact and 0.27 and 3.11 Gy h-1 above 1 meter of the ground level where the thorium-containing sand is dense. After the rehabilitation studies, the radiation dose rate were measured in between 0.15 and 8.09 Gy h-1 in contact and 0.17 and 2.88 Gy h-1 above 1 meter of the ground level. It was observed that the radiation dose rates were decreased seriously after the rehabilitation studies when the arithmetic mean value of the dose rates was taken into account. The effective dose calculations were performed by taking into account the

  5. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  6. Precision Column CO2 Measurement from Space Using Broad Band LIDAR

    Science.gov (United States)

    Heaps, William S.

    2009-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. To uncover the missing sink" that is responsible for the large discrepancies in the budget as we presently understand it, calculation has indicated that measurement accuracy of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of 0.25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong constraints on the laser system used for the measurement. This work presents an overview of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics. We are examining the possibility of making precise measurements of atmospheric carbon dioxide using a broad band source of radiation. This means that many of the difficulties in wavelength control can be treated in the detector portion of the system rather than the laser source. It also greatly reduces the number of individual lasers required to make a measurement. Simplifications such as these are extremely desirable for systems designed to operate from space.

  7. When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space.

    Science.gov (United States)

    Tanentzap, Andrew J; Brandt, Angela J; Smissen, Rob D; Heenan, Peter B; Fukami, Tadashi; Lee, William G

    2015-07-01

    Plant radiations are widespread but their influence on community assembly has rarely been investigated. Theory and some evidence suggest that radiations can allow lineages to monopolize niche space when founding species arrive early into new bioclimatic regions and exploit ecological opportunities. These early radiations may subsequently reduce niche availability and dampen diversification of later arrivals. We tested this hypothesis of time-dependent lineage diversification and community dominance using the alpine flora of New Zealand. We estimated ages of 16 genera from published phylogenies and determined their relative occurrence across climatic and physical gradients in the alpine zone. We used these data to reconstruct occupancy of environmental space through time, integrating palaeoclimatic and palaeogeological changes. Our analysis suggested that earlier-colonizing lineages encountered a greater availability of environmental space, which promoted greater species diversity and occupancy of niche space. Genera that occupied broader niches were subsequently more dominant in local communities. An earlier time of arrival also contributed to greater diversity independently of its influence in accessing niche space. We suggest that plant radiations influence community assembly when they arise early in the occupancy of environmental space, allowing them to exclude later-arriving colonists from ecological communities by niche preemption. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  9. Neutron measuring instruments for radiation protection

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Schneider, W.; Hoefert, M.; Kuehn, H.; Jahr, R.; Wagner, S.; Piesch, E.

    1979-09-01

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP) [de

  10. Characterization of the gamma radiation in space and in the atmosphere

    International Nuclear Information System (INIS)

    Lee, M.A.

    1986-05-01

    A characterization of the gamma-ray fields found in space and in the atmosphere is given. Included are values for the energies and intensities of gamma rays as observed in several experiments and reported in the open literature. Characteristics of the diffuse gamma-ray continuum are presented along with a brief discussion of the sources of this radiation. Also given are discrete gamma-ray line energies and intensities which have been observed in space and in the atmosphere. 37 refs., 7 figs., 12 tabs

  11. On The Development of Biophysical Models for Space Radiation Risk Assessment

    Science.gov (United States)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  12. MEASURING TEMPORAL PHOTON BUNCHING IN BLACKBODY RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Tan, P. K.; Poh, H. S.; Kurtsiefer, C. [Center for Quantum Technologies, 3 Science Drive 2, 117543 (Singapore); Yeo, G. H.; Chan, A. H., E-mail: pengkian@physics.org, E-mail: phyck@nus.edu.sg [Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 (Singapore)

    2014-07-01

    Light from thermal blackbody radiators such as stars exhibits photon bunching behavior at sufficiently short timescales. However, with available detector bandwidths, this bunching signal is difficult to observe directly. We present an experimental technique to increase the photon bunching signal in blackbody radiation via spectral filtering of the light source. Our measurements reveal strong temporal photon bunching from blackbody radiation, including the Sun. This technique allows for an absolute measurement of the photon bunching signature g {sup (2)}(0), and thereby a direct statement on the statistical nature of a light source. Such filtering techniques may help revive the interest in intensity interferometry as a tool in astronomy.

  13. CFD-simulation of radiator for air cooling of microprocessors in a limitided space

    Directory of Open Access Journals (Sweden)

    Trofimov V. E.

    2016-12-01

    Full Text Available One of the final stages of microprocessors development is heat test. This procedure is performed on a special stand, the main element of which is the switching PCB with one or more mounted microprocessor sockets, chipsets, interfaces, jumpers and other components which provide various modes of microprocessor operation. The temperature of microprocessor housing is typically changed using thermoelectric module. The cold surface of the module with controlled temperature is in direct thermal contact with the microprocessor housing designed for cooler installation. On the hot surface of the module a radiator is mounted. The radiator dissipates the cumulative heat flow from both the microprocessor and the module. High density PCB layout, the requirement of free access to the jumpers and interfaces, and the presence of numerous sensors limit the space for radiator mounting and require the use of an extremely compact radiator, especially in air cooling conditions. One of the possible solutions for this problem may reduce the area of the radiator heat-transfer surfaces due to a sharp growth of the heat transfer coefficient without increasing the air flow rate. To ensure a sharp growth of heat transfer coefficient on the heat-transfer surface one should make in the surface one or more dead-end cavities into which the impact air jets would flow. CFD simulation of this type of radiator has been conducted. The heat-aerodynamic characteristics and design recommendations for removing heat from microprocessors in a limited space have been determined.

  14. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  15. Modeling Natural Space Ionizing Radiation Effects on External Materials

    Science.gov (United States)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  16. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    Science.gov (United States)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  17. Innovative, Lightweight Thoraeus RubberTM for MMOD and Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic offers an innovative manufacturing process to yield ultra-lightweight radiation shielding nanocomposites by exploiting the concept of the Thoraeus filter...

  18. TRI-Worthy Projects for the Deep Space Gateway

    Science.gov (United States)

    Wotring, V. E.; Strangman, G. E.; Donoviel, D.

    2018-02-01

    Preparations for exploration will require exposure to the actual deep space environment. The new TRI for Space Health proposes innovative projects using real space radiation to make medically-relevant measurements affecting human physiology.

  19. Control device intended for a gamma radiation measuring instrument

    International Nuclear Information System (INIS)

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  20. Lognormal Kalman filter for assimilating phase space density data in the radiation belts

    Science.gov (United States)

    Kondrashov, D.; Ghil, M.; Shprits, Y.

    2011-11-01

    Data assimilation combines a physical model with sparse observations and has become an increasingly important tool for scientists and engineers in the design, operation, and use of satellites and other high-technology systems in the near-Earth space environment. Of particular importance is predicting fluxes of high-energy particles in the Van Allen radiation belts, since these fluxes can damage spaceborne platforms and instruments during strong geomagnetic storms. In transiting from a research setting to operational prediction of these fluxes, improved data assimilation is of the essence. The present study is motivated by the fact that phase space densities (PSDs) of high-energy electrons in the outer radiation belt—both simulated and observed—are subject to spatiotemporal variations that span several orders of magnitude. Standard data assimilation methods that are based on least squares minimization of normally distributed errors may not be adequate for handling the range of these variations. We propose herein a modification of Kalman filtering that uses a log-transformed, one-dimensional radial diffusion model for the PSDs and includes parameterized losses. The proposed methodology is first verified on model-simulated, synthetic data and then applied to actual satellite measurements. When the model errors are sufficiently smaller then observational errors, our methodology can significantly improve analysis and prediction skill for the PSDs compared to those of the standard Kalman filter formulation. This improvement is documented by monitoring the variance of the innovation sequence.

  1. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  2. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    Science.gov (United States)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated

  3. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  4. Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.; Lauenstein, Jean-Marie; Sullivan, William III; Beck, Jeff; Hubbs, John E.

    2018-01-01

    We report the results from proton and gamma ray radiation testing of HgCdTe avalanche photodiode (APD) arrays developed by Leonardo DRS for space lidar detectors. We tested these devices with both approximately 60 MeV protons and gamma rays, with and without the read out integrated circuit (ROIC). We also measured the transient responses with the device fully powered and with the APD gain from unity to greater than 1000. The detectors produced a large current impulse in response to each proton hit but the response completely recovered within 1 microsecond. The devices started to have persistent damage at a proton fluence of 7e10 protons/cm2, equivalent to 10 krad(Si) total ionization dose. The dark current became much higher after the device was warmed to room temperature and cooled to 80K again, but it completely annealed after baking at 85 C for several hours. These results showed the HgCdTe APD arrays are suitable for use in space lidar for typical Earth orbiting and planetary missions provided that provisions are made to heat the detector chip to 85 C for several hours after radiation damage becomes evident that system performance is impacted.

  5. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  6. Calorimeter with capacitance transducer for measurement of SHF radiation power

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2005-01-01

    A calorimeter of simple design for measuring total energy of microwave radiation is described. It operates in the energy range of 0.5 J to 6 kJ; water is used as the absorbing material. A capacitive probe is applied to measure changes in the water volume. The energy absorption factor of electromagnetic radiation in the range of 3-60 GHz is at least 0.9. The calorimeter is insensitive to radiation field nonuniformity over the absorber volume. The calorimeter is intended for measuring the radiation energy of beam plasma generators and generators with dielectric structure. Its design makes it possible to simultaneously measure the radiation energy and monitor the beam current [ru

  7. Automatic radiation measuring system connected with GPS

    International Nuclear Information System (INIS)

    Tanigaki, Minoru

    2014-01-01

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  8. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  9. Development of a mobile robot for remote radiation measurement

    International Nuclear Information System (INIS)

    Sarkar, Ushnish; Saini, Surendra Singh; Swaroop, Tumapala Teja; Sreejith, P.; Kumar, Ravinder; Ray, Debasish Datta

    2016-01-01

    Remote measurement of radiation using mobile robots is recommended in nuclear installations. For this purpose various robots have been developed that carry a radiation sensor. However since the robot has to go very near to the source of radiation, the life of the robot's components is compromised due to high level of absorbed dose. It was earlier managed to increase the life expectancy of remote radiation measurement robots by allowing the sensor to be placed on an extendable telescopic assembly; analogous to a health physicist taking measurements using a Teletector. The first prototype developed had stair climbing capabilities but it was found to be over dimensioned for various potential applications. A significant use of such robots is in taking measurements at nuclear reprocessing facilities having narrow cluttered pathways. This required development of a new version of the robot capable of negotiating the narrow pathways of such facilities. This paper describes the different aspects of the development of the mobile robot system with flexible radiation sensing capabilities

  10. Assessment of radiation shielding materials for protection of space crews using CR-39 plastic nuclear track detector

    International Nuclear Information System (INIS)

    DeWitt, J.M.; Benton, E.R.; Uchihori, Y.; Yasuda, N.; Benton, E.V.; Frank, A.L.

    2009-01-01

    A significant obstacle to long duration human space exploration such as the establishment of a permanent base on the surface of the Moon or a human mission to Mars is the risk posed by prolonged exposure to space radiation. In order to keep mission costs at acceptable levels while simultaneously minimizing the risk from radiation to space crew health and safety, a judicious use of optimized shielding materials will be required. We have undertaken a comprehensive study using CR-39 plastic nuclear track detector (PNTD) to characterize the radiation shielding properties of a range of materials-both common baseline materials such as Al and polyethylene, and novel multifunctional materials such as carbon composites-at heavy ion accelerators. The study consists of analyzing CR-39 PNTD exposed in front of and behind shielding targets of varying composition and at a number of depths (target thicknesses) relevant to the development and testing of materials for space radiation shielding. Most targets consist of 10 cm x 10 cm slabs of solid materials ranging in thickness from 1 to >30 g/cm 2 . Exposures have been made to beams of C, O, Ne, Si, Ar, and Fe at energies ranging from 290 MeV/amu to 1 GeV/amu at the National Institute of Radiological Sciences HIMAC and the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory. Analysis of the exposed detectors yields LET spectrum, dose, and dose equivalent as functions of target depth and composition, and incident heavy ion charge, energy, and fluence. Efforts are currently underway to properly weigh and combine these results into a single quantitative estimate of a material's ability to shield space crews from the interplanetary galactic cosmic ray flux.

  11. Measurement of joint space width and erosion size

    NARCIS (Netherlands)

    Sharp, JI; van der Heijde, D; Angwin, J; Duryea, J; Moens, HJB; Jacobs, JWG; Maillefert, JF; Strand, CV

    2005-01-01

    Measurement of radiographic abnormalities in metric units has been reported by several investigators during the last 15 years. Measurement of joint space in large joints has been employed in a few trials to evaluate therapy in osteoarthritis. Measurement of joint space width in small joints has been

  12. Fall 2015 NASA Internship, and Space Radiation Health Project

    Science.gov (United States)

    Patience, Luke

    2015-01-01

    This fall, I was fortunate enough to have been able to participate in an internship at NASA's Lyndon B. Johnson Space Center. I was placed into the Human Health & Performance Directorate, where I was specifically tasked to work with Dr. Zarana Patel, researching the impacts of cosmic level radiation on human cells. Using different laboratory techniques, we were able to examine the cells to see if any damage had been done due to radiation exposure, and if so, how much damage was done. Cell culture samples were exposed at different doses, and fixed at different time points so that we could accumulate a large pool of quantifiable data. After examining quantifiable results relative to the impacts of space radiation on the human body at the cellular and chromosomal level, researchers can defer to different areas of the space program that have to do with astronaut safety, and research and development (extravehicular mobility unit construction, vehicle design and construction, etc.). This experience has been very eye-opening, and I was able to learn quite a bit. I learned some new laboratory techniques, and I did my best to try and learn new ways to balance such a hectic work and school schedule. I also learned some very intimate thing about working at NASA; I learned that far more people want to watch you succeed, rather than watch you fail, and I also learned that this is a place that is alive with innovators and explorers - people who have a sole purpose of exploring space for the betterment of humanity, and not for any other reason. It's truly inspiring. All of these experiences during my internship have impacted me in a really profound way, so much that my educational and career goals are completely different than when I started. I started out as a biotechnology major, and I discovered recently toward the end of the internship, that I don't want to work in a lab, nor was I as enthralled by biological life sciences as a believed myself to be. Taking that all into

  13. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  14. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  15. Atmospheric Radiation Measurement Program Plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  16. Calibration of solar radiation measuring instruments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  17. Measurements of neutron radiation in aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  18. Measurements of neutron radiation in aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  19. Measurement of indoor background ionizing radiation in some ...

    African Journals Online (AJOL)

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  20. Device for the integral measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  1. Human Research Program Space Radiation Standing Review Panel (SRP)

    Science.gov (United States)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  2. Assessment of space proton radiation-induced charge transfer inefficiency in the CCD204 for the Euclid space observatory

    International Nuclear Information System (INIS)

    Gow, J P D; Murray, N J; Holland, A D; Hall, D J; Cropper, M; Burt, D; Hopkinson, G; Duvet, L

    2012-01-01

    Euclid is a medium class European Space Agency mission candidate for launch in 2019 with a primary goal to study the dark universe using the weak lensing and baryonic acoustic oscillations techniques. Weak lensing depends on accurate shape measurements of distant galaxies. Therefore it is beneficial that the effects of radiation-induced charge transfer inefficiency (CTI) in the Euclid CCDs over the course of the 5 year mission at L2 are understood. This will allow, through experimental analysis and modelling techniques, the effects of radiation induced CTI on shape to be decoupled from those of mass inhomogeneities along the line-of-sight. This paper discusses a selection of work from the study that has been undertaken using the e2v CCD204 as part of the initial proton radiation damage assessment for Euclid. The experimental arrangement and procedure are described followed by the results obtained, thereby allowing recommendations to be made on the CCD operating temperature, to provide an insight into CTI effects using an optical background, to assess the benefits of using charge injection on CTI recovery and the effect of the use of two different methods of serial clocking on serial CTI. This work will form the basis of a comparison with a p-channel CCD204 fabricated using the same mask set as the n-channel equivalent. A custom CCD has been designed, based on this work and discussions between e2v technologies plc. and the Euclid consortium, and designated the CCD273.

  3. Optical fibers and their applications for radiation measurements

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi

    1998-01-01

    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  4. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  5. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations

    Science.gov (United States)

    Ni, Binbin; Shprits, Yuri; Nagai, Tsugunobu; Thorne, Richard; Chen, Yue; Kondrashov, Dmitri; Kim, Hee-jeong

    2009-05-01

    Data assimilation techniques provide algorithms that allow for blending of incomplete and inaccurate data with physics-based dynamic models to reconstruct the electron phase space density (PSD) in the radiation belts. In this study, we perform reanalyses of the radial PSD profile using two independent data sources from the nearly equatorial CRRES Medium Electron A (MEA) observations and the polar-orbiting Akebono Radiation Monitor (RDM) measurements for a 50-day period from 18 August to 6 October 1990. We utilize the University of California, Los Angeles, One-Dimensional Versatile Electron Radiation Belt (UCLA 1-D VERB) code and a Kalman filtering approach. Comparison of the reanalyses obtained independently using the CRRES MEA and Akebono RDM measurements shows that the dynamics of the PSD can be accurately reconstructed using Kalman filtering even when available data are sparse, inaccurate, and contaminated by random errors. The reanalyses exhibit similarities in the locations and magnitudes of peaks in radial profiles of PSD and the rate and radial extent of the dropouts during storms. This study shows that when unidirectional data are not available, pitch angle averaged flux measurements can be used to infer the long-term behavior (climatology) of the radiation belts. The methodology of obtaining PSD from pitch angle averaged and unidirectional fluxes using the Tsyganenko and Stern (1996) magnetic field model is described in detail.

  6. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)

    2006-07-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  7. Doses due to extra-vehicular activity on space stations

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Akatov, Y.; Arkhanguelski, V.; Reitz, G.

    2006-01-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 μGy to 10 Gy range, consisting of a set of CaSO 4 :Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment were

  8. Bunch Length Measurements using Coherent Radiation

    CERN Document Server

    Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...

  9. Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements

    Science.gov (United States)

    Matney, Mark

    2015-01-01

    Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.

  10. Phantoms for Radiation Measurements of Mobile Phones

    DEFF Research Database (Denmark)

    Pedersen, Gert Frølund

    2001-01-01

    Measurements of radiation efficiency for a handheld phone equipped with a patch and a helical antenna operated near the human user have been performed. Both measurements include a simple head plus hand phantom and live persons are considered. The position of the hand on the phone is found...... to be the main reason for the large variation in radiation efficiency among persons. The tilt angle of the phone and the distance between the head and phone only play a minor role...

  11. Radiated power measurement with AXUV photodiodes in EAST tokamak

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Du Wei; Mao Songtao; Chen Kaiyun; Zhang Jizhong

    2013-01-01

    The fast bolometer diagnostic system for absolute radiated power measurement on EAST tokamak is introduced, which is based on the absolute extreme ultraviolet (AXUV) photodiodes. The relative calibration of AXUV detectors is carried out using X-ray tube and standard luminance source in order to evaluate the sensitivity degradation caused by cumulative radiation damage during experiments. The calibration result shows a 23% sensitivity decrease in the X-ray range for the detector suffering ∼27000 discharges, but the sensitivity for the visible light changes little. The radiated power measured by AXUV photodiodes is compared with that measured by resistive bolometer. The total radiated power in main plasma deduced from AXUV detector is lower a factor of 1∼4 than that deduced from resistive bolometer. Some typical measurement results are also shown in this article. (author)

  12. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  13. 2013 Space Radiation Standing Review Panel Status Review for: The Risk of Acute and Late Central Nervous System Effects from Radiation Exposure, The Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs), The Risk Of Degenerative Tissue Or Other Health Effects From Radiation Exposure, and The Risk of Radiation Carcinogenesis

    Science.gov (United States)

    2014-01-01

    The Space Radiation Standing Review Panel (from here on referred to as the SRP) was impressed with the strong research program presented by the scientists and staff associated with NASA's Space Radiation Program Element and National Space Biomedical Research Institute (NSBRI). The presentations given on-site and the reports of ongoing research that were provided in advance indicated the potential Risk of Acute and Late Central Nervous System Effects from Radiation Exposure (CNS) and were extensively discussed by the SRP. This new data leads the SRP to recommend that a higher priority should be placed on research designed to identify and understand these risks at the mechanistic level. To support this effort the SRP feels that a shift of emphasis from Acute Radiation Syndromes (ARS) and carcinogenesis to CNS-related endpoints is justified at this point. However, these research efforts need to focus on mechanisms, should follow pace with advances in the field of CNS in general and should consider the specific comments and suggestions made by the SRP as outlined below. The SRP further recommends that the Space Radiation Program Element continue with its efforts to fill the vacant positions (Element Scientist, CNS Risk Discipline Lead) as soon as possible. The SRP also strongly recommends that NASA should continue the NASA Space Radiation Summer School. In addition to these broad recommendations, there are specific comments/recommendations noted for each risk, described in detail below.

  14. Measurement of solar energy radiation in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  15. Measurement of solar energy radiation in Abu Dhabi, UAE

    International Nuclear Information System (INIS)

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  16. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  17. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  18. Metrology of ionizing radiations and environmental measurements

    International Nuclear Information System (INIS)

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  19. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR

    International Nuclear Information System (INIS)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests

  20. Hawking radiation from black holes in de Sitter spaces

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2007-01-01

    Recently, Hawking radiation has been treated, by Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303), as a compensating flux of the energy-momentum tensor required to cancel a gravitational anomaly at the event horizon (EH) of a Schwarzschild-type black hole. In this paper, motivated by this work, Hawking radiation from the event horizon (EH) and the de Sitter cosmological horizon (CH) of black holes in de Sitter spaces, specifically including the purely de Sitter black hole and the static, spherically symmetric Schwarzschild-de Sitter black hole as well as the rotating Kerr-de Sitter black hole, have been studied by anomalies. The results show that the gauge-current and energy-momentum tensor fluxes, required to restore gauge invariance and general coordinate covariance at the EH and the CH, are precisely equal to those of Hawking radiation from the EH and the CH, respectively. It should be noted that gauge and gravitational anomalies taking place at the CH arise from the fact that the effective field theory is formulated inside the CH to integrate out the classically irrelevant outgoing modes at the CH, which are different from those at the black hole horizon

  1. Measuring thyroid uptake with hand-held radiation monitors

    International Nuclear Information System (INIS)

    Deschamps, M.

    1987-04-01

    With the use of Iodine 123, 125 and 131 and some compounds of Technetium-99 m, a fraction of the isotopes can be trapped in the thyroid of the technicians. We used the hand-held radiation contamination or survey meters of the nine (9) Nuclear medicine departments we visited to see if they were adequate for the evaluation of thyroid uptake of the users. Measurements on a neck-phanton helped us to determine a minimum detectable activity for each isotope. We were then able to check if the measurements of investigations and action levels were possible. None of the hand-held radiation monitors are completely satisfactory for the measure of thyroid uptake of the user. We discuss a class of equipment capable of measuring radiation emissions at the investigation level. Measurement at the action level is possible with meters having scintillation or proportional probes but none of them permits the discrimination in energy required for a quantitative evaluation of the radioisotopes used

  2. Dose measurements in pulsed radiation fields with commercially available measuring components

    International Nuclear Information System (INIS)

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  3. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  4. Pulsed radiation decay logging

    International Nuclear Information System (INIS)

    Mills, W.R. Jr.

    1983-01-01

    There are provided new and improved well logging processes and systems wherein the detection of secondary radiation is accomplished during a plurality of time windows in a manner to accurately characterize the decay rate of the secondary radiation. The system comprises a well logging tool having a primary pulsed radiation source which emits repetitive time-spaced bursts of primary radiation and detector means for detecting secondary radiation resulting from the primary radiation and producing output signals in response to the detected radiation. A plurality of measuring channels are provided, each of which produces a count rate function representative of signals received from the detector means during successive time windows occurring between the primary radiation bursts. The logging system further comprises means responsive to the measuring channels for producing a plurality of functions representative of the ratios of the radiation count rates measured during adjacent pairs of the time windows. Comparator means function to compare the ratio functions and select at least one of the ratio functions to generate a signal representative of the decay rate of the secondary radiation

  5. Quality control of gamma radiation measuring systems

    International Nuclear Information System (INIS)

    Surma, M.J.

    2002-01-01

    The problem of quality control and assurance of gamma radiation measuring systems has been described in detail. The factors deciding of high quality of radiometric measurements as well as statistical testing and calibration of measuring systems have been presented and discussed

  6. Errors in measuring absorbed radiation and computing crop radiation use efficiency

    International Nuclear Information System (INIS)

    Gallo, K.P.; Daughtry, C.S.T.; Wiegand, C.L.

    1993-01-01

    Radiation use efficiency (RUE) is often a crucial component of crop growth models that relate dry matter production to energy received by the crop. RUE is a ratio that has units g J -1 , if defined as phytomass per unit of energy received, and units J J -1 , if defined as the energy content of phytomass per unit of energy received. Both the numerator and denominator in computation of RUE can vary with experimental assumptions and methodologies. The objectives of this study were to examine the effect that different methods of measuring the numerator and denominator have on the RUE of corn (Zea mays L.) and to illustrate this variation with experimental data. Computational methods examined included (i) direct measurements of the fraction of photosynthetically active radiation absorbed (f A ), (ii) estimates of f A derived from leaf area index (LAI), and (iii) estimates of f A derived from spectral vegetation indices. Direct measurements of absorbed PAR from planting to physiological maturity of corn were consistently greater than the indirect estimates based on green LAI or the spectral vegetation indices. Consequently, the RUE calculated using directly measured absorbed PAR was lower than the RUE calculated using the indirect measures of absorbed PAR. For crops that contain senesced vegetation, green LAI and the spectral vegetation indices provide appropriate estimates of the fraction of PAR absorbed by a crop canopy and, thus, accurate estimates of crop radiation use efficiency

  7. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    Science.gov (United States)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  8. Survey by measurement of urban environmental radiation, 1

    International Nuclear Information System (INIS)

    Inokoshi, Yukio; Kitahara, Akiharu; Suzuki, Takashi; Sugiura, Shiroharu; Shindo, Kotaro

    1984-01-01

    In the evaluation of the effect of radiation on the population of Tokyo Metropolis, it is necessary to know the external exposure due to natural radiation. Radiation dose rate has been measured on the ground (parks, etc.), paved roads (sidewalks), buildings, and transportation facilities (subways). The average values of cosmic ray and ground radiation were 8.8 x 10 -10 C/kg.h and 6.5 x 10 -10 C/kg.h, respectively. The radiation dose rate on roads differed largely with the structural materials, thickness, etc. The radiation in wooden buildings was almost similar to surrounding natural radiation. In high-rise buildings, there was not much difference from floor to floor. The natural radiation in subways depends largely on the depth. (Mori, K.)

  9. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  10. Development and Characterization of a High Throughput Screen to investigate the delayed Effects of Radiations Commonly Encountered in Space

    Science.gov (United States)

    Morgan, W. F.

    Astronauts based on the space station or on long-term space missions will be exposed to high Z radiations in the cosmic environment In order to evaluate the potentially deleterious effects of exposure to radiations commonly encountered in space we have developed and characterized a high throughput assay to detect mutation deletion events and or hyperrecombination in the progeny of exposed cells This assay is based on a plasmid vector containing a green fluorescence protein reporter construct We have shown that after stable transfection of the vector into human or hamster cells this construct can identify mutations specifically base changes and deletions as well as recombination events e g gene conversion or homologous recombination occurring as a result of exposure to ionizing radiation Our focus has been on those events occurring in the progeny of an irradiated cell that are potentially associated with radiation induced genomic instability rather than the more conventional assays that evaluate the direct immediate effects of radiation exposure Considerable time has been spent automating analysis of surviving colonies as a function of time after irradiation in order to determine when delayed instability is induced and the consequences of this delayed instability The assay is now automated permitting the evaluation of potentially rare events associated with low dose low dose rate radiations commonly encountered in space

  11. Baryogenesis via Hawking-like radiation in the FRW space-time

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Sujoy K. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); Singleton, Douglas [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); California State University, Department of Physics, Fresno, CA (United States)

    2015-05-15

    We present a phenomenological model for baryogenesis based on particle creation in the Friedman-Robertson-Walker (FRW) space-time. This study is a continuation of our proposal that Hawking-like radiation in FRW space-time explains several physical aspects of the early Universe including inflation. In this model we study a coupling between the FRW space-time, in the form of the derivative of the Ricci scalar, and the B-L current, J{sub B-L}{sup μ}, which leads to a different chemical potential between baryons and anti-baryons, resulting in an excess of baryons over anti-baryons with the right order of magnitude. In this model the generation of baryon asymmetry, in principle, occurs over the entire history of the Universe, starting from the beginning of the radiation phase. However, in practice, almost the entire contribution to the baryon asymmetry only comes from the very beginning of the Universe and is negligible thereafter. There is a free parameter in our model which can be interpreted as defining the boundary between the unknown quantum gravity regime and the inflation/baryogenesis regime covered by our model. When this parameter is adjusted to give the observed value of baryon asymmetry we get a higher than usual energy scale for our inflation model which, however, may be in line with the Grand Unified Theory scale for inflation in view of the BICEP2 and Planck results. In addition our model provides the correct temperature for the CMB photons at the time of decoupling. (orig.)

  12. LGM2605 as a mitigator of space radiation-induced vascular damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LignaMed, LLC is a drug development company with a fast track strategy to approval of LGM2605, an oral small molecule for use as a radiation mitigating agent that...

  13. Measuring element for the detection and determination of radiation doses of gamma radiation and neutrons

    International Nuclear Information System (INIS)

    Jahn, W.; Piesch, E.

    1975-01-01

    A measuring element detects and proves both gamma and neutron radiation. The element includes a photoluminescent material which stores gamma radiation and particles of arsenic and phosphorus embedded in the photoluminescent material for detecting neutron radiation. (U.S.)

  14. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  15. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  16. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  17. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  18. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  19. USA's gift aids radiation measurement

    International Nuclear Information System (INIS)

    1970-01-01

    On 8 December 1969, the anniversary of President Eisenhower's speech which led to the foundation of the Agency, the United States of America handed over a $25 000 gift which will assist considerably the promotion of world-wide standardization in the measurement of radiation. (author)

  20. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.

    1994-01-01

    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables