WorldWideScience

Sample records for space radiation conditions

  1. Estimation of Radiation Limit from a Huygens' Box under Non-Free-Space Conditions

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Bonev, Ivan Bonev

    2013-01-01

    The recently studied Huygens' box method has difficulties when radiation of an electronic module is to be determined under non-free-space conditions, i.e. with an enclosure. We propose an estimate on radiation limit under such conditions based only on the Huygens' box data from free...

  2. Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    This booklet discusses three kinds of space radiation, cosmic rays, Van Allen Belts, and solar plasma. Cosmic rays are penetrating particles that we cannot see, hear or feel, which come from distant stars. Van Allen Belts, named after their discoverer are great belts of protons and electrons that the earth has captured in its magnetic trap. Solar plasma is a gaseous, electrically neutral mixture of positive and negative ions that the sun spews out from convulsed regions on its surface.

  3. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  4. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  5. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  6. Space Radiation Risk Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Project A: Integration and Review: A review of current knowledge from space radiation physics was accepted for publication in Reviews of Modern Physics (Durante and...

  7. Radiation protection in space

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, E.A. [Lawrence Berkeley Lab., CA (United States); Fry, R.J.M. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space.

  8. Radiation protection in space

    International Nuclear Information System (INIS)

    Blakely, E.A.; Fry, R.J.M.

    1995-01-01

    The challenge for planning radiation protection in space is to estimate the risk of events of low probability after low levels of irradiation. This work has revealed many gaps in the present state of knowledge that require further study. Despite investigations of several irradiated populations, the atomic-bomb survivors remain the primary basis for estimating the risk of ionizing radiation. Compared to previous estimates, two new independent evaluations of available information indicate a significantly greater risk of stochastic effects of radiation (cancer and genetic effects) by about a factor of three for radiation workers. This paper presents a brief historical perspective of the international effort to assure radiation protection in space

  9. Radiation environment in space

    International Nuclear Information System (INIS)

    Goka, Tateo; Koga, Kiyokazu; Matsumoto, Haruhisa; Komiyama, Tatsuo; Yasuda, Hiroshi

    2011-01-01

    Japanese Experiment Module (Kibo) had been build into the International Space Station (ISS), which is a multipurpose manned facility and laboratory and is operated in orbit at about 400 km in altitude. Two Japanese astronauts stayed in the ISS for long time (4.5 and 5.5 months) for the first time. Space radiation exposure is one of the biggest safety issues for astronauts to stay for such a long duration in space. This special paper is presenting commentary on space radiation environment in ISS, neutrons measurements and light particles (protons and electrons) measurements, the instruments, radiation exposure management for Japanese astronauts and some comments in view of health physics. (author)

  10. Remark on Trautman's Radiation Condition

    International Nuclear Information System (INIS)

    Walker, M.

    1979-01-01

    The confusion about the boundary conditions for radiating systems formulated by Trautman are discussed. The confusion has mainly to do with where in space-time the conditions are to be imposed but also with what is it that the conditions are intended to guarantee. Imposing Trautman's conditions near future null infinity allows the existence of outgoing radiation; in order to exclude incoming radiation, they must be imposed near (or at) past null infinity. Since receding to infinity in spacelike directions means that one crosses all radiation, whether in- or outgoing, it makes no sense to impose the conditions at spatial infinity. If one were to impose fall-off of the electromagnetic field in flat space-time of 1/n at spatial infinity, then the field would contain finite energy. (Auth.)

  11. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  12. Space radiation environment

    International Nuclear Information System (INIS)

    Garrett, H.B.

    1998-01-01

    Coupled with the increasing concern over trapped radiation effects on microelectronics, the availability of new data, long term changes in the Earth's magnetic field, and observed variations in the trapped radiation fluxes have generated the need for better, more comprehensive tools for modeling and predicting the Earth's trapped radiation environment and its effects on space systems. The objective of this report is to describe the current status of those efforts and review methods for attacking the issues associated with modeling the trapped radiation environment in a systematic, practical fashion. The ultimate goal will be to point the way to increasingly better methods of testing, designing, and flying reliable microelectronic systems in the Earth's radiation environment. The review will include a description of the principal models of the trapped radiation environment currently available--the AE8 and AP8 models. Recent results rom radiation experiments on spacecraft such as CRRES, SAMPEX, and CLEMENTINE will then be described. (author)

  13. Research progress on space radiation biology

    International Nuclear Information System (INIS)

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  14. Protection from space radiation

    International Nuclear Information System (INIS)

    Tripathi, R.K.; Wilson, J.W.; Shinn, J.L.

    2000-01-01

    The exposures anticipated for astronauts in the anticipated human exploration and development of space will be significantly higher (both annual and carrier) than for any other occupational group. In addition, the exposures in deep space result largely from galactic cosmic rays for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer defined protection quantities (quality factors) may not be appropriate. The authors evaluate their current understanding of radiation protection with laboratory and flight experimental data and discuss recent improvements in interaction models and transport methods

  15. Modeling Space Radiation with Bleomycin

    Data.gov (United States)

    National Aeronautics and Space Administration — Space radiation is a mixed field of solar particle events (proton) and particles of Galactic Cosmic Rays (GCR) with different energy levels. These radiation events...

  16. Radiations and space flight

    International Nuclear Information System (INIS)

    Maalouf, M.; Vogin, G.; Foray, N.; Maalouf; Vogin, G.

    2011-01-01

    A space flight is submitted to 3 main sources of radiation: -) cosmic radiation (4 protons/cm 2 /s and 10000 times less for the heaviest particles), -) solar radiation (10 8 protons/cm 2 /s in the solar wind), -) the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm 2 /s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 μGray per day with an average dose rate of 0.28 μGray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  17. The space radiation environment

    International Nuclear Information System (INIS)

    Robbins, D.E.

    1997-01-01

    There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u -1 to over a GeV u -1 . These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d -1 depending on the altitude and flight inclination (angle of orbit with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d -1 . In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d -1 . Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h -1 . For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y -1 at solar maximum and 580 mSv y -1 at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv

  18. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  19. Radiation biophysics in space

    International Nuclear Information System (INIS)

    Buecker, H.; Horneck, G.

    1983-01-01

    In a demonstration experiment bacterium sporules have been exposed to the space vacuum and to the solar radiation field at 254 nm, with the following results: 1) a short vacuum exposition of 1.3 h does not affect the vitality of the sporules, 2) the survival rate of humid sporules after UV-irradiation is consistent with terrestrial control samples, 3) after a simultaneous exposition to vacuum and solar UV-radiation the effect on the sporules is enhanced by a factor of ten as compared to the situation without vaccum exposition. Additional studies in biophysical simulation systems revealed, that the enhanced UV sensitivity is caused by the dehydration of the sporules. By this process the structure of the essential macromolecules in cell, such as DNA and proteins, is modified such that new photo-products can be formed. For these products the cells have no effective repair systems. (AJ) [de

  20. Space Radiation Dosimetry

    International Nuclear Information System (INIS)

    Deme, S.

    2003-01-01

    Although partly protected from galactic and solar cosmic radiation by the Earth's magnetosphere in Low Earth Orbit (LEO) astronauts exposure levels during long-term missions (90 days to 180 days) by far exceed with exposures of up to more than 100 mSv the annual exposure limits set for workers in the nuclear industry, but are still below the yearly exposure limits of 500 mSv for NASA astronauts. During solar particle events the short-term limits (300 mSv) may be approached or even exceeded. In the interplanetary space, outside the Earth's magnetic field even relatively benign Solar Particle Events (SPEs) can produce 1 Sv skin-absorbed doses. Although new rocket technologies could reduce astronauts' total exposure to space radiation during a human Mars mission, the time required for the mission, which is now in the order of years. Therefore mission planners will need to consider a variety of countermeasures for the crew members including physical protection (e.g. shelters), active protection (e.g. magnetic protection), pharmacological protection, local protection (extra protection for critical areas of the body) etc. With full knowledge of these facts, accurate personal dose measurement will become increasingly important during human missions to Mars. The new dose limits for radiation workers correspond to excess lifetime risk of 3% (NCRP) and 4% (ICRP). While astronauts accept the whole variety of flight risks they are taking in mission, there is concern about risks that may occur later in life. A risk no greater than the risk of radiation workers would be acceptable. (author)

  1. Space Flight Ionizing Radiation Environments

    Science.gov (United States)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  2. Design of the Experimental Exposure Conditions to Simulate Ionizing Radiation Effects on Candidate Replacement Materials for the Hubble Space Telescope

    Science.gov (United States)

    Smith, L. Montgomery

    1998-09-01

    In this effort, experimental exposure times for monoenergetic electrons and protons were determined to simulate the space radiation environment effects on Teflon components of the Hubble Space Telescope. Although the energy range of the available laboratory particle accelerators was limited, optimal exposure times for 50 keV, 220 keV, 350 keV, and 500 KeV electrons were calculated that produced a dose-versus-depth profile that approximated the full spectrum profile, and were realizable with existing equipment. For the case of proton exposure, the limited energy range of the laboratory accelerator restricted simulation of the dose to a depth of .5 mil. Also, while optimal exposure times were found for 200 keV, 500 keV and 700 keV protons that simulated the full spectrum dose-versus-depth profile to this depth, they were of such short duration that the existing laboratory could not be controlled to within the required accuracy. In addition to the obvious experimental issues, other areas exist in which the analytical work could be advanced. Improved computer codes for the dose prediction- along with improved methodology for data input and output- would accelerate and make more accurate the calculational aspects. This is particularly true in the case of proton fluxes where a paucity of available predictive software appears to exist. The dated nature of many of the existing Monte Carlo particle/radiation transport codes raises the issue as to whether existing codes are sufficient for this type of analysis. Other areas that would result in greater fidelity of laboratory exposure effects to the space environment is the use of a larger number of monoenergetic particle fluxes and improved optimization algorithms to determine the weighting values.

  3. Radiation: behavioral implications in space

    International Nuclear Information System (INIS)

    Bogo, V.

    1988-01-01

    Since future space missions are likely to be beyond Earth's protective atmosphere, a potentially significant hazard is radiation. The following behavioural situations are addressed in this paper: (1) space radiations are more effective at disrupting behaviour; (2) task demands can aggravate the radiation-disruption; (3) efforts to mitigate disruption with drugs or shielding are not satisfactory and the drugs can be behaviourally toxic; and (4) space- and radiation-induced emesis combined may be synergistic. Thus future space travel will be a demanding, exciting time for behavioral toxicologists, and while the circumstances may seem insurmountable at first, creative application of scientific expertise should illicit solutions, similar to demanding situations confronted before. (author)

  4. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  5. Radiation risk in space exploration

    International Nuclear Information System (INIS)

    Schimmerling, W.; Wilson, J.W.; Cucinotta, F.; Kim, M.H.Y.

    1997-01-01

    Humans living and working in space are exposed to energetic charged particle radiation due to galactic cosmic rays and solar particle emissions. In order to keep the risk due to radiation exposure of astronauts below acceptable levels, the physical interaction of these particles with space structures and the biological consequences for crew members need to be understood. Such knowledge is, to a large extent, very sparse when it is available at all. Radiation limits established for space radiation protection purposes are based on extrapolation of risk from Japanese survivor data, and have been found to have large uncertainties. In space, attempting to account for large uncertainties by worst-case design results in excessive costs and accurate risk prediction is essential. It is best developed at ground-based laboratories, using particle accelerator beams to simulate individual components of space radiation. Development of mechanistic models of the action of space radiation is expected to lead to the required improvements in the accuracy of predictions, to optimization of space structures for radiation protection and, eventually, to the development of biological methods of prevention and intervention against radiation injury. (author)

  6. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1996-01-01

    The biological effects of the radiations to which mankind on earth are exposed are becoming known with an increasing degree of detail. This knowledge is the basis of the estimates of risk that, in turn, fosters a comprehensive and evolving radiation protection system. The substantial body of information has been, and is being, applied to questions about the biological effects of radiation is space and the associated risk estimates. The purpose of this paper is not to recount all the biological effect of radiation but to concentrate on those that may occur as a result from exposure to the radiations encountered in space. In general, the biological effects of radiation in space are the same as those on earth. However, the evidence that the effects on certain tissues by the heaviest-charged particles can be interpreted on the basis of our knowledge about other high-LET radiation is equivocal. This specific question will be discussed in greater detail later. It is important to point out the that there are only limited data about the effects on humans of two components of the radiations in space, namely protons and heavy ions. Thus predictions of effects on space crews are based on experimental systems exposed on earth at rates and fluences that are higher than those in space and one the effects of gamma or x rays with estimates of the equivalent doses using quality factors

  7. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  8. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  9. Surviving radiation in space

    International Nuclear Information System (INIS)

    Coates, A.

    1990-01-01

    Radiation damage to communications, navigation and weather satellites is common and caused by high energy charged particles, mainly protons and electrons, from the Earth's Van Allen belts. The combined release and radiation effects satellite (CRRES), recently launched by the United States, will allow scientists to create far more realistic computer models of satellite radiation damage than has been the case to date. It is hoped that information thus received will allow satellite builders to protect these essential structures in future. The second aim of the CCRES mission is to study the effect of releasing artificially charged particles into the magnetosphere and the ionosphere. Spacecraft design engineers will benefit from the results produced by the CCRES mission. (UK)

  10. Space radiation dosimetry

    International Nuclear Information System (INIS)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Strauch, K.; Heinrich, W.

    1996-01-01

    Detector packages consisting of plastic nuclear track detectors, nuclear emusions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose measurements, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rate from this exposure are given in this report. The dose equivalent received by the PSs were calculated from the measurements and range from 190 μSv d -1 to 770 μSv d -3 . (orig.) [de

  11. On static and radiative space-times

    International Nuclear Information System (INIS)

    Friedrich, H.

    1988-01-01

    The conformal constraint equations on space-like hypersurfaces are discussed near points which represent either time-like or spatial infinity for an asymptotically flat solution of Einstein's vacuum field equations. In the case of time-like infinity a certain 'radiativity condition' is derived which must be satisfied by the data at that point. The case of space-like infinity is analysed in detail for static space-times with non-vanishing mass. It is shown that the conformal structure implied here on a slice of constant Killing time, which extends analytically through infinity, satisfies at spatial infinity the radiativity condition. Thus to any static solution exists a certain 'radiative solution' which has a smooth structure at past null infinity and is regular at past time-like infinity. A characterization of these solutions by their 'free data' is given and non-symmetry properties are discussed. (orig.)

  12. Evaluation of resistance of diamond-like carbon coating to the corpuscular radiation in outer space conditions

    Science.gov (United States)

    Tomilova, Elizaveta; Bashkov, Valeriy; Mikhalev, Pavel; Fedorchenko, Alexander; Volkova, Yana

    2015-02-01

    The purpose of this work was to research the resistance of thin coatings to the effects of corpuscular radiation, as well as evaluation speed etching of diamond-like films with different content of diamond phase. There were two samples of monocrystalline silicon with DLC coating. To evaluate the resistance, two groups of grooves were etched on each sample. The depth was then measured to calculate a relative etching ratio of DLC coating. The resistance was determined to be four times that of silicon.

  13. Space radiation protection: Destination Mars.

    Science.gov (United States)

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  14. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  15. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  16. Radiative transfer on discrete spaces

    CERN Document Server

    Preisendorfer, Rudolph W; Stark, M; Ulam, S

    1965-01-01

    Pure and Applied Mathematics, Volume 74: Radiative Transfer on Discrete Spaces presents the geometrical structure of natural light fields. This book describes in detail with mathematical precision the radiometric interactions of light-scattering media in terms of a few well established principles.Organized into four parts encompassing 15 chapters, this volume begins with an overview of the derivations of the practical formulas and the arrangement of formulas leading to numerical solution procedures of radiative transfer problems in plane-parallel media. This text then constructs radiative tran

  17. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  18. Radiation in space: risk estimates

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    2002-01-01

    The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial population. In deep space the duration of the mission, position of the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainties in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons; (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts; and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable. (author)

  19. Biology relevant to space radiation

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1997-01-01

    There are only very limited data on the health effects to humans from the two major components of the radiations in space, namely protons and heavy ions. As a result, predictions of the accompanying effects must be based either on (1) data generated through studies of experimental systems exposed on earth at rates and fluences higher than those in space, or (2) extrapolations from studies of gamma and x rays. Better information is needed about the doses, dose rates, and the energy and LET spectra of the radiations at the organ level that are anticipated to be encountered during extended space missions. In particular, there is a need for better estimates of the relationship between radiation quality and biological effects. In the case of deterministic effects, it is the threshold that is important. The possibility of the occurrence of a large solar particle event (SPE) requires that such effects be considered during extended space missions. Analyses suggest, however, that it is feasible to provide sufficient shielding so as to reduce such effects to acceptable levels, particularly if the dose rates can be limited. If these analyses prove correct, the primary biological risks will be the stochastic effects (latent cancer induction). The contribution of one large SPE to the risk of stochastic effects while undesirable will not be large in comparison to the potential total dose on a mission of long duration

  20. Miniature Active Space Radiation Dosimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro will extend our Phase I R&D to develop a family of miniature, active space radiation dosimeters/particle counters, with a focus on biological/manned...

  1. Dosimetric radiation measurements in space

    International Nuclear Information System (INIS)

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  2. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  3. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  4. Dose estimation for space radiation protection

    International Nuclear Information System (INIS)

    Xu Feng; Xu Zhenhua; Huang Zengxin; Jia Xianghong

    2007-01-01

    For evaluating the effect of space radiation on human health, the dose was estimated using the models of space radiation environment, models of distribution of the spacecraft's or space suit's mass thickness and models of human body. The article describes these models and calculation methods. (authors)

  5. Space Radiation Intelligence System (SPRINTS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Federal Systems proposes an innovative SPace Radiation INTelligence System (SPRINTS) which provides an interactive and web-delivered capability that...

  6. Passive radiation shielding considerations for the proposed space elevator

    Science.gov (United States)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  7. Guidance on radiation received in space activities

    International Nuclear Information System (INIS)

    1989-01-01

    The purposes of this report, therefore, are to: re-examine the current guidelines and the philosophy adopted by NASA, estimate the risks to both men and women exposed to radiation in space, re-examine the estimates of radiation risks in outer space with special attention to SPE and to exposure to HZE particles, and examine what information may still be required and what research is needed. This report incorporates the changes in estimates of terrestrial radiation risks made since 1970 that appear to be acceptable and appropriate to the particular case of space missions. Since plans for a space station have been established and are a priority for NASA, this space mission will be used as one example for reference. The likely altitude and orbit for the proposed space station are 450 km and 28.5 degree, respectively. Therefore, estimates of the radiation environment for this mission can be made with more confidence than for some of the other missions. In this report, we have chosen to write more fully about certain subjects, for example, the eye, because they are of concern and because they have not been dealt with in such detail in other reports on radiation risks and protection. Since this report covers a number of different disciplines and specialized areas of research, a glossary is included. Radiation protection in space is as international a task as is the protection of radiation workers and the general population on earth. Kovalev, 1983, has noted that radiation protection in space is a pressing but complex problem. The recommendations in this report will require modifications as we learn more about the radiation environment in space and how to estimate radiation risks with greater precision. 450 refs

  8. On the radiation dosimetry in space

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    2005-01-01

    The radiation dosimetry in space is considerably different from that on the earth surface, because, on the earth surface, the quality factor for radiation is roughly given for its energy but, in space, it is defined as a continuous function of LET. Thus, the contribution to the dose equivalent from heavy charged particles included in galactic cosmic rays is more than 50%, because of their high LET values. To evaluate such dose equivalent within an uncertainty of 30%, we must determine the true LET distribution. This paper describes the essence of such a new radiation dosimetry in space. (author)

  9. Radiation dosimetry for the space shuttle program

    International Nuclear Information System (INIS)

    Jones, K.L.; Richmond, R.G.; Cash, B.L.

    1985-01-01

    Radiation measurements aboard the Space Shuttle are made to record crew doses for medical records, to verify analytical shielding calculations used in dose predictions and to provide dosimetry support for radiation sensitive payloads and experiments. Low cost systems utilizing thermoluminescent dosimeters, nuclear track detectors and activation foils have been developed to fulfill these requirements. Emphasis has been placed on mission planning and dose prediction. As a result, crew doses both inside the orbiter and during extra-vehicular activities have been reasonable low. Brief descriptions of the space radiation environment, dose prediction models, and radiation measurement systems are provided, along with a summary of the results for the first fourteen Shuttle flights

  10. Deep space test bed for radiation studies

    International Nuclear Information System (INIS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan; Kuznetsov, Evgeny; Milton, Martha; Myers, Jeremy; O'Brien, Sue; Seaquist, Jim; Smith, Edward A.; Smith, Guy; Warden, Lance; Watts, John

    2007-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation, flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status

  11. Near-Earth Space Radiation Models

    Science.gov (United States)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  12. Conditions and constraints of food processing in space

    Science.gov (United States)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  13. The Near-Earth Space Radiation Environment

    Science.gov (United States)

    Xapsos, Michael

    2008-01-01

    This viewgraph presentation reviews the effects of the Near-Earth space radiation environment on NASA missions. Included in this presentation is a review of The Earth s Trapped Radiation Environment, Solar Particle Events, Galactic Cosmic Rays and Comparison to Accelerator Facilities.

  14. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  15. Space Radiation and Risks to Human Health

    Science.gov (United States)

    Huff, Janice L.; Patel, Zarana S.; Simonsen, Lisa C.

    2014-01-01

    The radiation environment in space poses significant challenges to human health and is a major concern for long duration manned space missions. Outside the Earth's protective magnetosphere, astronauts are exposed to higher levels of galactic cosmic rays, whose physical characteristics are distinct from terrestrial sources of radiation such as x-rays and gamma-rays. Galactic cosmic rays consist of high energy and high mass nuclei as well as high energy protons; they impart unique biological damage as they traverse through tissue with impacts on human health that are largely unknown. The major health issues of concern are the risks of radiation carcinogenesis, acute and late decrements to the central nervous system, degenerative tissue effects such as cardiovascular disease, as well as possible acute radiation syndromes due to an unshielded exposure to a large solar particle event. The NASA Human Research Program's Space Radiation Program Element is focused on characterization and mitigation of these space radiation health risks along with understanding these risks in context of the other biological stressors found in the space environment. In this overview, we will provide a description of these health risks and the Element's research strategies to understand and mitigate these risks.

  16. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-01-01

    The original recommendations for radiation protection guidelines were made by the National Academy of Sciences in 1970. Since that time the US crews have become more diverse in their makeup and much has been learned about both radiation-induced cancer and other late effects. While far from adequate there is now some understanding of the risks that high-Z and -energy (HZE) particles pose. For these reasons it was time to reconsider the radiation protection guidelines for space workers. This task was undertaken recently by National Council on Radiation Protection (NCRP). 42 refs., 2 figs., 9 tabs

  17. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  18. Radiation investigations during space flight

    International Nuclear Information System (INIS)

    Akatov, A.Yu.; Nevzgodina, L.V.; Sakovich, V.A.; Fekher, I.; Deme, Sh.; Khashchegan, D.

    1986-01-01

    Results of radiation investigations during ''Salyut-6'' orbital station flight are presented. The program of studying the environmental radioactivity at the station included ''Integral'' and ''Pille'' experiments. In the course of the ''Integral'' experiment absorbed dose distributions of cosmic radiation and heavy charged particle fluence for long time intervals were studied. Method, allowing one to study dose distributions and determine individual doses for any time interval rapidity and directly on board the station was tested in the course of ''Pille'' experiment for the first time. Attention is paid to measuring equipment. Effect of heavy charged particles on the cellular structure of air-dry Lactuca sativa lettuce seeds was studied in the course of radiobiological experiments conducted at ''Salyut-6'' station. It is shown, that with the increase of flight duration the frequency of cells with chromosomal aberrations increases

  19. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  20. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  1. Graphite epoxy composite degradation by space radiation

    International Nuclear Information System (INIS)

    Taheri, M.; Sandquist, G.M.; Slaughter, D.M.; Bennion, J.

    1991-01-01

    The radiation environment in space is a critical consideration for successful operation in space. All manned space missions with a duration of more than a few days are subjected to elevated ionizing radiation exposures, which are a threat to both personnel and structures in space. The increasing demands for high-performance materials as structural components in the aerospace, aircraft, and defense industries have led to the development of materials such as graphite fiber-reinforced, epoxy resin matrix composites (Gr/Ep). These materials provide important advantages over conventional structural materials, such as ultrahigh specific strength, enhanced specific moduli, and better fatigue resistance. The fact that most advanced composite materials under cyclic fatigue loading evidence little or no observable crack growth prior to rapid fracture suggests that for fail-safe considerations of parts subject to catastrophic failure, a detailed evaluation of radiation damage from very energetic particle is crucial. The Gr/Ep components are believed to suffer severe degradation in space due to highly penetrating secondary radiation, mainly from neutrons and protons. Investigation into the performance and stability of Gr/Ep materials are planned

  2. Rotating film radiators for space applications

    International Nuclear Information System (INIS)

    Koenig, D.R.

    1985-01-01

    A new class of light-weight radiators is described. This radiator consists of a thin rotating envelope that contains the working fluid. The envelope can have many shapes including redundant, foldable configurations. The working fluid, which may be a liquid or a condensable vapor, impinges on the inside surface of the radiator and is driven as a film to the periphery by centrifugal force. Heat is radiated to space by the outer surface of the envelope. Pumps located on the periphery then return the liquid to the power converter. For a 100-MW radiator operating at 800 K, specific mass approx.0.1 kg/kW and mass density approx.2 kg/m 2 may be achievable. 7 refs., 4 figs., 4 tabs

  3. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  4. Local Tensor Radiation Conditions For Elastic Waves

    DEFF Research Database (Denmark)

    Krenk, S.; Kirkegaard, Poul Henning

    2001-01-01

    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...

  5. Conceptual designs for 100-MW space radiators

    International Nuclear Information System (INIS)

    Prenger, F.C.; Sullivan, J.A.

    1982-01-01

    A description and comparison of heat rejection systems for multimegawatt space-based power supplies is given. Current concepts are described, and through a common performance parameter, these are compared with three advanced radiator concepts. The comparison is based on a power system that rejects 100 MW of heat while generating 10 MW of electrical power

  6. Radiation protection guidelines for space missions

    International Nuclear Information System (INIS)

    Fry, R.J.; Nachtwey, D.S.

    1988-01-01

    The current radiation protection guidelines of the National Aeronautics and Space Administration (NASA) were recommended in 1970. The career limit was set at 4.0 Sv (400 rem). Using the same approach as in 1970 but current risk estimates, a considerably lower career limit would obtain today. Also, there is now much more information about the radiation environments that will be experienced in different missions. Furthermore, since 1970 women have joined the ranks of the astronauts. For these and other reasons, it was considered necessary to re-examine the radiation protection guidelines. This task has been undertaken by the National Council on Radiation Protection and Measurements Scientific Committee 75. Within the magnetosphere, the radiation environment varies with altitude and inclination of the orbit. In outer space missions, galactic cosmic rays, with the small but important heavy-ion component, determine the radiation environment. The new recommendations for career dose limits, based on lifetime excess risk of cancer mortality, take into account age at first exposure and sex. The career limits range from 1.0 Sv (100 rem) for a 24-y-old female up to 4.0 Sv (400 rem) for a 55-y-old male, compared with the previous single limit of 4.0 Sv (400 rem). The career limit for the lens of the eye has been reduced from 6.0 Sv (600 rem) to 4.0 Sv (400 rem)

  7. Umov-Mandelshtam radiation conditions in elastic periodic waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, S. A., E-mail: srgnazarov@yahoo.co.uk [St. Petersburg State University, Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2014-07-31

    We study settings of the problem of elasticity theory on wave propagation in an elastic periodic waveguide with radiation conditions at infinity. We present a mathematical theory for energy radiation conditions based on Mandelshtam's energy principle and the Umov-Poynting vector, as well as using the technique of weighted spaces with detached asymptotics and the energy transfer symplectic form. We establish that in a threshold situation, that is, when standing and polynomial elastic Floquet waves appear, the well-known limiting absorption principle, in contrast to the energy principle that is being applied, cannot identify the direction of the wave's motion. Bibliography: 37 titles. (paper)

  8. Electromagnetic radiation in a semi-compact space

    Science.gov (United States)

    Iso, Satoshi; Kitazawa, Noriaki; Yokoo, Sumito

    2018-02-01

    In this note, we investigate the electromagnetic radiation emitted from a revolving point charge in a compact space. If the point charge is circulating with an angular frequency ω0 on the (x , y)-plane at z = 0 with boundary conditions, x ∼ x + 2 πR and y ∼ y + 2 πR, it emits radiation into the z-direction of z ∈ [ - ∞ , + ∞ ]. We find that the radiation shows discontinuities as a function of ω0 R at which a new propagating mode with a different Fourier component appears. For a small radius limit ω0 R ≪ 1, all the Fourier modes except the zero mode on (x , y)-plane are killed, but an effect of squeezing the electric field totally enhances the radiation. In the large volume limit ω0 R → ∞, the energy flux of the radiation reduces to the expected Larmor formula.

  9. Initial conditions of radiative shock experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P.; Bingham, D.; Goh, J.; Boehly, T. R.; Sorce, A. T.

    2013-01-01

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10 14 W cm −2 to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code

  10. Radiation protection considerations in space station missions

    International Nuclear Information System (INIS)

    Peddicord, K.L.; Bolch, W.E.

    1991-01-01

    The National Aeronautics and Space Administration (NASA) is currently studying the degree to which the baseline design of space station Freedom (SSF) would permit its evolution to a transportation node for lunar or Mars expeditions. To accomplish NASA's more ambitious exploration goals, nuclear-powered vehicles could be used in SSF's vicinity. This enhanced radiation environment around SSF could necessitate additional crew shielding to maintain cumulative doses below recommended limits. This paper presents analysis of radiation doses received upon the return and subsequent unloading of Mars vehicles utilizing either nuclear electric propulsion (NEP) or nuclear thermal rocket (NTR) propulsion systems. No inherent shielding by the vehicle structure or space station is assumed; consequently, the only operational parameters available to control radiation doses are the source-to-target distance and the reactor shutdown time prior to the exposure period. For the operations planning, estimated doses are shown with respect to recommended dose limits and doses due solely to the natural space environment in low Earth orbit

  11. 2015 Space Radiation Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Radiation Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 8 - 9, 2015. The SRP met with representatives from the Space Radiation Element and members of the Human Research Program (HRP) to review the updated research plan for the Risk of Radiation Carcinogenesis Cancer Risk. The SRP also reviewed the newly revised Evidence Reports for the Risk of Acute Radiation Syndromes Due to Solar Particle Events (SPEs) (Acute Risk), the Risk of Acute (In-flight) and Late Central Nervous System Effects from Radiation Exposure (CNS Risk), and the Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation (Degen Risk), as well as a status update on these Risks. The SRP would like to commend Dr. Simonsen, Dr. Huff, Dr. Nelson, and Dr. Patel for their detailed presentations. The Space Radiation Element did a great job presenting a very large volume of material. The SRP considers it to be a strong program that is well-organized, well-coordinated and generates valuable data. The SRP commended the tissue sharing protocols, working groups, systems biology analysis, and standardization of models. In several of the discussed areas the SRP suggested improvements of the research plans in the future. These include the following: It is important that the team has expanded efforts examining immunology and inflammation as important components of the space radiation biological response. This is an overarching and important focus that is likely to apply to all aspects of the program including acute, CVD, CNS, cancer and others. Given that the area of immunology/inflammation is highly complex (and especially so as it relates to radiation), it warrants the expansion of investigators expertise in immunology and inflammation to work with the individual research projects and also the NASA Specialized Center of Research (NSCORs). Historical data on radiation injury to be entered into the Watson

  12. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  13. Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety

    Science.gov (United States)

    Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.

    2007-01-01

    There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked

  14. The Space Medicine Exploration Medical Condition List

    Science.gov (United States)

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  15. Extremophiles survival to simulated space conditions: an astrobiology model study.

    Science.gov (United States)

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  16. Atomic collisions under extreme conditions in space

    International Nuclear Information System (INIS)

    Itikawa, Yukikazu

    1987-01-01

    In space, atoms and molecules are often placed under the extreme conditions which are very difficult to be realized on Earth. For instance, extremely hot and dense plasmas are found in and around various stellar objects (e.g., neutron stars) on one hand and extremely cold and diffuse gases prevail in interstellar space on the other. There is so strong a magnetic field that electron clouds in atoms and molecules are distorted. The study of atomic collisions under the extreme conditions is not only helpful in understanding the astrophysical environment but also reveals new aspects of the physics of atoms and molecules. This paper is an invitation to the study. (References are not exhaustive but only provide a clue with which more details can be found.) (author)

  17. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  18. Temperature jump boundary conditions in radiation diffusion

    International Nuclear Information System (INIS)

    Alonso, C.T.

    1976-12-01

    The radiation diffusion approximation greatly simplifies radiation transport problems. Yet the application of this method has often been unnecessarily restricted to optically thick regions, or has been extended through the use of such ad hoc devices as flux limiters. The purpose of this paper is to review and draw attention to the use of the more physically appropriate temperature jump boundary conditions for extending the range of validity of the diffusion approximation. Pioneering work has shown that temperature jump boundary conditions remove the singularity in flux that occurs in ordinary diffusion at small optical thicknesses. In this review paper Deissler's equations for frequency-dependent jump boundary conditions are presented and specific geometric examples are calculated analytically for steady state radiation transfer. When jump boundary conditions are applied to radiation diffusion, they yield exact solutions which are naturally flux- limited and geometry-corrected. We believe that the presence of temperature jumps on source boundaries is probably responsible in some cases for the past need for imposing ad hoc flux-limiting constraints on pure diffusion solutions. The solution for transfer between plane slabs, which is exact to all orders of optical thickness, also provides a useful tool for studying the accuracy of computer codes

  19. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. Furthermore, no estimates of risk or recommendations were made for women in 1970 and must now be considered. The current career limit is 400 rem. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation and this will be taken into account. Work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 21 references, 1 figure, 7 tables

  20. Approaches to radiation guidelines for space travel

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1984-01-01

    There are obvious risks in space travel that have loomed larger than any risk from radiation. Nevertheless, NASA has maintained a radiation program that has involved maintenance of records of radiation exposure, and planning so that the astronauts' exposures are kept as low as possible, and not just within the current guidelines. These guidelines are being reexamined currently by NCRP Committee 75 because new information is available, for example, risk estimates for radiation-induced cancer and about the effects of HZE particles. The current career limit is 400 rem to the blood forming organs. The appropriateness of this limit and its basis are being examined as well as the limits for specific organs. There is now considerably more information about age-dependency for radiation effects and this will be taken into account. In 1973 a committee of the National Research Council made a separate study of HZE particle effects and it was concluded that the attendant risks did not pose a hazard for low inclination near-earth orbit missions. Since that time work has been carried out on the so-called microlesions caused by HZE particles and on the relative carcinogenic effect of heavy ions, including iron. A remaining question is whether the fluence of HZE particles could reach levels of concern in missions under consideration. Finally, it is the intention of the committee to indicate clearly the areas requiring further research. 26 references, 1 figure, 7 tables

  1. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  2. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  3. The ionizing radiation environment in space and its effects

    International Nuclear Information System (INIS)

    Adams, Jim; Falconer, David; Fry, Dan

    2012-01-01

    The ionizing radiation environment in space poses a hazard for spacecraft and space crews. The hazardous components of this environment are reviewed and those which contribute to radiation hazards and effects identified. Avoiding the adverse effects of space radiation requires design, planning, monitoring and management. Radiation effects on spacecraft are avoided largely though spacecraft design. Managing radiation exposures of space crews involves not only protective spacecraft design and careful mission planning. Exposures must be managed in real time. The now-casting and forecasting needed to effectively manage crew exposures is presented. The techniques used and the space environment modeling needed to implement these techniques are discussed.

  4. Radiation applications in NDT in space program

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1994-01-01

    Non-destructive testing (NDT) and evaluation play an important role in the qualification of sub-systems and components in space programme. NDT is carried out at various stages of manufacturing of components and also prior to end use to ensure a high degree of reliability. Penetrating radiations such as X-rays, γ-rays and neutrons are extensively used for the radiographic inspection of components, sub-systems and assemblies in both the launch vehicles and satellites. Both low and high energy radiations are employed for the evaluation of the above components depending on their size and nature. Real time radiography (RTR) and computed tomography (CT) are also used in certain specific applications where more detailed information is needed. Neutron radiography is employed for the inspection of pyro-devices used in separation, destruct and satellite deployment systems. Besides their use for non-destructive testing purposes, the radiation sources are also used for various special applications like solid propellant slurry flow measurement simulation of radiation environment on components used in the satellites and also for studying migration of ingredients in solid rocket motor. (author). 12 refs., 6 figs

  5. DNA Damage Signals and Space Radiation Risk

    Science.gov (United States)

    Cucinotta, Francis A.

    2011-01-01

    Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.

  6. Space storms and radiation causes and effects

    CERN Document Server

    Schrijver, Carolus J

    2010-01-01

    Heliophysics is a fast-developing scientific discipline that integrates studies of the Sun's variability, the surrounding heliosphere, and the environment and climate of planets. The Sun is a magnetically variable star and for planets with intrinsic magnetic fields, planets with atmospheres, or planets like Earth with both, there are profound consequences. This 2010 volume, the second in this series of three heliophysics texts, integrates the many aspects of space storms and the energetic radiation associated with them - from causes on the Sun to effects in planetary environments. It reviews t

  7. Nuclear Cross Sections for Space Radiation Applications

    Science.gov (United States)

    Werneth, C. M.; Maung, K. M.; Ford, W. P.; Norbury, J. W.; Vera, M. D.

    2015-01-01

    The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (A = 16) and the momentum-space optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and LS3D methods and is compared to eikonal results. It is recommended that the LS3D method be used for high energy nucleon-nucleus reactions and nucleus-nucleus reactions at all energies because of its rapid numerical convergence and stability for both non-relativistic and relativistic kinematics.

  8. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  9. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  10. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  11. Volumes of conditioned bipartite state spaces

    International Nuclear Information System (INIS)

    Milz, Simon; Strunz, Walter T

    2015-01-01

    We analyze the metric properties of conditioned quantum state spaces M η (n×m) . These spaces are the convex sets of nm×nm density matrices that, when partially traced over m degrees of freedom, respectively yield the given n × n density matrix η. For the case n = 2, the volume of M η (2×m) equipped with the Hilbert–Schmidt measure can be conjectured to be a simple polynomial of the radius of η in the Bloch-ball. Remarkably, for m=2,3 we find numerically that the probability p sep (2×m) (η) to find a separable state in M η (2×m) is independent of η (except for η pure). For m>3, the same holds for p PosPart (2×m) (η), the probability to find a state with a positive partial transpose in M η (2×m) . These results are proven analytically for the case of the family of 4 × 4 X-states, and thoroughly numerically investigated for the general case. The important implications of these findings for the clarification of open problems in quantum theory are pointed out and discussed. (paper)

  12. Behavior of ionic conducting IPN actuators in simulated space conditions

    Science.gov (United States)

    Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Laurent, Elisabeth; Cadiergues, Laurent; Vidal, Frédéric

    2016-04-01

    The presentation focuses on the performances of flexible all-polymer electroactive actuators under space-hazardous environmental factors in laboratory conditions. These bending actuators are based on high molecular weight nitrile butadiene rubber (NBR), poly(ethylene oxide) (PEO) derivative and poly(3,4-ethylenedioxithiophene) (PEDOT). The electroactive PEDOT is embedded within the PEO/NBR membrane which is subsequently swollen with an ionic liquid as electrolyte. Actuators have been submitted to thermal cycling test between -25 to 60°C under vacuum (2.4 10-8 mbar) and to ionizing Gamma radiations at a level of 210 rad/h during 100 h. Actuators have been characterized before and after space environmental condition ageing. In particular, the viscoelasticity properties and mechanical resistance of the materials have been determined by dynamic mechanical analysis and tensile tests. The evolution of the actuation properties as the strain and the output force have been characterized as well. The long-term vacuuming, the freezing temperature and the Gamma radiations do not affect significantly the thermomechanical properties of conducting IPNs actuators. Only a slight decrease on actuation performances has been observed.

  13. The Near-Earth Space Radiation for Electronics Environment

    Science.gov (United States)

    Stassinopoulos, E. G.; LaBel, K. A.

    2004-01-01

    The earth's space radiation environment is described in terms of: a) charged particles as relevant to effects on spacecraft electronics, b) the nature and distribution of trapped and transiting radiation, and c) their effect on electronic components.

  14. Ionizing radiation in earth's atmosphere and in space near earth.

    Science.gov (United States)

    2011-05-01

    The Civil Aerospace Medical Institute of the FAA is charged with identifying health hazards in air travel and in : commercial human space travel. This report addresses one of these hazards ionizing radiation. : Ionizing radiation is a subatomic p...

  15. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  16. Radiation measurement on the International Space Station

    International Nuclear Information System (INIS)

    Akopova, A.B.; Manaseryan, M.M.; Melkonyan, A.A.; Tatikyan, S.Sh.; Potapov, Yu.

    2005-01-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380km and inclination 51.6 o are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z>=2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during last years it has already been successfully used on board the MIR station, Space Shuttles and 'Kosmos' spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2x103keV/μm and the value of equivalent dose 360μSv/day was estimated. The flux of biologically dangerous heavy particles with Z>=2 was measured (3.85x103particles/cm2)

  17. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  18. Radiation -- A Cosmic Hazard to Human Habitation in Space

    Science.gov (United States)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  19. The Mackey convergence condition for spaces with webs

    Directory of Open Access Journals (Sweden)

    Thomas E. Gilsdorf

    1988-01-01

    Full Text Available If each sequence converging to 0 in a locally convex space is also Mackey convergent to 0, that space is said to satisfy the Mackey convergence condition. The problem of characterizing those locally convex spaces with this property is still open. In this paper, spaces with compatible webs are used to construct both a necessary and a sufficient condition for a locally convex space to satisfy the Mackey convergence condition.

  20. Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Stephan, Ryan; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2012-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 m2 radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduces the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  1. Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Bue, Grant C.; Hodgson, Ed; Izenson, Mike; Chen, Weibo

    2013-01-01

    A system for non-venting thermal control for spacesuits was built by integrating two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's flexible version of the Lithium Chloride Absorber Radiator (LCAR). This SEAR system was tested in relevant thermal vacuum conditions. These tests show that a 1 sq m radiator having about three times as much absorption media as in the test article would be required to support a 7 hour spacewalk. The serial flow arrangement of the LCAR of the flexible version proved to be inefficient for venting non-condensable gas (NCG). A different LCAR packaging arrangement was conceived wherein the Portable Life Support System (PLSS) housing would be made with a high-strength carbon fiber composite honeycomb, the cells of which would be filled with the chemical absorption media. This new packaging reduce the mass and volume impact of the SEAR on the Portable Life Support System (PLSS) compared to the flexible design. A 0.2 sq m panel with flight-like honeycomb geometry is being constructed and will be tested in thermal and thermal vacuum conditions. Design analyses forecast improved system performance and improved NCG control. A flight-like regeneration system also is also being built and tested. Design analyses for the structurally integrated prototype as well as the earlier test data show that SEAR is not only practical for spacesuits but also has useful applications in spacecraft thermal control.

  2. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  3. Titanium Loop Heat Pipes for Space Nuclear Radiators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop titanium Loop Heat Pipes (LHPs) that can be used in low-mass space nuclear radiators, such as...

  4. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation hardened nonvolatile memories for space is still primarily confined to EEPROM. There is high density effective or cost effective NVM solution available to...

  5. Space Qualified, Radiation Hardened, Dense Monolithic Flash Memory, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro proposes to build a radiation hardened by design (RHBD) flash memory, using a modified version of our RH-eDRAM Memory Controller to solve all the single...

  6. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  7. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  8. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection

    International Nuclear Information System (INIS)

    Vogin, G.

    2009-01-01

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  9. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  10. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  11. Radiation treatment of painful degenerative skeletal conditions

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Willich, N.

    1996-01-01

    The study reported was intended to present own experience with irradiation for treatment of painful degenerative skeletal conditions and examine the long-term effects of this treatment. A retrospective study was performed covering the period from 1985 until 1991, examining 157 patients suffering from painful degenerative skeletal conditions who entered information on the success of their radiation treatment in a questionnaire. 94 of the questionnaires could be used for evaluation. Pain anamnesis revealed periods of more than one year in 45% of the cases. 74% of the patients had been treated without success with drug or orthopedic therapy. Immediately after termination of the radiotherapy, 38% of the patients said to be free of pain or to feel essentially relieved, while at the time the questionnaire was distributed, the percentage was 76%. Thus in our patient material, radiotherapy for treatment of painful degenerative skeletal lesions was successful in 76% of the cases and for long post-treatment periods, including those cases whith long pain anamnesis and unsuccessful conventional pre-treatment. (orig./MG) [de

  12. An Overview of Effects of Space Radiation on the Electronics

    International Nuclear Information System (INIS)

    Hwang, Sun Tae; Shin, Dong Kwan; Son, Young Jong; Kim Jin Hong

    2009-01-01

    The first Korean astronaut successfully carried out the scientific experiments at International Space Station (ISS) in April 2008. Due to the government's strong will and support for the field of space, Korea has enhanced its space technology based on the accomplishments in space development. On October 12∼16, 2009 the 60 th International Astronautical Congress (IAC) was held in Daejeon. IAC 2009 must serve as a place for the extensive exchange of global space technology and information in order to speed up the development of space technology in Korea. With regard for space research and development, the radiation effects in space have been reviewed from the viewpoint of electronics

  13. Characterization of Outer Space Radiation Induced Changes in Extremophiles Utilizing Deep Space Gateway Opportunities

    Science.gov (United States)

    Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.

    2018-02-01

    Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.

  14. Estimation of absorbed dose for poor shields under conditions of near-earth space flight

    International Nuclear Information System (INIS)

    Konyukov, V.V.; Krajnyukov, V.I.; Trufanov, A.I.

    1995-01-01

    Estimation of electron absorbed dose in materials of a space vehicle for poor shields under conditions of near-earth space flight is carried out. Impact of power and angular distribution of incidence electrons and radiation scattering processes under conditions of complex geometry and multitude of materials of flight vehicle elements and nodes is studied through simulator model by example of isolating layer of aluminium-polyethylene assembly. 3 refs.; 2 figs

  15. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  16. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  17. Radiation resistance of solar cells for space application, 1

    International Nuclear Information System (INIS)

    Mitsui, Hiroshi; Tanaka, Ryuichi; Sunaga, Hiromi

    1989-07-01

    A 50-μm thick ultrathin silicon solar cell and a 280-μm thick high performance AlGaAs/GaAs solar cell with high radiation resistance have been recently developed by National Space Development Agency of Japan (NASDA). In order to study the radiation resistance of these cells, a joint research was carried out between Japan Atomic Energy Research Institute (JAERI) and NASDA from 1984 through 1987. In this research, the irradiation method of electron beams, the effects of the irradiation conditions on the deterioration of solar cells by electron beams, and the annealing effects of the radiation damage in solar cells were investigated. This paper is the first one of a series of reports of the joint research. In this paper, the space radiation environment which artificial satellites will encounter, the solar cells used, and the experimental methods are described. In addition to these, the results of the study on the irradiation procedure of electron beams are reported. In the study of the irradiation method of electron beams, three methods, that is, the fixed irradiation method, the moving irradiation method, and the spot irradiation method were examined. In the fixed irradiation method and moving one, stationary solar cells and solar cells moving by conveyer were irradiated by scanning electron beams, respectively. On the other hand, in the spot irradiation method, stationary solar cells were irradiated by non-scanning steady electron beams. It was concluded that the fixed irradiation method was the most proper method. In addition to this, in this study, some pieces of information were obtained with respect to the changes in the electrical characteristics of solar cells caused by the irradiation of electron beams. (author) 52 refs

  18. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    Science.gov (United States)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  19. Studies on gene expressions analyses for Arabidopsis thaliana plants stimulated by space flight condition

    Science.gov (United States)

    Lu, Jinying; Liu, Min; Pan, Yi; Li, Huasheng

    We carried out whole-genome microarray to screen the transcript profile of Arabidopsis thaliana seedlings after three treatment: space microgravity condition( Seedlings grown in microgravity state of space flight of SIMBOX on Shenzhou-8), 1g centrifugal force in space(Seedlings grown in 1g centrifugal force state of space flight of SIMBOX on Shenzhou-8) and ground control. The result of microarray analysis is as followed: There were 368 genes significantly differentially expressed in space microgravity condition compared with that in 1g centrifuge space condition. Space radiation caused 246 genes significantly differentially expressed between seedlings in 1g centrifuge space condition and ground control. Space conditions (including microgravity and radiation) caused 621 genes significantly differentially expressed between seedlings in space microgravity condition and ground control. Microgravity and radiation as a single factor can cause plant gene expression change, but two factors synergism can produce some new effects on plant gene expression. The function of differential expression genes were analyst by bioinformatics, and we found the expression of genes related with stress were more different, such as the dehydration of protein (dehydrin Xero2) expression is up-regulated 57 times; low-temperature-induced protein expression is up-regulated in 49 times; heat shock protein expression is up-regulated 20 times; transcription factor DREB2A expression increase 25 times; protein phosphatase 2C expression is up-regulated 14 times; transcription factor NAM-like protein expression is up-regulated 13 times; cell wall metabolism related genes (xyloglucan, endo-1, 4-beta-D-glucanase) expression is down-regulated in 15 times. The results provide scientific data for the mechanism of space mutation.

  20. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    Science.gov (United States)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level

  1. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  2. Modelling of air-conditioned and heated spaces

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, U

    1987-01-01

    A space represents a complex system involving numerous components, manipulated variables and disturbances which need to be described if dynamic behaviour of space air is to be determined. A justifiable amount of simulation input is determined by the application of adjusted modelling of the individual components. The determination of natural air exchange in heated spaces and of space-air flow in air-conditioned space are a primary source of uncertainties. (orig.).

  3. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  4. Space radiation interaction mechanisms in materials

    International Nuclear Information System (INIS)

    Wilson, J.W.

    1983-01-01

    Models of charged-particle impact under conditions typical of the space environment are reported, with a focus on impact excitation and nuclear reactions, especially for heavy ions. Impact excitation is studied by using a global model for electronic excitation based on formal relations through the classical dielectric function to derive an approximation related to the local plasma (electron density distribution) within the atoms and molecules and corrections to the model resulting from the nonfluid nature of this plasma are discussed. Nuclear reactions are studied by reducing quantum-mechanical treatment of this general N-body problem to an equivalent two-body problem that is solvable, and by comparing the results with experimental data. The equations for heavy-charged-particle transport are derived and solution techniques demonstrated. Finally, these methods of analysis are applied to study the change in the electrical properties of a GaAs semiconductor for photovoltaic applications. Proton damage to GaAs crystals is found to arise from stable replacement defects and to be nonannealable, in contrast to electron-induced damage. 17 references

  5. Desert Cyanobacteria under simulated space and Martian conditions

    Science.gov (United States)

    Billi, D.; Ghelardini, P.; Onofri, S.; Cockell, C. S.; Rabbow, E.; Horneck, G.

    2008-09-01

    isolated from hot desert after prolonged exposure to space and Martian conditions if shielded by few mm of rocky material. In addition, these results further corroborate evidences for the existence in Chroococcidiopsis of mechanisms to both avoid (or limit) and repair DNA damage, which must take place, not only during its prolonged dry storage - when oxidative processes continue even in absence of metabolic activity - but also when dried cells experience additional environmental stressors, including those present in space or on Mars. Indeed, unravelling the DNA repair systems in a desiccation-, radiation- tolerant desert strain of Chroococcidiopsis is the task of ongoing researches at Department of Biology, Università of Rome "Tor Vergata", carried out in the framework of the MoMa project (ASI). Hence, in order to overcome impairments due to the lack of its genome sequence, two genetic approaches were developed, which take advantage of sequenced cyanobacterial genomes. The first one aims to the screening of a prey genomic library of Chroococcidiopsis by using DNA repair baits obtained from Synechocystis PCC 6803. While the second one aims to identify DNA repair genes in the Chroococcidiopsis genome by using evolutionary PCR. Finally, in order to visualize DNA repair factories in Chroococcidiopsis, a GFP-tagging genetic system was developed (Fig. 1). These efforts will contribute to future astrobiological experiments by providing Chroococcidiopsis DNA repair mutants and by offering a real-time monitoring of DNA damaging conditions by using proper GFP fusions.

  6. Role of radiations in assuring quality in space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1993-01-01

    Penetrating radiations such as x-rays, gamma rays, neutrons are extensively used for radiographic inspection of various components used in space programmes. Some of these are rocket motor segments, assembled motors, composite nozzles, igniters, pyro devices, and various critical sub systems. These components employ advanced materials like composites, propellants, insulation materials, alloy steels, maraging steel, pyro techniques etc. Often they are in complex geometrical shapes and assemblies. Simulation of radiation environment on a number of components used in satellites is also carried out using radiation sources. This will help in assessing the effect of terrestrial radiation on the components that work in space. Future trends in the exploitation of radiation for space applications include automated radiography and development of expert systems, computed tomography, improvement in realtime radiography, Compton back scatter tomography etc. Adapting some of the advancements in medical radiology to industrial environment is also a welcome step in future. (author). 2 figs

  7. Dose limits for cosmic radiation during space flights

    International Nuclear Information System (INIS)

    Draaisma, F.S.

    1991-01-01

    Astronauts are exposed to raised levels of ionizing radiation, which may cause biologic effects during space flights. Insights in these effects should lead to doselimits for astronauts during their full career. (author). 4 refs.; 4 tabs

  8. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  9. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  10. Radiation resistance of polymer materials for space

    International Nuclear Information System (INIS)

    Miyauchi, Masahiko; Iwata, Minoru; Yokota, Rikio

    2011-01-01

    The thin film of thermoplastic polyimide with a new asymmetric structure is used in the solar sail 'IKAROS'. Here, the relation of its chemical structure to its thermodynamic properties and radiation resistance is introduced. (M.H.)

  11. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  12. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  13. 'The perception of fear conditioning urban space'

    OpenAIRE

    Fani Bakratsa

    2011-01-01

    The dominant metabolic system within urban environments often involves deep socio-economic inequalities, exploitative productive practices and a persistent sense of alienation among the vast majority of the population. The city itself spawns the conditions both for the development of actual criminality and, more perniciously, for the emergence of an acute perception of fear within the polis. Over the years, this perception has affected a whole array of societal elements including, quite signi...

  14. Space electronics: radiation belts set new challenges

    International Nuclear Information System (INIS)

    Leray, J.L.; Barillot, C.; Boudenot, J.C.

    1999-01-01

    Telecommunications satellites have been in use since 1962 with the first satellite network (constellation) coming into operation in 1966. GPS systems have been available since the mid seventies. Until now, all these systems have avoided orbits which lie within the radiation belts. The latest constellation projects, offering much wider bandwidths, need to use orbits between 1500 and 2000 km, where the proton density is at its highest. The vulnerability of future generations of components can be predicted by extrapolating the behaviour of current devices. Screening is not a viable option due to cost and weight limitations in satellite applications. As a result, satellite and component manufacturers are seeking new methods of hardening components or making them more radiation tolerant in an environment where the radiation levels are ten times those currently experiences. (authors)

  15. Spaced taste avoidance conditioning in Lymnaea.

    Science.gov (United States)

    Takigami, Satoshi; Sunada, Hiroshi; Lukowiak, Ken; Sakakibara, Manabu

    2014-01-01

    We succeeded in taste avoidance conditioning with sucrose as the conditional stimulus (CS) and an electrical stimulus (∼1000V, 80μA) as the unconditional stimulus (US). With 15 paired CS-US presentations on a single day, we were able to elicit both short-term memory (STM) and long-term memory (LTM) persisting for at least one week. However, while STM was elicited with 5, 8, 10, and 20 paired presentations of the CS-US on a single day, LTM was not. We found, however, that if we inserted a 3h interval between a first and a second set of CS-US pairings that both 8 and 20 paired CS-US presentations on a single day was now sufficient to cause LTM formation. Exposing snails to bryostatin before or during training enhanced LTM formation such that 8 paired presentations of the CS-US resulted in LTM. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. NDT using ionising radiation in the Indian space programme

    International Nuclear Information System (INIS)

    Viswanathan, K.

    1997-01-01

    Ionising radiations continue to play a vital role in the Non-Destructive Evaluation (NDE) of various components used in space vehicles and satellites. The different Non-Destructive Testing (NDT) methods which are useful to the Indian space programme are discussed. 4 refs., 5 figs

  17. Acceptability of risk from radiation: Application to human space flight

    International Nuclear Information System (INIS)

    1997-01-01

    This one of NASA's sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  18. Acceptability of risk from radiation: Application to human space flight

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-30

    This one of NASA`s sponsored activities of the NCRP. In 1983, NASA asked NCRP to examine radiation risks in space and to make recommendations about career radiation limits for astronauts (with cancer considered as the principal risk). In conjunction with that effort, NCRP was asked to convene this symposium; objective is to examine the technical, strategic, and philosophical issues pertaining to acceptable risk and radiation in space. Nine papers are included together with panel discussions and a summary. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  20. Radiation dose assessment in space missions. The MATROSHKA experiment

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2010-01-01

    The exact determination of radiation dose in space is a demanding and challenging task. Since January 2004, the International Space Station is equipped with a human phantom which is a key part of the MATROSHKA Experiment. The phantom is furnished with thousands of radiation sensors for the measurement of depth dose distribution, which has enabled the organ dose calculation and has demonstrated that personal dosemeter at the body surface overestimates the effective dose during extra-vehicular activity by more than a factor two. The MATROSHKA results serve to benchmark models and have therefore a large impact on the extrapolation of models to outer space. (author)

  1. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  2. Low-Load Space Conditioning Needs Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2015-05-19

    Heating, ventilating, and air-conditioning (HVAC) equipment must be right-sized to ensure energy performance and comfort. With limited low-load options in the HVAC market, many new-construction housing units are being fitted with oversized equipment that creates system efficiency, comfort, and cost penalties. To bridge the gap between currently available HVAC equipment that is oversized or inefficient and the rising demand for low-load HVAC equipment in the marketplace, HVAC equipment manufacturers need to be fully aware of the needs of the multifamily building and attached single-family (duplex and townhouse) home market. Over the past decade, Steven Winter Associates, Inc. (SWA) has provided certification and consulting services for hundreds of housing projects and has accrued a large pool of data that describe multifamily and attached single-family home characteristics. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) compiled and analyzed these data to outline the characteristics of low-load dwellings such as the heating and cooling design loads.

  3. Radiation Protection Studies of International Space Station Extravehicular Activity Space Suits

    Science.gov (United States)

    Cucinotta, Francis A. (Editor); Shavers, Mark R. (Editor); Saganti, Premkumar B. (Editor); Miller, Jack (Editor)

    2003-01-01

    This publication describes recent investigations that evaluate radiation shielding characteristics of NASA's and the Russian Space Agency's space suits. The introduction describes the suits and presents goals of several experiments performed with them. The first chapter provides background information about the dynamic radiation environment experienced at ISS and summarized radiation health and protection requirements for activities in low Earth orbit. Supporting studies report the development and application of a computer model of the EMU space suit and the difficulty of shielding EVA crewmembers from high-energy reentrant electrons, a previously unevaluated component of the space radiation environment. Chapters 2 through 6 describe experiments that evaluate the space suits' radiation shielding characteristics. Chapter 7 describes a study of the potential radiological health impact on EVA crewmembers of two virtually unexamined environmental sources of high-energy electrons-reentrant trapped electrons and atmospheric albedo or "splash" electrons. The radiological consequences of those sources have not been evaluated previously and, under closer scrutiny. A detailed computational model of the shielding distribution provided by components of the NASA astronauts' EMU is being developed for exposure evaluation studies. The model is introduced in Chapters 8 and 9 and used in Chapter 10 to investigate how trapped particle anisotropy impacts female organ doses during EVA. Chapter 11 presents a review of issues related to estimating skin cancer risk form space radiation. The final chapter contains conclusions about the protective qualities of the suit brought to light form these studies, as well as recommendations for future operational radiation protection.

  4. Overcoming black body radiation limit in free space: metamaterial superemitter

    Science.gov (United States)

    Maslovski, Stanislav I.; Simovski, Constantin R.; Tretyakov, Sergei A.

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff-Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices.

  5. Overcoming black body radiation limit in free space: metamaterial superemitter

    International Nuclear Information System (INIS)

    Maslovski, Stanislav I; Simovski, Constantin R; Tretyakov, Sergei A

    2016-01-01

    Here, we demonstrate that the power spectral density of thermal radiation at a specific wavelength produced by a body of finite dimensions set up in free space under a fixed temperature could be made theoretically arbitrary high, if one could realize double negative metamaterials with arbitrary small loss and arbitrary high absolute values of permittivity and permeability (at a given frequency). This result refutes the widespread belief that Planck’s law itself sets a hard upper limit on the spectral density of power emitted by a finite macroscopic body whose size is much greater than the wavelength. Here we propose a physical realization of a metamaterial emitter whose spectral emissivity can be greater than that of the ideal black body under the same conditions. Due to the reciprocity between the heat emission and absorption processes such cooled down superemitter also acts as an optimal sink for the thermal radiation—the ‘thermal black hole’—which outperforms Kirchhoff–Planck’s black body which can absorb only the rays directly incident on its surface. The results may open a possibility to realize narrowband super-Planckian thermal radiators and absorbers for future thermo-photovoltaic systems and other devices. (paper)

  6. Applications of Radiative Heating for Space Exploration

    Science.gov (United States)

    Brandis, Aaron

    2017-01-01

    Vehicles entering planetary atmospheres at high speeds (6 - 12 kms) experience intense heating by flows with temperatures of the order 10 000K. The flow around the vehicle experiences significant dissociation and ionization and is characterized by thermal and chemical non-equilibrium near the shock front, relaxing toward equilibrium. Emission from the plasma is intense enough to impart a significant heat flux on the entering spacecraft, making it necessary to predict the magnitude of radiative heating. Shock tubes represent a unique method capable of characterizing these processes in a flight-similar environment. The Electric Arc Shock tube (EAST) facility is one of the only facilities in its class, able to produce hypersonic flows at speeds up to Mach 50. This talk will review the characterization of radiation measured in EAST with simulations by the codes DPLR and NEQAIR, and in particular, focus on the impact these analyses have on recent missions to explore the solar system.

  7. PAMELA Space Mission: The Transition Radiation Detector

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  8. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  9. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  10. Adaptation of radiation shielding code to space environment

    International Nuclear Information System (INIS)

    Okuno, Koichi; Hara, Akihisa

    1992-01-01

    Recently, the trend to the development of space has heightened. To the development of space, many problems are related, and as one of them, there is the protection from cosmic ray. The cosmic ray is the radiation having ultrahigh energy, and there was not the radiation shielding design code that copes with cosmic ray so far. Therefore, the high energy radiation shielding design code for accelerators was improved so as to cope with the peculiarity that cosmic ray possesses. Moreover, the calculation of the radiation dose equivalent rate in the moon base to which the countermeasures against cosmic ray were taken was simulated by using the improved code. As the important countermeasures for the safety protection from radiation, the covering with regolith is carried out, and the effect of regolith was confirmed by using the improved code. Galactic cosmic ray, solar flare particles, radiation belt, the adaptation of the radiation shielding code HERMES to space environment, the improvement of the three-dimensional hadron cascade code HETCKFA-2 and the electromagnetic cascade code EGS 4-KFA, and the cosmic ray simulation are reported. (K.I.)

  11. Unified formulation of radiation conditions for the wave equation

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    A family of radiation conditions for the wave equation is derived by truncating a rational function approxiamtion of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second......-order wave equations on the radiating surface. Several well-established radiation boundary conditions appear as special cases, corresponding to different choice of the coefficients in the rational approximation. The relation between these choices is established, and an explicit formulation in terms...

  12. Some comments on space flight and radiation limits

    International Nuclear Information System (INIS)

    Thornton, W.E.

    1997-01-01

    Setting limits on human exposure to space-related radiation involves two very different processes - the appropriate hard science, and certain emotional aspects and expectations of the groups involved. These groups include the general public and their elected politicians, the astronauts and flight crews, and NASA managers, each group with different expectations and concerns. Public and political views of human space flight and human radiation exposures are often poorly informed and are often based on emotional reactions to current events which may be distorted by 'experts' and the media. Career astronauts' and cosmonauts' views are much more realistic about the risks involved and there is a willingness on their part to accept increased necessary risks. However, there is a concern on their part about career-threatening dose limits, the potential for overexposures, and the health effects from all sources of radiation. There is special concern over radiation from medical studies. This last concern continues to raise the question of 'voluntary' participation in studies involving radiation exposure. There is greatly diversity in spaceflight crews and their expectations; and 'official' Astronaut Office positions will reflect strong management direction. NASA management has its own priorities and concerns and this fact will be reflected in their crucial influence on radiation limits. NASA, and especially spaceflight crews, might be best served by exposure limits which address all sources of spaceflight radiation and all potential effects from such exposure. radiation and all potential effects from such exposure

  13. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  14. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    Science.gov (United States)

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  15. Effects of space-relevant radiation on pre-osteoblasts

    International Nuclear Information System (INIS)

    Hu, Yueyuan

    2014-01-01

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  16. Effects of space-relevant radiation on pre-osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yueyuan

    2014-02-12

    Until now limited research has been conducted to address the mechanisms leading ionizing radiation exposure induced bone loss. This is relevant for cancer radiotherapy and human spaceflight. Exposure to radiation can result in elevated bone fracture risk in patients receiving cancer radiotherapy. In human spaceflight, astronauts are exposed to space radiation which is a very complex mixture consisting primarily of high-energy charged particles. Osteoblasts are of mesenchymal origin and responsible for creating and maintaining skeletal architecture; these cells produce extracellular matrix proteins and regulators of matrix mineralization during initial bone formation and later bone remodeling. The aim of this work was to investigate the effects of ionizing radiation on pre-osteoblasts including cellular survival, cell cycle regulation and differentiation modification. Experiments with the pre-osteoblast cell line OCT-1 and the mesenchymal stem cell line C3H10T1/2 showed that radiation cell killing depends on dose and linear energy transfer (LET) and is most effective at an LET of ∝150 keV/μm. High-LET radiation has a much more pronounced ability to induce cell cycle arrest in the G2/M phase. After both X-rays and heavy ions exposure, expression of the cell cycle regulator CDKN1A was significantly up-regulated in a dose-dependent manner. The findings suggest that cell cycle regulation is more sensitive to high-LET radiation than cell survival, which is not solely regulated through elevated CDKN1A expression. Radiation exposure enhances osteoblastic differentiation and maturation, and mediates Runx2 and TGF-β1 expression during early differentiation of pre-osteoblasts. Osteogenic differentiation did not alter cellular radiosensitivity, DNA repair of radiation-induced damages and the effects of radiation on proliferation. Further experiments are needed to elucidate possible synergistic effects of microgravity and radiation on osteoblast differentiation. This may

  17. Controlling criteria for radiation exposure of astronauts and space workers

    International Nuclear Information System (INIS)

    Katoh, Kazuaki

    1989-01-01

    Space workers likely to suffer from radiation exposure in the outer space are currently limited to the U.S. and Soviet Union, and only a small amount of data and information is available concerning the techniques and criteria for control of radiation exposure in this field. Criteria used in the Soviet Union are described first. The criteria (TRS-75), called the Radiation Safety Criteria for Space Navigation, are tentative ones set up in 1975. They are based on risk assessment. The standard radiation levels are established based on unit flight time: 50rem for 1 month, 80rem for 3 months, 110rem for 6 months and 150rem for 12 months. These are largely different from the emergency exposure limit of 100mSv (10rem) specified in a Japanese law, and the standard annual exposure value of 50mSv (5rem) for workers in nuclear power plants at normal times. For the U.S., J.A. Angelo, Jr., presented a paper titled 'Radiation Protection Issues and Techniques concerning Extended Manned Space Missions' at an IAEA meeting held in 1988. Though the criteria shown in the paper are not formal ones at the national level, similar criteria are expected to be adopted by the nation in the near future. The exposure limits recommended in the paper include a depth dose of 1-4Sv for the whole life span of a worker. (Nogami, K.)

  18. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  19. BioSentinel: Developing a Space Radiation Biosensor

    Science.gov (United States)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  20. A high precision radiation-tolerant LVDT conditioning module

    CERN Document Server

    Masi, A; Losito, R; Peronnard, P; Secondo, R; Spiezia, G

    2014-01-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. ...

  1. Study on biological response to space radiation and its countermeasure

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground.

  2. Study on biological response to space radiation and its countermeasure

    International Nuclear Information System (INIS)

    Choi, Jong Il; Lee, Ju Woon; Kim, Dong Ho; Kim, Jae Hun; Song, Beom Suk; Kim, Jae Kyung; Park, Jong Heum; Kim, Jin Kyu

    2011-12-01

    The purpose is to develop the core technologies for the advanced life supporting system based on radiation technology by 2015 and to be a member of G7 in the space technology research field. And it is the final aim that contribution for establishment of the self-supporting technology and national strength by 2020. To simulate the space environment of microgravity and expose to space radiation, denervation model was established in Gamma Phytotron. The changes in microflora population in animal model was shown. The effect of simulated microgravity and long-term exposure to irradiation was investigated. In the experiment of MARS 500, crews for expedition to Mars had been served by Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground

  3. Lightweight space radiator with leakage control by internal electrostatic fields

    International Nuclear Information System (INIS)

    Kim, H.; Bankoff, S.G.; Miksis, M.J.

    1991-01-01

    An electrostatic liquid film space radiator is proposed. This will employ an internal electrostatic field to prevent leakage of the liquid-metal coolant out of a puncture. This overcomes the major disadvantage of membrane radiators, which is their vulnerability to micrometeorite impacts. Calculations show that leaks of liquid lithium at 700 degree K can easily be stopped from punctures which are several mm in diameter, with very large safety factors. The basic idea lends itself to a variety of radiator concepts, both rotating and non-rotating. Some typical film thickness and pressure calculations in the presence of an electric field are shown

  4. Gamma radiation in ceramic capacitors: a study for space missions

    Science.gov (United States)

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  5. Method of radiation degradation of PTFE under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com

    2004-10-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  6. Method of radiation degradation of PTFE under vacuum conditions

    Science.gov (United States)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  7. Validation of elastic cross section models for space radiation applications

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center (United States); Xu, X. [National Institute of Aerospace (United States); Norman, R.B. [NASA Langley Research Center (United States); Ford, W.P. [The University of Tennessee (United States); Maung, K.M. [The University of Southern Mississippi (United States)

    2017-02-01

    The space radiation field is composed of energetic particles that pose both acute and long-term risks for astronauts in low earth orbit and beyond. In order to estimate radiation risk to crew members, the fluence of particles and biological response to the radiation must be known at tissue sites. Given that the spectral fluence at the boundary of the shielding material is characterized, radiation transport algorithms may be used to find the fluence of particles inside the shield and body, and the radio-biological response is estimated from experiments and models. The fidelity of the radiation spectrum inside the shield and body depends on radiation transport algorithms and the accuracy of the nuclear cross sections. In a recent study, self-consistent nuclear models based on multiple scattering theory that include the option to study relativistic kinematics were developed for the prediction of nuclear cross sections for space radiation applications. The aim of the current work is to use uncertainty quantification to ascertain the validity of the models as compared to a nuclear reaction database and to identify components of the models that can be improved in future efforts.

  8. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  9. IVVS actuating system compatibility test to ITER gamma radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: paolo.rossi@enea.it [Associazione EURATOM-ENEA sulla Fusione, 45 Via Enrico Fermi, 00044 Frascati, Rome (Italy); Collibus, M. Ferri de; Florean, M.; Monti, C.; Mugnaini, G.; Neri, C.; Pillon, M.; Pollastrone, F. [Associazione EURATOM-ENEA sulla Fusione, 45 Via Enrico Fermi, 00044 Frascati, Rome (Italy); Baccaro, S.; Piegari, A. [ENEA CR Casaccia, 301 Via Anguillarese, 00123 Santa Maria di Galeria, Rome (Italy); Damiani, C.; Dubus, G. [Fusion For Energy c/Josep Pla, n° 2 Torres Diagonal Litoral, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: • ENEA developed and tested a prototype of a laser In Vessel Viewing and ranging System (IVVS) for ITER. • One piezo-motor prototype has been tested on the ENEA Calliope gamma irradiation facility to verify its compatibility to ITER gamma radiation conditions. • After a total dose of more than 4 MGy the piezo-motor maintained almost the same working parameters monitored before test without any evident and significant degradation of functionality. • After the full gamma irradiation test, the same piezo-motor assembly will be tested with 14 MeV neutrons irradiation using ENEA FNG facility. -- Abstract: The In Vessel Viewing System (IVVS) is a fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A design and testing activity is ongoing, in the framework of a Fusion for Energy (F4E) grant agreement, to make the IVVS probe design compatible with ITER operating conditions and in particular, but not only, with attention to neutrons and gammas fluxes and both space constraints and interfaces. The paper describes the testing activity performed on the customized piezoelectric motors and the main components of the actuating system of the IVVS probe with reference to ITER gamma radiation conditions. In particular the test is performed on the piezoelectric motor, optical encoder and small scale optical samples .The test is carried out on the ENEA Calliope gamma irradiation facility at ITER relevant gamma fields at rate of about 2.5 kGy/h and doses of 4 MGy. The paper reports in detail the setup arrangement of the test campaign in order to verify significant working capability of the IVVS actuating components and the results are shown in terms of functional performances and parameters. The overall test campaign on IVVS actuating system will be completed on other ENEA testing facilities in order to verify compatibility to Magnetic field, neutrons and thermal

  10. IVVS actuating system compatibility test to ITER gamma radiation conditions

    International Nuclear Information System (INIS)

    Rossi, Paolo; Collibus, M. Ferri de; Florean, M.; Monti, C.; Mugnaini, G.; Neri, C.; Pillon, M.; Pollastrone, F.; Baccaro, S.; Piegari, A.; Damiani, C.; Dubus, G.

    2013-01-01

    Highlights: • ENEA developed and tested a prototype of a laser In Vessel Viewing and ranging System (IVVS) for ITER. • One piezo-motor prototype has been tested on the ENEA Calliope gamma irradiation facility to verify its compatibility to ITER gamma radiation conditions. • After a total dose of more than 4 MGy the piezo-motor maintained almost the same working parameters monitored before test without any evident and significant degradation of functionality. • After the full gamma irradiation test, the same piezo-motor assembly will be tested with 14 MeV neutrons irradiation using ENEA FNG facility. -- Abstract: The In Vessel Viewing System (IVVS) is a fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A design and testing activity is ongoing, in the framework of a Fusion for Energy (F4E) grant agreement, to make the IVVS probe design compatible with ITER operating conditions and in particular, but not only, with attention to neutrons and gammas fluxes and both space constraints and interfaces. The paper describes the testing activity performed on the customized piezoelectric motors and the main components of the actuating system of the IVVS probe with reference to ITER gamma radiation conditions. In particular the test is performed on the piezoelectric motor, optical encoder and small scale optical samples .The test is carried out on the ENEA Calliope gamma irradiation facility at ITER relevant gamma fields at rate of about 2.5 kGy/h and doses of 4 MGy. The paper reports in detail the setup arrangement of the test campaign in order to verify significant working capability of the IVVS actuating components and the results are shown in terms of functional performances and parameters. The overall test campaign on IVVS actuating system will be completed on other ENEA testing facilities in order to verify compatibility to Magnetic field, neutrons and thermal

  11. Space radiation dosimetry in low-Earth orbit and beyond

    International Nuclear Information System (INIS)

    Benton, E.R.; Benton, E.V.

    2001-01-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars

  12. On the Response of Halophilic Archaea to Space Conditions

    Science.gov (United States)

    Leuko, Stefan; Rettberg, Petra; Pontifex, Ashleigh L.; Burns, Brendan P.

    2014-01-01

    Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated. PMID:25370029

  13. On the Response of Halophilic Archaea to Space Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Leuko

    2014-02-01

    Full Text Available Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth’s protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.

  14. What Reliability Engineers Should Know about Space Radiation Effects

    Science.gov (United States)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the

  15. Simulation of space radiation effects on polyimide film materials for high temperature applications. Final report

    International Nuclear Information System (INIS)

    Fogdall, L.B.; Cannaday, S.S.

    1977-11-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics

  16. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  17. NASA FACILITY FOR THE STUDY OF SPACE RADIATION EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R.

    1963-04-15

    Information on the energies andd fluxes of trapped electrons and protons in space is summarized, and the Space Radiation Effects Laboratory being constructed to simulate most of the space particulate-energy spectrum is described. A 600-Mev proton synchrocyclotron of variable energy and electron accelerators of 1 to 10 Mev will be included. The accelerator characteristics and the arrangement of the experimental and support buildings, particularly the beam facilities, are discussed; and the planned activities of the laboratory are given. (D.C.W.)

  18. Reducing Human Radiation Risks on Deep Space Missions

    Science.gov (United States)

    2017-09-01

    101 Figure 49. Human Health, Life Support, and Habitation System...2013). These same studies reveal that for astronauts returning home, this may result in significant loss of lifespan and quality of life due to...warnings to the satellites in orbit at either planet , or to spacecraft in transit (Phys.org 2010). C. IMPROVEMENTS TO MEASUREMENTS OF SPACE RADIATION

  19. Web-based description of the space radiation environment using the Bethe-Bloch model

    Science.gov (United States)

    Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important

  20. Web-based description of the space radiation environment using the Bethe–Bloch model

    International Nuclear Information System (INIS)

    Cazzola, Emanuele; Lapenta, Giovanni; Calders, Stijn

    2016-01-01

    Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe–Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most

  1. Conditions of radiation protection in medical stations

    International Nuclear Information System (INIS)

    Sa, L.R.B.S.; Tomaz Neto, A.; Pires, A.; Azevedo, H.; Boasquevisque, E.M.

    1988-01-01

    The purpose of this study is to clear up what safety procedures are normally' observed for occupational and environmental radiology. 30 Public Medical station in Rio de Janeiro were investigated. A questionaire of 13 questions was prepared to be filled up by the professionals directly involved with the radiologic work, intending to evaluate, the personal and environmental aspect of radioprotection, the individual responsability of each worker and of the whole institution. It was also verified that knowledge of safety norms is doubtful and precarious in the despite of the fact that a great number of the people in question declare to have specific graduation for the activity. Only 45% from the total really make use of the dosimeters, the periodical medical examinations are not frequent (65%), and fewer employes make use of this lead apron (23%). We come to the conclusion that there is a remarkable bewilderment as for the personal observences about the work conditions in controlled areas. (author) [pt

  2. NASA Space Radiation Risk Project: Overview and Recent Results

    Science.gov (United States)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  3. A radiation hardened digital fluxgate magnetometer for space applications

    Science.gov (United States)

    Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.

    2013-09-01

    Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.

  4. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  5. Nonsteady heat conduction code with radiation boundary conditions

    International Nuclear Information System (INIS)

    Fillo, J.A.; Benenati, R.; Powell, J.

    1975-01-01

    A heat-transfer model for studying the temperature build-up in graphite blankets for fusion reactors is presented. In essence, the computer code developed is for two-dimensional, nonsteady heat conduction in heterogeneous, anisotropic solids with nonuniform internal heating. Thermal radiation as well as bremsstrahlung radiation boundary conditions are included. Numerical calculations are performed for two design options by varying the wall loading, bremsstrahlung, surface layer thickness and thermal conductivity, blanket dimensions, time step and grid size. (auth)

  6. Mechanisms of radiation-induced conditioned taste aversion learning

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.

    1986-01-01

    The literature on taste aversion learning is reviewed and discussed, with particular emphasis on those studies that have used exposure to ionizing radiation as an unconditioned stimulus to produce a conditioned taste aversion. The primary aim of the review is to attempt to define the mechanisms that lead to the initiation of the taste aversion response following exposure to ionizing radiation. Studies using drug treatments to produce a taste aversion have been included to the extent that they are relevant to understanding the mechanisms by which exposure to ionizing radiation can affect the behavior of the organism. 141 references

  7. Evaluation of radiation protection conditions in intraoral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, Cristiano; Barros, Frieda Saicla; Rocha, Anna Silvia Penteado Setti da, E-mail: miguel_cristianoch@yahoo.com.br [Universidade Tecnologica Federal do Parana (PPGEB/UTFPR), Curitiba, PR (Brazil). Programa de Pos-graduacao em Engenharia Biomedica; Tilly Junior, Joao Gilberto [Universidade Federal do Parana (UNIR/UFPR), Curitiba, PR (Brazil). Hospital de Clinicas. Unidade de Imagem e Radioterapia; Almeida, Claudio Domingues de [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2016-04-15

    Introduction: The dental radiology represents about 20% of human exposure to radiation in radio diagnostic. Although the doses practiced in intraoral dentistry are considered low, they should not be ignored due to the volume of the performed procedures. This study presents the radiation protection conditions for intraoral radiology in Curitiba - PR. Methods: Data was collected through a quantitative field research of a descriptive nature during the period between September of 2013 and December of 2014. The survey sample consisted of 97 dentists and 130 intraoral equipment. The data related to the equipment was collected using structured questions and quality control evaluations. The evaluations of the entrance skin dose, the size of the radiation field and the total filtration were performed with dosimetry kits provided and evaluated by IRD/CNEN. The exposure time and voltage were measured using noninvasive detectors. The occupational dose was verified by thermoluminescent dosimeters. The existence of personal protection equipment, the type of image processing and knowledge of dentists about radiation protection were verified through the application of a questionnaire. Results: Among the survey's results, it is important to emphasize that 90% of the evaluated equipment do not meet all the requirements of the Brazilian radiation protection standards. Conclusion: The lack of knowledge about radiation protection, the poor operating conditions of the equipment, and the image processing through visual method are mainly responsible for the unnecessary exposure of patients to ionizing radiation. (author)

  8. NASA Self-Assessment of Space Radiation Research

    Science.gov (United States)

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  9. Blackbody radiation from light cone in flat space time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)

  10. Array element of a space-based synchrotron radiation detector

    International Nuclear Information System (INIS)

    Lee, M.W.; Commichau, S.C.; Kim, G.N.; Son, D.; Viertel, G.M.

    2006-01-01

    A synchrotron radiation detector (SRD) has been proposed as part of the Alpha Magnetic Spectrometer experiment on the International Space Station to study cosmic ray electrons and positrons in the TeV energy range. The SRD will identify these particles by detecting their emission of synchrotron radiation in the Earth's magnetic field. This article reports on the study of key technical parameters for the array elements which form the SRD, including the choice of the detecting medium, the sensor and the readout system

  11. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  12. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  13. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  14. A high precision radiation-tolerant LVDT conditioning module

    Energy Technology Data Exchange (ETDEWEB)

    Masi, A. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Danzeca, S. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); IES, F-34000 Montpellier (France); Losito, R.; Peronnard, P. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Secondo, R., E-mail: raffaello.secondo@cern.ch [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Spiezia, G. [EN/STI Group, CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland)

    2014-05-01

    Linear variable differential transformer (LVDT) position sensors are widely used in particle accelerators and nuclear plants, thanks to their properties of contact-less sensing, radiation tolerance, infinite resolution, good linearity and cost efficiency. Many applications require high reading accuracy, even in environments with high radiation levels, where the conditioning electronics must be located several hundred meters away from the sensor. Sometimes even at long distances the conditioning module is still exposed to ionizing radiation. Standard off-the-shelf electronic conditioning modules offer limited performances in terms of reading accuracy and long term stability already with short cables. A radiation tolerant stand-alone LVDT conditioning module has been developed using Commercial Off-The-Shelf (COTS) components. The reading of the sensor output voltages is based on a sine-fit algorithm digitally implemented on an FPGA ensuring few micrometers reading accuracy even with low signal-to-noise ratios. The algorithm validation and board architecture are described. A full metrological characterization of the module is reported and radiation tests results are discussed.

  15. Conditions for licensing workers exposed to ionizing radiation

    International Nuclear Information System (INIS)

    2007-01-01

    This entrance speaking on conditions of license workers in the areas of employment ionizing radiation addresses two aspects, the first aspect: industrial applications: speak for the workers in this area by a supervisor to portray industrial and industrial photographer and a supervisor sounding wells and a Nuclear Gauges Supervisor and the previous and subsequent Practices of the law The second aspect: about the medical applications and describes the general conditions of the licenses in this area and those working in this area of professional diagnostic radiology and nuclear medicine technician and technician treatment of radiotherapy and radiation protection officers at large and small institutions

  16. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  17. SOA based intensive support system for space radiation data

    International Nuclear Information System (INIS)

    Goranova, M.; Shishedjiev, B.; Genova, S.; Semkova, J.

    2013-01-01

    Modern data intensive science involves heterogeneous and structured data sets in sophisticated data formats. Scientists need access to distributed computing and data sources and support for remote access to expensive, multinational specialized instruments. Scientists need effective software for data analysis, querying, accessing and visualization. The interaction between computer science and science and engineering becomes essential for the automation of data manipulation. The key solution uses the Service-oriented Architecture (SOA) in the field of science and Grid computing. The goal of this paper is managing the scientific data received by the Lyulin-5 particle telescope used in MATROSHKA-R experiment performed at the International Space Station (ISS). The dynamics of radiation characteristics and their dependency on the time and the orbital parameters have been established. The experiment helps the accurate estimation of the impact of space radiation on human health in long-duration manned missions

  18. Actual conditions of radiation control in radioisotope utilization field

    International Nuclear Information System (INIS)

    Kakihara, Koji

    1980-01-01

    It may be said that the actual conditions on radiation safety are being improved in utilizing radioisotopes or radiation in Japan. It depends greatly on the results of the voluntary effort of users and the regulations by the ''radiation injury prevention law'' and its relevant ordinances. However, the actual conditions of the strict observation of the law are much insufficient. According to the results of official inspection in 1978, 60% of whole enterprises concerned and 73% of educational and medical organizations were judged as incomplete. Such tendency should not be left as it is, but it should also be noticed that there are realities that critical accidents or injuries have not occurred even in such conditions as many violations mentioned above. Since the existing law has not been subjected to essential revision in the past two decades, it might be said that the law does not properly fit to the present conditions because the progress of related techniques was made during this period. Meanwhile, difficulties exist in measuring the low level concentration in the use of low energy radioisotopes or tracer experiments such as in the process analysis in factories or in the analysis of the movement of trace constituent in soil. Further, there is a problem on the necessity of securing the chief technicians handling radiation, and there is the contradiction that the chief technicians are useless in normal condition but are powerless in case of accidents. This situation should be improved as soon as possible. (Wakatsuki, Y.)

  19. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  20. Power conditioning for large dc motors for space flight applications

    Science.gov (United States)

    Veatch, Martin S.; Anderson, Paul M.; Eason, Douglas J.; Landis, David M.

    1988-01-01

    The design and performance of a prototype power-conditioning system for use with large brushless dc motors on NASA space missions are discussed in detail and illustrated with extensive diagrams, drawings, and graphs. The 5-kW 8-phase parallel module evaluated here would be suitable for use in the Space Shuttle Orbiter cargo bay. A current-balancing magnetic assembly with low distributed inductance permits high-speed current switching from a low-voltage bus as well as current balancing between parallel MOSFETs.

  1. Mitigating radiation damage of single photon detectors for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Anisimova, Elena; Higgins, Brendon L.; Bourgoin, Jean-Philippe [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Cranmer, Miles [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Choi, Eric [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); Magellan Aerospace, Ottawa, ON (Canada); Hudson, Danya; Piche, Louis P.; Scott, Alan [Honeywell Aerospace (formerly COM DEV Ltd.), Ottawa, ON (Canada); Makarov, Vadim [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); University of Waterloo, Department of Electrical and Computer Engineering, Waterloo, ON (Canada); Jennewein, Thomas [University of Waterloo, Institute for Quantum Computing, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Canadian Institute for Advanced Research, Quantum Information Science Program, Toronto, ON (Canada)

    2017-12-15

    Single-photon detectors in space must retain useful performance characteristics despite being bombarded with sub-atomic particles. Mitigating the effects of this space radiation is vital to enabling new space applications which require high-fidelity single-photon detection. To this end, we conducted proton radiation tests of various models of avalanche photodiodes (APDs) and one model of photomultiplier tube potentially suitable for satellite-based quantum communications. The samples were irradiated with 106 MeV protons at doses approximately equivalent to lifetimes of 0.6, 6, 12 and 24 months in a low-Earth polar orbit. Although most detection properties were preserved, including efficiency, timing jitter and afterpulsing probability, all APD samples demonstrated significant increases in dark count rate (DCR) due to radiation-induced damage, many orders of magnitude higher than the 200 counts per second (cps) required for ground-to-satellite quantum communications. We then successfully demonstrated the mitigation of this DCR degradation through the use of deep cooling, to as low as -86 C. This achieved DCR below the required 200 cps over the 24 months orbit duration. DCR was further reduced by thermal annealing at temperatures of +50 to +100 C. (orig.)

  2. Lightweight Radiator for in Space Nuclear Electric Propulsion

    Science.gov (United States)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  3. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  4. Optimised mounting conditions for poly (ether sulfone) in radiation detection.

    Science.gov (United States)

    Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Yamada, Tatsuya; Kitamura, Hisashi; Takahashi, Sentaro

    2014-09-01

    Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  6. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  7. NASA Strategy to Safely Live and Work in the Space Radiation Environment

    Science.gov (United States)

    Cucinotta, Francis; Wu, Honglu; Corbin, Barbara; Sulzman, Frank; Kreneck, Sam

    2007-01-01

    This viewgraph document reviews the radiation environment that is a significant potential hazard to NASA's goals for space exploration, of living and working in space. NASA has initiated a Peer reviewed research program that is charged with arriving at an understanding of the space radiation problem. To this end NASA Space Radiation Laboratory (NSRL) was constructed to simulate the harsh cosmic and solar radiation found in space. Another piece of the work was to develop a risk modeling tool that integrates the results from research efforts into models of human risk to reduce uncertainties in predicting risk of carcinogenesis, central nervous system damage, degenerative tissue disease, and acute radiation effects acute radiation effects.

  8. Cytogenetic examination of cosmonauts for space radiation exposure estimation

    Science.gov (United States)

    Snigiryova, G. P.; Novitskaya, N. N.; Fedorenko, B. S.

    2012-08-01

    PurposeTo evaluate radiation induced chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). Materials and methodsCytogenetic examination which has been performed in the period 1992-2008 included the analysis of chromosome aberrations using conventional Giemsa staining method in 202 blood samples from 48 cosmonauts who participated in flights on Mir Orbital Station and ISS. ResultsSpace flights led to an increase of chromosome aberration frequency. Frequency of dicentrics plus centric rings (Dic+Rc) depend on the space flight duration and accumulated dose value. After the change of space stations (from Mir Orbital Station to ISS) the radiation load of cosmonauts based on data of cytogenetic examination decreased. Extravehicular activity also adds to chromosome aberration frequency in cosmonauts' blood lymphocytes. Average doses after the first flight, estimated by the frequency of Dic+Rc, were 227 and 113 mGy Eq for long-term flights (LTF) and 107 and 53 mGy Eq for short-term flights (STF). ConclusionCytogenetic examination of cosmonauts can be applied to assess equivalent doses.

  9. Determination of alternative conditions for instruments calibration with beta radiation

    International Nuclear Information System (INIS)

    Rocha, F.D.G.; Caldas, L.V.E.

    1992-01-01

    The influence of homogenization filter in the determination of chamber calibration factors and transmission factors of beta radiation in air, for obtaining different alternative conditions for beta-gamma portable monitors calibration was studied, using an extrapolation chamber and the beta secondary system at IPEN-CNEN-Brazil. (C.G.C.)

  10. Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding

    Science.gov (United States)

    Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.

    2009-01-01

    The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater

  11. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  12. Optimizing grade-control drillhole spacing with conditional simulations

    Directory of Open Access Journals (Sweden)

    Adrian Martínez-Vargas

    2017-01-01

    Full Text Available This paper summarizes a method to determine the optimum spacing of grade-control drillholes drilled with reverse-circulation. The optimum drillhole spacing was defined as that one whose cost equals the cost of misclassifying ore and waste in selection mining units (SMU. The cost of misclassification of a given drillhole spacing is equal to the cost of processing waste misclassified as ore (Type I error plus the value of the ore misclassified as waste (Type II error. Type I and Type II errors were deduced by comparing true and estimated grades at SMUs, in relation to a cuttoff grade value and assuming free ore selection. True grades at SMUs and grades at drillhole samples were generated with conditional simulations. A set of estimated grades at SMU, one per each drillhole spacing, were generated with ordinary kriging. This method was used to determine the optimum drillhole spacing in a gold deposit. The results showed that the cost of misclassification is sensitive to extreme block values and tend to be overrepresented. Capping SMU’s lost values and implementing diggability constraints was recommended to improve calculations of total misclassification costs.

  13. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  14. CFD-simulation of radiator for air cooling of microprocessors in a limitided space

    Directory of Open Access Journals (Sweden)

    Trofimov V. E.

    2016-12-01

    Full Text Available One of the final stages of microprocessors development is heat test. This procedure is performed on a special stand, the main element of which is the switching PCB with one or more mounted microprocessor sockets, chipsets, interfaces, jumpers and other components which provide various modes of microprocessor operation. The temperature of microprocessor housing is typically changed using thermoelectric module. The cold surface of the module with controlled temperature is in direct thermal contact with the microprocessor housing designed for cooler installation. On the hot surface of the module a radiator is mounted. The radiator dissipates the cumulative heat flow from both the microprocessor and the module. High density PCB layout, the requirement of free access to the jumpers and interfaces, and the presence of numerous sensors limit the space for radiator mounting and require the use of an extremely compact radiator, especially in air cooling conditions. One of the possible solutions for this problem may reduce the area of the radiator heat-transfer surfaces due to a sharp growth of the heat transfer coefficient without increasing the air flow rate. To ensure a sharp growth of heat transfer coefficient on the heat-transfer surface one should make in the surface one or more dead-end cavities into which the impact air jets would flow. CFD simulation of this type of radiator has been conducted. The heat-aerodynamic characteristics and design recommendations for removing heat from microprocessors in a limited space have been determined.

  15. Methods for measuring of fuel can deformation under radiation conditions

    International Nuclear Information System (INIS)

    Zelenchuk, A.V.; Fetisov, B.V.; Lakin, Yu.G.; Tonkov, V.Yu.

    1978-01-01

    The possibility for measuring fuel can deformation under radiation conditions by means of the acoustic method and tensoresistors is considered. The construction and operation of the in-pile facility for measuring creep of the fuel can specimen loaded by the internal pressure is described. The data on neutron radiation effect on changes in creep rate for zirconium fuel can are presented. The results obtained with tensoresistors are in a good agreement with those obtained by the acoustic method, which enables to recommend the use of both methods for the irradiation creep investigation of the fuel element cans

  16. Hawking radiation, effective actions and covariant boundary conditions

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Kulkarni, Shailesh

    2008-01-01

    From an appropriate expression for the effective action, the Hawking radiation from charged black holes is derived, using only covariant boundary conditions at the event horizon. The connection of our approach with the Unruh vacuum and the recent analysis [S.P. Robinson, F. Wilczek, Phys. Rev. Lett. 95 (2005) 011303, (gr-qc/0502074); S. Iso, H. Umetsu, F. Wilczek, Phys. Rev. Lett. 96 (2006) 151302, (hep-th/0602146); R. Banerjee, S. Kulkarni, (arXiv: 0707.2449 [hep-th])] of Hawking radiation using anomalies is established

  17. BioSentinel: Biosensors for Deep-Space Radiation Study

    Science.gov (United States)

    Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for

  18. Radiating star with a time-dependent Karmarkar condition

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, Nolene Ferrari; Maharaj, Sunil D. [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa); Govender, Megandhren [Durban University of Technology, Department of Mathematics, Faculty of Applied Sciences, Durban (South Africa)

    2018-01-15

    In this paper we employ the Karmarkar condition (Proc Indian Acad Sci A 27:56, 1948) to model a spherically symmetric radiating star undergoing dissipative gravitational collapse in the form of a radial heat flux. A particular solution of the boundary condition renders the Karmarkar condition independent of time which allows us to fully specify the spatial behaviour of the gravitational potentials. The interior solution is smoothly matched to Vaidya's outgoing solution across a time-like hypersurface which yields the temporal behaviour of the model. Physical analysis of the matter and thermodynamical variables show that the model is well-behaved. (orig.)

  19. Preliminary analysis of accelerated space flight ionizing radiation testing

    Science.gov (United States)

    Wilson, J. W.; Stock, L. V.; Carter, D. J.; Chang, C. K.

    1982-01-01

    A preliminary analysis shows that radiation dose equivalent to 30 years in the geosynchronous environment can be accumulated in a typical composite material exposed to space for 2 years or less onboard a spacecraft orbiting from perigee of 300 km out to the peak of the inner electron belt (approximately 2750 km). Future work to determine spacecraft orbits better tailored to materials accelerated testing is indicated. It is predicted that a range of 10 to the 9th power to 10 to the 10th power rads would be accumulated in 3-6 mil thick epoxy/graphite exposed by a test spacecraft orbiting in the inner electron belt. This dose is equivalent to the accumulated dose that this material would be expected to have after 30 years in a geosynchronous orbit. It is anticipated that material specimens would be brought back to Earth after 2 years in the radiation environment so that space radiation effects on materials could be analyzed by laboratory methods.

  20. Genetic risks associated with radiation exposures during space flight

    International Nuclear Information System (INIS)

    Grahn, D.

    1983-01-01

    Although the genetic risks of space radiation do not pose a significant hazard to the general population, the risks may be very important to the individual astronaut. The present paper summarizes some experimental results on the induction of dominant lethal mutations and chromosomal damage in the first generation which may be used in the prediction of the genetic risks of radiation exposures of space crews. Young adult male mice were exposed to single, weekly and continuous doses of gamma rays, neutrons in single doses and weekly exposures and continuous doses of Pu-239 alpha particles. Evaluation of fetal survival rates in females mated to the exposed males shows the mutation rate in individuals exposed to gamma rays to decline as the exposure period is prolonged and the dose rate is reduced, while the response to neutrons is in the opposite direction. Cytological determinations show the rate of balanced chromosomal translocations to drop as gamma ray exposures change from one-time to continuous, however little or no dose rate effect is seen with neutron radiation and alpha particle exposure shows no regular dose-response. Based on the above results, it is predicted that the rate of dominant mutations and transmissible chromosome aberrations in astronauts on a 100-day mission will increase by 4.5 to 41.25 percent over the spontaneous rate. 35 references

  1. Radiation conditions for computerized tomography: determination and comparison

    International Nuclear Information System (INIS)

    Andrade, Lucio das Chagas de

    2016-01-01

    Radiology is the practice in which radiation beams, usually radiation X are used to produce an image of the human body in order to obtain a diagnosis, for example, to evaluate a pathological condition by computerized tomography (CT). Although the computerized tomography diagnostic potential is unquestionable, caution must be taken because the doses are almost always higher than the observed in conventional radiology procedures. The ionization chamber used for dosimetry in CT is a unsealed cylindrical chamber with 10 cm and 15 cm of sensitive length. A typical characteristics of this camera is its uniform response to radiation incident at all angles around its axis. The revised edition of IEC 61267 (2005) brought as an innovation the radiation conditions for computed tomography, RQT, that simulate non-attenuated beam and are used in special CT applications. This study aims to establish the necessary conditions to obtain radiation pattern beam computed tomography, RQT, and a calibration laboratory implementation for pencil ionization chambers used in the beam dosimetry produced by these scanners in the Metrology National Laboratory of Ionizing Radiation (LNMRI). In the implementation of RQT conditions we were found that the ratio of kerma rates in the air, with or without additional filtration equivalent to the first HVL (half-value layer), are in accordance with IEC 61267 (2005), which provides a range between 48.5% and 51.5% for each quality. The LNMRI characterized the radiation conditions of RQT series (IEC, 2005), obtaining a percentage of 49.6% for the RQT 8, 50% for the RQT 9 and 50,4% for the RQT 10. With the substitution of the total additional filtration RQT qualities, composed by Al + Cu and by a total filtration composed by copper (Cu) only, it can be seen the emergence of a similar RQT quality named Quality Copper Tomography - QCT. The results of the calibration, the RQT and QCT qualities, had expanded uncertainties with a confidence level 95.45%, less

  2. Modeling Natural Space Ionizing Radiation Effects on External Materials

    Science.gov (United States)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  3. Radiation safety standards: space hazards vs. terrestrial hazards

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1983-01-01

    Policies regarding the setting of standards for radiation exposure for astronauts and other workers in space are discussed. The first recommendations for dose limitation and the underlying philosophy of these recommendations, which were put out in 1970, are examined, and consequences for the standards if the same philosophy of allowing a doubling in overall cancer risk for males aged 30-35 over a 20-year period were applied to more recent risk estimates are calculated, leading to values about a factor of 4 below the 1970 recommendation. Standards set since 1930 for terrestrial occupational exposures, which lead to a maximum lifetime risk of about 2.3 percent, are then considered, and the space and terrestrial exposure risks for fatal cancers at maximum lifetime dose are compared with industrial accidental death rates. Attention is also given to the question of the potential effects of HZE particles in space and to the possibility that HZE particle effects, rather than radiation carcinogenesis, might be the limiting factor. 17 references

  4. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    International Nuclear Information System (INIS)

    Sun, Ke-Xun; MacNeil, Lawrence; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-01-01

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 10 15 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 10 12 protons/cm 2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2 x 10 12 protons/cm 2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have

  5. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  6. Photoluminescence in large fluence radiation irradiated space silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hisamatsu, Tadashi; Kawasaki, Osamu; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Tsukamoto, Kazuyoshi

    1997-03-01

    Photoluminescence spectroscopy measurements were carried out for silicon 50{mu}m BSFR space solar cells irradiated with 1MeV electrons with a fluence exceeding 1 x 10{sup 16} e/cm{sup 2} and 10MeV protons with a fluence exceeding 1 x 10{sup 13} p/cm{sup 2}. The results were compared with the previous result performed in a relative low fluence region, and the radiation-induced defects which cause anomalous degradation of the cell performance in such large fluence regions were discussed. As far as we know, this is the first report which presents the PL measurement results at 4.2K of the large fluence radiation irradiated silicon solar cells. (author)

  7. The transition radiation detector of the PAMELA space mission

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-04-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta.

  8. The transition radiation detector of the PAMELA space mission

    International Nuclear Information System (INIS)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2004-01-01

    PAMELA space mission objective is to flight a satellite-borne magnetic spectrometer built to fulfill the primary scientific goals of detecting antiparticles (antiprotons and positrons) and to measure spectra of particles in cosmic rays. The PAMELA telescope is composed of: a silicon tracker housed in a permanent magnet, a time-of-flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD is composed of nine sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD characteristics will be described along with its performances studied at both CERN-PS and CERN-SPS facilities, using electrons, pions, muons and protons of different momenta

  9. Investigations of actual conditions of medical radiation technologists

    International Nuclear Information System (INIS)

    2002-01-01

    At 50 year after enactment of the law of medical radiation technologists, their actual conditions were investigated. The investigation was done in December 2001 by questionnaire to directors of 10,514 facilities and answers were obtained from 4,241 facilities (40.37%). Following 11 questions (major answers and their analysis in parenthesis) were made: Nature of the facility (Private hospitals 45.8%, public ones 20.8%); State of radiation department (Independent department of the technologists from medical one about 30%); Actual job of the technologists (X-ray about 81% of the facilities, angiography 34%, CT 78%, MRI 38% where 94% of technologists conduct, nuclear medicine 17%, ultrasound 51% where, 10%); Personnel of the radiation department (21,897 persons in total/male 85%); Fulfillment of the personnel number; Treatment of the personnel; Acknowledgement system of the Technologist Society; Management of radiation instruments like daily examination; Radiation control (Leak dose measurement by technologists by themselves about 50% facilities for X-ray and radio-therapy); Medical exposure (Measurement experience about 50%); and Possession of dose rate-meter/survey-meter (Possession in about 40% facilities). (N.I.)

  10. Investigations of actual conditions of medical radiation technologists

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    At 50 year after enactment of the law of medical radiation technologists, their actual conditions were investigated. The investigation was done in December 2001 by questionnaire to directors of 10,514 facilities and answers were obtained from 4,241 facilities (40.37%). Following 11 questions (major answers and their analysis in parenthesis) were made: Nature of the facility (Private hospitals 45.8%, public ones 20.8%); State of radiation department (Independent department of the technologists from medical one about 30%); Actual job of the technologists (X-ray about 81% of the facilities, angiography 34%, CT 78%, MRI 38% where 94% of technologists conduct, nuclear medicine 17%, ultrasound 51% where, 10%); Personnel of the radiation department (21,897 persons in total/male 85%); Fulfillment of the personnel number; Treatment of the personnel; Acknowledgement system of the Technologist Society; Management of radiation instruments like daily examination; Radiation control (Leak dose measurement by technologists by themselves about 50% facilities for X-ray and radio-therapy); Medical exposure (Measurement experience about 50%); and Possession of dose rate-meter/survey-meter (Possession in about 40% facilities). (N.I.)

  11. A new system for the measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2000-01-01

    Radiation from space mainly consists of charged heavy particles (protons and heavier particles). Due to this fact, the effective dose significantly differs from the physical dose. Current measuring equipment is not fully suitable to measure both of the quantities simultaneously. A combined device for measurement of the mentioned values consists of an on-board thermoluminescence dosimeter reader and a three-axis silicon detector linear energy transfer spectrometer. This paper deals with the main characteristic of the new system. This system can be, applied for dosimetry of air crew as well. (authors)

  12. A new system for measurement of the space radiation

    International Nuclear Information System (INIS)

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2001-01-01

    The space radiation mainly consists of heavy charged particles (protons and heavier particles). Due to this fact its effective dose significantly differs from the physical dose. The recently used measuring equipment is not fully suitable to measure both quantities simultaneously. The combined device for measurement of mentioned values consists of an on board thermoluminescent dosimeter reader and a three axis silicon telescope as a linear energy transfer spectrometer. The paper deals with the main characteristics of the new system. This system can be applied for dosimetry of air-crew as well. (authors)

  13. Radiation retinopathy following treatment of posterior nasal space carcinoma

    International Nuclear Information System (INIS)

    Thompson, G.M.; Migdal, C.S.; Whittle, R.J.M.

    1983-01-01

    Posterior nasal space carcinoma has a high mortality and most patents are treated with radiotherapy. Radiation retinopathy was encountered in 7 out of 10 survivors included in this study. Five of the affected patients lost vision as a result of the retinopathy. One patient required laser photocoagulation and responded well to this treatment. There was a variation in the severity of the retinopathy among the patients studied despite the fact that all patients received a similar dose of radiotherapy. We suspect that previously unrecognised factors in the planning of radiotherapy fields may explain this difference. (author)

  14. Radiation measurements during cavities conditioning on APS RF test stand

    International Nuclear Information System (INIS)

    Grudzien, D.M.; Kustom, R.L.; Moe, H.J.; Song, J.J.

    1993-01-01

    In order to determine the shielding structure around the Advanced Photon Source (APS) synchrotron and storage ring RF stations, the X-ray radiation has been measured in the near field and far field regions of the RF cavities during the normal conditioning process. Two cavity types, a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity, are used on the APS and are conditioned in the RF test stand. Vacuum measurements are also taken on a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity. The data will be compared with data on the five-cell cavities from CERN

  15. Optimization of radiation safety conditions in radon laboratories

    International Nuclear Information System (INIS)

    Kibal'nik, S.P.; Koroleva, T.M.

    1990-01-01

    The study was aimed at studying working conditions of personnel, engaged in production and supply of radon solution in medical and prophylactic institutions of the Kaliningrad region for the period 1962-1988. Data on examinations carried out at radon laboratories during this period by radiological group of the Kaliningrad sanitary epidemiological station were used as a basis for the study. Positive dynamics of indicators of radiation safety of the persons working at these objects is indicated, concrete measures and ways for improving working conditions of the personnel and role of sanitary epidemiological service in solving these problems are shown. 2 refs.; 1 tab

  16. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  17. Hawking radiation from black holes in de Sitter spaces

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2007-01-01

    Recently, Hawking radiation has been treated, by Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303), as a compensating flux of the energy-momentum tensor required to cancel a gravitational anomaly at the event horizon (EH) of a Schwarzschild-type black hole. In this paper, motivated by this work, Hawking radiation from the event horizon (EH) and the de Sitter cosmological horizon (CH) of black holes in de Sitter spaces, specifically including the purely de Sitter black hole and the static, spherically symmetric Schwarzschild-de Sitter black hole as well as the rotating Kerr-de Sitter black hole, have been studied by anomalies. The results show that the gauge-current and energy-momentum tensor fluxes, required to restore gauge invariance and general coordinate covariance at the EH and the CH, are precisely equal to those of Hawking radiation from the EH and the CH, respectively. It should be noted that gauge and gravitational anomalies taking place at the CH arise from the fact that the effective field theory is formulated inside the CH to integrate out the classically irrelevant outgoing modes at the CH, which are different from those at the black hole horizon

  18. Human Research Program Space Radiation Standing Review Panel (SRP)

    Science.gov (United States)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  19. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  20. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  1. Radiation Tests of Single Photon Avalanche Diode for Space Applications

    Science.gov (United States)

    Moscatelli, Francesco; Marisaldi, Martino; MacCagnani, Piera; Labanti, Claudio; Fuschino, Fabio; Prest, Michela; Berra, Alessandro; Bolognini, Davide; Ghioni, Massimo; Rech, Ivan; hide

    2013-01-01

    Single photon avalanche diodes (SPADs) have been recently studied as photodetectors for applications in space missions. In this presentation we report the results of radiation hardness test on large area SPAD (actual results refer to SPADs having 500 micron diameter). Dark counts rate as low as few kHz at -10 degC has been obtained for the 500 micron devices, before irradiation. We performed bulk damage and total dose radiation tests with protons and gamma-rays in order to evaluate their radiation hardness properties and their suitability for application in a Low Earth Orbit (LEO) space mission. With this aim SPAD devices have been irradiated using up to 20 krad total dose with gamma-rays and 5 krad with protons. The test performed show that large area SPADs are very sensitive to proton doses as low as 2×10(exp 8) (1 MeV eq) n/cm2 with a significant increase in dark counts rate (DCR) as well as in the manifestation of the "random telegraph signal" effect. Annealing studies at room temperature (RT) and at 80 degC have been carried out, showing a high decrease of DCR after 24-48 h at RT. Lower protons doses in the range 1-10×10(exp 7) (1 MeV eq) n/cm(exp 2) result in a lower increase of DCR suggesting that the large-area SPADs tested in this study are well suitable for application in low-inclination LEO, particularly useful for gamma-ray astrophysics.

  2. Innovative Radiating Systems for Train Localization in Interference Conditions

    Directory of Open Access Journals (Sweden)

    C. Vegni

    2013-01-01

    Full Text Available The design of innovative radiating systems based on the metamaterial technology for GNSS (Global Navigation Satellite System applications in radio frequency (RF interference conditions is proposed. To this aim, firstly two typical adaptive array techniques (i.e., nulling and beam-forming are discussed and tradeed off. Secondly, FRPA (Fixed Radiation Pattern Antenna and CRPA (Controlled Radiation Pattern Antenna phased array configurations of miniaturized patch antennas are studied by means of electromagnetic commercial tools and phased array optimization algorithms. This process leads to the identification of a phased array design. Benefits and drawbacks for GNSS applications are highlighted. Finally, the design of the phased array is applied to a GNSS user receiver in a navigation realistic environment. Simulation results are obtained in a realistic scenario for railway applications, comprising of a GNSS satellite constellation, a GNSS user receiver (i.e., on-board train equipment running along a track in Western Australia, and a constellation of interfering satellites. Navigation service performances (i.e., user location accuracy and service availability are computed taking into account the adaptive array radiation pattern in two different modes (i.e., FRPA or CRPA and band-limited white noise interference.

  3. Radiation deterioration of several aromatic polymers under oxidative conditions

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki

    1987-01-01

    Radiation-induced oxidative irradiation effects (with γ-rays under oxygen pressure) or poly(aryl sulphones) (U-PS and PES), poly(aryl ester) (U-Polymer), poly(aryl amide) (A-Film) and poly(aryl ether ether ketone) (PEEK) have been studied based on changes in tensile properties. The deterioration dose estimated from the decrease in the elongation at break was as low as one-fifth to one-tenth of that in high-dose-rate electron-beam irradiation, but the order of radiation resistance of the polymers did not differ from that in electron-beam irradiation, i.e. PEEK > A-Film > U-Polymer > U-PS > PES. The radiation stability of aromatic units under oxidative conditions was estimated from a comparison of the radiation resistance of the polymers themselves and their chemical structures. The following order was obtained: diphenyl ether, diphenyl ketone > aromatic amide>> bisphenol A > diphenyl sulphone. The deterioration mechanism of PEEK under oxidative irradiation was studied by measuring dynamic viscoelastic properties. It was concluded that deterioration in mechanical properties under oxidative irradiation was brought about by chain scission only. (author)

  4. Fall 2015 NASA Internship, and Space Radiation Health Project

    Science.gov (United States)

    Patience, Luke

    2015-01-01

    This fall, I was fortunate enough to have been able to participate in an internship at NASA's Lyndon B. Johnson Space Center. I was placed into the Human Health & Performance Directorate, where I was specifically tasked to work with Dr. Zarana Patel, researching the impacts of cosmic level radiation on human cells. Using different laboratory techniques, we were able to examine the cells to see if any damage had been done due to radiation exposure, and if so, how much damage was done. Cell culture samples were exposed at different doses, and fixed at different time points so that we could accumulate a large pool of quantifiable data. After examining quantifiable results relative to the impacts of space radiation on the human body at the cellular and chromosomal level, researchers can defer to different areas of the space program that have to do with astronaut safety, and research and development (extravehicular mobility unit construction, vehicle design and construction, etc.). This experience has been very eye-opening, and I was able to learn quite a bit. I learned some new laboratory techniques, and I did my best to try and learn new ways to balance such a hectic work and school schedule. I also learned some very intimate thing about working at NASA; I learned that far more people want to watch you succeed, rather than watch you fail, and I also learned that this is a place that is alive with innovators and explorers - people who have a sole purpose of exploring space for the betterment of humanity, and not for any other reason. It's truly inspiring. All of these experiences during my internship have impacted me in a really profound way, so much that my educational and career goals are completely different than when I started. I started out as a biotechnology major, and I discovered recently toward the end of the internship, that I don't want to work in a lab, nor was I as enthralled by biological life sciences as a believed myself to be. Taking that all into

  5. Radiation and detection of gravitational waves in laboratory conditions

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Pisarev, A.F.; Shavokhina, N.S.

    1981-01-01

    Two variants are proposed and analyzed for an experiment on radiation and detection of gravitational waves in laboratory conditions in the optical and superhigh frequency range (band). In the first variant the laser light is parametrically transformed to the gravitational wave in the optical-inhomogeneous medium. The gravitational flux produced is registered by the inverse parametric transformation of the gravitational to light wave. In the second variant the radiation of gravitational waves is realized through hypersonic oscillations in piezocrystals, and the reception of waves is made by the superconducting coaxial resonator in which the gravitational wave resonantly transforms into the electromag= . netic wave. The analysis performed testifies to the possibility of an experiment of this type at the present time [ru

  6. Development of Countermeasure and Application technologies to Space Radiation

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-01

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  7. Development of Countermeasure and Application technologies to Space Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-15

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  8. Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests

    Science.gov (United States)

    Hienz, Robert; Davis, Catherine; Weed, Michael; Guida, Peter; Gooden, Virginia; Brady, Joseph; Roma, Peter

    Neurobehavioral Effects of Space Radiation on Psychomotor Vigilance Tests INTRODUCTION Risk assessment of the biological consequences of living in the space radiation environment represents one of the highest priority areas of NASA radiation research. Of critical importance is the need for a risk assessment of damage to the central nervous system (CNS) leading to functional cognitive/behavioral changes during long-term space missions, and the development of effective shielding or biological countermeasures to such risks. The present research focuses on the use of an animal model that employs neurobehavioral tests identical or homologous to those currently in use in human models of risk assessment by U.S. agencies such as the Depart-ment of Defense and Federal Aviation and Federal Railroad Administrations for monitoring performance and estimating accident risks associated with such variables as fatigue and/or alcohol or drug abuse. As a first approximation for establishing human risk assessments due to exposure to space radiation, the present work provides animal performance data obtained with the rPVT (rat Psychomotor Vigilance Test), an animal analog of the human PVT that is currently employed for human risk assessments via quantification of sustained attention (e.g., 'vigilance' or 'readiness to perform' tasks). Ground-based studies indicate that radiation can induce neurobehavioral changes in rodents, including impaired performance on motor tasks and deficits in spatial learning and memory. The present study is testing the hypothesis that radiation exposure impairs motor function, performance accuracy, vigilance, motivation, and memory in adult male rats. METHODS The psychomotor vigilance test (PVT) was originally developed as a human cognitive neurobe-havioral assay for tracking the temporally dynamic changes in sustained attention, and has also been used to track changes in circadian rhythm. In humans the test requires responding to a small, bright

  9. Radiations and space flight; Quand les radiations font partie du voyage

    Energy Technology Data Exchange (ETDEWEB)

    Maalouf, M.; Vogin, G.; Foray, N. [Groupe de Radiobiologie, Inserm U836, Institut des Neurosciences, 38 - Grenoble (France); Maalouf [CNES, Dept. des Sciences de la Vie, 75 - Paris (France); Vogin, G. [Laboratoire de Radiobiologie, EA3738, Faculte de Medecine de Lyon Sud, 69- Oullins (France)

    2011-02-15

    A space flight is submitted to 3 main sources of radiation: cosmic radiation (4 protons/cm{sup 2}/s and 10000 times less for the heaviest particles), solar radiation (10{sup 8} protons/cm{sup 2}/s in the solar wind), the Van Allen belt around the earth: the magnetosphere traps particles and at an altitude of 500 km the proton flux can reach 100 protons/cm{sup 2}/s. If we take into account all the spatial missions performed since 1960, we get an average dose of 400 {mu}Gray per day with an average dose rate of 0.28 {mu}Gray/mn. A significant risk of radiation-induced cancer is expected for missions whose duration is over 250 days.The cataract appears to be the most likely non-cancerous health hazard due to the exposition to comic radiation. Its risk appears to have been under-estimated, particularly for doses over 8 mGray. Some studies on astronauts have shown for some a very strong predisposition for radio-induced cancers: during the reparation phase of DNA breaking due to irradiation, multiple new damages are added by the cells themselves that behave abnormally. (A.C.)

  10. Embryogenesis and organogenesis of Carausius morosus under space flight conditions (7-IML-1)

    International Nuclear Information System (INIS)

    Buecker, D.H.

    1992-01-01

    The experiment is part of a radiobiological space research program to obtain experimental data on the biological effectiveness of the structured component of cosmic radiation during spaceflight. In this proposed experiment, Carausius morosus embryos of different ages will develop under spaceflight conditions. The experiment is designed to determine the influence of galactic heavy ions of very high energy deposition in microgravity on developmental processes of different radiation sensitivity and regenerative capacity. Layers of Carausius morosus eggs are sandwiched between different track detectors (cellulose nitrate, CR39). This method allows the localization of the trajectory of each heavy ion in the biological layer and the identification of the site of the penetration inside the egg

  11. The quantum null energy condition in curved space

    Science.gov (United States)

    Fu, Zicao; Koeller, Jason; Marolf, Donald

    2017-11-01

    The quantum null energy condition (QNEC) is a conjectured bound on components (Tkk = Tab ka k^b) of the stress tensor along a null vector k a at a point p in terms of a second k-derivative of the von Neumann entropy S on one side of a null congruence N through p generated by k a . The conjecture has been established for super-renormalizeable field theories at points p that lie on a bifurcate Killing horizon with null tangent k a and for large-N holographic theories on flat space. While the Koeller-Leichenauer holographic argument clearly yields an inequality for general ( p, k^a) , more conditions are generally required for this inequality to be a useful QNEC. For d≤slant 3 , for arbitrary backgroud metric we show that the QNEC is naturally finite and independent of renormalization scheme when the expansion θ of N at the point p vanishes. This is consistent with the original QNEC conjecture which required θ and the shear σab to satisfy θ \\vert _p= \\dotθ\\vert p =0 , σab\\vert _p=0 . But for d=4, 5 more conditions than even these are required. In particular, we also require the vanishing of additional derivatives and a dominant energy condition. In the above cases the holographic argument does indeed yield a finite QNEC, though for d≥slant6 we argue these properties to fail even for weakly isolated horizons (where all derivatives of θ, σab vanish) that also satisfy a dominant energy condition. On the positive side, a corrollary to our work is that, when coupled to Einstein-Hilbert gravity, d ≤slant 3 holographic theories at large N satisfy the generalized second law (GSL) of thermodynamics at leading order in Newton’s constant G. This is the first GSL proof which does not require the quantum fields to be perturbations to a Killing horizon.

  12. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  13. Predictions of space radiation fatality risk for exploration missions.

    Science.gov (United States)

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  14. THE REGULARITIES OF THE SPACE-TEMPORAL DISTRIBUTION OF THE RADIATION BALANCE OF THE UNDERLYING SURFACE IN ARAKS BASIN ON MOUNTAINOUS TERRITORY OF THE REPUBLIC OF ARMENIA

    Directory of Open Access Journals (Sweden)

    V. G. Margaryan

    2017-12-01

    Full Text Available The regularities of the space-temporal distribution of the radiation balance of the underlying surface for the conditions of the mountainous territory of the Republic of Armenia were discussed and analyzed.

  15. Effect of gamma radiation on garlic storage under natural conditions

    International Nuclear Information System (INIS)

    Ayyoubi, Zouhair; Sharabi, N.E.

    1993-02-01

    Garlic cloves were exposed to 30, 60, and 100 Gy of gamma radiation using Co 60 as a sources, to study the effect of different doses on the sprout inhibition of garlic. All the doses applied were effective. No sprout occurred in any of the treatments subjected to natural storage conditions. The effect of irradiation was evident in limiting the weight decrease. It reached 12 - 19% in 1987 and 1988 experiments respectively after 320 days of storage. Irradiation had no effect on the garlic consumptive specifications compared to the control. (author). 4 refs., 2 figs., 5 tabs

  16. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    Science.gov (United States)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  17. Mechanism on radiation degradation of Si space solar cells

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Taylor, S.J.; Hisamatsu, Tadashi; Matsuda, Sumio

    1998-01-01

    Radiation testing of Si n + -p-p + structure space solar cells has revealed an anomalous increase in short-circuit current Isc, followed by an abrupt decrease and cell failure, induced by high fluence electron and proton irradiations. A model to explain these phenomena by expressing the change in carrier concentration p of the base region is proposed in addition to the well-known model where Isc is decreased by minority-carrier lifetime reduction with irradiation. Change in carrier concentration causes broadening the depletion layer to contribute increase in the generated photocurrent and increase in recombination-generation current in the depletion layer, and increase in the resistivity of the base layer to result in the abrupt decrease of Isc and failure of the solar cell. Type conversion from p-type to n-type in base layer has been confirmed by EBIC (electron-beam induced current) and spectral response measurements. Moreover, origins of radiation-induced defects in heavily irradiated Si and generation of deep donor defects have also been examined by using DLTS (deep level transient spectroscopy) analysis. (author)

  18. Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment.

    Science.gov (United States)

    Narici, Livio; Casolino, Marco; Di Fino, Luca; Larosa, Marianna; Picozza, Piergiorgio; Rizzo, Alessandro; Zaconte, Veronica

    2017-05-10

    Passive radiation shielding is a mandatory element in the design of an integrated solution to mitigate the effects of radiation during long deep space voyages for human exploration. Understanding and exploiting the characteristics of materials suitable for radiation shielding in space flights is, therefore, of primary importance. We present here the results of the first space-test on Kevlar and Polyethylene radiation shielding capabilities including direct measurements of the background baseline (no shield). Measurements are performed on-board of the International Space Station (Columbus modulus) during the ALTEA-shield ESA sponsored program. For the first time the shielding capability of such materials has been tested in a radiation environment similar to the deep-space one, thanks to the feature of the ALTEA system, which allows to select only high latitude orbital tracts of the International Space Station. Polyethylene is widely used for radiation shielding in space and therefore it is an excellent benchmark material to be used in comparative investigations. In this work we show that Kevlar has radiation shielding performances comparable to the Polyethylene ones, reaching a dose rate reduction of 32 ± 2% and a dose equivalent rate reduction of 55 ± 4% (for a shield of 10 g/cm 2 ).

  19. Analysis of optical properties behaviour of CLEARCERAM, fused silica and CaF2 glasses exposed to simulated space conditions

    Science.gov (United States)

    Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.

    2017-11-01

    Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage

  20. Radiation shielding aspects for long manned mission to space - Criteria, survey study and preliminary model

    International Nuclear Information System (INIS)

    Sztejnberg, M.; Xiao, S.; Satvat, N.; Limon, F.; Hopkins, J.; Jevremovic, T.; T. Jevremovic)

    2006-01-01

    The prospect of manned space missions out side Earth's or bit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is there fore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured, and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy). National Aeronautics and Space Administration (NASA) anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremovic began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper. (author)

  1. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    Directory of Open Access Journals (Sweden)

    Sztejnberg Manuel

    2006-01-01

    Full Text Available The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On the other hand, recent considerations to send a man to the Moon for a long stay would require a stable, secured and safe source of energy (there is hardly anything beyond nuclear power that would provide a useful and reliably safe sustainable supply of energy. National Aeronautics and Space Administration (NASA anticipates that the mass of a shielding material required for long travel to Mars is the next major design driver. In 2006 NASA identified a need to assess and evaluate potential gaps in existing knowledge and understanding of the level and types of radiation critical to astronauts' health during the long travel to Mars and to start a comprehensive study related to the shielding design of a spacecraft finding the conditions for the mitigation of radiation components contributing to the doses beyond accepted limits. In order to reduce the overall space craft mass, NASA is looking for the novel, multi-purpose and multi-functional materials that will provide effective shielding of the crew and electronics on board. The Laboratory for Neutronics and Geometry Computation in the School of Nuclear Engineering at Purdue University led by Prof. Tatjana Jevremović began in 2004 the analytical evaluations of different lightweight materials. The preliminary results of the design survey study are presented in this paper.

  2. Meeting the Grand Challenge of Protecting Astronaut's Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — This study will seek to test and validate an electrostatic gossamer structure to provide radiation shielding. It will provide guidelines for energy requirements,...

  3. The effect of space radiation of the nervous system

    Science.gov (United States)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  4. Possible application of an imaging plate to space radiation dosimetry

    International Nuclear Information System (INIS)

    Ohuchi, Hiroko; Yamadera, Akira

    2002-01-01

    Fading correction plays an important role in the application of commercially available BaBrF:Eu 2+ phosphors: imaging plates (IP) to dosimetry. We successfully determined a fading correction equation, which is a function of elapsed time and absolute temperature, as the sum of several exponentially decaying components having different half-lives. In this work, a new method was developed to eliminate a short half-life component by annealing the IP and estimating the radiation dose with the long half-life components. Annealing decreases the effect of fading on the estimated dose, however, it also causes the loss of photo-stimulated luminescence (PSL). Considering an IP as an integral detector for a specific period of up to one month, the practically optimum conditions for quantitative measurement with two types of IP (BAS-TR and BAS-MS) were evaluated by using the fading correction equation, which was obtained after irradiation with a 244 Cm source as the alpha-ray source having a specific radioactivity of 1,638.5 Bq/cm 2 including beta and gamma-ray (alpha energy of 5.763 and 5.805 MeV). Annealing at 80 deg C for 24 hours after irradiation for one month using BAS-MS should minimize the effect of the elapsed time, resulting in sufficient sensitivity. The results demonstrate new possibilities for radiation dosimetry offered by the use of an IP. (author)

  5. Organic Matter Responses to Radiation under Lunar Conditions

    Science.gov (United States)

    Matthewman, Richard; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.

    2016-01-01

    Abstract Large bodies, such as the Moon, that have remained relatively unaltered for long periods of time have the potential to preserve a record of organic chemical processes from early in the history of the Solar System. A record of volatiles and impactors may be preserved in buried lunar regolith layers that have been capped by protective lava flows. Of particular interest is the possible preservation of prebiotic organic materials delivered by ejected fragments of other bodies, including those originating from the surface of early Earth. Lava flow layers would shield the underlying regolith and any carbon-bearing materials within them from most of the effects of space weathering, but the encapsulated organic materials would still be subject to irradiation before they were buried by regolith formation and capped with lava. We have performed a study to simulate the effects of solar radiation on a variety of organic materials mixed with lunar and meteorite analog substrates. A fluence of ∼3 × 1013 protons cm−2 at 4–13 MeV, intended to be representative of solar energetic particles, has little detectable effect on low-molecular-weight (≤C30) hydrocarbon structures that can be used to indicate biological activity (biomarkers) or the high-molecular-weight hydrocarbon polymer poly(styrene-co-divinylbenzene), and has little apparent effect on a selection of amino acids (≤C9). Inevitably, more lengthy durations of exposure to solar energetic particles may have more deleterious effects, and rapid burial and encapsulation will always be more favorable to organic preservation. Our data indicate that biomarker compounds that may be used to infer biological activity on their parent planet can be relatively resistant to the effects of radiation and may have a high preservation potential in paleoregolith layers on the Moon. Key Words: Radiation—Moon—Regolith—Amino acids—Biomarkers. Astrobiology 16, 900–912. PMID:27870583

  6. An investigation into the actual condition of radiation safety control

    International Nuclear Information System (INIS)

    Katsurayama, Kosuke

    1976-01-01

    The result of investigation on the real condition of radiation safety control is reported with some considerations. The investigation was made in April, 1975, by means of questionnaires to 418 companies, and the responses were obtained from 126 companies, i.e. 11 research laboratories, 98 manufacturing factories, and 17 inspection facilities. The average integrated dose in the inspection facilities was 0.91 rem/year, the most among three. The exposure dose in most of the research laboratories and manufacturing factories investigated was within the limit of 0.5 rem/year, and that in the inspection facilities was distributed over from the background level to 5 rem/year. The ratios of the workers engaged in radiation operation and the workers possessing the licences related to non-destructive examination to all employees were investigated, but they were not at satisfactory level. Regarding the abandonment of radioactive isotopes, 63.5% of the companies answered deliver the radioactive isotopes to be abandoned to Japan Isotope Association, and 25.7% let equipment makers to take them back. As for the education and training of operators for the safe treatment of radioactive substances and the prevention of accidents, most of the companies answered gave the education once or twice a year, and to those who just entered the companies, but more substantial education in desirable. (Nishino, S.)

  7. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    Science.gov (United States)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  8. Low-dose radiation suppresses Pokemon expression under hypoxic conditions.

    Science.gov (United States)

    Kim, Seung-Whan; Yu, Kweon; Shin, Kee-Sun; Kwon, Kisang; Hwang, Tae-Sik; Kwon, O-Yu

    2014-01-01

    Our previous data demonstrated that CoCl2-induced hypoxia controls endoplasmic reticulum (ER) stress-associated and other intracellular factors. One of them, the transcription factor Pokemon, was differentially regulated by low-dose radiation (LDR). There are limited data regarding how this transcription factor is involved in expression of the unfolded protein response (UPR) under hypoxic conditions. The purpose of this study was to obtain clues on how Pokemon is involved in the UPR. Pokemon was selected as a differentially expressed gene under hypoxic conditions; however, its regulation was clearly repressed by LDR. It was also demonstrated that both expression of ER chaperones and ER stress sensors were affected by hypoxic conditions, and the same results were obtained when cells in which Pokemon was up- or down-regulated were used. The current state of UPR and LDR research associated with the Pokemon pathway offers an important opportunity to understand the oncogenesis, senescence, and differentiation of cells, as well as to facilitate introduction of new therapeutic radiopharmaceuticals.

  9. Absolute determination of radiation bursts and of proportional counters space charge effect through the influence method

    International Nuclear Information System (INIS)

    Rios, I.J.; Mayer, R.E.

    2016-01-01

    When proportional counters are employed in charge integration mode to determine the magnitude of a radiation pulse, so intense that individual detection events take place in a time too short to produce individual output pulses, mostly in pulsed neutron sources, the strong build-up of positive space charge reduces the electric multiplication factor of the proportional detector. Under such conditions the ensuing measurement underestimates the amount of radiation that interacted with the detector. If the geometric characteristics, the filling gas pressure and the voltage applied to that detector are known, it becomes possible to apply an analytical correction method to the measurement. In this article we present a method that allows to determine the absolute value of the detected radiation burst without the need to know the characteristics of the employed detectors. It is necessary to employ more than one detector, taking advantage of the Influence Method. The “Influence Method” is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency and without the need to register coincidences of any kind. This method exploits the influence of the presence of one detector in the count rate of another detector, when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency (Rios and Mayer, 2015 [1,2]). Its practical implementation in the measurement of a moderated neutron flux arising from an isotopic neutron source was exemplified in (Rios and Mayer, 2016 [3]) and the extension for multiple detectors in (Rios and Mayer 2016 [4]). - Highlights: • Absolute determination of radiation burst. • Proportional counters space charge effect. • Radiation measurements on pulsed devices.

  10. Radiation: Time, Space and Spirit--Keys to Scientific Literacy Series.

    Science.gov (United States)

    Stonebarger, Bill

    This discussion of radiation considers the spectrum of electromagnetic energy including light, x-rays, radioactivity, and other waves. Radiation is considered from three aspects; time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and thought. Several chapters on the history and concepts…

  11. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Science.gov (United States)

    Sui, H. L.; Liu, X. Y.; Zhong, F. C.; Li, X. Y.; Wang, L.; Ju, X.

    2013-07-01

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors' influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si-CH3. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  12. Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sui, H.L. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Liu, X.Y.; Zhong, F.C. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Li, X.Y. [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Wang, L. [Institute of Chemical Materials, CAEP, Mianyang 621900 (China); Ju, X., E-mail: jux@ustb.edu.cn [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-07-15

    Polydimethylsiloxane rubber foams were irradiated by gamma ray under different radiation conditions designed by orthogonal design method. Compression set measurement, infrared attenuated total reflectance spectroscopy (ATR) and X-ray induced photoelectron spectroscopy (XPS) were used. Three aging factors’ influence effects on the mechanical property and chemical structure were studied. It was found that among the three factors and the chosen levels, both properties were affected most by radiation dose, while radiation dose rate had no obvious influence on both properties. The stiffening of the rubber foams was caused by cross-linking reactions in the Si–CH{sub 3}. At the same radiation dose, the rigidity of the foams irradiated in air was lower than that in nitrogen. When polydimethylsiloxane was irradiated at a high dose in sealed nitrogen atmosphere, carbon element distribution would be changed. Hydrocarbons produced by gamma ray in the sealed tube would make the carbon content in the skin-deep higher than that in the middle, which indicated that polydimethylsiloxane rubber foams storing in a sealed atmosphere filled with enough hydrocarbons should be helpful to extend the service life.

  13. Application of Interval Predictor Models to Space Radiation Shielding

    Science.gov (United States)

    Crespo, Luis G.; Kenny, Sean P.; Giesy,Daniel P.; Norman, Ryan B.; Blattnig, Steve R.

    2016-01-01

    This paper develops techniques for predicting the uncertainty range of an output variable given input-output data. These models are called Interval Predictor Models (IPM) because they yield an interval valued function of the input. This paper develops IPMs having a radial basis structure. This structure enables the formal description of (i) the uncertainty in the models parameters, (ii) the predicted output interval, and (iii) the probability that a future observation would fall in such an interval. In contrast to other metamodeling techniques, this probabilistic certi cate of correctness does not require making any assumptions on the structure of the mechanism from which data are drawn. Optimization-based strategies for calculating IPMs having minimal spread while containing all the data are developed. Constraints for bounding the minimum interval spread over the continuum of inputs, regulating the IPMs variation/oscillation, and centering its spread about a target point, are used to prevent data over tting. Furthermore, we develop an approach for using expert opinion during extrapolation. This metamodeling technique is illustrated using a radiation shielding application for space exploration. In this application, we use IPMs to describe the error incurred in predicting the ux of particles resulting from the interaction between a high-energy incident beam and a target.

  14. [The model of radiation shielding of the service module of the International space station].

    Science.gov (United States)

    Kolomenskiĭ, A V; Kuznetsov, V G; Laĭko, Iu A; Bengin, V V; Shurshakov, V A

    2001-01-01

    Compared and contrasted were models of radiation shielding of habitable compartments of the basal Mir module that had been used to calculate crew absorbed doses from space radiation. Developed was a model of the ISS Service module radiation shielding. It was stated that there is a good agreement between experimental shielding function and the one calculated from this model.

  15. Shutdown and degradation: Space computers for nuclear application, verification of radiation hardness. Final report

    International Nuclear Information System (INIS)

    Eichhorn, E.; Gerber, V.; Schreyer, P.

    1995-01-01

    (1) Employment of those radiation hard electronics which are already known in military and space applications. (2) The experience in space-flight shall be used to investigate nuclear technology areas, for example, by using space electronics to prove the range of applications in nuclear radiating environments. (3) Reproduction of a computer developed for telecommunication satellites; proof of radiation hardness by radiation tests. (4) At 328 Krad (Si) first failure of radiation tolerant devices with 100 Krad (Si) hardness guaranteed. (5) Using radiation hard devices of the same type you can expect applications at doses of greater than 1 Mrad (Si). Electronic systems applicable for radiation categories D, C and lower part of B for manipulators, vehicles, underwater robotics. (orig.) [de

  16. Influence of ionizing radiation and storage conditions upon some quality parameters of soybeans

    International Nuclear Information System (INIS)

    Beczner, J.; Kiss, I.; Peredi, J.

    1983-01-01

    Soyflour produced for animal feeding in a pilot plant was occasionally contaminated to an extent exceeding the microbiological standard set for human consumption. The suitability of ionizing radiation to reduce microbiological contamination was investigated. Soybeans of different moisture content (9 and 13%) were irradiated and stored in spaces of different relative humidity (55 and 75%) at 5-15 deg C or 20-25 deg C temperature. The soybeans samples were irradiated with 1 and 5 kGy, resp. The storage experiments have shown the humidity of the storage room to be of extreme importance to the propagation of moulds. The inhibitory effect of a temperature of 5-10 deg C in itself is not sufficient, neither is the effect of the radiation dose applied during a longer storage period. It was established that the moisture content of the seeds affected strongly the quality of the extracted oil. The unfavourable effects increase at higher temperatures. The radiation doses applied in the experiments did not affect the quality of the oil. It was concluded that the microbial contamination of soybeans can be kept at the initial low value by treatment with 1 kGy radiation dose, even under unfavourable storage conditions for a period of 2 months. Thus, irradiation may be applied as a temporary solution to stabilize the microbiological state of soybeans. (author)

  17. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  18. Practical design for robot operating in radiation condition

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Isozaki, Yoshifumi

    2002-01-01

    It is proposed systematic design for radiation resistance robot based on irradiation test and estimating damage lifetime by reliable technology. Reducing design time and cost, key device IC is classified to non-exchange, no use and use after radiation test by analyzing robot function and IC function. Since the damage lifetime verified normal distribution under radiation test of IC, the proposed design method is effective for practical radiation resistance robot. (author)

  19. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. Improvement of radiation protection conditions during radiodiagnostic investigations

    International Nuclear Information System (INIS)

    Ivanov, E.V.; Livshits, R.E.; Lev, M.Ya.; Zakharenko, Yu.S.; Kal'nitskij, S.A.; Nechiporuk, V.I.

    1978-01-01

    Thermoluminescence dosimeters were used to estimate individual doses of radiation received by personnel of radiodiagnostic laboratories. The experiment, which lasted 3 months, showed that although the average levels of radiation did not exceed the permissible values, in some cases the personnel could receive an annual dose close to the maximum permissible one. A number of arrangements to improve radiation safety were proposed

  1. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  2. Beam plug replacement and alignment under high radiation conditions for cold neutron facilities at Hanaro

    International Nuclear Information System (INIS)

    Yeong-Garp, Cho; Jin-Won, Shin; Jung-Hee, Lee; Jeong-Soo, Ryu

    2010-01-01

    Full text : The HANARO, an open-tank-in-pool type research reactor of a 30 MWth power in Korea, has been operating for 15 years since its initial criticality in February 1995. The beam port assigned for the cold neutron at HANARO had been used for an 8-m SANS without neutron guides until it was replaced by a cold neutron guide system in 2008. It was developed a cold neutron guide system for the delivery of cold neutrons from the cold neutron source in the reactor to the neutron scattering instruments in the guide hall. Since the HANARO has been operated from 1995, it was a big challenge to replace the existing plug and shutter with the new facilities under high radiation conditions. When the old plug was removed from the beam port in 2008, the radiation level was 230 mSv/hr at the end of beam port. In addition to that, there were more difficult situations such as the poor as-built dimensions of the beam port, limited work space and time constraint due to other constructions in parallel in the reactor hall. Before the removal of the old plug the level of the radiation was measured coming out through a small hole of the plug to estimate the radiation level during the removal of the old plug and installation of a new plug. Based on the measurement and analysis results, special tools and various shielding facilities were developed for the removal of old in-pile plug and the installation of the new in-pile plug assembly safely. In 2008, the old plug and shutter were successfully replaced by the new plug and shutter as shown in this article with a minimum exposure to the workers. A laser tracker system was also one of the main factors in our successful installation and alignment under high radiation conditions and limited work space. The laser tracker was used to measure and align all the mechanical facilities and the neutron guides with a minimum radiation exposure to workers. The alignment of all the guides and accessories were possible during reactor operation because

  3. Prediction of shock-layer ultraviolet radiation for hypersonic vehicles in near space

    Directory of Open Access Journals (Sweden)

    Niu Qinglin

    2016-10-01

    Full Text Available A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the “solar blind” band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet (BSUV flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight (LOS method, radiation was calculated from three BSUV flights at altitudes of 38, 53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s (about Mach 11, the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.

  4. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    Science.gov (United States)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  5. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Science.gov (United States)

    Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.

    2014-01-01

    Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382

  6. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Jeffery C. Chancellor

    2014-09-01

    Full Text Available Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO. Shielding is an effective countermeasure against solar particle events (SPEs, but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.

  7. Accidents and emergency conditions: Tasks of the radiation protection expert

    International Nuclear Information System (INIS)

    Hacke, J.

    1985-01-01

    This paper reviews and explains the tasks of the radiation protection expert at a given site in the event of accidents or emergencies involving a radiation hazard to the personnel. The various measures recommended discriminate between the main two types of hazards, namely external radiation or internal radiation. The paper discusses the first-aid and emergency measures recommended in various publications (BG, 1982; ICRP, 1980; MO, 1972; ME, 1980) and also cites recommendations contained therein, referring to preventive means and measures and to communications to the press and the general public. (DG) [de

  8. The All Terrain Bio nano Gear for Space Radiation Detection System

    International Nuclear Information System (INIS)

    Ummat, Ajay; Mavroidis, Constantinos

    2007-01-01

    This paper discusses about the relevance of detecting space radiations which are very harmful and pose numerous health issues for astronauts. There are many ways to detect radiations, but we present a non-invasive way of detecting them in real-time while an astronaut is in the mission. All Terrain Bio-nano (ATB) gear system is one such concept where we propose to detect various levels of space radiations depending on their intensity and warn the astronaut of probable biological damage. A basic framework for radiation detection system which utilizes bio-nano machines is discussed. This radiation detection system is termed as 'radiation-responsive molecular assembly' (RMA) for the detection of space radiations. Our objective is to create a device which could detect space radiations by creating an environment equivalent to human cells within its structure and bio-chemically sensing the effects induced therein. For creating such an environment and further bio-chemically sensing space radiations bio-nano systems could be potentially used. These bio-nano systems could interact with radiations and signal based on the intensity of the radiations their relative biological effectiveness. Based on the energy and kind of radiation encountered, a matrix of signals has to be created which corresponds to a particular biological effect. The key advantage of such a design is its ability to interact with the radiation at e molecular scale; characterize its intensity based on energy deposition and relate it to the relative biological effectiveness based on the correspondence established through molecular structures and bond strengths of the bio-nano system

  9. Gender and Space: Analysis of Factors Conditioning Equity in the Public Space

    Directory of Open Access Journals (Sweden)

    Pablo Paramo Bernal

    2011-01-01

    Full Text Available This article discusses gender research in urban public space through three different perspectives: the social representations and differentiated uses of space, the division of roles in public and private spaces, and urban planning of public space. The paper gathers and analyses some studies that complement the state of art and literature on women and space giving evidence on how women have been segregated from public space and are victim of gender inequalities. Public space does not exist absolutely nor gender; instead both are socially constructed by social order and reproduced by social practices. Finally, some suggestions for urban planning and research are given in order to respond women’s needs in public space.

  10. Radiation Exposure and Mortality from Cardiovascular Disease and Cancer in Early NASA Astronauts: Space for Exploration

    Science.gov (United States)

    Elgart, S. R.; Little, M. P.; Campbell, L. J.; Milder, C. M.; Shavers, M. R.; Huff, J. L.; Patel, Z. S.

    2018-01-01

    Of the many possible health challenges posed during extended exploratory missions to space, the effects of space radiation on cardiovascular disease and cancer are of particular concern. There are unique challenges to estimating those radiation risks; care and appropriate and rigorous methodology should be applied when considering small cohorts such as the NASA astronaut population. The objective of this work was to establish whether there is evidence for excess cardiovascular disease or cancer mortality in an early NASA astronaut cohort and determine if a correlation exists between space radiation exposure and mortality.

  11. Position of cytogenetic examination of cosmonauts for the space radiation expose estimate

    Science.gov (United States)

    Snigireva, Galina; Novitskaya, Natalia; Ivanov, Alexander

    Analysis of chromosome aberrations in human peripheral blood lymphocytes is widely used for the indication and quantitative assessment of radiation. The dose, as estimated by the frequency of chromosome aberrations takes into account not only the physical impact of radiation on the human body but also its individual characteristics, such as radiation sensitivity and functional conditions during irradiation. The purpose of this study was to evaluate the influence of radiation on the chromosome aberration frequency in peripheral blood lymphocytes of the cosmonauts who participated in flights on the ISS (International Space Station). Cytogenetic examination was performed in the period 1992-2013 and included the analysis of chromosome aberrations using conventional Giemsa staining method in blood samples from 38 cosmonauts who participated in flights on the ISS. The cytogenetic examination results showed that cosmic flights lead to an increase of chromosome aberrations in the lymphocytes of cosmonauts. Compared with the pre-flight levels frequencies of dicentrics and centric rings (the radiation exposure markers) are about 4 times higher for cosmonauts after flights. The frequency of chromosome aberrations depends on the length of the flight and, correspondingly, on the accumulated dose of cosmic irradiation. Between flights, a decrease in the chromosome aberration frequency is observed, but even several years after a flight, the level of chromosome aberrations in the lymphocytes of cosmonauts remains high. Cytogenetic monitoring of cosmonauts can undoubtedly play an important role in comprehensive medical surveys of these individuals if we take into account the possible connection of higher levels of chromosomal aberrations with the risk of oncological diseases. Analysis of chromosome aberration dynamics after flights will allow the determination of individuals with an increased cancerogenese risk and provision of required treatments.

  12. RADIATION ENVIRONMENT AT AVIATION ALTITUDES AND IN SPACE

    Czech Academy of Sciences Publication Activity Database

    Sihver, L.; Ploc, Ondřej; Puchalska, M.; Ambrožová, Iva; Kubančák, Ján; Kyselová, Dagmar; Shurshakov, V.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 477-483 ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : cosmic radiation * radiation field * on-board spacecraft Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  13. A new multistack radiation boundary condition for FDTD based on self-teleportation of fields

    International Nuclear Information System (INIS)

    Diaz, Rodolfo E.; Scherbatko, Igor

    2005-01-01

    In [Electromagnetics 23 (2003) 187], a technique for injecting perfect plane waves into finite regions of space in FDTD was reported. The essence of the technique, called Field Teleportation, is to invoke the principle of equivalent sources using FDTDs discrete definition of the curl to copy any field propagating in one FDTD domain to a finite region of another domain. In this paper, we apply this technique of Field Teleportation to the original domain itself to create a transparent boundary across which any outward traveling FDTD field produces an exact negative copy of itself. When this copied field is teleported one cell ahead and one cell forward in time it causes significant self-cancelation of the original field. Illustrative experiments in two-dimensions show that a two-layer (10-cell thick) multi-stack Radiation Boundary Condition (RBC) with a simplest Huygens's termination readily yields reflection coefficients of the order of -80 dB up to grazing incidence for all the fields radiated by a harmonic point source (λ = 30 cells) in free space located 20 cells away from the boundary. Similarly low levels of artificial reflection are demonstrated for a case in which the RBC cuts through five different magnetodielectric materials

  14. Conditions's considerations of the CT radiation field

    International Nuclear Information System (INIS)

    Andrade, Lucio das Chagas de; Peixoto, Jose Guilherme Pereira

    2013-01-01

    In obtaining the standardization of radiation fields in diagnostic radiology were established standards and qualities to X radiation beams, which are specified in terms of the tension in the tube, first CSR, additional filters, homogeneity coefficient or second CSR. The qualities recommended in CT (RQT), are established in IEC 61267, which is the reference for the establishment of beams in diagnostic radiology. (author)

  15. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-04-13

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  16. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  17. Innovative, Lightweight Thoraeus RubberTM for MMOD and Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic offers an innovative manufacturing process to yield ultra-lightweight radiation shielding nanocomposites by exploiting the concept of the Thoraeus filter...

  18. High Resolution, Radiation Tolerant Focal Plane Array for Lunar And Deep Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerius Photonics and its partners propose the development of a high resolution, radiation hardened 3-D FLASH Focal Plane Array (FPA), with performance expected to be...

  19. Multifunctional Carbon Nanotube/Polyethylene Complex Composites for Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene (PE), due to its high hydrogen content relative to its weight, has been identified by NASA as a promising radiation shielding material against galactic...

  20. LGM2605 as a mitigator of space radiation-induced vascular damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LignaMed, LLC is a drug development company with a fast track strategy to approval of LGM2605, an oral small molecule for use as a radiation mitigating agent that...

  1. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  2. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  3. The Ionizing Radiation Environment on the International Space Station: Performance vs. Expectations for Avionics and Materials

    Science.gov (United States)

    Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon

    2005-01-01

    The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported.

  4. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Lazanu, I.; Lazanu, S.

    2004-01-01

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  5. Performance of buffer material under radiation and thermal conditions

    International Nuclear Information System (INIS)

    Zhao Shuaiwei; Yang Zhongtian; Liu Wei

    2012-01-01

    Bentonite is generally selected as backfill and buffer material for repositories in the world. Radiation and heat release is the intrinsic properties of high level radioactive waste. This paper made a preliminary research on foreign literature about performance of the engineering barrier material under radiation and at higher temperatures (e. g. above 100℃). As our current research is just budding in this area, we need to draw lessons from foreign experience and methods. (authors)

  6. Review of NASA approach to space radiation risk assessments for Mars exploration.

    Science.gov (United States)

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  7. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of

  8. Power Absorption by Closely Spaced Point Absorbers in Constrained Conditions

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2010-01-01

    The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered......, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves...

  9. Calculation of the relative efficiency of thermoluminescent detectors to space radiation

    International Nuclear Information System (INIS)

    Bilski, P.

    2011-01-01

    Thermoluminescent (TL) detectors are often used for measurements of radiation doses in space. While space radiation is composed of a mixture of heavy charged particles, the relative TL efficiency depends on ionization density. The question therefore arises: what is the relative efficiency of TLDs to the radiation present in space? In the attempt to answer this question, the relative TL efficiency of two types of lithium fluoride detectors for space radiation has been calculated, based on the theoretical space spectra and the experimental values of TL efficiency to ion beams. The TL efficiency of LiF:Mg,Ti detectors for radiation encountered at typical low-Earth’s orbit was found to be close to unity, justifying a common application of these TLDs to space dosimetry. The TL efficiency of LiF:Mg,Cu,P detectors is significantly lower. It was found that a shielding may have a significant influence on the relative response of TLDs, due to changes caused in the radiation spectrum. In case of application of TLDs outside the Earth’s magnetosphere, one should expect lower relative efficiency than at the low-Earth’s orbit.

  10. Space Weather Action Plan Ionizing Radiation Benchmarks: Phase 1 update and plans for Phase 2

    Science.gov (United States)

    Talaat, E. R.; Kozyra, J.; Onsager, T. G.; Posner, A.; Allen, J. E., Jr.; Black, C.; Christian, E. R.; Copeland, K.; Fry, D. J.; Johnston, W. R.; Kanekal, S. G.; Mertens, C. J.; Minow, J. I.; Pierson, J.; Rutledge, R.; Semones, E.; Sibeck, D. G.; St Cyr, O. C.; Xapsos, M.

    2017-12-01

    Changes in the near-Earth radiation environment can affect satellite operations, astronauts in space, commercial space activities, and the radiation environment on aircraft at relevant latitudes or altitudes. Understanding the diverse effects of increased radiation is challenging, but producing ionizing radiation benchmarks will help address these effects. The following areas have been considered in addressing the near-Earth radiation environment: the Earth's trapped radiation belts, the galactic cosmic ray background, and solar energetic-particle events. The radiation benchmarks attempt to account for any change in the near-Earth radiation environment, which, under extreme cases, could present a significant risk to critical infrastructure operations or human health. The goal of these ionizing radiation benchmarks and associated confidence levels will define at least the radiation intensity as a function of time, particle type, and energy for an occurrence frequency of 1 in 100 years and an intensity level at the theoretical maximum for the event. In this paper, we present the benchmarks that address radiation levels at all applicable altitudes and latitudes in the near-Earth environment, the assumptions made and the associated uncertainties, and the next steps planned for updating the benchmarks.

  11. A Conditional Fourier-Feynman Transform and Conditional Convolution Product with Change of Scales on a Function Space II

    Directory of Open Access Journals (Sweden)

    Dong Hyun Cho

    2017-01-01

    Full Text Available Using a simple formula for conditional expectations over continuous paths, we will evaluate conditional expectations which are types of analytic conditional Fourier-Feynman transforms and conditional convolution products of generalized cylinder functions and the functions in a Banach algebra which is the space of generalized Fourier transforms of the measures on the Borel class of L2[0,T]. We will then investigate their relationships. Particularly, we prove that the conditional transform of the conditional convolution product can be expressed by the product of the conditional transforms of each function. Finally we will establish change of scale formulas for the conditional transforms and the conditional convolution products. In these evaluation formulas and change of scale formulas, we use multivariate normal distributions so that the conditioning function does not contain present positions of the paths.

  12. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    Science.gov (United States)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  13. Discrete Green's Theorem, Green's Functions and Stable Radiative FDTD Boundary Conditions

    NARCIS (Netherlands)

    Arnold, J.M.; Hon, de B.P.

    2007-01-01

    We propose a radiative boundary condition for the discrete-grid formulation of Helmholtz’ equation, based on rational approximation in the frequency domain of a Green’s function for the discretised system. This boundary condition is free from instabilities.

  14. Expose-R experiment on effects of open space condition on survivorship in dormant stages of aquatic invertebrates

    Science.gov (United States)

    Alekseev, Victor; Novikova, Nataliya; Levinskikh, Margarita; Sychev, Vladimir; Yusoff, Fatimah; Azuraidi, Osman

    2012-07-01

    Dormancy protects animals and plants in harsh environmental conditions from months up to hundred years. This phenomenon is perspective for space researches especially for interplanetary missions. Direct experiments in open space BYORYSK supported in principle the fact of survivorship of bacteria, fungi spores, seed of plants and crustacean dormant cysts. Even though the rate of survivorship in long-term treatments was low but good enough to conclude that biological invasion even to Mars is a real danger. As soon as the BYORYSK lunch was made of metal the possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it an ESA and RSA equipment titled EXPOSE-R was applied. The EXPOSE-R facility was an external facility attached to the outside of the Zvezda Service Module in ISS in the end of November 2008. It had glace windows transparent for UV-radiation and possibility to measure temperature, space- and UV-radiation. Among a number of experiments requiring exposure to the open space environment it had a biological launch containing resting stages of terrestrial and aquatic organisms. These stages included dried ephippia of cladoceran Daphnia magna differentiated on size, dormant eggs of ostracode Eucypris ornate, cysts of fair-shrimp Streptocephalus torvicornis ( all from hemi desert Caspian area) and Artemis salina from salt lake Crimean populations. All dormant stages were kept in transparent to UV plastic bags placed in three layers. After about two years of exposing in open space dormant stages of 3 species A. salina, D. magna, S. torvicornis successfully survived at different scales but in second and third layers only . The highest level of survivorship was found in A. salina cysts. In preliminary land experiments that imitated land EXPOSE imitation of outside space station UV and vacuum conditions survivorship in resting eggs of D .magna, S. torvicornis and E. ornate was tested also. The total UV dose of

  15. Evaluating shielding effectiveness for reducing space radiation cancer risks

    International Nuclear Information System (INIS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2006-01-01

    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDFs are used in significance tests for evaluating the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDFs. Competing mortality risks and functional correlations in radiation quality factor uncertainties are included in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the upper value of 95% confidence interval (CI) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions ( 180d) or Mars missions, GCR risks may exceed radiation risk limits that are based on acceptable levels of risk. For example, the upper 95% CI exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

  16. Modelling the perception of weather conditions by users of outdoor public spaces

    Science.gov (United States)

    Andrade, H.; Oliveira, S.; Alcoforado, M.-J.

    2009-09-01

    Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared

  17. Dielectric losses in tissues under ionizing radiation conditions

    International Nuclear Information System (INIS)

    Kamalov, N.; Narizov, N.N.; Norbaev, N.

    1977-01-01

    Dielectric losses of tissues caused by ionizing radiation were studied. The experiments were carried out on seven-day-old seedlings of two wild cotton species (G. barbadense ssp. darvini, G. hirsutum ssp. mexicanum) and of cultivated cotton sorts Tashkent-1, C-6030, AN-401. The study showed that the irradiation of the seedlings with CO 60 gamma-rays (radiation doses 0.3, 3, 20, 35 kr, the dose rate 90 rs/s) changed the tangent of the angle of losses. It was found out that the maximum tangent of the angle of dielectric losses tg sigma of cultivated forms lies within the range of 5-10 kHz frequencies, this value changing under the effect of radiation to a greater extent in wild-growing ssp. mexicanum cotton plants than in commercial varieties (Tashkent 1). In commercial cotton varieties, in distinction to wild forms, the radiation is shifting tg sigma to low frequencies. The electric capacity is much lower in wild forms (ssp. mexicanum) than in cultivated cotton seedlings. Thus the capacity of cells and the maximum of the tg sigma absorption in cultivated and wild cotton seedlings are significantly different which is probably connected with their different radiosensitivity to the ionizing radiation

  18. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    Science.gov (United States)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  19. Radiation shielding estimates for manned Mars space flight

    International Nuclear Information System (INIS)

    Dudkin, V.E.; Kovalev, E.E.; Kolomensky, A.V.; Sakovich, V.A.; Semenov, V.F.; Demin, V.P.; Benton, E.V.

    1992-01-01

    In the analysis of the required radiation shielding for spacecraft during a Mars flight, the specific effects of solar activity (SA) on the intensity of galactic and solar cosmic rays were taken into consideration. Three spaceflight periods were considered: (1) maximum SA; (2) minimum SA; and (3) intermediate SA, when intensities of both galactic and solar cosmic rays are moderately high. Scenarios of spaceflights utilizing liquid-propellant rocket engines, low-and intermediate-thrust nuclear electrojet engines, and nuclear rocket engines, all of which have been designed in the Soviet Union, are reviewed. Calculations were performed on the basis of a set of standards for radiation protection approved by the U.S.S.R. State Committee for Standards. It was found that the lowest estimated mass of a Mars spacecraft, including the radiation shielding mass, obtained using a combination of a liquid propellant engine with low and intermediate thrust nuclear electrojet engines, would be 500-550 metric tons. (author)

  20. Lightweight, High-Temperature Radiator for Space Propulsion

    Science.gov (United States)

    Hyers, R. W.; Tomboulian, B. N.; Crave, Paul D.; Rogers, J. R.

    2012-01-01

    For high-power nuclear-electric spacecraft, the radiator can account for 40% or more of the power system mass and a large fraction of the total vehicle mass. Improvements in the heat rejection per unit mass rely on lower-density and higher-thermal conductivity materials. Current radiators achieve near-ideal surface radiation through high-emissivity coatings, so improvements in heat rejection per unit area can be accomplished only by raising the temperature at which heat is rejected. We have been investigating materials that have the potential to deliver significant reductions in mass density and significant improvements in thermal conductivity, while expanding the feasible range of temperature for heat rejection up to 1000 K and higher. The presentation will discuss the experimental results and models of the heat transfer in matrix-free carbon fiber fins. Thermal testing of other carbon-based fin materials including carbon nanotube cloth and a carbon nanotube composite will also be presented.

  1. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space

    International Nuclear Information System (INIS)

    Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T.

    2013-01-01

    During their occupational activities in space, astronauts are exposed to ionising radiation from natural radiation sources present in this environment. They are, however, not usually classified as being occupationally exposed in the sense of the general ICRP system for radiation protection of workers applied on Earth. The exposure assessment and risk-related approach described in this report is clearly restricted to the special situation in space, and should not be applied to any other exposure situation on Earth. The report describes the terms and methods used to assess the radiation exposure of astronauts, and provides data for the assessment of organ doses. Chapter 1 describes the specific situation of astronauts in space, and the differences in the radiation fields compared with those on Earth. In Chapter 2, the radiation fields in space are described in detail, including galactic cosmic radiation, radiation from the Sun and its special solar particle events, and the radiation belts surrounding the Earth. Chapter 3 deals with the quantities used in radiological protection, describing the Publication 103 (ICRP, 2007) system of dose quantities, and subsequently presenting the special approach for applications in space; due to the strong contribution of heavy ions in the radiation field, radiation weighting is based on the radiation quality factor, Q, instead of the radiation weighting factor, w R . In Chapter 4, the methods of fluence and dose measurement in space are described, including instrumentation for fluence measurements, radiation spectrometry, and area and individual monitoring. The use of biomarkers for the assessment of mission doses is also described. The methods of determining quantities describing the radiation fields within a spacecraft are given in Chapter 5. Radiation transport calculations are the most important tool. Some physical data used in radiation transport codes are presented, and the various codes used for calculations in high

  2. Real Time Space Radiation Effects in Electronic Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The effects that solar particle events can have on operational electronic systems is a significant concern for all missions, but especially for those beyond Low...

  3. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  4. Chaotic inflation as an attractor in initial-condition space

    International Nuclear Information System (INIS)

    Kung, J.H.; Brandenberger, R.H.

    1990-01-01

    We study the evolution of scalar field inhomogeneities in the preinflationary phase of an inflationary universe. We decompose the scalar field configuration in Fourier modes and consider initial conditions in which more than one mode is excited. We find that the long-wavelength modes are stable against perturbations due to short-wavelength excitations and that chaotic inflation results even if at the initial time the short waves contain most of the energy density

  5. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.

    Science.gov (United States)

    Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K

    2017-08-18

    Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation

  6. LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station.

    Science.gov (United States)

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE-Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  7. Space radiation measurement of plant seeds boarding on the Shijian-8 satellite

    International Nuclear Information System (INIS)

    Lv Duicai; Huang Zengxin; Zhao Yali; Wang Genliang; Jia Xianghong; Guo Huijun; Liu Luxiang; Li Chunhua; Zhang Long

    2008-01-01

    In order to identify cause of mutagenesis of plant seeds induced by space flight, especially to ascertain the interrelation between space radiation and mutagenesis, a 'photograph location' experimental setup was designed in this study. CR-39 solid-state nuclear track detectors were used to detect space heavy particles. The plant seeds and their position hit by space heavy ions were checked based on relative position between track and seeds in the setup. The low LET part of the spectrum was also measured by thermoluminescence dosemeter (TLD, LiF). The results showed that the 'photograph location' experimental method was convenient, practicable and economical. This new method also greatly saved time for microscopical analysis. On Shijian-8 satellite, the average ion flux of space heavy ions was 4.44 ions/cm 2 ·d and the average dosage of low LET space radiation to the plant seeds was 4.79 mGy. (authors)

  8. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  9. Gamma radiation in space and in the atmosphere

    International Nuclear Information System (INIS)

    Rocchia, R.

    1966-01-01

    We have shown that the γ radiation existing in the atmosphere is caused mainly by the Bremsstrahlung of the electrons of the electromagnetic cascades (∼ 50 per cent of the measured radiation), by the 511 keV radiation produced by the annihilation of positrons created in cascades (8 per cent of the measured intensity) and by the Compton γ degradation of this line (30 per cent of the measured intensity). The rest, slightly over 10 per cent, must be attributed to secondary causes such as the nuclear de-excitation γ to the internal Bremsstrahlung of charged particles created in nuclear stars, and to charged particles crossing our detector, since the latter was not fitted with a device for rejecting these particles. Experiments carried out in rockets at Colomb-Bechar confirm these results and have made it possible to detect and measure a primary γ radiation having an intensity of ∼ 2 γ cm 2 s -1 above 100 keV. The primary spectrum obeys an approximate E -2 law. (author) [fr

  10. [Anthropogenic sources of radiation hazard in the near-Earth space].

    Science.gov (United States)

    Fedoseev, G A

    2004-01-01

    All plausible artificial radioactive sources entering the near-Earth space (NES) were systematized and consequences of various large radiation accidents and catastrophes to Earth and NES were analyzed. Aggressive "population" of near-Earth orbits by space stations with rotating crews, unmanned research platforms and observatories extends "borderlines" of the noosphere raising at the same time concerns about the noosphere radiation safety and global radioecology. Specifically, consideration is given to the facts of negative effects of space power reactor facilities on results of orbital astrophysical investigations.

  11. Concept of space NPP radiation safety and its realization in the Kosmos-1900 satellite

    International Nuclear Information System (INIS)

    Gryaznov, G.M.; Nikolaev, V.S.; Serbin, V.I.; Tyugin, V.M.

    1989-01-01

    A standard NPP for a space vehicle, radioactivity composition and radiation safety systems are considered. Plausible accidents on board the space vehicle and requirements to system operation reliability are discussed. The main reactor characteristics situation on board the Kosmos-1900 satellite and completion of its flight are described. The experience in providing radiation safety of space NPP has shown that it is sufficient to use two independent systems: a drift system and a reactor dispersion system based on separation of its structure by active means

  12. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  13. Characteristic of the radiation field in low earth orbit and in deep space

    International Nuclear Information System (INIS)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60 latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  14. Characteristic of the radiation field in low Earth orbit and in deep space.

    Science.gov (United States)

    Reitz, Guenther

    2008-01-01

    The radiation exposure in space by cosmic radiation can be reduced through careful mission planning and constructive measures as example the provision of a radiation shelter, but it cannot be completely avoided. The reason for that are the extreme high energies of particles in this field and the herewith connected high penetration depth in matter. For missions outside the magnetosphere ionizing radiation is recognized as the key factor through its impact on crew health and performance. In absence of sporadic solar particle events the radiation exposure in Low Earth orbit (LEO) inside Spacecraft is determined by the galactic cosmic radiation (protons and heavier ions) and by the protons inside the South Atlantic Anomaly (SAA), an area where the radiation belt comes closer to the earth surface due to a displacement of the magnetic dipole axes from the Earth's center. In addition there is an albedo source of neutrons produced as interaction products of the primary galactic particles with the atoms of the earth atmosphere. Outside the spacecraft the dose is dominated by the electrons of the horns of the radiation belt located at about 60" latitude in Polar Regions. The radiation field has spatial and temporal variations in dependence of the Earth magnetic field and the solar cycle. The complexity of the radiation field inside a spacecraft is further increased through the interaction of the high energy components with the spacecraft shielding material and with the body of the astronauts. In interplanetary missions the radiation belt will be crossed in a couple of minutes and therefore its contribution to their radiation exposure is quite small, but subsequently the protection by the Earth magnetic field is lost, leaving only shielding measures as exposure reduction means. The report intends to describe the radiation field in space, the interaction of the particles with the magnetic field and shielding material and give some numbers on the radiation exposure in low earth

  15. Taking SiC Power Devices to the Final Frontier: Addressing Challenges of the Space Radiation Environment

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan

    2017-01-01

    Silicon carbide power device technology has the potential to enable a new generation of aerospace power systems that demand high efficiency, rapid switching, and reduced mass and volume in order to expand space-based capabilities. For this potential to be realized, SiC devices must be capable of withstanding the harsh space radiation environment. Commercial SiC components exhibit high tolerance to total ionizing dose but to date, have not performed well under exposure to heavy ion radiation representative of the on-orbit galactic cosmic rays. Insertion of SiC power device technology into space applications to achieve breakthrough performance gains will require intentional development of components hardened to the effects of these highly-energetic heavy ions. This work presents heavy-ion test data obtained by the authors over the past several years for discrete SiC power MOSFETs, JFETs, and diodes in order to increase the body of knowledge and understanding that will facilitate hardening of this technology to space radiation effects. Specifically, heavy-ion irradiation data taken under different bias, temperature, and ion beam conditions is presented for devices from different manufacturers, and the emerging patterns discussed.

  16. Radiation dechlorination of PCE in aqueous solutions under various conditions

    International Nuclear Information System (INIS)

    Mucka, V.; Lizalova, B.; Pospisil, M.; Silber, R.; Polakova, D.

    2002-01-01

    Complete text of publication follows. Radiation technology of water purification from chlorinated compounds seems to be one of the promising method (Getoff, 1996), analogously as it was shown (Mueka et al., 2000) with radiation degradation of polychlorinated biphenyls (PCBs). A systematic study of dechlorination of tetrachloroethylene (PCE) in aqueous solutions (initial concentrations ranging from 9.2 x 10 -6 to 2.5 x 10 -4 mol dm -3 ), initiated by γ-rays of 60 Co or by accelerated electrons (EB, 4.5 MeV) in presence of various modifiers (atmospheric oxygen, N 2 O-oxide, HCO 3 - - and NO 3 - - ions as well as various pH-values), was the aim of this paper. The studies showed that both actual concentration c of PCE and radiation yield G(Cl - ) decreased rapidly with increasing dose up to the dose of 2 kGy and the degree of dechlorination raised sharply in this dose-interval. The dechlorination was slightly promoted by atmospheric oxygen. Similarly, a promotion effect was detected in the case of the PCE-solutions saturated, prior to their irradiation, with the N 2 O-oxide. On the other hand, a presence of NO 3 - - or HCO 3 - -ions in irradiated samples led to an inhibiting effect. The inhibiting effect increased markedly with increasing concentration of both at above-mentioned ions up to the concentration of about 100 mg dm -3 . A pronounced inhibition of γ-radiation dechlorination of PCE was observed in alkaline aqueous solutions. The results obtained in this paper support the idea that the radiation dechlorination of PCE in aqueous solutions proceeds via an oxidative mechanism in which the γ-irradiation was found to be more effective than the EB-irradiation

  17. Radiation durability and functional reliability of polymeric materials in space systems

    International Nuclear Information System (INIS)

    Haruvy, Y.

    1990-01-01

    Polymeric materials are preferred for the light-weight construction of space-systems. Materials in space systems are required to fulfill a complete set of specifications, at utmost reliability, throughout the whole period of service in space, while being exposed to the hazardous influence of the space environment. The major threats of the space environment in orbits at the geostationary altitude (GSO) arise from ionizing radiations, the main constituents of which are highly energetic protons (affecting mainly the surface) and fast electrons (which produce the main threat to the electronic components). The maximum dose of ionizing radiation (within the limits of uncertainty of the calculations) at the surface of a material mounted on a space system, namely the ''Skin-Dose'', is ca. 2500 Mrads/yr. Space systems such as telecommunication satellites are planned to serve for prolonged periods of 30 years and longer. The cumulative predicted dose of ionizing-radiation over such periods presents a severe threat of chemical degradation to most of the polymeric construction materials commonly utilized in space systems. The reliability of each of the polymeric materials must be evaluated in detail, considering each of the relevant typical threats, such as ionizing-radiation, UV radiation, meteoroides flux, thermal cycling and ultra-high vacuum. For each of the exposed materials, conservation of the set of functional characteristics such as mechanical integrity, electrical and thermo-optical properties, electrical conductivity, surface charging and outgassing properties, which may cause contamination of neighboring systems, is evaluated. The reliability of functioning of the materials exposed to the space environment can thus be predicted, utilizing data from the literature, experimental results reported from space flights and laboratory simulations, and by chemical similarity of untested polymers to others. (author)

  18. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection; La NASA space radiation summer school, une formation d'excellence en radiobiologie et radioprotection spatiale

    Energy Technology Data Exchange (ETDEWEB)

    Vogin, G. [Centre Alexis-Vautrin, 54 - Nancy (France)

    2009-10-15

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  19. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Science.gov (United States)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  20. Increased root production in soybeans grown under space flight conditions.

    Science.gov (United States)

    Levine, H. G.; Piastuch, W. C.

    The GENEX ({Gen}e {Ex}pression) spaceflight experiment (flown on STS-87) was developed to investigate whether direct and/or indirect effects of microgravity are perceived as an external stimulus for soybean seedling response. Protocols were designed to optimize root and shoot formation, gas exchange and moisture uniformity. Six surface sterilized soybean seeds (Glycine max cv McCall) were inserted into each of 32 autoclaved plastic seed growth pouches containing an inner germination paper sleeve (for a total of 192 seeds). The pouches were stowed within a mid-deck locker until Mission Flight Day 10, at which time an astronaut added water to each pouch (thereby initiating the process of seed germination on-orbit), and subsequently transferred them to four passive, light-tight aluminum canisters called BRIC-60s (Biological Research In Canisters). We report here on the morphological characteristics of: (1) the recovered flight material, (2) the corresponding ground control population, plus (3) additional controls grown on the ground under clinostat conditions. No significant growth differences were found between the flight, ground control and clinorotated treatments for either the cotyledons or hypocotyls. There were, however, significantly longer primary roots produced in the flight population relative to the ground control population, which in turn had significantly longer primary roots than the clinorotated population. This same pattern was observed relative to the production of lateral roots (flight > control > clinorotated). Taken together with previous literature reports, we believe that there is now sufficient evidence to conclude that plants grown under conditions of microgravity will generally exhibit enhanced root production relative to their ground control counterparts. The mechanism underlying this phenomenon is open to speculation. Funded under NASA Contract NAS10-12180.

  1. Thermal radiation in gas core nuclear reactors for space propulsion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Gauntt, R.O.; Harms, G.A.; Latham, T.; Roman, W.; Rodgers, R.J.

    1994-01-01

    A diffusive model of the radial transport of thermal radiation out of a cylindrical core of fissioning plasma is presented. The diffusion approximation is appropriate because the opacity of uranium is very high at the temperatures of interest (greater than 3000 K). We make one additional simplification of assuming constant opacity throughout the fuel. This allows the complete set of solutions to be expressed as a single function. This function is approximated analytically to facilitate parametric studies of the performance of a test module of the nuclear light bulb gas-core nuclear-rocket-engine concept, in the Annular Core Research Reactor at Sandia National Laboratories. Our findings indicate that radiation temperatures in range of 4000-6000 K are attainable, which is sufficient to test the high specific impulse potential (approximately 2000 s) of this concept. 15 refs

  2. Experimental Studies of Carbon Nanotube Materials for Space Radiators

    Science.gov (United States)

    SanSoucie, MIchael P.; Rogers, Jan R.; Craven, Paul D.; Hyers, Robert W.

    2012-01-01

    Game ]changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric propulsion (NEP) systems. Carbon nanotubes (CNT) and carbon fiber materials have the potential to offer significant improvements in thermal conductivity and mass properties. A test apparatus was developed to test advanced radiator designs. This test apparatus uses a resistance heater inside a graphite tube. Metallic tubes can be slipped over the graphite tube to simulate a heat pipe. Several sub ]scale test articles were fabricated using CNT cloth and pitch ]based carbon fibers, which were bonded to a metallic tube using an active braze material. The test articles were heated up to 600 C and an infrared (IR) camera captured the results. The test apparatus and experimental results are presented here.

  3. Space elevator radiation hazards and how to mitigate them.

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, A. M. (Anders M.); Gassend, B.; Friedel, R. H. W. (Reiner H. W.); Cayton, T. E. (Thomas E.); Patamia, S. E. (Steven E.)

    2004-01-01

    The conclusions of this paper are: (1) the radiation field is severe; (2) shielding with aluminium is not economical; (3) shielding with a magnetic field may be feasible; (4) reducing dose by going gaster is not very effective; (5) larger/heavier climbers are more efficient when shielding with a heavy material (contrary requirement to talk by Ben Shelef); (6) climber mass and cost to orbit are impacted; and (7) power requirement could be impacted.

  4. In Vitro Studies on Space Radiation-Induced Delayed Genetic Responses: Shielding Effects

    Science.gov (United States)

    Kadhim, Munira A.; Green, Lora M.; Gridley, Daila S.; Murray, Deborah K.; Tran, Da Thao; Andres, Melba; Pocock, Debbie; Macdonald, Denise; Goodhead, Dudley T.; Moyers, Michael F.

    2003-01-01

    Understanding the radiation risks involved in spaceflight is of considerable importance, especially with the long-term occupation of ISS and the planned crewed exploration missions. Several independent causes may contribute to the overall risk to astronauts exposed to the complex space environment, such as exposure to GCR as well as SPES. Protons and high-Z energetic particles comprise the GCR spectrum and may exert considerable biological effects even at low fluence. There are also considerable uncertainties associated with secondary particle effects (e.g. HZE fragments, neutrons etc.). The interaction of protons and high-LET particles with biological materials at all levels of biological organization needs to be investigated fully in order to establish a scientific basis for risk assessment. The results of these types of investigation will foster the development of appropriately directed countermeasures. In this study, we compared the biological responses to proton irradiation presented to the target cells as a monoenergetic beam of particles of complex composition delivered to cells outside or inside a tissue phantom head placed in the United States EVA space suit helmet. Measurements of chromosome aberrations, apoptosis, and the induction of key proteins were made in bone marrow from CBA/CaJ and C57BL/6 mice at early and late times post exposure to radiation at 0, 0.5, 1 and 2 Gy while inside or outside of the helmet. The data showed that proton irradiation induced transmissible chromosomal/genomic instability in haematopoietic stem cells in both strains of mice under both irradiation conditions and especially at low doses. Although differences were noted between the mouse strains in the degree and kinetics of transforming growth factor-beta 1 and tumor necrosis factor-alpha secretion, there were no significant differences observed in the level of the induced instability under either radiation condition, or for both strains of mice. Consequently, when

  5. Exposure of space electronics and materials to ionizing radiation

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    Describes the methods and sources available for irradiation of space instruments developed at the Department of Automation. Methods for calculations and measurements of fluences and doses are also described. The sources are gamma-rays from iridium-192 and cobalt-60, 30 MeV protons, 10 MeV electrons...

  6. Predicting temperature and moisture distributions in conditioned spaces using the zonal approach

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, K.C. [Parana Pontifical Catholic Univ., Curitiba (Brazil); Wurtz, E.; Inard, C. [La Rochelle Univ., La Rochelle, Cedex (France). LEPTAB

    2005-07-01

    Moisture interacts with building elements in a number of different ways that impact upon building performance, causing deterioration of building materials, as well as contributing to poor indoor air quality. In humid climates, moisture represents one of the major loads in conditioned spaces. It is therefore important to understand and model moisture transport accurately. This paper discussed an intermediate zonal approach to building a library of data in order to predict whole hygrothermal behavior in conditioned rooms. The zonal library included 2 models in order to consider building envelope moisture buffering effects as well as taking into account the dynamic aspect of jet airflow in the zonal method. The zonal library was then applied to a case study to show the impact of external humidity on the whole hygrothermal performance of a room equipped with a vertical fan-coil unit. The proposed theory was structured into 3 groups representing 3 building domains: indoor air; envelope; and heating, ventilation and air conditioning (HVAC) systems. The indoor air sub-model related to indoor air space, where airflow speed was considered to be low. The envelope sub-model related to the radiation exchanges between the envelope and its environment as well as to the heat and mass transfers through the envelope material. The HVAC system sub-model referred to the whole system including equipment, control and specific airflow from the equipment. All the models were coupled into SPARK, where the resulting set of non-linear equations were solved simultaneously. A case study of a large office conditioned by a vertical fan-coil unit with a rectangular air supply diffuser was presented. Details of the building's external and internal environment were provided, as well as convective heat and mass transfer coefficients and temperature distributions versus time. Results of the study indicated that understanding building material moisture buffering effects is as important as

  7. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    Science.gov (United States)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  8. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  9. Conditioning of spent radiation sources in developing countries

    International Nuclear Information System (INIS)

    1990-01-01

    This video presents the safe handling and conditioning of radioactive spent sealed sources when technological resources are limited and specialized equipment is not available. The process is divided into three phases which are demonstrated in detail: 1) Planning, including training; 2) Conditioning, which is the actual incorporation of the spent sources; and 3) Follow-up, which includes radiological control, documentation and safe storage

  10. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  11. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    Science.gov (United States)

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  12. Predictions of integrated circuit serviceability in space radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Khamidullina, N.M.; Kuznetsov, N.V.; Pichkhadze, K.M.; Popov, V.D

    1999-10-01

    The present paper suggests an approach to estimating and predicting the serviceability of on-board electronic equipment. It is based on the postulates of the reliability theory and accounts for total-dose and single-event radiation effects as well as other exterior destabilizing factors. The methods of determination of failure and upset rates for CMOS devices are considered. The probability of non-failure operation of a two CMOS RAM is calculated along the whole trajectory of the 'Solar Probe' spacecraft.

  13. Cell genetic processes under space flight conditions: Analysis of two-factor crosses between spore color mutants of Sordaria macrospora. Final report

    International Nuclear Information System (INIS)

    Hock, B.; Hahn, A.

    2001-01-01

    The purpose of the FUNGUS experiment on S/MM05 was to examine the effects of space flight conditions on the hereditary transmission of the spore color genes. The controls consisted of one further experiment in space with a centrifuge and 1 x g acceleration, and a gravitational reference experiment. A statistical analysis revealed no significant differences attributable to the absence of gravitational effects. A significant increase however was observed in the recombination frequencies, due to the fraction of HZE particles in the cosmic radiation. Gravitational reference experiments showed a dose-dependent effect of heavy-ion particle radiation on the post-reduction frequency and thus on the calculated distances between the genes, higher radiation doses increasing the post-reduction frequency. It was possible to derive dose-response curves for comparison with X-radiation and determination of the RBE of the heavy ion radiation with respect to the calculated distances between the genes 1u and r2. The mycelium of the fungi of the space flight experiment was examined for DNA strand breaks at the molecular level by means of a single cell gel electrophoresis assay. No genetic damage could be detected in the specimens of the experiment in space. Attempts at DNA repair in S. macrospora reveal that most of the damage is healed within a few hours. It was possible to determine the maximum doses of ionizing and non-ionizing radiation up to which DNA repair is possible. (orig./CB) [de

  14. Temperature Condition and Spherical Shell Shape Variation of Space Gauge-Alignment Spacecraft

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available A high precision spherical shell is one of the geometrical shape embodiments of a gaugealignment spacecraft to determine and control a radar channel energy potential of the ground-based complex for the traffic control of space objects. Passive relays of signals and some types of smallsized instrumentation standard reflectors used for radar gauge and alignment have the same shape. Orbits of the considered spacecraft can be either circular with a height of about 1000 km, including those close to the polar, or elliptical with an apogee of up to 2200 km.In case there is no thermal control system in spacecrafts of these types the solar radiation is a major factor to define the thermal state of a spherical shell in the illuminated orbit area. With the shell in fixed position with respect to direction towards the Sun an arising uneven temperature distribution over its surface leads to variation of the spherically ideal shell shape, which may affect the functional characteristics of the spacecraft. The shell rotation about an axis perpendicular to the direction towards the Sun may reduce an unevenness degree of the temperature distribution.The uneven temperature distribution over the spherical shell surface in conditions of the lowEarth space and this unevenness impact on the shell shape variation against its spherical shape can be quantively estimated by the appropriate methods of mathematical modeling using modification of a previously developed mathematical model to describe steady temperature state of such shell on the low-Earth orbit. The paper considers the shell made from a polymeric composite material. Its original spherical shape is defined by rather low internal pressure. It is assumed that equipment in the shell, if any, is quite small-sized. This allows us to ignore its impact on the radiative transfer in the shell cavity. Along with defining the steady temperature distribution over the shell surface at its fixed orientation with respect to

  15. Some common random fixed point theorems for contractive type conditions in cone random metric spaces

    Directory of Open Access Journals (Sweden)

    Saluja Gurucharan S.

    2016-08-01

    Full Text Available In this paper, we establish some common random fixed point theorems for contractive type conditions in the setting of cone random metric spaces. Our results unify, extend and generalize many known results from the current existing literature.

  16. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    Science.gov (United States)

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space

    Science.gov (United States)

    Heirtzler, J. R.; Smith, David E. (Technical Monitor)

    2000-01-01

    South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.

  18. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  19. Biological effects of space radiation on human cells. History, advances and outcomes

    International Nuclear Information System (INIS)

    Maalouf, M.; Foray, N.; Durante, M.

    2011-01-01

    Exposure to radiation is one of the main concerns for space exploration by humans. By focusing deliberately on the works performed on human cells, we endeavored to review, decade by decade, the technological developments and conceptual advances of space radiation biology. Despite considerable efforts, the cancer and the toxicity risks remain to be quantified: the nature and the frequency of secondary heavy ions need to be better characterized in order to estimate their contribution to the dose and to the final biological response; the diversity of radiation history of each astronaut and the impact of individual susceptibility make very difficult any epidemiological analysis for estimating hazards specifically due to space radiation exposure. Cytogenetic data undoubtedly revealed that space radiation exposure produce significant damage in cells. However, our knowledge of the basic mechanisms specific to low-dose, to repeated doses and to adaptive response is still poor. The application of new radiobiological techniques, like immunofluorescence, and the use of human tissue models different from blood, like skin fibroblasts, may help in clarifying all the above items. (author)

  20. Design considerations for the use of laser-plasma accelerators for advanced space radiation studies

    Science.gov (United States)

    Königstein, T.; Karger, O.; Pretzler, G.; Rosenzweig, J. B.; Hidding, B.; Hidding

    2012-08-01

    We present design considerations for the use of laser-plasma accelerators for mimicking space radiation and testing space-grade electronics. This novel application takes advantage of the inherent ability of laser-plasma accelerators to produce particle beams with exponential energy distribution, which is a characteristic shared with the hazardous relativistic electron flux present in the radiation belts of planets such as Earth, Saturn and Jupiter. Fundamental issues regarding laser-plasma interaction parameters, beam propagation, flux development, and experimental setup are discussed.

  1. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    Science.gov (United States)

    George, Kerry

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after irradiation, at least for space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts' blood lymphocytes assessed by FISH painting and collected at various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  2. Assessment of the Radiation Enclosure Models in SPACE and RELAP5 with GOTA Test 27

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. B.; Lee, G. W.; Choi, T. S. [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    SPACE (Safety and Performance Analysis Code) for nuclear power plant has been developed to calculate the transient thermal-hydraulic response of PWRs that can contain multiple types of fluids. Without explaining 3-D effects such as the change of fuel rod/guide tube thermal behavior as a result of the radiation heat transfer, the 1-D code could predict an unrealistically high peak clad temperature. A useful function to simulate the wall-to-wall radiation heat transfer is implemented in the SPACE and RELAP5 codes. This paper discusses the assessment results of the radiation enclosure model of SPACE and RELAP5. The capability of handling wall-to-wall radiation problem of the SPACE and the RELAP5 codes has been evaluated using the experimental data from the GOTA test facility. At the top of the bundle, the maximum errors of SPACE and RELAP5 are less than 1.6% and 2.3%, respectively. As noted, there is a small discrepancy between the calculated results and experimental data except for the predictions near the top of the test section. The SPACE code is based on the version 2.16 distributed by KHNP. In order to perform the simulation of the GOTA test 27, it was necessary to modify the SPACE code. There was the subroutine for an input process corresponding to the radiation model, the inp{sub c}heck function of the RadEncData Class, contained in a vulnerable algorithm to figure out the reciprocity rule of the view factor.

  3. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  4. OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation

    Science.gov (United States)

    Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.

    2011-01-01

    The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.

  5. Mechanisms of Radiation-Induced Conditioned Taste Aversion Learning

    Science.gov (United States)

    1986-01-01

    impairment of the synthesis of these cells, especially those in In addition to emesis. exposure to lower doses of ionizing bone marrow. However. since...pretreatment with fluoxetine in gustatory conditioning. 629-635. 1983. Pharmnat l Bioc/n-a 8,4,ui 17: 431-443. 1982. 100. Rabin. B. M. and J. S. Rabin

  6. Evaluation of radiation protection conditions in nuclear gauges fabrication

    International Nuclear Information System (INIS)

    Sekiguchi, Marcelo Ferreira; Borges, Jose Carlos

    1999-01-01

    The objective of this work was to evaluate the radioprotection conditions in the work place, of a industry that produces nuclear gauges. The survey was divided, basically, in two parts; first took place a physical monitoring area, individual and contamination and biological, through the analysis of excretes and cytogenetic dosimetry. (author)

  7. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  8. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  9. Radiation shielding design for the VISTA space craft

    Energy Technology Data Exchange (ETDEWEB)

    Pahyn, S.; Pahyn, H.M. [Gazi Univ., Teknik Eoitim Fakultesi, Ankara (Turkey)

    2001-07-01

    An innovative concept for the direct utilisation of fusion energy with laser ignited (D,T) capsules for propulsion is presented with the so called VISTA (Vehicle for Interplanetary Space Transport Applications) concept. VISTA's overall geometry is that of a 50 degrees-half-angle cone to avoid massive radioactive shielding. The 50 degrees-half-angle maximizes the jet efficiency, and is determined by selecting the optimum pellet firing position along the axis of the cone with respect to the plane of the magnet coil. The pellet firing position is in the vacuum. By a total fusion power production of 17 500 MW with a repetition rate of 5 Hz and 3 500 MJ per shot, the propulsion power in form of charged particles has been calculated as {approx} 7 000 MW, making {approx} 40 % of the total fusion power. About 60 % of the fusion energy is carried by the leaking neutrons out of the pellet. Most of them (96 %) escape into vacuum without striking the space ship. Only 4 % enter the frozen hydrogen exhaust cone (about 50 gr.). Total peak nuclear heat generation in the coils is calculated as 4.7 mW/cm{sup 3}. The peak neutron heating is 1.9 mW/cm{sup 3} and the peak {gamma}-ray heating density is 2.8 mW/cm{sup 3}. However, volume averaged nuclear heat generation in the coils is much lower. It is calculated as 0.18, 0.48 and 0.66 mW/cm{sup 3} for neutron, {gamma}-ray and total nuclear heating, respectively. Net shielding mass is found as 170 ton, making < 3 % of the vehicle mass. (authors)

  10. Radiation shielding design for the VISTA space craft

    International Nuclear Information System (INIS)

    Pahyn, S.; Pahyn, H.M.

    2001-01-01

    An innovative concept for the direct utilisation of fusion energy with laser ignited (D,T) capsules for propulsion is presented with the so called VISTA (Vehicle for Interplanetary Space Transport Applications) concept. VISTA's overall geometry is that of a 50 degrees-half-angle cone to avoid massive radioactive shielding. The 50 degrees-half-angle maximizes the jet efficiency, and is determined by selecting the optimum pellet firing position along the axis of the cone with respect to the plane of the magnet coil. The pellet firing position is in the vacuum. By a total fusion power production of 17 500 MW with a repetition rate of 5 Hz and 3 500 MJ per shot, the propulsion power in form of charged particles has been calculated as ∼ 7 000 MW, making ∼ 40 % of the total fusion power. About 60 % of the fusion energy is carried by the leaking neutrons out of the pellet. Most of them (96 %) escape into vacuum without striking the space ship. Only 4 % enter the frozen hydrogen exhaust cone (about 50 gr.). Total peak nuclear heat generation in the coils is calculated as 4.7 mW/cm 3 . The peak neutron heating is 1.9 mW/cm 3 and the peak γ-ray heating density is 2.8 mW/cm 3 . However, volume averaged nuclear heat generation in the coils is much lower. It is calculated as 0.18, 0.48 and 0.66 mW/cm 3 for neutron, γ-ray and total nuclear heating, respectively. Net shielding mass is found as 170 ton, making < 3 % of the vehicle mass. (authors)

  11. Radiation conditions in the ring hall of the IHEP proton synchrotron

    International Nuclear Information System (INIS)

    Borodin, V.E.; Ermolenko, L.S.; Obryashchikova, L.P.

    1975-01-01

    The paper presents the results on studying the radiation conditions caused by induced radioactivity of the accelerator units in the ring hall. The data on the induced radioactivity level just on the ring vacuum chamber are reported. Radiation conditions in the most characteristic areas of the hall are considered. The changes in time of the dose rate at the internal target and at the entrance to the hall are shown

  12. New generation radioprotectors for personnel radiation protection in today 'Ukrytie' object conditions

    International Nuclear Information System (INIS)

    Senyuk, O.F.; Gorovoj, L.F.; Danilov, V.M.

    2001-01-01

    The peculiarities of radiation protection in conditions of modern 'Ukryttia' object depending on radiation situation are analyzed. It is underlined that the works inside the object are connected with high risk of radionuclide inhalation, especially of transuranium isotopes. It is shown the expedience of pharmacological protection of the persons working in extraordinary conditions of 'Ukryttia' object. The home-made biological preparation Mycoton is proposed as a remedy with simultaneous redistribution, antioxidant and adaptogenous properties

  13. Radiation condition in computerized tomography (CT): determination and calibration of dosemeters

    International Nuclear Information System (INIS)

    Adrade, L.C.; Peixoto, J.G.P.

    2016-01-01

    RQT is the standard for radiation conditions in computed tomography . It simulates a beam unrelieved of a CT scanner . The camera pencil ionization dosimeter is used in CT. The LNMRI become known characterization of RQT radiation conditions and the secondary standard calibration for type pencil ionisation chambers in its lab. The obtained beam has the characteristics required by IEC 61267. The results of the calibration presented combined uncertainty expanded to 95.45% from 2.22% . (author)

  14. Space radiation evaluation of 16Mbit DRAMs for mass memory applications

    International Nuclear Information System (INIS)

    Calvel, P.; Lamothe, P.; Barillot, C.; Ecoffet, R.; Duzellier, S.; Stassinopoulos, E.G.

    1994-01-01

    In the frame of Mass Memory Applications for space missions, 16 Mbit DRAM from IBM and TEXAS INSTRUMENTS have been evaluated to space radiation, by the CECIL heavy ions testing coordination group. This paper presents heavy ions, protons and total dose data results for 16 Mbit DRAMs from IBM and TEXAS INSTRUMENTS, including a 'built-in ECC' DRAM. Single Event Phenomena rate are calculated for low earth orbits

  15. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  16. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  17. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  18. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  19. Thermal convection in a closed cavity in zero-gravity space conditions with stationary magnetic forces

    International Nuclear Information System (INIS)

    Lyubimova, T; Mailfert, A

    2013-01-01

    The paper deals with the investigation of thermo-magnetic convection in a paramagnetic liquid subjected to a non-uniform magnetic field in weightlessness conditions. Indeed, in zero-g space conditions such as realized in International Space Station (ISS), or in artificial satellite, or in free-flight space vessels, the classical thermo-gravitational convection in fluid disappears. In any cases, it may be useful to restore the convective thermal exchange inside fluids such as liquid oxygen. In this paper, the restoration of heat exchange by the way of creation of magnetic convection is numerically studied.

  20. The impact of radiation belts region on top side ionosphere condition during last solar minimum.

    Science.gov (United States)

    Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara

    2014-05-01

    The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440

  1. Modern education of future teacher of physical culture in the conditions of informatization of educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-03-01

    Full Text Available The informatization of the educational space is determined by the organizational, scientific-technical, educational processes, which update the creation of the unified information and educational space for the comprehensive use of information technologies in educational process of a future teacher of physical culture at the higher school. Stated that the integration and expansion of the educational space of the orients the higher school not only in the preparation of the literate student on the issues of information culture, but also to help the younger generation in the mastery of basic social abilities and skills in conditions of informatization of the educational space.

  2. Combined conduction and radiation in a two-layer planar medium with flux boundary condition

    International Nuclear Information System (INIS)

    Ho, C.H.; Ozisik, M.N.

    1987-01-01

    The interaction of conduction and radiation is investigated under both transient and steady-state conditions for an absorbing, emitting, and isotropically scattering two-layer slab having opaque coverings at both boundaries. The slab is subjected to an externally applied constant heat flux at one boundary surface and dissipates heat by radiation into external ambients from both boundary surfaces. An analytic approach is applied to solve the radiation part of the problem, and a finite-difference scheme is used to solve the conduction part. The effects of the conduction-to-radiation parameter, the single scattering albedo, the optical thickness, and the surface emissivity on the temperature distribution are examined

  3. Improved Understanding of Space Radiation Effects on Exploration Electronics by Advanced Modeling of Nanoscale Devices and Novel Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA space exploration missions will use nanometer-scale electronic technologies which call for a shift in how radiation effects in such devices and materials...

  4. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Gonon, Geraldine

    2011-01-01

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  5. Functional status of liverin conditions of radiation and chemical exposure

    Directory of Open Access Journals (Sweden)

    O. V. Severynovs’ka

    2005-09-01

    Full Text Available Chronic influences of low-intensity X-rays in doses of 0.15 and 0.25 Gr and mix of heavy metals salts in a dose of 2 EPC (extreme permissible concentrations for each metal, as a single factor or as a combination of factors, on the state of pro-/antioxidative system in a rat liver have been studied. Analysis of the data concerning combined influences allows to conclude that effects under these doses have some differences: a splash of processes of lipid peroxidation are observed in both causes, but under the lower dose an additivity takes place, and under the dose of 0.25 Gr a synergism of the agent effects in relation to the development of peroxidative reactions is registered. The results testify that technogenic contamination of water with heavy metals worsens the action of radiation factor, specifically, eliminates a hormetic splash of antioxidative activity at 0.15 Gr. Biochemical indexes of the liver activity, as a central organ of a general metabolism, and a structure of morbidity have been studied in liquidators of the Chernobyl accident from industrial Prydnieprovie region. Disturbances of liver functions have been shown, especially in persons obtained the exposure dose about 0.25 Gr. A comparison of these results and data of tests with laboratory animals reveals their mutual accordance and supports a relevancy of extrapolation of data of model experiments on a person health state, which undergone a similar influence.

  6. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Science.gov (United States)

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  7. On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets

    Directory of Open Access Journals (Sweden)

    Stefan Leuko

    2017-09-01

    Full Text Available Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.

  8. Radiation cancer in man, especially on the cases developed after irradiation for malignant conditions

    International Nuclear Information System (INIS)

    Kikuchi, Akira

    1975-01-01

    Twelve cases in which radiation cancer was observed at the Tohoku University are reported. Half of them had been treated for tuberculous cervical lymphadenitis, one for lupus vulgaris and five for various malignant conditions. The average latent period was 27 years in 7 cases which were treated for benign conditions and 13 years in 5 cases treated for malignant conditions. In Japan, 12 cases of radiation cancer after irradiation for malignant conditions, excluding leukemia, have been reported. The clinical features of these 17 cases in addition to 5 cases are reviewed. (auth.)

  9. Radiation cancer in man, especially on the cases developed after irradiation for malignant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, A [Tohoku Univ., Sendai (Japan). School of Medicine

    1975-06-01

    Twelve cases in which radiation cancer was observed at the Tohoku University are reported. Half of them had been treated for tuberculous cervical lymphadenitis, one for lupus vulgaris and five for various malignant conditions. The average latent period was 27 years in 7 cases which were treated for benign conditions and 13 years in 5 cases treated for malignant conditions. In Japan, 12 cases of radiation cancer after irradiation for malignant conditions, excluding leukemia, have been reported. The clinical features of these 17 cases in addition to 5 cases are reviewed.

  10. Interference Pattern Formation between Bounded-Solitons and Radiation in Momentum Space: Possible Detection of Radiation from Bounded-Solitons with Bose-Einstein Condensate of Neutral Atoms

    OpenAIRE

    Fujishima, Hironobu; Okumura, Masahiko; Mine, Makoto; Yajima, Tetsu

    2012-01-01

    We propose an indirect method to observe radiation from an incomplete soliton with sufficiently large amplitude. We show that the radiation causes a notched structure on the envelope of the wave packet in the momentum space. The origin of this structure is a result of interference between the main body of oscillating solitons and the small radiation in the momentum space. We numerically integrate the nonlinear Schr\\"odinger equation and perform Fourier transformation to confirm that the predi...

  11. S-Denying of the Signature Conditions Expands General Relativity's Space

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-07-01

    Full Text Available We apply the S-denying procedure to signature conditions in a four-dimensional pseudo-Riemannian space — i. e. we change one (or even all of the conditions to be partially true and partially false. We obtain five kinds of expanded space-time for General Relativity. Kind I permits the space-time to be in collapse. Kind II permits the space-time to change its own signature. Kind III has peculiarities, linked to the third signature condition. Kind IV permits regions where the metric fully degenerates: there may be non-quantum teleportation, and a home for virtual photons. Kind V is common for kinds I, II, III, and IV.

  12. Effect of the melting conditions on the properties of radiation color centers in lanthanum phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, G.O.; Rusan, V.V.; Yashchurzhinskaya, O.A.

    1986-01-01

    The authors investigate the spatial effects of ionizing radiation on the radiation processes in phosphate glasses to make a comparative estimate of the radiation yield from the radiation color centers (RCC) of different types. A study is made of their behavior under thermal decoloration. The results of a comparison of the integrated intensities of the ESR signal from trapping centers are given. The ESR spectrum of the glasses are presented--one differs slightly from the others. On the basis of the result of processing the ESR and optical spectra of gamma-irradiated lanthanum phosphate glasses synthesized under various conditions, the radiation yield of the RCC and the behavior of the intensity of their absorption under thermodecoloration are significantly affected by the conditions of synthesis of the glass.

  13. Space radiation dose analysis for solar flare of August 1989

    International Nuclear Information System (INIS)

    Nealy, J.E.; Simonsen, L.C.; Sauer, H.H.; Wilson, J.W.; Townsend, L.W.

    1990-12-01

    Potential dose and dose rate levels to astronauts in deep space are predicted for the solar flare event which occurred during the week of August 13, 1989. The Geostationary Operational Environmental Satellite (GOES-7) monitored the temporal development and energy characteristics of the protons emitted during this event. From these data, differential fluence as a function of energy was obtained in order to analyze the flare using the Langley baryon transport code, BRYNTRN, which describes the interactions of incident protons in matter. Dose equivalent estimates for the skin, ocular lens, and vital organs for 0.5 to 20 g/sq cm of aluminum shielding were predicted. For relatively light shielding (less than 2 g/sq cm), the skin and ocular lens 30-day exposure limits are exceeded within several hours of flare onset. The vital organ (5 cm depth) dose equivalent is exceeded only for the thinnest shield (0.5 g/sq cm). Dose rates (rem/hr) for the skin, ocular lens, and vital organs are also computed

  14. Boundary conditions for the diffusion equation in radiative transfer

    International Nuclear Information System (INIS)

    Haskell, R.C.; Svaasand, L.O.; Tsay, T.; Feng, T.; McAdams, M.S.; Tromberg, B.J.

    1994-01-01

    Using the method of images, we examine the three boundary conditions commonly applied to the surface of a semi-infinite turbid medium. We find that the image-charge configurations of the partial-current and extrapolated-boundary conditions have the same dipole and quadrupole moments and that the two corresponding solutions to the diffusion equation are approximately equal. In the application of diffusion theory to frequency-domain photon-migration (FDPM) data, these two approaches yield values for the scattering and absorption coefficients that are equal to within 3%. Moreover, the two boundary conditions can be combined to yield a remarkably simple, accurate, and computationally fast method for extracting values for optical parameters from FDPM data. FDPM data were taken both at the surface and deep inside tissue phantoms, and the difference in data between the two geometries is striking. If one analyzes the surface data without accounting for the boundary, values deduced for the optical coefficients are in error by 50% or more. As expected, when aluminum foil was placed on the surface of a tissue phantom, phase and modulation data were closer to the results for an infinite-medium geometry. Raising the reflectivity of a tissue surface can, in principle, eliminate the effect of the boundary. However, we find that phase and modulation data are highly sensitive to the reflectivity in the range of 80--100%, and a minimum value of 98% is needed to mimic an infinite-medium geometry reliably. We conclude that noninvasive measurements of optically thick tissue require a rigorous treatment of the tissue boundary, and we suggest a unified partial-current--extrapolated boundary approach

  15. Radiation shielding aspects for long manned mission to space: Criteria, survey study, and preliminary model

    OpenAIRE

    Sztejnberg Manuel; Xiao Shanjie; Satvat Nader; Limón Felisa; Hopkins John; Jevremović Tatjana

    2006-01-01

    The prospect of manned space missions outside Earth's orbit is limited by the travel time and shielding against cosmic radiation. The chemical rockets currently used in the space program have no hope of propelling a manned vehicle to a far away location such as Mars due to the enormous mass of fuel that would be required. The specific energy available from nuclear fuel is a factor of 106 higher than chemical fuel; it is therefore obvious that nuclear power production in space is a must. On th...

  16. Determination of Dose-Equivalent Response of A Typical Diamond Microdosimeter in Space Radiation Fields

    Directory of Open Access Journals (Sweden)

    firouz payervand

    2018-01-01

    Conclusion: The reasonable agreement between the dose equivalents calculated in this study and the results reported by other researchers confirmed that this type of microdosimeter could be a promising candidate suitable for the measurement of the dose equivalent in space radiation fields.

  17. Proceedings of the 3rd international workshop on radiation effects on semiconductor devices for space application

    International Nuclear Information System (INIS)

    1998-10-01

    This publication is the collection of the paper presented at the title workshop. The main purpose of the workshop is to bring the chance for exchange of information between scientists and engineers who work in the field of research and development of semiconductor devices used in strong radiation environment in space. The 27 of the presented papers are indexed individually. (J.P.N.)

  18. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  19. Space Radiation Heart Disease Risk Estimates for Lunar and Mars Missions

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori; Kim, Myung-Hee

    2010-01-01

    The NASA Space Radiation Program performs research on the risks of late effects from space radiation for cancer, neurological disorders, cataracts, and heart disease. For mortality risks, an aggregate over all risks should be considered as well as projection of the life loss per radiation induced death. We report on a triple detriment life-table approach to combine cancer and heart disease risks. Epidemiology results show extensive heterogeneity between populations for distinct components of the overall heart disease risks including hypertension, ischaemic heart disease, stroke, and cerebrovascular diseases. We report on an update to our previous heart disease estimates for Heart disease (ICD9 390-429) and Stroke (ICD9 430-438), and other sub-groups using recent meta-analysis results for various exposed radiation cohorts to low LET radiation. Results for multiplicative and additive risk transfer models are considered using baseline rates for US males and female. Uncertainty analysis indicated heart mortality risks as low as zero, assuming a threshold dose for deterministic effects, and projections approaching one-third of the overall cancer risk. Medan life-loss per death estimates were significantly less than that of solid cancer and leukemias. Critical research questions to improve risks estimates for heart disease are distinctions in mechanisms at high doses (>2 Gy) and low to moderate doses (<2 Gy), and data and basic understanding of radiation doserate and quality effects, and individual sensitivity.

  20. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    Science.gov (United States)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  1. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  2. The CERN-EU radiation facility for dosimetry at flight altitude and in space

    CERN Document Server

    Ferrari, A; Silari, Marco

    2001-01-01

    A reference facility for the inter-comparison of active and passive detectors in complex high-energy neutron fields is available at CERN since 1993. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield made of either 80 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high- energy component of the radiation field at commercial flight altitudes created by cosmic rays. Recent Monte Carlo calculations are presented, performed for different beam conditions and shielding configurations in view of a possible upgrade of the facility for measurements related to the space program. (20 refs).

  3. Effect Analysis on the Radiation Dose Rate of Nagasaki Atomic Bomb Survivors by Atmospheric Condition

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ji Sun; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Shin, Chang Ho [Innovative Technology Center for Radiation Safety, Seoul (Korea, Republic of); Kim, Do Heon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Dosimetry System 2002 (DS02) had been established to evaluate the radiation doses for the atomic bomb survivors in Hiroshima and Nagasaki. The radiation effects of neutrons and gamma-rays emitted from the atomic bombs detonated at both cities were analyzed, and two types of radiation transport codes (i.e., MCNP4C and DORT) were employed in their studies. It was specifically investigated for contribution of each type of radiations to total dose. However, it is insufficient to examine the effects by various environmental factors such as weather conditions, because their calculations were only performed under certain condition at the times of the bombings. In addition, the scope of them does not include acute radiation injury of the atomic bomb survivors in spite of important information for investigating hazard of unexpected radiation accident. Therefore, this study analyzed the contribution of primary and secondary effects (i.e., skyshine and groundshine) of neutrons emitted from the Nagasaki atomic bomb. These analyses were performed through a series of radiation transport calculations by using MCNPX 2.6.0 code with variations of atmospheric density. The acute radiation injury by prompt neutrons was also evaluated as a function of distance from the hypocenter, where hypocenter is the point on the ground directly beneath the epicenter which is the burst point of the bomb in air

  4. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed

  5. EVENT DRIVEN AUTOMATIC STATE MODIFICATION OF BNL'S BOOSTER FOR NASA SPACE RADIATION LABORATORY SOLAR PARTICLE SIMULATOR

    International Nuclear Information System (INIS)

    BROWN, D.; BINELLO, S.; HARVEY, M.; MORRIS, J.; RUSEK, A.; TSOUPAS, N.

    2005-01-01

    The NASA Space Radiation Laboratory (NSRL) was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The NSRL makes use of heavy ions in the range of 0.05 to 3 GeV/n slow extracted from BNL's AGS Booster. NASA is interested in reproducing the energy spectrum from a solar flare in the space environment for a single ion species. To do this we have built and tested a set of software tools which allow the state of the Booster and the NSRL beam line to be changed automatically. In this report we will describe the system and present results of beam tests

  6. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  7. A Sensitivity Study on the Radiation Shield of KSPR Space Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cerba, S.; Lee, Hyun Chul; Lim, Hong Sik; Noh, Jae Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The idea of a space reactor was realised some decades ago and since that time several research activities have been performed into this field. The US National Aeronautics and Space Administration (NASA) has been developing a small fast reactor called as fission power system (FPS) for deep space mission, where highly enriched uranium (HEU) is used as fuel. On the other hand, other researchers have also surveyed a thermal reactor concept with low enriched uranium (LEU) for space applications. One of the main concerns in terms of a space reactor is the total size and the mass of the system including the reactor itself as well as the radiation shield. Since the reactor core is a source of neutrons and gamma photons of various energies, which may cause severe damage on the electronics of the space stations, the questions related to the development of a radiation shield should be address appropriately. The proposal of a radiation shield for a small space reactor is discussed in this paper. The requirements for the radiation shield have been addressed in terms of maximal absorbed doses and neutron flounces during 10 years of operation. In this study a radiation shield design for a small space reactor was investigated. All the presented calculations were performed using the multi-purpose stochastic MCNP code with temperature dependent continuous energy ENDF/B VII.0 neutron and photon cross section libraries. The aim of this study was to design a neutron and gamma shield that can meet the requirements of 250 Gy absorbed during 10 years of reactor operation. The comparison with a fast reactor design showed that high content of {sup 238}U strongly influences the shielding mass. This phenomenon is due to the higher photon production in case of the KSPR design and therefore the use of high {sup 235}U enrichments and the operation in fast neutron spectrum may be more desirable. In case if the KSPR space reactor the best shielding performance was achieved while utilizing a multi

  8. Evaluation of conditions of radiation protection of medical personnel in intracavitary neutron therapy of cervical cancer

    International Nuclear Information System (INIS)

    Kostromina, K.N.; Korenkov, I.P.; Bocharov, A.L.; Gladkikh, N.N.

    1991-01-01

    Combined radiation therapy was provided to cervical cancer patients. Working conditions of personnel were examined, the rate of exposure doses and flows of neutrons at working places were measured, dose exposures of the personnel were evaluated. It has been concluded that occupational conditions for the medical personnel are considered to be relatively safe

  9. Effect of forming temperature conditions on the properties of radiation laced polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Trizno, M S; Gasparyan, K A; Arutyunyan, G V; Borovko, V N

    1978-11-01

    The effect of radiation lace on the thermomechanical properties of polyethylene films depending on the radiation dose and temperature conditions of their formation was studied. The samples were produced at 160 deg under the pressure of 150 kN/m/sup 2/ with the following cooling in two temperature conditions: 1) cooling of the sample just after pressing in the icy water, and 2) slow cooling of the sample in a press. Films obtained using above conditions were subjected to the radiation lace in the argon medium using ..gamma..-radiation of /sup 60/Co at the exposure dose of 0.8x10/sup 6/ rad/hr. The total radiation dose was from 30 to 200 Mrad. It is shown that the films, obtained under the first cooling conditions have a lower degree of crystallinity. Investigations of gel-fraction content, density, elastic modulus, deformability, modulus of high elasticity, breaking stress, and relative elongation for rupture depending on radiation doze and the degree of crystallinity have shown that minimum degree of crystallinity of initial films provided most uniform adn compact net structure in the laced polyethylene(LP). In this case the material working capacity increases at high temperatures. In order to improve the mechanical properties of LP when exploiting it in the amorphous crystalline state it is recommended to irradiate material with maximum degree of crystallinity.

  10. Infrared spectroscopic analysis of the effects of simulated space radiation on a polyimide

    Science.gov (United States)

    Ferl, J. E.; Long, E. R., Jr.

    1981-01-01

    Infrared spectroscopic techniques have been used to study the effects of electron radiation on the polyimide PMDA-p,p-prime- ODA. The radiation exposures were made at various dose rates, for a total dose approximately equal to that for 30 years of exposure to electron radiation in geosynchronous earth orbit. At high dose rates the major effect was probably the formation of a polyisoimide or a charged quaternary amine, and at the low dose rates the effect was a reduction in the amount or aromatic ether linkage. In addition, the effects of dose rate for a small total dose were studied. Elevated temperatures occurred at high dose rates and were, in part, probably the cause of the radiation product. The data suggest that dose rates for accelerated simulations of the space environment should not exceed 100,000 rads/sec.

  11. Space mutagenic effects on cistanche deserticola seed viability and parasitic condition

    International Nuclear Information System (INIS)

    Xu Rong; Zhou Feng; Yu Jing; Chen Jun; Sun Suqin; Liu Yougang; Liu Tongning

    2009-01-01

    The seeds of Cistanche deserticola which from a single plant with fine properties were carried to the space by the recoverable experiment satellite 'Shijian No.8'. After space loading, the seed viability and characters of infrared spectroscopy were analyzed and then planted to observe and investigate the variation and heredity. The results showed that compared to the control group, the seed viability and germination rate increased observably after space loading. As well, the plants grew much healthier at the seedling stage. The results indicated that space loading has obvious promote effects on the seed viability, germination rate and disease resistance of Cistanche deserticola. The analysis results of infrared spectroscopy showed the contents of protein and carbohydrate were increased distinctly and the contents of oil or fat reduced somewhat in the seeds after space loading. The intensity ratio between characteristic absorption peak of protein and characteristic absorption peak of fat (I 1625 /I 1745 ) were increased from 1.07 to 1.16, which could be related to the enhancement of seed viability and the reduction of germination restraint substances. It could be concluded that microgravity and intense radiation in the space caused seed viability and material metabolism change. (authors)

  12. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  13. Solar chimney: A sustainable approach for ventilation and building space conditioning

    Directory of Open Access Journals (Sweden)

    Lal, S.,

    2013-03-01

    Full Text Available The residential and commercial buildings demand increase with rapidly growing population. It leads to the vertical growth of the buildings and needs proper ventilation and day-lighting. The natural air ventilation system is not significantly works in conventional structure, so fans and air conditioners are mandatory to meet the proper ventilation and space conditioning. Globally building sector consumed largest energy and utmost consumed in heating, ventilation and space conditioning. This load can be reduced by application of solar chimney and integrated approaches in buildings for heating, ventilation and space conditioning. It is a sustainable approach for these applications in buildings. The authors are reviewed the concept, various method of evaluation, modelings and performance of solar chimney variables, applications and integrated approaches.

  14. Space-Based FPGA Radio Receiver Design, Debug, and Development of a Radiation-Tolerant Computing System

    Directory of Open Access Journals (Sweden)

    Zachary K. Baker

    2010-01-01

    Full Text Available Los Alamos has recently completed the latest in a series of Reconfigurable Software Radios, which incorporates several key innovations in both hardware design and algorithms. Due to our focus on satellite applications, each design must extract the best size, weight, and power performance possible from the ensemble of Commodity Off-the-Shelf (COTS parts available at the time of design. A large component of our work lies in determining if a given part will survive in space and how it will fail under various space radiation conditions. Using two Xilinx Virtex 4 FPGAs, we have achieved 1 TeraOps/second signal processing on a 1920 Megabit/second datastream. This processing capability enables very advanced algorithms such as our wideband RF compression scheme to operate at the source, allowing bandwidth-constrained applications to deliver previously unattainable performance. This paper will discuss the design of the payload, making electronics survivable in the radiation of space, and techniques for debug.

  15. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    International Nuclear Information System (INIS)

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurny, F.; Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.

    2006-01-01

    The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the general behaviour of model bacteria. To measure the radiation doses received by the bacteria, different detectors accompanied the microbiological experiments. The results obtained during two space flight missions are discussed. This dosimetry experiment was a collaboration between different institutes so that the doses could be estimated by different techniques. For measurement of the high linear energy transfer (LET) doses (>10 keV μm -1 ), two types of etched track detectors were used. The low LET part of the spectrum was measured by three types of thermoluminescent detectors ( 7 LiF:Mg,Ti; 7 LiF:Mg,Cu,P; Al 2 O 3 :C) and by the optically stimulated luminescence technique using Al 2 O 3 :C detectors. (authors)

  16. Influence of crystal shapes on radiative fluxes in visible wavelength: ice crystals randomly oriented in space

    Directory of Open Access Journals (Sweden)

    P. Chervet

    1996-08-01

    Full Text Available Radiative properties of cirrus clouds are one of the major unsolved problems in climate studies and global radiation budget. These clouds are generally composed of various ice-crystal shapes, so we tried to evaluate effects of the ice-crystal shape on radiative fluxes. We calculated radiative fluxes of cirrus clouds with a constant geometrical depth, composed of ice crystals with different shapes (hexagonal columns, bullets, bullet-rosettes, sizes and various concentrations. We considered ice particles randomly oriented in space (3D case and their scattering phase functions were calculated by a ray-tracing method. We calculated radiative fluxes for cirrus layers for different microphysical characteristics by using a discrete-ordinate radiative code. Results showed that the foremost effect of the ice-crystal shape on radiative properties of cirrus clouds was that on the optical thickness, while the variation of the scattering phase function with the ice shape remained less than 3% for our computations. The ice-water content may be a better choice to parameterize the optical properties of cirrus, but the shape effect must be included.

  17. Radiation conditions is the region of Rovenskaya nuclear power plant construction

    International Nuclear Information System (INIS)

    Konstantinov, Yu.O.; Teplykh, A.A.; Kataev, V.T.; Dikaya, E.Ya.; Lisachenko, Eh.P.; Ponikarov, V.I.

    1978-01-01

    With a view to optimizing the monitoring of radiation conditions in the vicinity of NPP, an area extending 15-20 km around the construction site of the Rovenskaya atomic energy plant was surveyed. The level of natural gamma-radiation, contents of 90 Sr and 137 Cs in environmental objects, and doses of radiation received by the population from incorporated 137 Cs was studied. It was found that while the average natural gamma-radiation background was relatively low, local levels of the gamma background varied strongly with the type of soil and the pattern of housing systems in the human settlements concerned. The contents of 90 Sr and 137 Cs were also found to fluctuate considerably with the sampling site. 137 Cs was relatively high in cow's milk and in members of the community. The results obtained will be taken into account in the radiation monitoring program

  18. Common fixed point theorems in intuitionistic fuzzy metric spaces and L-fuzzy metric spaces with nonlinear contractive condition

    International Nuclear Information System (INIS)

    Jesic, Sinisa N.; Babacev, Natasa A.

    2008-01-01

    The purpose of this paper is to prove some common fixed point theorems for a pair of R-weakly commuting mappings defined on intuitionistic fuzzy metric spaces [Park JH. Intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals 2004;22:1039-46] and L-fuzzy metric spaces [Saadati R, Razani A, Adibi H. A common fixed point theorem in L-fuzzy metric spaces. Chaos, Solitons and Fractals, doi:10.1016/j.chaos.2006.01.023], with nonlinear contractive condition, defined with function, first observed by Boyd and Wong [Boyd DW, Wong JSW. On nonlinear contractions. Proc Am Math Soc 1969;20:458-64]. Following Pant [Pant RP. Common fixed points of noncommuting mappings. J Math Anal Appl 1994;188:436-40] we define R-weak commutativity for a pair of mappings and then prove the main results. These results generalize some known results due to Saadati et al., and Jungck [Jungck G. Commuting maps and fixed points. Am Math Mon 1976;83:261-3]. Some examples and comments according to the preceding results are given

  19. A radiation condition in some regions with more pronounced effect of the Chernobyl accident

    International Nuclear Information System (INIS)

    Ivanov, I.V.; Ivanov, I.M.

    1993-01-01

    The radioecological condition of the Devin region situated in the Rodopes mountain (Bulgaria) has been investigated for the period October 1992 - March 1993. It is believed that the Rodopes were more significantly affected by the Chernobyl accident in comparison with other regions of Bulgaria. Some regions near Kozloduy NPP have been chosen for comparing, for which there are more detailed investigations of the anthropogenic radiation effects. Analysis of the background radiation is made, specific soil and water samples are tested. The alterations in the radiation conditions of the Devin region are analysed. Some conclusions and predictions for the trends in further alterations of the background radiation are made. As a result a draft regional program for environment protection reclamation is prepared. (V.K.)

  20. Attenuation of a radiation-induced conditioned taste aversion after the development of ethanol tolerance

    International Nuclear Information System (INIS)

    Hunt, W.A.; Rabin, B.M.

    1988-01-01

    An attempt to reduce a radiation-induced conditioned taste aversion (CTA) was undertaken by rendering animals tolerant to ethanol. Ethanol tolerance, developed over 5 days, was sufficient to block a radiation-induced taste aversion, as well as an ethanol-induced CTA. Several intermittent doses of ethanol, which did not induce tolerance but removed the novelty of the conditioning stimulus, blocked an ethanol-induced CTA but not the radiation-induced CTA. A CTA induced by doses of radiation up to 500 rads was attenuated. These data suggest that radioprotection developing in association with ethanol tolerance is a result of a physiological response to the chronic presence of ethanol not to the ethanol itself

  1. Ionizing radiation risks to Satellite Power Systems (SPS) workers in space

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    A reference Satellite Power System (SPS) has been designed by NASA and its contractors for the purposes of evaluating the concept and carrying out assessments of the various consequences of development, including those on the health of the space workers. The Department of Energy has responsibility for directing various assessments. Present planning calls for the SPS workers to move from Earth to a low earth orbit (LEO) at an altitude of 500 kilometers; to travel by a transfer ellipse (TE) trajectory to a geosynchronous orbit (GEO) at an altitude of 36,000 kilometers; and to remain in GEO orbit for about 90 percent of the total time aloft. The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment are studied. The charge to the committee was: (a) to evaluate the radiation environment estimated for the Reference System which could represent a hazard; (b) to assess the possible somatic and genetic radiation hazards; and (c) to estimate the risks to the health of SPS workers due to space radiation exposure, and to make recommendations based on these conclusions. Details are presented. (WHK)

  2. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  3. Effect of halophilic conditions in stabilisation of RNA structure and function at high temperature under radiations.

    Science.gov (United States)

    Maurel, M.-C.

    We have already shown the structural integrity of tRNA at high temperature - 82C for 30h - in high salt concentrations (Tehei et al, 2002). Stability were also performed by measuring the residual specific tRNA charge capacity after heat treatment for 30 h at 82C. RNA molecules are selected (in vitro selection) at high temperature at high salt concentration. We are undergoing studies of such molecules submitted to several stressful conditions, in particular high radiations. These studies provide support for the importance of salt to protect macromolecules against severe cosmic conditions. These could be useful for searching traces of life in planetary objects and space exploration. References : ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine adsorption onto and release from meteorite specimens assessed by Surface Enhanced Raman Spectroscopy ''. Journal of Raman Spectroscopy (2004) in press. Meli, M., Vergne, J. and Maurel, M-C. "In vitro selection of adenine-dependent hairpin ribozymes" J. Biol. Chem., (2003), 278, 11, 9835-9842. ElAmri, C., Baron, M-H., Maurel, M.-C. ``Adenine in mineral samples : development of a methodology based on Surface Enhanced Raman Spectroscopy (SERS) for picomole detections ''. Spectrochimica Acta, A, 59, 2645-2654. Tehei, M., Franzetti, B., Maurel, M-C., Vergne, J., Hountondji, C. , Zaccai, G. ``Salt and the Search for Traces of Life '', Extremophiles, (2002), 6 : 427-430. Meli, M., Vergne, J., Décout, J.L., and Maurel, M-C. ``Adenine-Aptamer Complexes. A bipartite RNA site which binds the adenine nucleic base '', J. Biol. Chem., (2002), 277, 3, 2104-2111.

  4. A new approach to reduce uncertainties in space radiation cancer risk predictions.

    Directory of Open Access Journals (Sweden)

    Francis A Cucinotta

    Full Text Available The prediction of space radiation induced cancer risk carries large uncertainties with two of the largest uncertainties being radiation quality and dose-rate effects. In risk models the ratio of the quality factor (QF to the dose and dose-rate reduction effectiveness factor (DDREF parameter is used to scale organ doses for cosmic ray proton and high charge and energy (HZE particles to a hazard rate for γ-rays derived from human epidemiology data. In previous work, particle track structure concepts were used to formulate a space radiation QF function that is dependent on particle charge number Z, and kinetic energy per atomic mass unit, E. QF uncertainties where represented by subjective probability distribution functions (PDF for the three QF parameters that described its maximum value and shape parameters for Z and E dependences. Here I report on an analysis of a maximum QF parameter and its uncertainty using mouse tumor induction data. Because experimental data for risks at low doses of γ-rays are highly uncertain which impacts estimates of maximum values of relative biological effectiveness (RBEmax, I developed an alternate QF model, denoted QFγAcute where QFs are defined relative to higher acute γ-ray doses (0.5 to 3 Gy. The alternate model reduces the dependence of risk projections on the DDREF, however a DDREF is still needed for risk estimates for high-energy protons and other primary or secondary sparsely ionizing space radiation components. Risk projections (upper confidence levels (CL for space missions show a reduction of about 40% (CL∼50% using the QFγAcute model compared the QFs based on RBEmax and about 25% (CL∼35% compared to previous estimates. In addition, I discuss how a possible qualitative difference leading to increased tumor lethality for HZE particles compared to low LET radiation and background tumors remains a large uncertainty in risk estimates.

  5. The Influence of Pre-Conditioning on Space Charge Formation in LDPE

    DEFF Research Database (Denmark)

    Fleming, Robert J.; Henriksen, Mogens; Holbøll, Joachim T.

    1996-01-01

    In this paper we present space charge accumulation data for planar low density polyethylene samples subjected to 20 kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40oC in ......C in short-circuit at rotary pump pressure for 48 hr prior to measurement. Such conditioning had no consistent effect on the space charge. The extent of charge injection/extraction at the semicon electrodes appeared to vary considerably between samples....

  6. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  7. Assessment of space proton radiation-induced charge transfer inefficiency in the CCD204 for the Euclid space observatory

    International Nuclear Information System (INIS)

    Gow, J P D; Murray, N J; Holland, A D; Hall, D J; Cropper, M; Burt, D; Hopkinson, G; Duvet, L

    2012-01-01

    Euclid is a medium class European Space Agency mission candidate for launch in 2019 with a primary goal to study the dark universe using the weak lensing and baryonic acoustic oscillations techniques. Weak lensing depends on accurate shape measurements of distant galaxies. Therefore it is beneficial that the effects of radiation-induced charge transfer inefficiency (CTI) in the Euclid CCDs over the course of the 5 year mission at L2 are understood. This will allow, through experimental analysis and modelling techniques, the effects of radiation induced CTI on shape to be decoupled from those of mass inhomogeneities along the line-of-sight. This paper discusses a selection of work from the study that has been undertaken using the e2v CCD204 as part of the initial proton radiation damage assessment for Euclid. The experimental arrangement and procedure are described followed by the results obtained, thereby allowing recommendations to be made on the CCD operating temperature, to provide an insight into CTI effects using an optical background, to assess the benefits of using charge injection on CTI recovery and the effect of the use of two different methods of serial clocking on serial CTI. This work will form the basis of a comparison with a p-channel CCD204 fabricated using the same mask set as the n-channel equivalent. A custom CCD has been designed, based on this work and discussions between e2v technologies plc. and the Euclid consortium, and designated the CCD273.

  8. Albedo and estimates of net radiation for green beans under polyethylene cover and field conditions

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.; Tornero, M.T.T.

    1999-01-01

    This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22° 54' S; 48° 27' W; 850 m). The solar global irradiance (R g ) and solar reflected radiation (R r ) were used to estimate the albedo through the ratio between R r and R g . The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (R g ) and net short-waves radiation (R c ) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions. (author) [pt

  9. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells

    International Nuclear Information System (INIS)

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-01-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two-dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extracellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three-dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D versus 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ∼4-fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures.

  10. Evaluation of comfort conditions in urban open spaces. Application in the island of Crete

    International Nuclear Information System (INIS)

    Tsitoura, Marianna; Tsoutsos, Theocharis; Daras, Tryfon

    2014-01-01

    Highlights: • Outdoor spaces field surveys carried out in four different urban open spaces. • A strong connection between the microclimate and the use of open space. • Human physical and psychological factors can optimize the urban space design. - Abstract: The thermal environment in outdoor public spaces and their level of use are strongly connected. The design of outdoor spaces, especially in urban areas, is very critical in Southern Europe due to their extended use during summertime where the urban heat island phenomenon deteriorates the microclimatic conditions. In this paper the main outcomes of outdoor spaces field surveys are presented, which were carried out in four different urban open spaces in Crete. On site measurements were implemented and a questionnaire was used in order to estimate the thermal comfort of visitors. Thermal indices like Predicted Mean Vote, Physiologically Equivalent Temperature, Standard Effective Temperature, Wet Bulb Globe Temperature are used to evaluate the features of urban microclimate and then are being compared in order to find the most suitable for the Mediterranean microclimate. This suggests another way of approach to the researcher and provides essential tools to the designer

  11. NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Science.gov (United States)

    Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.

    2013-01-01

    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential

  12. Dosimetric significance of cosmic radiation in the altitude of SST and in free space

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O C [Kiel Univ. (Germany, F.R.). Inst. fuer Reine und Angewandte Kernphysik

    1977-01-01

    The integral cosmic-ray flux, and hence the dose rate, increases with altitude. At the cruising altitude of the subsonic jets, about 10 km, the dose rate is already about a factor 70 higher than at sea level. At the higher altitudes of SST the situation is different because the composition of the galactic component differs from that at the subsonic level, the solar flares are more efficient, and a small number of heavy nuclei are still present. In free space an additional radiation hazard appears when the radiation belts have to be crossed.

  13. A three-dimensional radiation image display on a real space image created via photogrammetry

    Science.gov (United States)

    Sato, Y.; Ozawa, S.; Tanifuji, Y.; Torii, T.

    2018-03-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the occurrence of a large tsunami caused by the Great East Japan Earthquake of March 11, 2011. The radiation distribution measurements inside the FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a three-dimensional (3D) image reconstruction method for radioactive substances using a compact Compton camera. Moreover, we succeeded in visually recognizing the position of radioactive substances in real space by the integration of 3D radiation images and the 3D photo-model created using photogrammetry.

  14. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  15. Space radiation effects in high performance fiber optic data links for satellite data management

    International Nuclear Information System (INIS)

    Marshall, P.W.; Dale, C.J.; LaBel, K.A.

    1996-01-01

    Fiber optic based technologies are relatively new to satellite applications, and are receiving considerable attention for planned applications in NASA, DOD, and commercial space sectors. The authors review various activities in recent years aimed at understanding and mitigating radiation related risk in deploying fiber based data handling systems on orbit. Before concluding that there are no critical barriers to designing survivable and reliable systems, the authors analyze several possible types of radiation effects. Particular attention is given to the subject of particle-induced bit errors in InGaAs p-i-n photodiodes, including a discussion of error mitigation and upset rate prediction methods

  16. State-Space Realization of the Wave-Radiation Force within FAST: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

    2013-06-01

    Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

  17. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    Science.gov (United States)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  18. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  19. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  20. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    International Nuclear Information System (INIS)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Zhang, Baile; Chen, Huanyang

    2016-01-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak. (paper)

  1. Experimental verification of free-space singular boundary conditions in an invisibility cloak

    Science.gov (United States)

    Wu, Qiannan; Gao, Fei; Song, Zhengyong; Lin, Xiao; Zhang, Youming; Chen, Huanyang; Zhang, Baile

    2016-04-01

    A major issue in invisibility cloaking, which caused intense mathematical discussions in the past few years but still remains physically elusive, is the plausible singular boundary conditions associated with the singular metamaterials at the inner boundary of an invisibility cloak. The perfect cloaking phenomenon, as originally proposed by Pendry et al for electromagnetic waves, cannot be treated as physical before a realistic inner boundary of a cloak is demonstrated. Although a recent demonstration has been done in a waveguide environment, the exotic singular boundary conditions should apply to a general environment as in free space. Here we fabricate a metamaterial surface that exhibits the singular boundary conditions and demonstrate its performance in free space. Particularly, the phase information of waves reflected from this metamaterial surface is explicitly measured, confirming the singular responses of boundary conditions for an invisibility cloak.

  2. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  3. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  4. Surgical Space Conditions During Low-Pressure Laparoscopic Cholecystectomy with Deep Versus Moderate Neuromuscular Blockade

    DEFF Research Database (Denmark)

    Staehr-Rye, Anne K; Rasmussen, Lars S.; Rosenberg, Jacob

    2014-01-01

    : In this assessor-blinded study, 48 patients undergoing elective laparoscopic cholecystectomy were administered rocuronium for neuromuscular blockade and randomized to either deep neuromuscular blockade (rocuronium bolus plus infusion maintaining a posttetanic count 0-1) or moderate neuromuscular blockade...... (rocuronium repeat bolus only for inadequate surgical conditions with spontaneous recovery of neuromuscular function). Patients received anesthesia with propofol, remifentanil, and rocuronium. The primary outcome was the proportion of procedures with optimal surgical space conditions (assessed by the surgeon...

  5. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  6. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    Science.gov (United States)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  7. Considerations on hypoxic conditions. On the past setback of classic radiation biology

    International Nuclear Information System (INIS)

    Nakatsugawa, Shigekazu; Klimova, S.V.; Tamasu, Shogo; Nakamura, Hideaki; Murayama, Chieko

    2002-01-01

    Considerations on hypoxic cancer cell environment are made on classic radiation biology concept and on a new proposal of the anti-cancer strategy. Classic radiation biology knowledge of hypoxic cancer cells has produced many of clinical trials, which, however, have failed after all. This is because the knowledge is that the cells are recognized to be in a rather static hypoxic condition. Based on authors' investigations, made is the proposal that improvement of dynamic, acute hypoxic conditions yielded via blood circulation between the heterogeneous malignant cancer cells and the dynamic homeostatic systems of normal cells including immunity is important as one of cancer therapy approaches. (N.I.)

  8. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    Science.gov (United States)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  9. Characterization of the gamma radiation in space and in the atmosphere

    International Nuclear Information System (INIS)

    Lee, M.A.

    1986-05-01

    A characterization of the gamma-ray fields found in space and in the atmosphere is given. Included are values for the energies and intensities of gamma rays as observed in several experiments and reported in the open literature. Characteristics of the diffuse gamma-ray continuum are presented along with a brief discussion of the sources of this radiation. Also given are discrete gamma-ray line energies and intensities which have been observed in space and in the atmosphere. 37 refs., 7 figs., 12 tabs

  10. Space and military radiation effects in silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Schwank, J.R.

    1996-09-01

    Advantages in transient ionizing and single-event upset (SEU) radiation hardness of silicon-on-insulator (SOI) technology spurred much of its early development. Both of these advantages are a direct result of the reduced charge collection volume inherent to SOI technology. The fact that SOI transistor structures do not include parasitic n-p-n-p paths makes them immune to latchup. Even though considerable improvement in transient and single-event radiation hardness can be obtained by using SOI technology, there are some attributes of SOI devices and circuits that tend to limit their overall hardness. These attributes include the bipolar effect that can ultimately reduce the hardness of SOI ICs to SEU and transient ionizing radiation, and charge buildup in buried and sidewall oxides that can degrade the total-dose hardness of SOI devices. Nevertheless, high-performance SOI circuits can be fabricated that are hardened to both space and nuclear radiation environments, and radiation-hardened systems remain an active market for SOI devices. The effects of radiation on SOI MOS devices are reviewed

  11. Meeting the Grand Challenge of Protecting Astronauts Health: Electrostatic Active Space Radiation Shielding for Deep Space Missions

    Science.gov (United States)

    Tripathi, Ram K.

    2016-01-01

    This report describes the research completed during 2011 for the NASA Innovative Advanced Concepts (NIAC) project. The research is motivated by the desire to safely send humans in deep space missions and to keep radiation exposures within permitted limits. To this end current material shielding, developed for low earth orbit missions, is not a viable option due to payload and cost penalties. The active radiation shielding is the path forward for such missions. To achieve active space radiation shielding innovative large lightweight gossamer space structures are used. The goal is to deflect enough positive ions without attracting negatively charged plasma and to investigate if a charged Gossamer structure can perform charge deflections without significant structural instabilities occurring. In this study different innovative configurations are explored to design an optimum active shielding. In addition, to establish technological feasibility experiments are performed with up to 10kV of membrane charging, and an electron flux source with up to 5keV of energy and 5mA of current. While these charge flux energy levels are much less than those encountered in space, the fundamental coupled interaction of charged Gossamer structures with the ambient charge flux can be experimentally investigated. Of interest are, will the EIMS remain inflated during the charge deflections, and are there visible charge flux interactions. Aluminum coated Mylar membrane prototype structures are created to test their inflation capability using electrostatic charging. To simulate the charge flux, a 5keV electron emitter is utilized. The remaining charge flux at the end of the test chamber is measured with a Faraday cup mounted on a movable boom. A range of experiments with this electron emitter and detector were performed within a 30x60cm vacuum chamber with vacuum environment capability of 10-7 Torr. Experiments are performed with the charge flux aimed at the electrostatically inflated

  12. Development and Characterization of Tissue Equivalent Proportional Counter for Radiation Monitoring in International Space Station

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    2013-06-01

    Full Text Available Tissue equivalent proportional counter (TEPC can measure the Linear Energy Transfer (LET spectrum and calculate the equivalent dose for the complicated radiation field in space. In this paper, we developed and characterized a TEPC for radiation monitoring in International Space Station (ISS. The prototype TEPC which can simulate a 2 μm of the site diameter for micro-dosimetry has been tested with a standard alpha source (241Am, 5.5 MeV. Also, the calibration of the TEPC was performed by the 252Cf neutron standard source in Korea Research Institute of Standards and Science (KRISS. The determined calibration factor was kf = 3.59×10-7 mSv/R.

  13. Implications for space radiation environment models from CREAM and CREDO measurements over half a solar cycle

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Peerless, C.L.; Watson, C.J.; Evans, H.E.; Knight, P.; Cosby, M.; Underwood, C.; Cousins, T.; Noulty, R.; Maag, C.

    1999-01-01

    Flight data obtained between 1990 and 1997 from the Cosmic Radiation Environment Monitors CREAM and CREDO carried on UoSAT-3, Space Shuttle, STRV-1a (Space Technology Research Vehicle) and APEX (Advanced Photovoltaic and Electronics Experiment Spacecraft) provide coverage over half a solar cycle. The modulation of cosmic rays and evolution of the South Atlantic Anomaly are observed, the former comprising a factor of three increase at high latitudes and the latter a general increase accompanied by a north-westward drift. Comparison of particle fluxes and linear energy transfer (LET) spectra is made with improved environment and radiation transport calculations which account for shield distributions and secondary particles. While there is an encouraging convergence between predictions and observations, significant improvements are still required, particularly in the treatment of locally produced secondary particles. Solar-particle events during this time period have LET spectra significantly below the October 1989 event which has been proposed as a worst case model

  14. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  15. A Coupled Fixed Point Theorem in Fuzzy Metric Space Satisfying ϕ-Contractive Condition

    Directory of Open Access Journals (Sweden)

    B. D. Pant

    2013-01-01

    Full Text Available The intent of this paper is to prove a coupled fixed point theorem for two pairs of compatible and subsequentially continuous (alternately subcompatible and reciprocally continuous mappings, satisfying ϕ-contractive conditions in a fuzzy metric space. We also furnish some illustrative examples to support our results.

  16. On a nonlinear integrodifferential evolution inclusion with nonlocal initial conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zuomao Yan

    2012-01-01

    Full Text Available In this paper, we discuss the existence results for a class of nnlinear integrodifferential evolution inclusions with nonlocal initial conditions in Banach spaces. Our results are based on a fixed point theorem for condensing maps due to Martelli and the resolvent operators combined with approximation techniques.

  17. The Influence of Pre-conditioning on the Space Charge Formation in LDPE and XLPE

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Holbøll, Joachim T.; Fleming, R.J.

    1996-01-01

    Planar LDPE and XLPE samples were conditioned by holding in short circuit for 48 hrs. at 40oC under rotary pump pressure, and space charge accumulation in these samples under DC fields of 20 kV/mm was then compared with the corresponding accumulation in unconditioned samples.The test results were...

  18. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    International Nuclear Information System (INIS)

    Murthy, S.N.

    1990-01-01

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed. 12 refs

  19. Oblique radiation lateral open boundary conditions for a regional climate atmospheric model

    Science.gov (United States)

    Cabos Narvaez, William; De Frutos Redondo, Jose Antonio; Perez Sanz, Juan Ignacio; Sein, Dmitry

    2013-04-01

    The prescription of lateral boundary conditions in regional atmospheric models represent a very important issue for limited area models. The ill-posed nature of the open boundary conditions makes it necessary to devise schemes in order to filter spurious wave reflections at boundaries, being desirable to have one boundary condition per variable. On the other side, due to the essentially hyperbolic nature of the equations solved in state of the art atmospheric models, external data is required only for inward boundary fluxes. These circumstances make radiation lateral boundary conditions a good choice for the filtering of spurious wave reflections. Here we apply the adaptive oblique radiation modification proposed by Mikoyada and Roseti to each of the prognostic variables of the REMO regional atmospheric model and compare it to the more common normal radiation condition used in REMO. In the proposed scheme, special attention is paid to the estimation of the radiation phase speed, essential to detecting the direction of boundary fluxes. One of the differences with the classical scheme is that in case of outward propagation, the adaptive nudging imposed in the boundaries allows to minimize under and over specifications problems, adequately incorporating the external information.

  20. A Robust Algorithm to Determine the Topology of Space from the Cosmic Microwave Background Radiation

    OpenAIRE

    Weeks, Jeffrey R.

    2001-01-01

    Satellite measurements of the cosmic microwave back-ground radiation will soon provide an opportunity to test whether the universe is multiply connected. This paper presents a new algorithm for deducing the topology of the universe from the microwave background data. Unlike an older algorithm, the new algorithm gives the curvature of space and the radius of the last scattering surface as outputs, rather than requiring them as inputs. The new algorithm is also more tolerant of erro...

  1. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    Science.gov (United States)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  2. 0.25μm radiation tolerant technology for space applications

    International Nuclear Information System (INIS)

    Haddad, N.; Brady, F.; Scott, T.; Yoder, J.

    1999-01-01

    Lockheed Martin federal systems has developed a state-of-the-art radiation tolerant 0,25 μm CMOS capability that is compatible with commercial foundries as well as radiation hardened fabrication. A technology test chip was designed, fabricated and evaluated for performance, power and radiation hardness in order to validate the methodology and evaluate the technology. Testing results show that -) the active transistor threshold shift is negligible for 0.25 μm CMOS, -) the hardened STI (shallow trench isolation) can support Mega-rad applications, and -) the holding voltage is well beyond the operating voltage of 2.5 V. This technology is intended to support high density, high performance and low power space applications

  3. Solar radiation interception of various planting space patterns of maize and its relation to yields

    International Nuclear Information System (INIS)

    Akhir, N.

    2003-01-01

    A research was carried out to study solar radiation interception and its relation to yield of maize in various plant spacing patterns at high elevation. The goal of this research was to contribute the development of crop science, especially the plant ecophysiology. A field experiment was executed from March to August 1998 at Assessment Institute of Agricultural Technology, Sukarami, West Sumatra. The experiment was arranged in Randomized Block Design and each treatment was replicated three times. The experiment data was analyzed by ANOVA and path analysis. The results of experiment indicated that the percentage of solar radiation interception gave high contribution to the dry grain yield for Pioneer-7 cultivar, and the solar radiation interception was depend on LAI and leaf angle

  4. On The Development of Biophysical Models for Space Radiation Risk Assessment

    Science.gov (United States)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  5. Mini-magnetosphere plasma experiment for space radiation protection in manned spaceflight

    International Nuclear Information System (INIS)

    Jia Xianghong; Xu Feng; Jia Shaoxia; Wan Jun; Wang Shouguo

    2012-01-01

    With the development of Chinese manned spaceflight, the planetary missions will become true in the future. The protection of astronauts from cosmic radiation is an unavoidable problem that should be considered. There are many revolutionary ideas for shielding including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. The concept using cold plasma to expand a magnetic field was recommended for further assessment. Magnetic field inflation was produced by the injection of plasma onto the magnetic field. The method can be used to deflect charged ions and to reduce space radiation dose. It can supply the suitable radiation protection for astronauts and spacecraft. Principle experiments demonstrated that the magnetic field was inflated by the injection of the plasma in the vacuum chamber and the magnetic field intensity strengthened with the increasing of input RF power in this paper. The mechanism should be studied in following steps. (authors)

  6. Radiation hardening of InP solar cells for space applications

    International Nuclear Information System (INIS)

    Vilela, M. F.; Freundlich, A.; Monier, C.; Newman, F.; Aguilar, L.

    1998-01-01

    The aim of this work is to develop a radiation resistant thin InP-based solar cells for space applications on more mechanically resistant, lighter, and cheaper substrates. In this paper, we present the development of a p + /nn + InP-based solar cell structures with very thin emitter and base layers. A thin emitter helps to increase the collection of carriers generated by high energy incident photons from the solar spectrum. The use of a thin n base structure should improve the radiation resistance of this already radiation resistant technology. A remarkable improvement of high energy photons response is shown for InP solar cells with emitters 400 A thick

  7. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    Science.gov (United States)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  8. Radiation risk from the nuclear power installation of space vehicle in case of reentry to the atmosphere

    International Nuclear Information System (INIS)

    Mikheenko, S.G.

    1994-01-01

    Main directions of space using of nuclear power are considered. Nuclear energy has found many applications in space projects. The first application is the use of nuclear energy for the production of electricity in space and the second main application is the use of nuclear power for propulsion purposes in space flight. History of usage nuclear power systems in space technic is shown. Today there are 54 satellites with NPS in space near the Earth. The main principle of radical solution of the problem of radiation safety is based on the accommodation of space objects with nuclear units in orbits, such that the ballistic lifetime is greater than the time necessary for complete decay of the accumulated radioactivity. Radiation safety on various stages of space nuclear systems exploitation is discussed. If Main System Ensuring Radiation Safety is failed, it must operates Reserved System Ensuring Radiation Safety. Concrete development of a booster system for nuclear unit and a system for the reactor destruction in order to ensure aerodynamic destruction of fuel has been realized in satellite of 'Cosmos' series. The investigations on reserved system ensuring radiation safety in Moscow Physical - Engineering Institute are discussed. The results show that we can in principle ensure the radiation safety in accordance to ICRP recommendations. (author)

  9. Reactor Start-up and Control Methodologies: Consideration of the Space Radiation Environment

    International Nuclear Information System (INIS)

    Bragg-Sitton, Shannon M.; Holloway, James Paul

    2004-01-01

    The use of fission energy in space power and propulsion systems offers considerable advantages over chemical propulsion. Fission provides over six orders of magnitude higher energy density, which translates to higher vehicle specific impulse and lower specific mass. These characteristics enable the accomplishment of ambitious space exploration missions. The natural radiation environment in space provides an external source of protons and high energy, high Z particles that can result in the production of secondary neutrons through interactions in reactor structures. Initial investigation using MCNPX 2.5.b for proton transport through the SAFE-400 reactor indicates a secondary neutron net current of 1.4x107 n/s at the core-reflector interface, with an incoming current of 3.4x106 n/s due to neutrons produced in the Be reflector alone. This neutron population could provide a reliable startup source for a space reactor. Additionally, this source must be considered in developing a reliable control strategy during reactor startup, steady-state operation, and power transients. An autonomous control system is developed and analyzed for application during reactor startup, accounting for fluctuations in the radiation environment that result from changes in vehicle location (altitude, latitude, position in solar system) or due to temporal variations in the radiation field, as may occur in the case of solar flares. One proposed application of a nuclear electric propulsion vehicle is in a tour of the Jovian system, where the time required for communication to Earth is significant. Hence, it is important that a reactor control system be designed with feedback mechanisms to automatically adjust to changes in reactor temperatures, power levels, etc., maintaining nominal operation without user intervention. This paper will evaluate the potential use of secondary neutrons produced by proton interactions in the reactor vessel as a startup source for a space reactor and will present a

  10. Position of cytogenetic examination of cosmonauts for the space radiation exposure estimate

    Science.gov (United States)

    Snigiryova, Galina; Novitskaya, Natalia; Fedorenko, Boris

    The cytogenetic monitoring was carried out to evaluate of radiation induced stable and un-stable chromosome aberration frequency in peripheral blood lymphocytes of cosmonauts who participated in flights on Mir Orbital Station and ISS (International Space Station). In the period of 1992 -2008 chromosome aberrations in 202 blood samples from 48 cosmonauts were analyzed using the conventional method. In addition 23 blood samples from 12 cosmonauts were analyzed using FISH (fluorescence in situ hybridization) technique. Whole chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. Samples taken before and after the flights were analyzed. Long-term space flights led to an increase of stable (FISH method) and unstable (conventional method) chromosome aber-ration frequencies. The frequencies of dicentrics and centric rings depend on the space flight duration and accumulated dose value. Extravehicular activity also adds to chromosome aber-ration frequency in blood lymphocytes of cosmonauts. Several years after the space flight the increased level of unstable chromosome aberrations is still apparent. The radiation load was decreased for cosmonauts after taking ISS over from MIR station. The cytogenetic results were in agreement with data of physical dosimetry. The dose interval after the first flight, estimated by the frequency of dicentrics, was 113-227 mSv for long-term flights (73 -199 days) and 53-107 mSv for short-term flights (1 -21 days). According to the frequency of FISH translocations, the average dose after the first long-term flight was 186 mSv, which is comparable with estimates made from the dicentric assay. Cytogenetic examination of cosmonauts, including analysis of dicentrics (conventional method) and translocations (FISH method) should find wider applica-tion to assessment of radiation effects associated with long-term space flights such as flights to Mars.

  11. Dimension elevation in Müntz spaces: A new emergence of the Müntz condition

    KAUST Repository

    Ait-Haddou, Rachid

    2014-05-01

    We show that the limiting polygon generated by the dimension elevation algorithm with respect to the Müntz space span(1,tr1,tr2,trm,. . .), with 0 < r1 < r2 < ⋯ < r m < ⋯ and lim n →∞r n = ∞, over an interval [a, b] ⊂ ] 0, ∞ [ converges to the underlying Chebyshev-Bézier curve if and only if the Müntz condition ∑i=1∞1ri=∞ is satisfied. The surprising emergence of the Müntz condition in the problem raises the question of a possible connection between the density questions of nested Chebyshev spaces and the convergence of the corresponding dimension elevation algorithms. The question of convergence with no condition of monotonicity or positivity on the pairwise distinct real numbers r i remains an open problem. © 2014 Elsevier Inc.

  12. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  13. Analysis of Genotoxic and Cytotoxic Responses Induced by Simulated Space Radiation Qualities by Use of Recombinant Bacteria Carrying a Dual-Function Dual-Reporter Construct

    Science.gov (United States)

    Baumstark-Khan, Christa; Hellweg, Christine; Zahoor, Ahmed; Testard, Isabelle; Reitz, Guenther

    Along with the long-term space exploration come various potential health risks due to unique physical factors of the space environment. Space radiation is one of the primary environmental hazards associated with space flight. In order to deal with space-related risk radiation exposure must be properly characterised and quantified, and biological effects of charged particles have to be analysed in ground based research, especially as astronauts are subjected to a differing radiation quality in space than they receive on Earth. For risk assessment, the mutagenic potential of the heavy ion component of the galactic cosmic radiation is of major concern for tumour induction as radiation late effects. The recombinant SWITCH test is based on TA1535 Salmonella typhimurium cells transformed with a dual-function dual-reporter vector harbouring (a) the genes for bioluminescence production from Photobacterium leiognathi under the control of a DNA-damage inducible promoter and (b) the gene for green fluorescent protein from the jellyfish Aequorea victoria under the control of a constitutive promoter. Suchlike genetically modified organism report on the presence of genotoxic conditions by dose dependent increase of bioluminescence induction and on the presence of cytotoxic conditions by dose dependent decrease in GFP fluorescence. By this, it is possible to analyse bacterial inactivation and mutation induction by ionizing radiation in parallel in the same cell within short time. Experiments with heavy ions have been performed with the SWITCH test at GANIL with the following accelerated heavy ions: 35 MeV/u (72 keV/µm) and 75 MeV/u (37 keV/µm) carbon, 95 MeV/u argon (377 keV/µm), 95 MeV/u neon (98 keV/µm), 75 MeV/u nickel (967 keV/µm) and 29 MeV/u lead (10238 keV/µm). The results obtained clearly show that the numbers of hits (particles per cm2 ) necessary to inactivate the bacteria (cytotoxicity) depend on LET. The higher the ionisation capacity of the accelerated ion, the

  14. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  15. A non linear half space problem for radiative transfer equations. Application to the Rosseland approximation

    International Nuclear Information System (INIS)

    Sentis, R.

    1984-07-01

    The radiative transfer equations may be approximated by a non linear diffusion equation (called Rosseland equation) when the mean free paths of the photons are small with respect to the size of the medium. Some technical assomptions are made, namely about the initial conditions, to avoid any problem of initial layer terms

  16. Dinamics of radiating conditions in the natural complexes of a near zone of the Chernobyl NPP

    International Nuclear Information System (INIS)

    Bondar', Yu.I.; Kalinichenko, S.A.; Marchenko, Yu.D.

    2010-01-01

    The analysis of radiating conditions in exclusion zone of Chernobyl NPP is resulted. Annual and seasonal fluctuations of capacity of a dose, and also change of parameters of vertical migration Cs 137, Sr 90, Am 241 in a vertical profile of soils of various territorially-natural complexes are considered. (authors)

  17. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

    NARCIS (Netherlands)

    van der Velde, I. R.; Steeneveld, G. J.; Schreur, B. G. J. Wichers; Holtslag, A. A. M.

    2010-01-01

    A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high-resolution NWP model Results by the Weather Research and Forecasting model (WRF) and the High Resolution Limited Area Model (H I RLAM) are evaluated against detailed observations to

  18. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions

    NARCIS (Netherlands)

    Velde, van der I.R.; Steeneveld, G.J.; Wichers Schreur, B.G.J.; Holtslag, A.A.M.

    2010-01-01

    A case of a severe radiation fog during frost conditions is analyzed as a benchmark for the development of a very high resolution NWP model. Results by the Weather Research and Forecasting model (WRF) and the High resolution limited area model (HIRLAM) are evaluated against detailed observations to

  19. The Role of Nuclear Fragmentation in Particle Therapy and Space Radiation Protection.

    Science.gov (United States)

    Zeitlin, Cary; La Tessa, Chiara

    2016-01-01

    The transport of the so-called HZE particles (those having high charge, Z, and energy, E) through matter is crucially important both in space radiation protection and in the clinical setting where heavy ions are used for cancer treatment. HZE particles are usually considered those having Z > 1, though sometimes Z > 2 is meant. Transport physics is governed by two types of interactions, electromagnetic (ionization energy loss) and nuclear. Models of transport, such as those used in treatment planning and space mission planning must account for both effects in detail. The theory of electromagnetic interactions is well developed, but nucleus-nucleus collisions are so complex that no fundamental physical theory currently describes them. Instead, interaction models are generally anchored to experimental data, which in some areas are far from complete. The lack of fundamental physics knowledge introduces uncertainties in the calculations of exposures and their associated risks. These uncertainties are greatly compounded by the much larger uncertainties in biological response to HZE particles. In this article, we discuss the role of nucleus-nucleus interactions in heavy charged particle therapy and in deep space, where astronauts will receive a chronic low dose from galactic cosmic rays (GCRs) and potentially higher short-term doses from sporadic, unpredictable solar energetic particles (SEPs). GCRs include HZE particles; SEPs typically do not and we, therefore, exclude them from consideration in this article. Nucleus-nucleus collisions can result in the breakup of heavy ions into lighter ions. In space, this is generally beneficial because dose and dose equivalent are, on the whole, reduced in the process. The GCRs can be considered a radiation field with a significant high-LET component; when they pass through matter, the high-LET component is attenuated, at the cost of a slight increase in the low-LET component. Not only are the standard measures of risk

  20. Generalized conditions for the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1986-01-01

    Generalized conditions (rules) are set up for the existence of the distributional zero-mass limit of renormalized Feynman amplitudes in Minkowski space. These rules are generalizations of rules that have been set up earlier by us and hence are applicable to a larger class of graphs. The study is very general as the vanishing masses are led to vanish at different rates. All subtractions of renormalization are carried out directly in momentum space, about the origin, with the degree of divergence of a subtraction coinciding with the dimensionality of the corresponding subdiagram

  1. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Science.gov (United States)

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  2. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A., E-mail: aliaksei.halavanau@gmail.com [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Piot, P. [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-05-21

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. This “micro-bunching instabilities” is naturally broadband and could possibly support the generation of coherent radiation over a broad region of the spectrum. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we refine these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program ELEGANT. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We finally employ the developed model to investigate the performance of a cascaded LSC amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.

  3. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions

    Science.gov (United States)

    Ladaci, A.; Girard, S.; Mescia, L.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y.; Boukenter, A.

    2017-04-01

    In this work, we developed and exploited simulation tools to optimize the performances of rare earth doped fiber amplifiers (REDFAs) for space missions. To describe these systems, a state-of-the-art model based on the rate equations and the particle swarm optimization technique is developed in which we also consider the main radiation effect on REDFA: the radiation induced attenuation (RIA). After the validation of this tool set by confrontation between theoretical and experimental results, we investigate how the deleterious radiation effects on the amplifier performance can be mitigated following adequate strategies to conceive the REDFA architecture. The tool set was validated by comparing the calculated Erbium-doped fiber amplifier (EDFA) gain degradation under X-rays at ˜300 krad(SiO2) with the corresponding experimental results. Two versions of the same fibers were used in this work, a standard optical fiber and a radiation hardened fiber, obtained by loading the previous fiber with hydrogen gas. Based on these fibers, standard and radiation hardened EDFAs were manufactured and tested in different operating configurations, and the obtained data were compared with simulation data done considering the same EDFA structure and fiber properties. This comparison reveals a good agreement between simulated gain and experimental data (vulnerability in terms of gain. The presented approach is a complementary and effective tool for hardening by device techniques and opens new perspectives for the applications of REDFAs and lasers in harsh environments.

  4. FPGAs operating in a radiation environment: lessons learned from FPGAs in space

    International Nuclear Information System (INIS)

    Wirthlin, M J

    2013-01-01

    Field Programmable Gate Arrays (FPGAs) are increasingly being used as a key component of digital systems because of their in-field reprogrammability, low non-recurring engineering costs (NRE), and relatively short design cycle. Recently, there has been great interest in using FPGAs within spacecraft. FPGAs, like all semiconductor devices, are susceptible to the effects of radiation. There is an active research community investigating the effects of radiation on FPGAs and developing methods to mitigate against these effects. There has been significant progress over the last decade in the understanding and developing FPGA technology that is resistant to the effects of radiation. The success of FPGAs within spacecraft suggests that FPGAs may be used in particle physics experiments where radiation levels are considerable higher than the conventional terrestrial earth environment. This paper will summarize the effects of radiation on FPGAs, methods to mitigate against these effects, provide a case study of a successful FPGA system operating in space, and discuss the issues that will affect the use of FPGAs within particle physics experiments.

  5. A Hypothesis on Biological Protection from Space Radiation Through the Use of New Therapeutic Gases

    Science.gov (United States)

    Schoenfeld, Michael P.; Ansari, Rafat R.; Nakao, Atsunori; Wink, David

    2011-01-01

    Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is the biological damage it induces. As damage is associated with increased oxidative stress, it is important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as both chemical radioprotectors for radical scavenging and biological signaling molecules for management of the body s response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it is concluded that this approach may have great therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion injury, acute respiratory distress syndrome, Parkinson s and Alzheimer s disease, cataracts, and aging.

  6. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  7. Radiation-use efficiency of soybean, mungbean and cowpea under different environmental conditions

    International Nuclear Information System (INIS)

    Muchow, R.C.; Robertson, M.J.; Pengelly, B.C.

    1993-01-01

    Radiation-use efficiency (RUE), defined as the amount of biomass accumulated per unit radiation intercepted, is a key measure of the photosynthetic performance of crops growing in different environments. The RUE of soybean (Glycine max L.), mungbean (Vigna radiata) and cowpea (Vigna unguiculata) growing under well-watered field conditions in tropical and subtropical environments was determined from frequent biomass samplings and continous logging of intercepted radiation throughout growth. The slope of the relationship between net biomass accumulation and intercepted radiation was linear throughout most of growth, almost until the end of pod-filling in all species and all environments. The decrease in RUE just prior to maturity was associated with losses of biomass due to leaf shedding, and also with a decline in specific leaf nitrogen. The RUE during the linear phase was slightly higher in cowpea than in mungbean and soybean. For each species, the RUE was similar in different environments despite large differences in air temperature, water vapour saturation deficit and incident radiation. It was concluded that RUE under well-watered conditions is constant throughout most of growth and unaffected by the aerial environment. Baseline values of RUE were 0.88 g MJ -1 for soybean, 0.94 g MJ -1 for mungbean, and 1.05 g MJ -1 for cowpea. (author)

  8. Radiation tolerance of a spin-dependent tunnelling magnetometer for space applications

    International Nuclear Information System (INIS)

    Persson, Anders; Thornell, Greger; Nguyen, Hugo

    2011-01-01

    To meet the increasing demand for miniaturized space instruments, efforts have been made to miniaturize traditional magnetometers, e.g. fluxgate and spin-exchange relaxation-free magnetometers. These have, for different reasons, turned out to be difficult. New technologies are needed, and promising in this respect are tunnelling magnetoresistive (TMR) magnetometers, which are based on thin film technology. However, all new space devices first have to be qualified, particularly in terms of radiation resistance. A study on TMR magnetometers' vulnerability to radiation is crucial, considering the fact that they employ a dielectric barrier, which can be susceptible to charge trapping from ionizing radiation. Here, a TMR-based magnetometer, called the spin-dependent tunnelling magnetometer (SDTM), is presented. A magnetometer chip consisting of three Wheatstone bridges, with an angular pitch of 120°, was fabricated using microstructure technology. Each branch of the Wheatstone bridges consists of eight pairs of magnetic tunnel junctions (MTJs) connected in series. Two such chips are used to measure the three-dimensional magnetic field vector. To investigate the SDTM's resistance to radiation, one branch of a Wheatstone bridge was irradiated with gamma rays from a Co 60 source with a dose rate of 10.9 rad min −1 to a total dose of 100 krad. The TMR of the branch was monitored in situ, and the easy axis TMR loop and low-frequency noise characteristics of a single MTJ were acquired before and after irradiation with the total dose. It was concluded that radiation did not influence the MTJs in any noticeable way in terms of the TMR ratio, coercivity, magnetostatic coupling or low-frequency noise

  9. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  10. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    Science.gov (United States)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  11. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-15

    {Omicron} KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. {Omicron} Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. {Omicron} Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation {Omicron} Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established.

  12. Establishment of Korea-Russia bilateral research collaboration for studies on biological effects of cosmic ray and space radiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Dongho; Choi, Jongil; Song, Beomseok; Kim, Jaekyung; Kang, Oilhyun; Lee, Yoonjong; Kim, Jinhong; Jo, Minho

    2011-04-01

    Ο KAERI-IBMP joint workshop on countermeasure and application researches to space environments - Sharing of state-of-the-art researches on space radiobiology using bio-satellites (BION-M1, Photon-soil) and ISS module (Bio-risk) was conducted - Sharing and discussion of state-of-the-art researches on dosimetry of space radiation and its affect on organisms were conducted. Ο Making a contract on KAERI-IBMP Joint Research using Bio-risk module - Contract on KAERI-IBMP Joint Research to evaluate effect of space environment (microgravity and space radiation) on fermentative fungi (Aspergillus oryzae), Algae (Nostoc sp.), and plant seeds (rice, Arabidopsis thaliana, Brachypodium distachyon) was made in November, 2010. Ο Discussion on new Joint Researches on evaluation of space radiation on organisms - Final step on Bion-M projects in terms of evaluation of physiological changes of lactic acid bacteria consumed by Mouse - Discussing new joint research on evaluation of physiological changes of primate by space radiation Ο Establishment and management of the practical working group to invite a branch office of the IBMP in Korea - The system and the working group to implement cooperating researches between KAERI-IBMP on space radiation were established

  13. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Sorimachi, Masami

    2010-02-01

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  14. Assessment of radiation doses in normal operation, upset accident conditions at the Olkiluoto nuclear waste facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.

    2009-09-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facility to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that on average one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The critical group is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. The dose value to a member of the critical group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the critical group is less than 0,001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety authority. The highest dose rates to the reference organisms of the terrestrial ecosystem with conservative assumptions from the largest release were estimated to be of the order of 100 μ Gy/h at the distance of 200 m. As a chronic exposure this dose rate is expected to bring up detrimental

  15. Mapping the space radiation environment in LEO orbit by the SATRAM Timepix payload on board the Proba-V satellite

    Energy Technology Data Exchange (ETDEWEB)

    Granja, Carlos, E-mail: carlos.granja@utef.cvut.cz; Polansky, Stepan

    2016-07-07

    Detailed spatial- and time-correlated maps of the space radiation environment in Low Earth Orbit (LEO) are produced by the spacecraft payload SATRAM operating in open space on board the Proba-V satellite from the European Space Agency (ESA). Equipped with the hybrid semiconductor pixel detector Timepix, the compact radiation monitor payload provides the composition and spectral characterization of the mixed radiation field with quantum-counting and imaging dosimetry sensitivity, energetic charged particle tracking, directionality and energy loss response in wide dynamic range in terms of particle types, dose rates and particle fluxes. With a polar orbit (sun synchronous, 98° inclination) at the altitude of 820 km the payload samples the space radiation field at LEO covering basically the whole planet. First results of long-period data evaluation in the form of time-and spatially-correlated maps of total dose rate (all particles) are given.

  16. Computational Approaches for Developing Active Radiation Dosimeters for Space Applications Based on New Paradigms for Risk Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Exposure to ionizing radiation can cause acute injury or sickness in humans under circumstances of very large doses and it presents the possibility of causing cancer...

  17. A Ground-Based Analog for CNS Exposure to Space Radiation: A System for Integrating Microbeam Technology and Neuronal Culture

    Data.gov (United States)

    National Aeronautics and Space Administration — Problem Statement: The connection between radiation-induced neuronal damage and deficits in behavior and cellular function is still largely unknown. Previous studies...

  18. Cell-cycle distributions and radiation responses of Chinese hamster cells cultured continuously under hypoxic conditions

    International Nuclear Information System (INIS)

    Tokita, N.; Carpenter, S.G.; Raju, M.R.

    1984-01-01

    Cell-cycle distributions were measured by flow cytometry for Chinese hamster (CHO) cells cultured continuously under hypoxic conditions. DNA histograms showed an accumulation of cells in the early S phase followed by a traverse delay through the S phase, and a G 2 block. During hypoxic culturing, cell viability decreased rapidly to less than 0.1% at 120 h. Radiation responses for cells cultured under these conditions showed an extreme radioresistance at 72 h. Results suggest that hypoxia induces a condition similar to cell synchrony which itself changes the radioresistance of hypoxic cells. (author)

  19. Common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition

    International Nuclear Information System (INIS)

    Abu-Donia, H.M.

    2007-01-01

    Some common fixed point theorems for multi-valued mappings under φ-contraction condition have been studied by Rashwan [Rashwan RA, Ahmed MA. Fixed points for φ-contraction type multivalued mappings. J Indian Acad Math 1995;17(2):194-204]. Butnariu [Butnariu D. Fixed point for fuzzy mapping. Fuzzy Sets Syst 1982;7:191-207] and Helipern [Hilpern S. Fuzzy mapping and fixed point theorem. J Math Anal Appl 1981;83:566-9] also, discussed some fixed point theorems for fuzzy mappings in the category of metric spaces. In this paper, we discussed some common fixed point theorems for fuzzy mappings in metric space under φ-contraction condition. Our investigation are related to the fuzzy form of Hausdorff metric which is a basic tool for computing Hausdorff dimensions. These dimensions help in understanding ε ∞ -space [El-Naschie MS. On the unification of the fundamental forces and complex time in the ε ∞ -space. Chaos, Solitons and Fractals 2000;11:1149-62] and are used in high energy physics [El-Naschie MS. Wild topology hyperbolic geometry and fusion algebra of high energy particle physics. Chaos, Solitons and Fractals 2002;13:1935-45

  20. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.