WorldWideScience

Sample records for space propulsion system

  1. Options for development of space fission propulsion systems

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  2. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  3. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  4. Enabling the Use of Space Fission Propulsion Systems

    International Nuclear Information System (INIS)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-01-01

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center

  5. Research Opportunities in Space Propulsion

    Science.gov (United States)

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  6. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    Science.gov (United States)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  7. A comparison of propulsion systems for potential space mission applications

    International Nuclear Information System (INIS)

    Harvego, E.A.; Sulmeisters, T.K.

    1987-01-01

    A derivative of the NERVA nuclear rocket engine was compared with a chemical propulsion system and a nuclear electric propulsion system to assess the relative capabilities of the different propulsion system options for three potential space missions. The missions considered were (1) orbital transfer from low earth orbit (LEO) to geosynchronous earth orbit (GEO), (2) LEO to a lunar base, and (3) LEO to Mars. The results of this comparison indicate that the direct-thrust NERVA-derivative nuclear rocket engine has the best performance characteristics for the missions considered. The combined high thrust and high specific impulse achievable with a direct-thrust nuclear stage permits short operating times (transfer times) comparable to chemical propulsion systems, but with considerably less required propellant. While nuclear-electric propulsion systems are more fuel efficient than either direct-nuclear or chemical propulsion, they are not stand-alone systems, since their relatively low thrust levels require the use of high-thrust ferry or lander stages in high gravity applications such as surface-to-orbit propulsion. The extremely long transfer times and inefficient trajectories associated with electric propulsion systems were also found to be a significant drawback

  8. Performance Criteria of Nuclear Space Propulsion Systems

    Science.gov (United States)

    Shepherd, L. R.

    Future exploration of the solar system on a major scale will require propulsion systems capable of performance far greater than is achievable with the present generation of rocket engines using chemical propellants. Viable missions going deeper into interstellar space will be even more demanding. Propulsion systems based on nuclear energy sources, fission or (eventually) fusion offer the best prospect for meeting the requirements. The most obvious gain coming from the application of nuclear reactions is the possibility, at least in principle, of obtaining specific impulses a thousandfold greater than can be achieved in chemically energised rockets. However, practical considerations preclude the possibility of exploiting the full potential of nuclear energy sources in any engines conceivable in terms of presently known technology. Achievable propulsive power is a particularly limiting factor, since this determines the acceleration that may be obtained. Conventional chemical rocket engines have specific propulsive powers (power per unit engine mass) in the order of gigawatts per tonne. One cannot envisage the possibility of approaching such a level of performance by orders of magnitude in presently conceivable nuclear propulsive systems. The time taken, under power, to reach a given terminal velocity is proportional to the square of the engine's exhaust velocity and the inverse of its specific power. An assessment of various nuclear propulsion concepts suggests that, even with the most optimistic assumptions, it could take many hundreds of years to attain the velocities necessary to reach the nearest stars. Exploration within a range of the order of a thousand AU, however, would appear to offer viable prospects, even with the low levels of specific power of presently conceivable nuclear engines.

  9. Alert-derivative bimodal space power and propulsion systems

    International Nuclear Information System (INIS)

    Houts, M.G.; Ranken, W.A.; Buksa, J.J.

    1994-01-01

    Safe, reliable, low-mass bimodal space power and propulsion systems could have numerous civilian and military applications. This paper discusses potential bimodal systems that could be derived from the ALERT space fission power supply concept. These bimodal concepts have the potential for providing 5 to 10 kW of electrical power and a total impulse of 100 MN-s at an average specific impulse of 770 s. System mass is on the order of 1000 kg

  10. IEC fusion: The future power and propulsion system for space

    International Nuclear Information System (INIS)

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  11. Probabilistic structural analysis methods for space transportation propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.

    1991-01-01

    Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .

  12. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  13. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  14. A Multi-disciplinary Tool for Space Launch Systems Propulsion Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate predictive capability of coupled fluid-structure interaction in propulsion system is crucial in the development of NASA's new Space Launch System (SLS)....

  15. Propulsion Systems Panel deliberations

    Science.gov (United States)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.

  16. Space station propulsion requirements study

    Science.gov (United States)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  17. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  18. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  19. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  20. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    Science.gov (United States)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  1. Legal Implications of Nuclear Propulsion for Space Objects

    Science.gov (United States)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  2. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  3. Recent advances in nuclear powered electric propulsion for space exploration

    International Nuclear Information System (INIS)

    Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita

    2008-01-01

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems

  4. Recent advances in nuclear powered electric propulsion for space exploration

    Energy Technology Data Exchange (ETDEWEB)

    Cassady, R. Joseph [Aerojet Corp., Redmond, CA (United States); Frisbee, Robert H. [Jet Propulsion Laboratory, Pasadena, CA (United States); Gilland, James H. [Ohio Aerospace Institute, Cleveland, OH (United States); Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); LaPointe, Michael R. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)], E-mail: michael.r.lapointe@nasa.gov; Maresse-Reading, Colleen M. [Jet Propulsion Laboratory, Pasadena, CA (United States); Oleson, Steven R. [NASA Glenn Research Center, Cleveland, OH (United States); Polk, James E. [Jet Propulsion Laboratory, Pasadena, CA (United States); Russell, Derrek [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sengupta, Anita [Jet Propulsion Laboratory, Pasadena, CA (United States)

    2008-03-15

    Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

  5. The Economics of Advanced In-Space Propulsion

    Science.gov (United States)

    Bangalore, Manju; Dankanich, John

    2016-01-01

    The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.

  6. Fusion propulsion systems

    International Nuclear Information System (INIS)

    Haloulakos, V.E.; Bourque, R.F.

    1989-01-01

    The continuing and expanding national efforts in both the military and commercial sectors for exploration and utilization of space will require launch, assembly in space, and orbital transfer of large payloads. The currently available delivery systems, utilizing various forms of chemical propulsion, do not have the payload capacity to fulfill the planned missions. National planning documents such as Air Force Project Forecast II and the National Commission on Space Report to the President contain numerous missions and payload delivery schedules that are beyond the present capabilities of the available systems, such as the Space Shuttle and the Expendable Launch Vehicles (ELVs). The need, therefore, is very pressing to design, develop, and deploy propulsion systems that offer a quantum level increase in delivered performance. One such potential system is fusion propulsion. This paper summarizes the result of an Air Force Astronautics Laboratory (AFAL) sponsored study of fusion propulsion conducted by the McDonnell Douglas Astronautics Company (MDAC), and its subcontractor General Atomics This study explored the potential of fusion propulsion for Air Force missions. Fusion fuels and existing confinement concepts were evaluated according to elaborate criteria. Two fuels, deuterium-tritium and deuterium-helium 3 (D- 3 He) were considered worthy of further consideration. D- 3 He was selected as the most attractive for this Air Force study. The colliding translating compact torus confinement concept was evaluated in depth and found to possibly possess the low mass and compactness required. Another possible concept is inertial confinement with the propellant surrounding the target. 5 refs., 5 figs., 8 tabs

  7. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  8. MW-Class Electric Propulsion System Designs

    Science.gov (United States)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary

  9. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    Directory of Open Access Journals (Sweden)

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  10. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  11. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI

  12. Green Liquid Monopropellant Thruster for In-space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and AMPAC In-space Propulsion propose to develop a unique chemical propulsion system for the next generation NASA science spacecraft and...

  13. Electric rail gun application to space propulsion

    International Nuclear Information System (INIS)

    Barber, J.P.

    1979-01-01

    The paper examines the possibility of using the DC electric gun principles as a space vehicle propulsion system, capable of producing intermediate thrust levels. The application of an electromagnetic launch technique, called the DC electric rail gun, to the space propulsion concept of O'Neill, is examined. It is determined that the DC electric rail gun offers very high projectile accelerations and a very significant potential for reducing the size and mass of a reaction motor for space application. A detailed description of rail gun principles is given and some simple expressions for the accelerating force, gun impedance, power supply requirements, and system performance are discussed

  14. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  15. Radioisotope electric propulsion of sciencecraft to the outer Solar System and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1999-01-01

    Radioisotopes have been used successfully for more than 25 years to supply the heat for thermoelectric generators on various deep-space probes. Radioisotope electric propulsion (REP) systems have been proposed as low-thrust ion propulsion units based on radioisotope electric generators and ion thrusters. The perceived liability of radioisotope electric generators for ion propulsion is their high mass. Conventional radioisotope thermoelectric generators have a specific mass of about 200 kg/kW of electric power. Many development efforts have been undertaken with the aim of reducing the specific mass of radioisotope electric systems. Recent performance estimates suggest that specific masses of 50 kg/kW may be achievable with thermophotovoltaic and alkali metal thermal-to-electric conversion generators. Powerplants constructed from these near-term radioisotope electric generators and long-life ion thrusters will likely have specific masses in the range of 100 to 200 kg/kW of thrust power if development continues over the next decade. In earlier studies, it was concluded that flight times within the Solar System are indeed insensitive to reductions in the powerplant specific mass, and that a timely scientific program of robotic planetary rendezvous and near-interstellar space missions is enabled by primary electric propulsion once the powerplant specific mass is in the range of 100 to 200 kg/kW. Flight times can be substantially reduced by using hybrid propulsion schemes that combine chemical propulsion, gravity assist, and electric propulsion. Hybrid schemes are further explored in this article to illustrate how the performance of REP is enhanced for Pluto rendezvous, heliopause orbiter, and gravitational lens missions

  16. PEGASUS: a multi-megawatt nuclear electric propulsion system

    International Nuclear Information System (INIS)

    Coomes, E.P.; Cuta, J.M.; Webb, B.J.; King, D.Q.

    1985-06-01

    With the Space Transportation System (STS), the advent of space station Columbus and the development of expertise at working in space that this will entail, the gateway is open to the final frontier. The exploration of this frontier is possible with state-of-the-art hydrogen/oxygen propulsion but would be greatly enhanced by the higher specific impulse of electric propulsion. This paper presents a concept that uses a multi-megawatt nuclear power plant to drive an electric propulsion system. The concept has been named PEGASUS, PowEr GenerAting System for Use in Space, and is intended as a ''work horse'' for general space transportation needs, both long- and short-haul missions. The recent efforts of the SP-100 program indicate that a power system capable of producing upwards of 1 megawatt of electric power should be available in the next decade. Additionally, efforts in other areas indicate that a power system with a constant power capability an order of magnitude greater could be available near the turn of the century. With the advances expected in megawatt-class space power systems, the high specific impulse propulsion systems must be reconsidered as potential propulsion systems. The power system is capable of meeting both the propulsion system and spacecraft power requirements

  17. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  18. Applying design principles to fusion reactor configurations for propulsion in space

    International Nuclear Information System (INIS)

    Carpenter, S.A.; Deveny, M.E.; Schulze, N.R.

    1993-01-01

    The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. Three design principles (DP's) were applied to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. A preliminary rating of these configurations was performed, and it was concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS)

  19. Advanced electrostatic ion thruster for space propulsion

    Science.gov (United States)

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  20. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  1. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  2. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  3. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated

  4. Development priorities for in-space propulsion technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  5. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    International Nuclear Information System (INIS)

    Deveny, M.; Carpenter, S.; O'connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons. 50 refs

  6. A High-power Electric Propulsion Test Platform in Space

    Science.gov (United States)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  7. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    Science.gov (United States)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  8. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  9. Advantages of Fast Ignition Scenarios with Two Hot Spots for Space Propulsion Systems

    Science.gov (United States)

    Shmatov, M. L.

    The use of the fast ignition scenarios with the attempts to create two hot spots in one blob of the compressed thermonuclear fuel or, briefly, scenarios with two hot spots in space propulsion systems is proposed. The model, predicting that for such scenarios the probability pf of failure of ignition of thermonuclear microexplosion can be significantly less than that for the similar scenarios with the attempts to create one hot spot in one blob of the compressed fuel, is presented. For space propulsion systems consuming a relatively large amount of propellant, a decrease in pf due to the choice of the scenario with two hot spots can result in large, for example, two-fold, increase in the payload mass. Other advantages of the scenarios with two hot spots and some problems related to them are considered.

  10. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  11. Component Data Base for Space Station Resistojet Auxiliary Propulsion

    Science.gov (United States)

    Bader, Clayton H.

    1988-01-01

    The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.

  12. Lightweight Radiator for in Space Nuclear Electric Propulsion

    Science.gov (United States)

    Craven, Paul; Tomboulian, Briana; SanSoucie, Michael

    2014-01-01

    Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.

  13. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  14. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  15. Evaluation of advanced propulsion options for the next manned transportation system: Propulsion evolution study

    Science.gov (United States)

    Spears, L. T.; Kramer, R. D.

    1990-01-01

    The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.

  16. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  17. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  18. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  19. Concept Study of Radio Frequency (RF Plasma Thruster for Space Propulsion

    Directory of Open Access Journals (Sweden)

    Anna-Maria Theodora ANDREESCU

    2016-12-01

    Full Text Available Electric thrusters are capable of accelerating ions to speeds that are impossible to reach using chemical reaction. Recent advances in plasma-based concepts have led to the identification of electromagnetic (RF generation and acceleration systems as able to provide not only continuous thrust, but also highly controllable and wide-range exhaust velocities. For Future Space Propulsion there is a pressing need for low pressure, high mass flow rate and controlled ion energies. This paper explores the potential of using RF heated plasmas for space propulsion in order to mitigate the electric propulsion problems caused by erosion and gain flexibility in plasma manipulation. The main key components of RF thruster architecture are: a feeding system able to provide the required neutral gas flow, plasma source chamber, antenna/electrodes wrapped around the discharge tube and optimized electromagnetic field coils for plasma confinement. A preliminary analysis of system performance (thrust, specific impulse, efficiency is performed along with future plans of Space Propulsion based on this new concept of plasma mechanism.

  20. Phase 1 space fission propulsion system design considerations

    International Nuclear Information System (INIS)

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert

    2002-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a 'Phase 1' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system

  1. Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    Science.gov (United States)

    1990-01-01

    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials.

  2. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  3. The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan

    2015-01-01

    The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.

  4. Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs

    Science.gov (United States)

    Millis, Marc G.

    1994-01-01

    spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.

  5. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  6. Space Nuclear Power and Propulsion - a basic Tool for the manned Exploration of the Solar System

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hamilton, Booz Allen

    2004-01-01

    Humanity has started to explore space more than 40 years ago. Numerous spacecraft have left the Earth in this endeavour, but while unmanned spacecraft were already sent out on missions, where they would eventually reach the outer limits of the Solar System, manned exploration has always been confined to the tiny bubble of the Earth's gravitational well, stretching out at maximum to our closest celestial companion - the Moon - during the era of the Apollo programme in the late 60's and early 70's. When mankind made its giant leap, the exploration of our cosmic neighbour was seen as the initial step for the manned exploration of the whole Solar System. Consequently ambitious research and development programmes were undertaken at that time to enable what seemed to be the next logical steps: the establishment of a permanent settled base on the Moon and the first manned mission to Mars in the 80's. Nuclear space power and propulsion played an important role in these entire future scenarios, hence ambitious development programmes were undertaken to make these technologies available. Unfortunately the 70's-paradigm shift in space policies did not only bring an end to the Apollo programme, but it also brought a complete halt to all of these technology programmes and confined the human presence in space to a tiny bubble including nothing more than the Earth's sphere and a mere shell of a few hundred kilometres of altitude, too small to even include the Moon. Today, after more than three decades, manned exploration of the Solar System has become an issue again and so are missions to Moon and Mars. However, studies and analyses show that all of these future plans are hampered by today's available propulsion systems and by the problematic of solar power generation at distances at and beyond of Mars, a problem, however, that can readily be solved by the utilisation of space nuclear reactors and propulsion systems. This paper intends to provide an overview on the various fission

  7. Development of Liquid Propulsion Systems Testbed at MSFC

    Science.gov (United States)

    Alexander, Reginald; Nelson, Graham

    2016-01-01

    As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the

  8. The Space Nuclear Thermal Propulsion Program: Propulsion for the twenty first century

    International Nuclear Information System (INIS)

    Bleeker, G.; Moody, J.; Kesaree, M.

    1993-01-01

    As mission requirements approach the limits of the chemical propulsion systems, new engines must be investigated that can meet the advanced mission requirements of higher payload fractions, higher velocities, and consequently higher specific Impulses (Isp). The propulsion system that can meet these high demands is a nuclear thermal rocket engine. This engine generates the thrust by expanding/existing the hydrogen, heated from the energy derived from the fission process in a reactor, through a nozzle. The Department of Defense (DoD), however, initiated a new nuclear rocket development program in 1987 for ballistic missile defense application. The Space Nuclear Thermal Propulsion (SNTP) Program that seeks to improve on the technology of ROVER/NERVA grew out of this beginning and has been managed by the Air Force, with the involvement of DoE and NASA. The goal of the SNTP Program is to develop an engine to meet potential Air Force requirements for upper stage engine, bimodal propulsion/power applications, and orbital transfer vehicles, as well as the NASA requirements for possible missions to the Moon and Mars. During the entire life of the program, the DoD has considered safety to be of paramount importance, and is following all national environmental policies

  9. Mission needs and system commonality for space nuclear power and propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Zuppero, A.; Redd, L.

    1993-01-01

    Nuclear power enables or significantly enhances a variety of space missions whether near-Earth, or for solar system exploration, lunar-Mars exploration and recovery of near-Earth resources. Performance optimizations for individual missions leads to a large number of power and propulsion systems to be developed. However, the realities of the budget and schedules indicates that the number of nuclear systems that will be developed are limited. One needs to seek the ''minimum requirements'' to do a job rather than the last ounce of performance, and areas of commonality. To develop a minimum number of systems to meet the overall DoD, NASA, and commercial needs, the broad spectrum of requirements has been examined along with cost drivers

  10. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  11. NASA's Launch Propulsion Systems Technology Roadmap

    Science.gov (United States)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  12. Neutronics Study of the KANUTER Space Propulsion Reactor

    International Nuclear Information System (INIS)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee

    2014-01-01

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe 135 , and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity

  13. Neutronics Study of the KANUTER Space Propulsion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Nam, Seung Hyun; Kim, Yonghee [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea Advanced Nuclear Thermal Engine Rocket (KANUTER) has been developed at the Korea Advanced Institute of Science and Technology (KAIST). This space propulsion system is unique in that it implements a HEU fuel with a thermal spectrum system. This allows the system to be designed with a minimal amount of fissile material and an incredibly small and light system. This then allows the implementation of the system in a cluster format which enables redundancy and easy scalability for different mission requirements. This combination of low fissile content, compact size, and thermalized spectrum contribute to an interesting and novel behavior of the reactor system. The two codes were both used for the burn up calculations in order to verify their validity while the static calculations and characterization of the core were done principally with MCNPX. The KANUTER space propulsion reactor is in the process of being characterized and improved. Its basic neutronic characteristics have been studied, and its behavior over time has been identified. It has been shown that this reactor will have difficulty operating as hoped in a bimodal configuration where it is able to provide both propulsion and power throughout mission to Mars. The reason for this has been identified as Xe{sup 135}, and it is believed that a possible solution to this issue does exist, either in the form of an appropriately designed neutron spectrum or the building in of sufficient excess reactivity.

  14. Development of Cubesat Propulsion Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this IRAD will be to develop a propulsion system that can be cheaply and reliably used for NASA GSFC cubesat missions. Reliability will be...

  15. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    Science.gov (United States)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  16. Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion

    Science.gov (United States)

    2005-07-13

    FUSION REACTIONS AND MATTER- ANTIMATTER ANNIHILATION FOR SPACE PROPULSION Claude DEUTSCH LPGP (UMR-CNRS 8578), Bât. 210, UPS, 91405 Orsay...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE šFusion Reactions And Matter- Antimatter Annihilation For Space Propulsion 5a...which is possible with successful MCF or ICF. Appropriate vessel designs will be presented for fusion as well as for antimatter propulsion. In

  17. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  18. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  19. Ultrashort pulse energy distribution for propulsion in space

    Science.gov (United States)

    Bergstue, Grant Jared

    This thesis effort focuses on the development of a novel, space-based ultrashort pulse transmission system for spacecraft. The goals of this research include: (1) ultrashort pulse transmission strategies for maximizing safety and efficiency; (2) optical transmission system requirements; (3) general system requirements including control techniques for stabilization; (4) optical system requirements for achieving effective ablative propulsion at the receiving spacecraft; and (5) ultrashort pulse transmission capabilities required for future missions in space. A key element of the research is the multiplexing device required for aligning the ultrashort pulses from multiple laser sources along a common optical axis for transmission. This strategy enables access to the higher average and peak powers required for useful missions in space.

  20. Space shuttle auxiliary propulsion system design study. Phase C report: Oxygen-hydrogen RCS/OMS integration study

    Science.gov (United States)

    Bruns, A. E.; Regnier, W. W.

    1972-01-01

    A comparison of the concepts of auxiliary propulsion systems proposed for the space shuttle vehicle is discussed. An evaluation of the potential of integration between the reaction control system and the orbit maneuvering system was conducted. Numerous methods of implementing the various levels of integration were evaluated. Preferred methods were selected and design points were developed for two fully integrated systems, one partially integrated system, and one separate system.

  1. Green Liquid Monopropellant Thruster for In-space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) and Orbitec Inc. propose to develop a unique chemical propulsion system for the next generation NASA science spacecraft and missions...

  2. State-of-the-Art for Small Satellite Propulsion Systems

    Science.gov (United States)

    Parker, Khary I.

    2016-01-01

    SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.

  3. Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script

    Science.gov (United States)

    Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)

    1992-01-01

    The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.

  4. The rationale/benefits of nuclear thermal rocket propulsion for NASA's lunar space transportation system

    Science.gov (United States)

    Borowski, Stanley K.

    1994-09-01

    The solid core nuclear thermal rocket (NTR) represents the next major evolutionary step in propulsion technology. With its attractive operating characteristics, which include high specific impulse (approximately 850-1000 s) and engine thrust-to-weight (approximately 4-20), the NTR can form the basis for an efficient lunar space transportation system (LTS) capable of supporting both piloted and cargo missions. Studies conducted at the NASA Lewis Research Center indicate that an NTR-based LTS could transport a fully-fueled, cargo-laden, lunar excursion vehicle to the Moon, and return it to low Earth orbit (LEO) after mission completion, for less initial mass in LEO than an aerobraked chemical system of the type studied by NASA during its '90-Day Study.' The all-propulsive NTR-powered LTS would also be 'fully reusable' and would have a 'return payload' mass fraction of approximately 23 percent--twice that of the 'partially reusable' aerobraked chemical system. Two NTR technology options are examined--one derived from the graphite-moderated reactor concept developed by NASA and the AEC under the Rover/NERVA (Nuclear Engine for Rocket Vehicle Application) programs, and a second concept, the Particle Bed Reactor (PBR). The paper also summarizes NASA's lunar outpost scenario, compares relative performance provided by different LTS concepts, and discusses important operational issues (e.g., reusability, engine 'end-of life' disposal, etc.) associated with using this important propulsion technology.

  5. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  6. Ionic liquid propellants: future fuels for space propulsion.

    Science.gov (United States)

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Proceedings of the Tenth Symposium on Space Nuclear Power and Propulsion

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1993-01-01

    This symposium included topics on space nuclear power. Various aspectsof design of propulsion and power systems were presented. From theProceedings, two hundred and twelve papers were abstracted for the database

  8. Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool

    Science.gov (United States)

    Stauber, Laurel J.; Naiman, Cynthia G.

    2002-01-01

    The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing

  9. Nuclear space power and propulsion requirements and issues

    International Nuclear Information System (INIS)

    Swerdling, M.; Isenberg, L.

    1995-01-01

    The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE's new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems

  10. Definition of an arcjet propulsion sub-system

    International Nuclear Information System (INIS)

    Price, T.W.

    1989-01-01

    An engineering flight demonstration of a 100 kW3 Space Reactor Power System is planned for the mid to late 1990s. An arcjet based propulsion subsystem will be included on the flight demonstraction as a secondary experiment. Two studies, sponsored by the Kay Technologies Directorate of the SDI Organization and managed by the Jet Propulsion Laboratory are currently under way to define that propulsion subsystem. The principal tasks of those contracts and the plans for two later phases, an experimental verification of the concept and a flight qualification/delivery of a flight unit, are described. 9 refs

  11. Space storable propulsion components development

    Science.gov (United States)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  12. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  13. Status report on nuclear electric propulsion systems

    Science.gov (United States)

    Stearns, J. W.

    1975-01-01

    Progress in nuclear electric propulsion (NEP) systems for a multipayload multimission vehicle needed in both deep-space missions and a variety of geocentric missions is reviewed. The space system power level is a function of the initial launch vehicle mass, but developments in out-of-core nuclear thermionic direct conversion have broadened design options. Cost, design, and performance parameters are compared for reusable chemical space tugs and NEP reusable space tugs. Improvements in heat pipes, ion engines, and magnetoplasmadynamic arc jet thrust subsystems are discussed.

  14. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  15. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    Science.gov (United States)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  16. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  17. Hybrid rocket propulsion systems for outer planet exploration missions

    Science.gov (United States)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  18. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    Science.gov (United States)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  19. Gravity-assist engine for space propulsion

    Science.gov (United States)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  20. Direct Energy Conversion for Low Specific Mass In-Space Power and Propulsion

    Science.gov (United States)

    Scott, John H.; George, Jeffrey A.; Tarditi, Alfonso G.

    2013-01-01

    "Changing the game" in space exploration involves changing the paradigm for the human exploration of the Solar System, e.g, changing the human exploration of Mars from a three-year epic event to an annual expedition. For the purposes of this assessment an "annual expedition" capability is defined as an in-space power & propulsion system which, with launch mass limits as defined in NASA s Mars Architecture 5.0, enables sending a crew to Mars and returning them after a 30-day surface stay within one year, irrespective of planetary alignment. In this work the authors intend to show that obtaining this capability requires the development of an in-space power & propulsion system with an end-to-end specific mass considerably less than 3 kg/kWe. A first order energy balance analysis reveals that the technologies required to create a system with this specific mass include direct energy conversion and nuclear sources that release energy in the form of charged particle beams. This paper lays out this first order approximation and details these conclusions.

  1. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology

  2. Efficient solid rocket propulsion for access to space

    Science.gov (United States)

    Maggi, Filippo; Bandera, Alessio; Galfetti, Luciano; De Luca, Luigi T.; Jackson, Thomas L.

    2010-06-01

    Space launch activity is expected to grow in the next few years in order to follow the current trend of space exploitation for business purpose. Granting high specific thrust and volumetric specific impulse, and counting on decades of intense development, solid rocket propulsion is a good candidate for commercial access to space, even with common propellant formulations. Yet, some drawbacks such as low theoretical specific impulse, losses as well as safety issues, suggest more efficient propulsion systems, digging into the enhancement of consolidated techniques. Focusing the attention on delivered specific impulse, a consistent fraction of losses can be ascribed to the multiphase medium inside the nozzle which, in turn, is related to agglomeration; a reduction of agglomerate size is likely. The present paper proposes a model based on heterogeneity characterization capable of describing the agglomeration trend for a standard aluminized solid propellant formulation. Material microstructure is characterized through the use of two statistical descriptors (pair correlation function and near-contact particles) looking at the mean metal pocket size inside the bulk. Given the real formulation and density of a propellant, a packing code generates the material representative which is then statistically analyzed. Agglomerate predictions are successfully contrasted to experimental data at 5 bar for four different formulations.

  3. Interplanetary space transport using inertial fusion propulsion

    International Nuclear Information System (INIS)

    Orth, C.D.

    1998-01-01

    In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts

  4. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on

  5. Microwave Plasma Propulsion Systems for Defensive Counter-Space

    Science.gov (United States)

    2007-09-01

    microwave/ECR-based propulsion system. No electron cathode or neutralizer is needed. There are no electrodes to erode, sputter or damage. Measurement of...without the need for a cathode neutralizer, a wide range of performance parameters can be achieved by selecting the size and length of the resonance...EC • Earth Coverage Antenna NCA • Narrow coverege Antenna LNA • Low Noise Amplifier Rx • Receive Tx =Transmit IV IV TI.IO CMOI Figure 53

  6. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  7. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    Science.gov (United States)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  8. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  9. In-Space Demonstration of High Performance Green Propulsion and its Impact on Small Satellites

    OpenAIRE

    Anflo, Kjell; Crowe, Ben

    2011-01-01

    This paper summarizes the pre-launch activities and the results from the in-space demonstration of a novel propulsion system on the PRISMA main satellite, using a “Green” monopropellant. This propellant is a storable ADN-based monopropellant blend (i.e. LMP-103S). The basic mission for the High Performance Green Propulsion System (HPGP) has been successfully completed and all primary objectives of TRL 7 have been met. The HPGP technology is now flight proven and ready for implementation on fu...

  10. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: guimarae@ieav.cta.br, E-mail: braz@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  11. Heat exchanger optimization of a closed Brayton cycle for nuclear space propulsion

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Guimaraes, Lamartine N.F.; Braz Filho, Francisco A.

    2015-01-01

    Nuclear power systems turned to space electric propulsion differs strongly from usual ground-based power systems regarding the importance of overall size and weight. For propulsion power systems, weight and efficiency are essential drivers that should be managed during conception phase. Considering that, this paper aims the development of a thermal model of a closed Brayton cycle that applies the thermal conductance of heat exchangers in order to predict the energy conversion performance. The centrifugal-flow turbine and compressor characterization were achieved using algebraic equations from literature data. The binary mixture of He-Xe with molecular weight of 40 g/mole is applied and the impact of heat exchanger optimization in thermodynamic irreversibilities is evaluated in this paper. (author)

  12. Space propulsion by fusion in a magnetic dipole

    International Nuclear Information System (INIS)

    Teller, E.; Glass, A.J.; Fowler, T.K.; Hasegawa, A.; Santarius, J.F.

    1991-01-01

    A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs

  13. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  14. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  15. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  16. Reactors for nuclear electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

  17. Reactors for nuclear electric propulsion

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1981-01-01

    Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades

  18. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  19. MSFC Propulsion Systems Department Knowledge Management Project

    Science.gov (United States)

    Caraccioli, Paul A.

    2007-01-01

    This slide presentation reviews the Knowledge Management (KM) project of the Propulsion Systems Department at Marshall Space Flight Center. KM is needed to support knowledge capture, preservation and to support an information sharing culture. The presentation includes the strategic plan for the KM initiative, the system requirements, the technology description, the User Interface and custom features, and a search demonstration.

  20. Centralized versus distributed propulsion

    Science.gov (United States)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  1. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    Science.gov (United States)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  2. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  3. A Dual Mode Propulsion System for Small Satellite Applications

    Directory of Open Access Journals (Sweden)

    Kevin R. Gagne

    2018-05-01

    Full Text Available This study focused on the development of a chemical micropropulsion system suitable for primary propulsion and/or attitude control for a nanosatellite. Due to the limitations and expense of current micropropulsion technologies, few nanosatellites with propulsion have been launched to date; however, the availability of such a propulsion system would allow for new nanosatellite mission concepts, such as deep space exploration, maneuvering in low gravity environments and formation flying. This work describes the design of “dual mode” monopropellant/bipropellant microthruster prototype that employs a novel homogeneous catalysis scheme. Results from prototype testing are reported that validate the concept. The micropropulsion system is designed to be fabricated using a combination of additively-manufactured and commercial off the shelf (COTS parts along with non-toxic fuels, thus making it a low-cost and environmentally-friendly option for future nanosatellite missions.

  4. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    Science.gov (United States)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  5. A closed Brayton power conversion unit concept for nuclear electric propulsion for deep space missions

    International Nuclear Information System (INIS)

    Joyner, Claude Russell II; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt and Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level

  6. Electric propulsion options for 10 kW class earth space missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.

  7. Electric Propulsion Options for 10 kW Class Earth-Space Missions

    Science.gov (United States)

    Patterson, M. J.; Curran, Francis M.

    1989-01-01

    Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.

  8. Hybrid-Electric Rotorcraft Tool Development, Propulsion System Trade Space Exploration, and Demonstrator Conceptual Design, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Hybrid-electric propulsion is becoming widely accepted as a potential disruptive technology for aircraft that can provide significant reduction in fuel consumption...

  9. NASA Electric Propulsion System Studies

    Science.gov (United States)

    Felder, James L.

    2015-01-01

    An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.

  10. Space propulsion by fusion in a magnetic dipole

    International Nuclear Information System (INIS)

    Teller, E.; Glass, A.J.; Fowler, T.K.; Hasegawa, A.; Santarius, J.F.

    1991-01-01

    The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs

  11. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  12. Propulsion of space ships by nuclear explosion

    Science.gov (United States)

    Linhart, J. G.; Kravárik, J.

    2005-01-01

    Recent progress in the research on deuterium-tritium (D-T) inertially confined microexplosions encourages one to reconsider the nuclear propulsion of spaceships based on the concept originally proposed in the Orion project. We discuss first the acceleration of medium-sized spaceships by D-T explosions whose output is in the range of 0.1 10 t of TNT. The launching of such a ship into an Earth orbit or beyond by a large nuclear explosion in an underground cavity is sketched out in the second section of the paper, and finally we consider a hypothetical Mars mission based on these concepts. In the conclusion it is argued that propulsion based on the Orion concept only is not the best method for interplanetary travel owing to the very large number of nuclear explosion required. A combination of a super gun and subsequent rocket propulsion using advanced chemical fuels appears to be the best solution for space flights of the near future.

  13. JANNAF 18th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    This volume, the first of two volumes is a compilation of 18 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 18th Propulsion Systems Hazards Subcommittee (PSHS) meeting held jointly with the 36th Combustion Subcommittee (CS) and 24th Airbreathing Propulsion Subcommittee (APS) meetings. The meeting was held 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered at the PSHS meeting include: shaped charge jet and kinetic energy penetrator impact vulnerability of gun propellants; thermal decomposition and cookoff behavior of energetic materials; violent reaction; detonation phenomena of solid energetic materials subjected to shock and impact stimuli; and hazard classification, insensitive munitions, and propulsion systems safety.

  14. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  15. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  16. Tools for advanced simulations to nuclear propulsion systems in rockets

    International Nuclear Information System (INIS)

    Torres Sepulveda, A.; Perez Vara, R.

    2004-01-01

    While chemical propulsion rockets have dominated space exploration, other forms of rocket propulsion based on nuclear power, electrostatic and magnetic drive, and other principles besides chemical reactions, have been considered from the earliest days of the field. The goal of most of these advanced rocket propulsion schemes is improved efficiency through higher exhaust velocities, in order to reduce the amount of fuel the rocket vehicle needs to carry, though generally at the expense of high thrust. Nuclear propulsion seems to be the most promising short term technology to plan realistic interplanetary missions. The development of a nuclear electric propulsion spacecraft shall require the development of models to analyse the mission and to understand the interaction between the related subsystems (nuclear reactor, electrical converter, power management and distribution, and electric propulsion) during the different phases of the mission. This paper explores the modelling of a nuclear electric propulsion (NEP) spacecraft type using EcosimPro simulation software. This software is a multi-disciplinary simulation tool with a powerful object-oriented simulation language and state-of-the-art solvers. EcosimPro is the recommended ESA simulation tool for environmental Control and Life Support Systems (ECLSS) and has been used successfully within the framework of the European activities of the International Space Station programme. Furthermore, propulsion libraries for chemical and electrical propulsion are currently being developed under ESA contracts to set this tool as standard usage in the propulsion community. At present, there is not any workable NEP spacecraft, but a standardized-modular, multi-purpose interplanetary spacecraft for post-2000 missions, called ISC-2000, has been proposed in reference. The simulation model presented on this paper is based on the preliminary designs for this spacecraft. (Author)

  17. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  18. Nuclear thermal propulsion transportation systems for lunar/Mars exploration

    International Nuclear Information System (INIS)

    Clark, J.S.; Borowski, S.K.; Mcilwain, M.C.; Pellaccio, D.G.

    1992-09-01

    Nuclear thermal propulsion technology development is underway at NASA and DoE for Space Exploration Initiative (SEI) missions to Mars, with initial near-earth flights to validate flight readiness. Several reactor concepts are being considered for these missions, and important selection criteria will be evaluated before final selection of a system. These criteria include: safety and reliability, technical risk, cost, and performance, in that order. Of the concepts evaluated to date, the Nuclear Engine for Rocket Vehicle Applications (NERVA) derivative (NDR) is the only concept that has demonstrated full power, life, and performance in actual reactor tests. Other concepts will require significant design work and must demonstrate proof-of-concept. Technical risk, and hence, development cost should therefore be lowest for the concept, and the NDR concept is currently being considered for the initial SEI missions. As lighter weight, higher performance systems are developed and validated, including appropriate safety and astronaut-rating requirements, they will be considered to support future SEI application. A space transportation system using a modular nuclear thermal rocket (NTR) system for lunar and Mars missions is expected to result in significant life cycle cost savings. Finally, several key issues remain for NTR's, including public acceptance and operational issues. Nonetheless, NTR's are believed to be the next generation of space propulsion systems - the key to space exploration

  19. Space nuclear power systems, Part 2

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Hoover, M.D.

    1992-01-01

    This volume, number two of three, contains the reviewed and edited papers were being presented at the Ninth Symposium in Albuquerque, New Mexico, 12--16 January 1992. The objective of the symposium, and hence these volumes, is to summarize the state of knowledge in the area of space nuclear power and propulsion and to provide a forum at which the most recent findings and important new developments can be presented and discussed. Topics included is this volume are: reactor and power systems control; thermionic energy conversion; space missions and power needs; key issues in nuclear and propulsion; nuclear thermal propulsion; manufacturing and processing; thermal management; space nuclear safety; and nuclear testing and production facilities

  20. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  1. MCNP benchmark analyses of critical experiments for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.

    1993-01-01

    The particle-bed reactor (PBR) system is being developed for use in the Space Nuclear Thermal Propulsion (SNTP) Program. This reactor system is characterized by a highly heterogeneous, compact configuration with many streaming pathways. The neutronics analyses performed for this system must be able to accurately predict reactor criticality, kinetics parameters, material worths at various temperatures, feedback coefficients, and detailed fission power and heating distributions. The latter includes coupled axial, radial, and azimuthal profiles. These responses constitute critical inputs and interfaces with the thermal-hydraulics design and safety analyses of the system

  2. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  3. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  4. RF emission-based health monitoring for hybrid and/or all electric aircraft distributed propulsion systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future aircraft propulsion is destined to be electric. All electric aircraft propulsion systems promise significant improvements in energy efficiency,...

  5. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  6. Advanced Chemical Propulsion System Study

    Science.gov (United States)

    Portz, Ron; Alexander, Leslie; Chapman, Jack; England, Chris; Henderson, Scott; Krismer, David; Lu, Frank; Wilson, Kim; Miller, Scott

    2007-01-01

    A detailed; mission-level systems study has been performed to show the benefit resulting from engine performance gains that will result from NASA's In-Space Propulsion ROSS Cycle 3A NRA, Advanced Chemical Technology sub-topic. The technology development roadmap to accomplish the NRA goals are also detailed in this paper. NASA-Marshall and NASA-JPL have conducted mission-level studies to define engine requirements, operating conditions, and interfaces. Five reference missions have been chosen for this analysis based on scientific interest, current launch vehicle capability and trends in space craft size: a) GTO to GEO, 4800 kg, delta-V for GEO insertion only approx.1830 m/s; b) Titan Orbiter with aerocapture, 6620 kg, total delta V approx.210 m/s, mostly for periapsis raise after aerocapture; c) Enceladus Orbiter (Titan aerocapture) 6620 kg, delta V approx.2400 m/s; d) Europa Orbiter, 2170 kg, total delta V approx.2600 m/s; and e) Mars Orbiter, 2250 kg, total delta V approx.1860 m/s. The figures of merit used to define the benefit of increased propulsion efficiency at the spacecraft level include propulsion subsystem wet mass, volume and overall cost. The objective of the NRA is to increase the specific impulse of pressure-fed earth storable bipropellant rocket engines to greater than 330 seconds with nitrogen tetroxide and monomothylhydrazine propellants and greater than 335 , seconds with nitrogen tetroxide and hydrazine. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. The study also constitutes a crucial stepping stone to future development, such as pump-fed storable engines.

  7. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    Science.gov (United States)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  8. Implementations Strategies for In-Space Macron Propulsion

    Science.gov (United States)

    2010-10-06

    CHAPTER 3 MACRON ORBITAL ANALYSIS Typically, the impact of a propulsion system’s exhaust plume on the space environment can be hard to...approximately 3.235x105km). These orbits are referred to as lunar sphere of influence (LSOI) orbits and required three-body orbital analysis . Over time, STK...on MMOD Environment ........................................................... 14  III. MACRON ORBITAL ANALYSIS

  9. Dormancy effects on the reliability of nuclear thermal propulsion systems for long-term manned space missions

    International Nuclear Information System (INIS)

    Shooman, M.L.; Sforza, P.M.

    1993-01-01

    This paper explores the effects of dormancy on the reliability of a Nuclear Thermal Propulsion (NTP) system for long-term manned space missions, such as Mars exploration. Dormancy refers to the portion of space systems operation where the power and stress levels are significantly reduced from nominal values and the authors have identified dormancy as a significant effect. Three approaches are used to evaluate the relative importance of failure rates during dormant operation: use of failure rate models involving dormancy, power cycling and fully energized operation; study of data bases which include both dormant and energized failure rates; predictions based on an Arrhenius rate process formulation. The results of these approaches suggest that for a long term manned mission the dormancy, cycle, and energized failure rates will all be important. Reliability in the energized state normally receives utmost attention and care during design, however, unless equal attention is directed to dormancy, the mission reliability may be severely compromised

  10. Analysis of Electric Propulsion System for Exploration of Saturn

    Directory of Open Access Journals (Sweden)

    Carlos Renato Huaura Solórzano

    2009-01-01

    Full Text Available Exploration of the outer planets has experienced new interest with the launch of the Cassini and the New Horizons Missions. At the present time, new technologies are under study for the better use of electric propulsion system in deep space missions. In the present paper, the method of the transporting trajectory is used to study this problem. This approximated method for the flight optimization with power-limited low thrust is based on the linearization of the motion of a spacecraft near a keplerian orbit that is close to the transfer trajectory. With the goal of maximizing the mass to be delivered in Saturn, several transfers were studied using nuclear, radioisotopic and solar electric propulsion systems.

  11. Multiprobe characterization of plasma flows for space propulsion

    NARCIS (Netherlands)

    Damba, Julius; Argente, P.; Maldonado, P. E.; Cervone, A.; Domenech-Garret, J.L.; Conde, Luis

    2018-01-01

    Plasma engines for space propulsion generate plasma jets (also denominated plasma plumes) having supersonic ion groups with typical speeds in the order of tens of kilometers per second, which lies between electron and ion thermal speeds. Studies of the stationary plasma expansion process using a

  12. An Overview of Cube-Satellite Propulsion Technologies and Trends

    Directory of Open Access Journals (Sweden)

    Akshay Reddy Tummala

    2017-12-01

    Full Text Available CubeSats provide a cost effective means to perform scientific and technological studies in space. Due to their affordability, CubeSat technologies have been diversely studied and developed by educational institutions, companies and space organizations all over the world. The CubeSat technology that is surveyed in this paper is the propulsion system. A propulsion system is the primary mobility device of a spacecraft and helps with orbit modifications and attitude control. This paper provides an overview of micro-propulsion technologies that have been developed or are currently being developed for CubeSats. Some of the micro-propulsion technologies listed have also flown as secondary propulsion systems on larger spacecraft. Operating principles and key design considerations for each class of propulsion system are outlined. Finally, the performance factors of micro-propulsion systems have been summarized in terms of: first, a comparison of thrust and specific impulse for all propulsion systems; second, a comparison of power and specific impulse, as also thrust-to-power ratio and specific impulse for electric propulsion systems.

  13. Lightweight, Efficient Power Converters for Advanced Turboelectric Aircraft Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating advanced turboelectric aircraft propulsion systems that utilize superconducting motors to drive a number of distributed turbofans. In an...

  14. Hybrid Electric Propulsion System for a 4 Passenger VTOL Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The advancement of hybrid-electric propulsion systems for rotorcraft enables vertical takeoff and landing (VTOL) vehicles to take advantage of aerodynamic...

  15. Flow Control of Liquid Metal Propellants for In-Space Electric Propulsion Systems

    Science.gov (United States)

    Bonds, Kevin W.; Polzin, Kurt A.

    2010-01-01

    Operation of Hall thrusters with bismuth propellant has been shown to be a promising path for development of high-power (140 kW per thruster), high performance (8000s I(sub sp at >70% efficiency) electric propulsion systems.

  16. Propulsion for CubeSats

    Science.gov (United States)

    Lemmer, Kristina

    2017-05-01

    At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.

  17. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1991-01-01

    This paper presents a retrospective summary and bibliography of the National Aeronautics and Space Administration research program on fusion energy for space power and propulsion systems conducted at the Lewis Research Center. This effort extended over a 20-yr period ending in 1978, involved several hundred person-years of effort, and included theory, experiment, technology development, and mission analysis. This program was initiated in 1958 and was carried out within the Electromagnetic Propulsion Division. Within this division, mission analysis and basic research on high-temperature plasma physics were carried out in the Advanced Concepts Branch. Three pioneering high-field superconducting magnetic confinement facilities were developed with the support of the Magnetics and Cryophysics Branch. The results of this program serve as a basis for subsequent discussions of the space applications of fusion energy, contribute to the understanding of high-temperature plasmas and how to produce them, and advance the state of the art of superconducting magnet technology used in fusion research

  18. Pulsed fusion space propulsion : Computational Magneto-Hydro Dynamics of a multi-coil parabolic reaction chamber

    NARCIS (Netherlands)

    Romanelli, G; Mignone, Andrea; Cervone, A.

    2017-01-01

    Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the

  19. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    Science.gov (United States)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  20. Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System

    Science.gov (United States)

    Clements, P. A.; Borutzki, S. E.; Kirk, A.

    1984-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.

  1. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  2. Engine cycle design considerations for nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Pelaccio, D.G.; Scheil, C.M.; Collins, J.T.

    1993-01-01

    A top-level study was performed which addresses nuclear thermal propulsion system engine cycle options and their applicability to support future Space Exploration Initiative manned lunar and Mars missions. Technical and development issues associated with expander, gas generator, and bleed cycle near-term, solid core nuclear thermal propulsion engines are identified and examined. In addition to performance and weight the influence of the engine cycle type on key design selection parameters such as design complexity, reliability, development time, and cost are discussed. Representative engine designs are presented and compared. Their applicability and performance impact on typical near-term lunar and Mars missions are shown

  3. NASA's Electric Sail Propulsion System Investigations over the Past Three Years

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail for future scientific missions of exploration. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two year follow-on Phase II NIAC award. This paper documents the findings from this three year investigation. An Electric sail propulsion system is a propellant-less and extremely fast propulsion system that takes advantage of the ions that are present in the solar wind to provide very rapid transit speeds whether to deep space or to the inner solar system. Scientific spacecraft could arrive to Pluto in 5 years, to the boundary of the solar system in ten to twelve years vs. thirty five plus years it took the Voyager spacecraft. The team's recent focused activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers/tethers to enable successful deployment of multiple, multi km length bare tethers, 3) Determining the different missions that can be captured from this revolutionary propulsion system 4) Conceptual designs of spacecraft to reach various destinations whether to the edge of the solar system, or as Heliophysics sentinels around the sun, or to trips to examine a multitude of asteroids These above activities, once demonstrated analytically, will require a technology demonstration mission (2021 to 2023) to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) could be given the go-ahead. The proposed demonstration mission will require that a small spacecraft must first travel to cis-lunar space as the Electric Sail must be

  4. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  5. Propulsion and Power Technologies for the NASA Exploration Vision: A Research Perspective

    Science.gov (United States)

    Litchford, Ron J.

    2004-01-01

    Future propulsion and power technologies for deep space missions are profiled in this viewgraph presentation. The presentation includes diagrams illustrating possible future travel times to other planets in the solar system. The propulsion technologies researched at Marshall Space Flight Center (MSFC) include: 1) Chemical Propulsion; 2) Nuclear Propulsion; 3) Electric and Plasma Propulsion; 4) Energetics. The presentation contains additional information about these technologies, as well as space reactors, reactor simulation, and the Propulsion Research Laboratory (PRL) at MSFC.

  6. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  7. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  8. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  9. Hybrid Propulsion Systems for Remotely Piloted Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Mithun Abdul Sathar Eqbal

    2018-03-01

    Full Text Available The development of more efficient propulsion systems for aerospace vehicles is essential to achieve key objectives. These objectives are to increase efficiency while reducing the amount of carbon-based emissions. Hybrid electric propulsion (HEP is an ideal means to maintain the energy density of hydrocarbon-based fuels and utilize energy-efficient electric machines. A system that integrates different propulsion systems into a single system, with one being electric, is termed an HEP system. HEP systems have been studied previously and introduced into Land, Water, and Aerial Vehicles. This work presents research into the use of HEP systems in Remotely Piloted Aircraft Systems (RPAS. The systems discussed in this paper are Internal Combustion Engine (ICE–Electric Hybrid systems, ICE–Photovoltaic (PV Hybrid systems, and Fuel-Cell Hybrid systems. The improved performance characteristics in terms of fuel consumption and endurance are discussed.

  10. High-temperature turbopump assembly for space nuclear thermal propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  11. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications.

  12. High-temperature turbopump assembly for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications

  13. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs

  14. RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study

    Science.gov (United States)

    Esther, Elizabeth A.; Burnside, Christopher G.

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions

  15. A nuclear powered pulsed inductive plasma accelerator as a viable propulsion concept for advanced OTV space applications

    International Nuclear Information System (INIS)

    Tapper, M.L.

    1982-01-01

    An electric propulsion concept suitable for delivering heavy payloads from low earth orbit (LEO) to high energy earth orbit is proposed. The system consists of a number of pulsed inductive plasma thrusters powered by a 100 kWe space nuclear power system. The pulsed plasma thruster is a relatively simple electrodeless device. It also exhibits adequate conversion to thrust power in the desired I sub sp regime of 1500 to 3000 seconds for optimal payload transfer from low earth to high earth orbit. Because of these features and the fact that the nuclear power unit will be capable of delivering sustained high power levels throughout the duration of any given mission, the system presented appears to be a very promising propulsion candidate for advanced orbital transfer vehicle (OTV) applications. An OTV, which makes use of this propulsion system and which has been designed to lift a 9000-lb payload into geosynchronous earth orbit, (GEO) is also examined

  16. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 3

    Science.gov (United States)

    Levak, Daniel

    1993-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.

  17. Nanostructured Tungsten Rhenium Components for Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionizing the space propulsion industry through innovative, relatively low-cost, manufacturing techniques is extremely needed. Specifically, advancements are...

  18. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  19. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    Science.gov (United States)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  20. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  1. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  2. A novel nuclear-powered propulsion system for ship

    International Nuclear Information System (INIS)

    Liu Tao; Han Weishi

    2003-01-01

    A novel nuclear-powered propulsion system for ship is presented in this paper. In this system, a minitype liquid sodium-cooled reactor is used as power; alkali-metal thermal-to-electric conversion (AMTEC) cells are utilized to transform the heat energy to electric energy and superconducting magneto-hydrodynamic (MHD) work as propulsion. This nuclear-powered propulsion system has great advantages in low noise, high speed, long survivability and simple manipulation. It has great significance for the development of propulsion system. (author)

  3. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  4. METHODOLOGY OF THE HYBRID PROPULSION SYSTEM (DMP & DEP FOR TRIMARAN TYPE FAST PATROL BOAT

    Directory of Open Access Journals (Sweden)

    Aulia Widyandari

    2012-04-01

    Full Text Available There are lot of research done to develop a patrol boat, from the modification of hull model until propulsion system equipment. For example the model ship type AMV (Advanced Marine Vehicle was developed starting from the Catamaran, Trimaran and  Pentamaran model. Everything is aimed at obtaining the ship design that has the speed and stability. In addition to achieving high-speed vessel must be equipped with propulsion (Main Power is great, that means the main engine dimensions, auxiliary equipments and fuel tanks is too large. Many Limitations of space on the ship's engine room trimaran vessel is the main obstacle in designing propulsion system. Beside that Patrol boat should have many missions speed, so propulsion system should be designed at that conditions.   Hybrid propulsion is a combination of Diesel Mechanical Propulsion (DMP with Diesel Electric Propulsion (DEP. DMP system is connected directly to the propeller shaft (or through a reduction-gear. DMP has provide more efficiency rate of 95%. While DEP is only able to provide efficiency by 85% - 89% is slightly lower than DMP, but the DEP offers many advantages such as simplicity and suitability in the rotational speed settings, control systems, engine power production Redundancy, Flexibility in the design of equipments layout in engine rooms, noise, vibration and fuel consumption efficiency which affects the lower pollution.   Design of Hybrid Propulsion system can be satisfied and achieved the Power requirements and optimally at all speed condition of patrol boat. Therefore the author made using modeling Maxsurf-11.12 software and carried out various optimization of the choice of main engine, propeller and system conditions for fast patrol boat cruise. 

  5. An overview of the NASA Advanced Propulsion Concepts program

    International Nuclear Information System (INIS)

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R.

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs

  6. Design, Fabrication, Testing and Modeling of a Vaporizing Liquid Micro-Propulsion System

    NARCIS (Netherlands)

    van Wees, T.; Hanselaar, C.A.J.; Jansen, E; Cervone, A.; Zandbergen, B.T.C.; van Zeijl, H.W.

    2016-01-01

    In the last decade, CubeSat development has shown the potential to allow for low-risk, low-cost space missions. To further improve the capabilities of CubeSats in large scale missions, a novel micro-propulsion system is being developed at Delft University of Technology. The system is based on a

  7. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  8. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    The analysis of interplanetary cargo and piloted missions requires the calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options in an iterative way by using simulations that run fast on a computer. As a consequence of a collaborative agreement between the National Aeronautic and Space Administration (NASA) and the Oak Ridge National Laboratory (ORNL), ORNL has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition, dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one

  9. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  10. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  11. NASA's Nuclear Thermal Propulsion Project

    Science.gov (United States)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  12. Distributed Multi-propulsion Units System

    OpenAIRE

    原田, 正志; HARADA, Masashi

    2002-01-01

    Reduction of the weight of the propulsion system is important in the design of a stratospheric airship. However, it also important to increaseefficiency of the system because available energy generated by solar cells on the hull is quite limited. One solution to increase efficiency of the propulsion system is to use a stern propeller, the propeller mounted on the stern of the hull as shown in Figure 1. Mounted on the stern of the hull, the stern propeller is merged with the boundary layer of ...

  13. Commercially-driven human interplanetary propulsion systems: Rationale, concept, technology, and performance requirements

    International Nuclear Information System (INIS)

    Williams, C.H.; Borowski, S.K.

    1996-01-01

    Previous studies of human interplanetary missions are largely characterized by long trip times, limited performance capabilities, and enormous costs. Until these missions become dramatically more open-quote open-quote commercial-friendly close-quote close-quote, their funding source and rationale will be restricted to national governments and their political/scientific interests respectively. A rationale is discussed for human interplanetary space exploration predicated on the private sector. Space propulsion system requirements are identified for interplanetary transfer times of no more than a few weeks/months to and between the major outer planets. Nuclear fusion is identified as the minimum requisite space propulsion technology. A conceptual design is described and evolutionary catalyzed-DD to DHe 3 fuel cycles are proposed. Magnetic nozzles for direct thrust generation and quantifying the operational aspects of the energy exchange mechanisms between high energy reaction products and neutral propellants are identified as two of the many key supporting technologies essential to satisfying system performance requirements. Government support of focused, breakthrough technologies is recommended at funding levels appropriate to other ongoing federal research. copyright 1996 American Institute of Physics

  14. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  15. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  16. Integrated propulsion for near-Earth space missions. Volume 1: Executive summary

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.

  17. Aeronautic propulsion systems; Propulseurs aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Lepourry, P; Ciryci, R

    1992-12-31

    This book is devoted to airplane pilots having a private licence and who would like to take up a professional rank. It comprises 8 chapters dealing with: the different type of propulsion systems, turbojet, turbofan and piston engines; the propeller (characteristics, different types, functioning, protection systems..); the piston engines (4-stroke cycle, power and efficiency, description, characteristics); the gas generator and its limitations (air intake, combustion chamber, turbines, nozzles, fuel systems..); the performances of propulsion systems; the drive, control and instruments; and the use of engines. The last chapter is a self-evaluation questionnaire about the notions developed in the book. (J.S.)

  18. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  19. Tailoring Laser Propulsion for Future Applications in Space

    International Nuclear Information System (INIS)

    Eckel, Hans-Albert; Scharring, Stefan

    2010-01-01

    Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

  20. Radioisotope electric propulsion for robotic science missions to near-interstellar space

    International Nuclear Information System (INIS)

    Noble, R.J.

    1994-10-01

    The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun (≥ 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe's energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade

  1. Fuel Effective Photonic Propulsion

    Science.gov (United States)

    Rajalakshmi, N.; Srivarshini, S.

    2017-09-01

    With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.

  2. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  3. Distributed Propulsion Vehicles

    Science.gov (United States)

    Kim, Hyun Dae

    2010-01-01

    Since the introduction of large jet-powered transport aircraft, the majority of these vehicles have been designed by placing thrust-generating engines either under the wings or on the fuselage to minimize aerodynamic interactions on the vehicle operation. However, advances in computational and experimental tools along with new technologies in materials, structures, and aircraft controls, etc. are enabling a high degree of integration of the airframe and propulsion system in aircraft design. The National Aeronautics and Space Administration (NASA) has been investigating a number of revolutionary distributed propulsion vehicle concepts to increase aircraft performance. The concept of distributed propulsion is to fully integrate a propulsion system within an airframe such that the aircraft takes full synergistic benefits of coupling of airframe aerodynamics and the propulsion thrust stream by distributing thrust using many propulsors on the airframe. Some of the concepts are based on the use of distributed jet flaps, distributed small multiple engines, gas-driven multi-fans, mechanically driven multifans, cross-flow fans, and electric fans driven by turboelectric generators. This paper describes some early concepts of the distributed propulsion vehicles and the current turboelectric distributed propulsion (TeDP) vehicle concepts being studied under the NASA s Subsonic Fixed Wing (SFW) Project to drastically reduce aircraft-related fuel burn, emissions, and noise by the year 2030 to 2035.

  4. Critical Propulsion Components. Volume 1; Summary, Introduction, and Propulsion Systems Studies

    Science.gov (United States)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/ Inlet Acoustic Team.

  5. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  6. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  7. Reverse Kinematic Analysis and Uncertainty Analysis of the Space Shuttle AFT Propulsion System (APS) POD Lifting Fixture

    Science.gov (United States)

    Brink, Jeffrey S.

    2005-01-01

    The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.

  8. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    International Nuclear Information System (INIS)

    Doherty, M.P.

    1993-01-01

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities

  9. In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Montgomery, Edward E., IV

    2004-01-01

    An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.

  10. Reusable Reentry Satellite (RRS): Propulsion system trade study

    Science.gov (United States)

    1990-01-01

    The purpose of the Reusable Reentry Satellite (RRS) Propulsion System Trade Study described in this summary report was to investigate various propulsion options available for incorporation on the RRS and to select the option best suited for RRS application. The design requirements for the RRS propulsion system were driven by the total impulse requirements necessary to operate within the performance envelope specified in the RRS System Requirements Documents. These requirements were incorporated within the Design Reference Missions (DRM's) identified for use in this and other subsystem trade studies. This study investigated the following propulsion systems: solid rocket, monopropellant, bipropellant (monomethyl hydrazine and nitrogen tetroxide or MMH/NTO), dual-mode bipropellant (hydrazine and nitrogen tetroxide or N2H4/NTO), liquid oxygen and liquid hydrogen (LO2/LH2), and an advanced design propulsion system using SDI-developed components. A liquid monopropellant blowdown propulsion system was found to be best suited for meeting the RRS requirements and is recommended as the baseline system. This system was chosen because it is the simplest of all investigated, has the fewest components, and is the most cost effective. The monopropellant system meets all RRS performance requirements and has the capability to provide a very accurate deorbit burn which minimizes reentry dispersions. In addition, no new hardware qualification is required for a monopropellant system. Although the bipropellant systems offered some weight savings capability for missions requiring large deorbit velocities, the advantage of a lower mass system only applies if the total vehicle design can be reduced to allow a cheaper launch vehicle to be used. At the time of this trade study, the overall RRS weight budget and launch vehicle selection were not being driven by the propulsion system selection. Thus, the added cost and complexity of more advanced systems did not warrant application.

  11. Configurations of hybrid-electric cars propulsion systems

    OpenAIRE

    Cundev, Dobri; Sarac, Vasilija; Stefanov, Goce

    2011-01-01

    Over the last few years, hybrid electric cars have taken significant role in automotive market. There are successful technological solutions of hybrid-electric propulsion systems implemented in commercial passenger cars. Every automobile manufacturer of hybrid vehicles has unique hybrid propulsion system. In this paper, all implemented systems are described, analyzed and compared.

  12. Integrated Reacting Fluid Dynamics and Predictive Materials Degradation Models for Propulsion System Conditions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...

  13. NASA's nuclear electric propulsion technology project

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt-and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities. 33 refs

  14. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    International Nuclear Information System (INIS)

    Schnitzler, Bruce G.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse (∼900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as

  15. 28th Joint Propulsion Conference and Exhibit

    International Nuclear Information System (INIS)

    Stone, J.R.; Sovey, J.S.

    1992-07-01

    The National Aeronautics and Space Administration (NASA) has initiated a program to establish the readiness of nuclear electric propulsion (NEP) technology for relatively near-term applications to outer planet robotic science missions with potential future evolution to system for piloted Mars vehicles. This program was initiated in 1991 with a very modest effort identified with nuclear thermal propulsion (NTP); however, NEP is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. The NEP Program will establish the feasibility and practicality of electric propulsion for robotic and piloted solar system exploration. The performance objectives are high specific impulse (200 greater than I(sub sp) greater than 10000 s), high efficiency (over 0.50), and low specific mass. The planning for this program was initially focussed on piloted Mars missions, but has since been redirected to first focus on 100-kW class systems for relatively near-term robotic missions, with possible future evolution to megawatt- and multi-megawatt-class systems applicable to cargo vehicles supporting human missions as well as to the piloted vehicles. This paper reviews current plans and recent progress for the overall nuclear electric propulsion project and closely related activities

  16. High density storage of antimatter for space propulsion applications

    International Nuclear Information System (INIS)

    Smith, Gerald A.; Coughlin, Dan P.

    2001-01-01

    The specific energy of antimatter is 180 MJ/μg, making it the largest specific energy density material known to humankind. Three challenges remain to be solved for space propulsion applications: first, sufficient amounts must be made to permit missions into deep space; second, efficient methods must be found to turn the antimatter into thrust and Isp; and third, the antimatter must be stored for long periods of time. This paper addresses the third issue. We discuss conventional (electromagnetic) methods of confining antimatter, as well as unconventional concepts, including the use of quantum effects in materials and antimatter chemistry

  17. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    Science.gov (United States)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  18. Integrated propulsion for near-Earth space missions. Volume 2: Technical

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    The calculation approach is described for parametric analysis of candidate electric propulsion systems employed in LEO to GEO missions. Occultation relations, atmospheric density effects, and natural radiation effects are presented. A solar cell cover glass tradeoff is performed to determine optimum glass thickness. Solar array and spacecraft pointing strategies are described for low altitude flight and for optimum array illumination during ascent. Mass ratio tradeoffs versus transfer time provide direction for thruster technology improvements. Integrated electric propulsion analysis is performed for orbit boosting, inclination change, attitude control, stationkeeping, repositioning, and disposal functions as well as power sharing with payload on orbit. Comparison with chemical auxiliary propulsion is made to quantify the advantages of integrated propulsion in terms of weight savings and concomittant launch cost savings.

  19. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion

    Science.gov (United States)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.

    1999-01-01

    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  20. Development and Integration of the Janus Robotic Lander: A Liquid Oxygen-Liquid Methane Propulsion System Testbed

    Science.gov (United States)

    Ponce, Raul

    Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants. The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary to exploit this advantage. At the University of Texas at El Paso (UTEP) MIRO Center for Space Exploration Technology Research (cSETR) such a vehicle is being developed. Janus is a robotic lander vehicle with the capability of vertical take-off and landing (VTOL) which integrates several LO2-LCH 4 systems that are being devised in-house. The vehicle will serve as a testbed for the parallel operation of these propulsion systems while being fed from common propellant tanks. The following work describes the efforts done at the cSETR to develop the first prototype of the vehicle as well as the plan to move forward in the design of the subsequent prototypes that will lead to a flight vehicle. In order to ensure an eventual smooth integration of the different subsystems that will form part of Janus, requirements were defined for each individual subsystem as well as the vehicle as a whole. Preliminary testing procedures and layouts have also been developed and will be discussed to detail in this text. Furthermore, the current endeavors in the design of each subsystem and the way that they interact with one another within the lander will be explained.

  1. Computer code and users' guide for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239b

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.A.; Smith, W.W.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The second volume describes the computer code and users' guide for the preliminary analysis of the system.

  2. Propulsion element requirements using electrical power system unscheduled power

    Science.gov (United States)

    Zimmermann, Frank; Hodge, Kathy

    1989-01-01

    The suitability of using the electrical energy from the Space Station's Electrical Power System (EPS) during the periods of peak solar insolation which is currently not specifically allocated (unscheduled power) to produce propulsion propellants, gaseous hydrogen, and oxygen by electrolyzing water is investigated. Reboost propellant requirements are emphasized, but the results are more generally relevant because the balance of recurring propellant requirements are an order of magnitude smaller and the nonrecurring requirements are not significant on an average basis.

  3. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  4. Propulsive options for a manned Mars transportation system

    International Nuclear Information System (INIS)

    Braun, R.D.; Blersch, D.J.

    1989-01-01

    In this investigation, five potential manned Mars transportation systems are compared. These options include: (1) a single vehicle, chemically propelled (CHEM) option, (2) a single vehicle, nuclear thermal propulsion (NTP) option, (3) a single vehicle solar electric propulsion (SEP) option, (4) a single vehicle hybrid nuclear electric propulsion (NEP)/CHEM option, and (5) a dual vehicle option (NEP cargo spacecraft and CHEM manned vehicle). In addition to utilizing the initial vehicle weight in low-earth orbit as a measure of mission feasibility, this study addresses the major technological barriers each propulsive scenario must surpass. It is shown that instead of a single clearly superior propulsion system, each means of propulsion may be favored depending upon the specified program policy and the extent of the desired manned flight time. Furthermore, the effect which aerobraking and multiple transfer cycles have upon mission feasibility is considered. 18 refs

  5. Survey of Beamed Energy Propulsion Concepts by the MSFC Space Environmental Effects Team

    Science.gov (United States)

    Gray, P. A.; Nehls, M. K.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This will be a survey paper of work that was performed by the Space Environmental Effects Team at NASA's Marshall Space Flight Center in the area of laser energy propulsion concepts. Two types of laser energy propulsion techniques were investigated. The first was ablative propulsion, which used a pulsed ruby laser impacting on single layer coatings and films. The purpose of this investigation was to determine the laser power density that produced an optimum coupling coefficient for each type of material tested. A commercial off-the-shelf multi-layer film was also investigated for possible applications in ablative micro-thrusters, and its optimum coupling coefficient was determined. The second type of study measured the purely photonic force provided by a 300W CW YAG laser. In initial studies, the photon force resulting from the momentum of incident photons was measured directly using a vacuum compatible microbalance and these results were compared to theory. Follow-on work used the same CW laser to excite a stable optical cavity for the purpose of amplifying the available force from incident photons.

  6. Chemical rocket propulsion a comprehensive survey of energetic materials

    CERN Document Server

    Shimada, Toru; Sinditskii, Valery; Calabro, Max

    2017-01-01

    Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in...

  7. Space Weather Concerns for All-Electric Propulsion Satellites

    Science.gov (United States)

    Horne, Richard B.; Pitchford, David

    2015-08-01

    The introduction of all-electric propulsion satellites is a game changer in the quest for low-cost access to space. It also raises new questions for satellite manufacturers, operators, and the insurance industry regarding the general risks and specifically the threat of adverse space weather. The issues surrounding this new concept were discussed by research scientists and up to 30 representatives from the space industry at a special meeting at the European Space Weather Week held in November 2014. Here we report on the discussions at that meeting. We show that for a satellite undergoing electric orbit raising for 200 days the radiation dose due to electrons is equivalent to approximately 6.7 year operation at geostationary orbit or approximately half the typical design life. We also show that electrons can be injected into the slot region (8000 km) where they pose a risk of satellite internal charging. The results highlight the importance of additional radiation protection. We also discuss the benefits, the operational considerations, the other risks from the Van Allen radiation belts, the new business opportunities for space insurance, and the need for space situation awareness in medium Earth orbit where electric orbit raising takes place.

  8. Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion

    Science.gov (United States)

    Lahey, Richard T., Jr.; Dhir, Vijay

    2004-01-01

    This is the report of a Scientific Working Group (SWG) formed by NASA to determine the feasibility of using a liquid metal cooled nuclear reactor and Rankine energy conversion cycle for dual purpose power and propulsion in space. This is a high level technical report which is intended for use by NASA management in program planning. The SWG was composed of a team of specialists in nuclear energy and multiphase flow and heat transfer technology from academia, national laboratories, NASA and industry. The SWG has identified the key technology issues that need to be addressed and have recommended an integrated short term (approx. 2 years) and a long term (approx. 10 year) research and development (R&D) program to qualify a Rankine cycle power plant for use in space. This research is ultimately intended to give NASA and its contractors the ability to reliably predict both steady and transient multiphase flow and heat transfer phenomena at reduced gravity, so they can analyze and optimize designs and scale-up experimental data on Rankine cycle components and systems. In addition, some of these results should also be useful for the analysis and design of various multiphase life support and thermal management systems being considered by NASA.

  9. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  10. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  11. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  12. Mathematical model for the preliminary analysis of dual-mode space nuclear fission solid core power and propulsion systems, NUROC3A. AMS report No. 1239a

    Energy Technology Data Exchange (ETDEWEB)

    Grey, J.; Chow, S.

    1976-06-30

    The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. Such a concept could be particularly useful for missions which require both relatively high acceleration (e.g., for planetocentric maneuvers) and high performance at low acceleration (e.g., on heliocentric trajectories or for trajectory shaping). The first volume develops the mathematical model of the system.

  13. System model development for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Walton, J.T.; Perkins, K.R.; Buksa, J.J.; Worley, B.A.; Dobranich, D.

    1992-01-01

    A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented

  14. An interagency space nuclear propulsion safety policy for SEI - Issues and discussion

    Science.gov (United States)

    Marshall, A. C.; Sawyer, J. C., Jr.

    1991-01-01

    An interagency Nuclear Safety Policy Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative nuclear propulsion program to facilitate the implementation of mission planning and conceptual design studies. The NSPWG developed a top level policy to provide the guiding principles for the development and implementation of the nuclear propulsion safety program and the development of Safety Functional Requirements. In addition, the NSPWG reviewed safety issues for nuclear propulsion and recommended top level safety requirements and guidelines to address these issues. Safety topics include reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations. In this paper the emphasis is placed on the safety policy and the issues and considerations that are addressed by the NSPWG recommendations.

  15. Results of Using the Global Positioning System to Maintain the Time and Frequency Synchronization in the Jet Propulsion Laboratory's Deep Space Network

    National Research Council Canada - National Science Library

    Clements, P. A; Kirk, A; Unglaub, R

    1986-01-01

    The Jet Propulsion Laboratory's Deep Space Network (DSN) consists of three tracking stations located in California, Australia, and Spain, each with two hydrogen maser clocks as the time and frequency standard...

  16. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  17. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  18. The Design and Integration of a Distributed Fan Propulsion System within a Split-Wing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A baseline propulsion system has been designed as a starting point in a previous SBIR effort for this project which consists of two turboshaft engines, a generator...

  19. An Advanced Light Weight Recuperator for Space Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed Brayton Cycle (CBC) space power system is one of the most efficient energy conversion technologies for nuclear and solar electric propulsion. The recuperator...

  20. Heat resistant materials and their feasibility issues for a space nuclear transportation system

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1991-01-01

    A number of nuclear propulsion concepts based on solid-core nuclear propulsion are being evaluated for a nuclear propulsion transportation system to support the Space Exploration Initiative (SEI) involving the reestablishment of a manned lunar base and the subsequent exploration of Mars. These systems will require high-temperature materials to meet the operating conditions with appropriate reliability and safety built into these systems through the selection and testing of appropriate materials. The application of materials for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems and the feasibility issues identified for their use will be discussed. Some mechanical property measurements have been obtained, and compatibility tests were conducted to help identify feasibility issues. 3 refs., 1 fig., 4 tabs

  1. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  2. The USAF Electric Propulsion Program

    National Research Council Canada - National Science Library

    Spores, Ronald

    1999-01-01

    ...: Propulsion Directorate and Air Force Office of Scientific Research (AFOSR). The Propulsion Directorate conducts electric propulsion efforts in basic research, engineering development, and space experiments...

  3. A cermet fuel reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Kruger, G.

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk

  4. Using Additive Manufacturing to Print a CubeSat Propulsion System

    Science.gov (United States)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  5. An Overview of In-Space Propulsion and Cryogenics Fluids Management Efforts for 2014 SBIR Phases I and II

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  6. Application of SDI technology in space propulsion

    International Nuclear Information System (INIS)

    Klein, A.J.

    1992-01-01

    Numerous technologies developed by the DOD within the SDI program are now available for adaptation to the requirements of commercial spacecraft; SDI has accordingly organized the Technology Applications Information System data base, which contains nearly 2000 nonproprietary abstracts on SDI technology. Attention is here given to such illustrative systems as hydrogen arcjets, ammonia arcjets, ion engines, SSTO launch vehicles, gel propellants, lateral thrusters, pulsed electrothermal thrusters, laser-powered rockets, and nuclear propulsion

  7. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  8. Nuclear electric propulsion: An integral part of NASA's nuclear propulsion project

    International Nuclear Information System (INIS)

    Stone, J.R.

    1992-01-01

    NASA has initiated a technology program to establish the readiness of nuclear propulsion technology for the Space Exploration Initiative (SEI). This program was initiated with a very modest effort identified with nuclear thermal propulsion (NTP); however, nuclear electric propulsion (NEP) is also an integral part of this program and builds upon NASA's Base Research and Technology Program in power and electric propulsion as well as the SP-100 space nuclear power program. Although the Synthesis Group On America's SEI has identified NEP only as an option for cargo missions, recent studies conducted by NASA-Lewis show that NEP offers the potential for early manned Mars missions as well. Lower power NEP is also of current interest for outer planetary robotic missions. Current plans are reviewed for the overall nuclear propulsion project, with emphasis on NEP and those elements of NTP program which have synergism with NEP

  9. Viability of a Reusable In-Space Transportation System

    Science.gov (United States)

    Jefferies, Sharon A.; McCleskey, Carey M.; Nufer, Brian M.; Lepsch, Roger A.; Merrill, Raymond G.; North, David D.; Martin, John G.; Komar, David R.

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented.

  10. Oxygen Containment System Options for Nuclear Thermal Propulsion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — All nuclear thermal propulsion (NTP) ground testing conducted in the 1950s and 1960s during the ROVER/(Nuclear Engine Rocket Vehicle Application (NERVA) program...

  11. CubeSat High Impulse Propulsion System (CHIPS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes to perform design, fabrication, and ground test validation of a nanosat primary propulsion subsystem using non-toxic R134a propellant. Our...

  12. The Study about Application of Transportation System of the Superconductive Electromagnetism Propulsion in the Harbor

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    1999-01-01

    Electromagnetic propulsion is promising technique for a linear motor car, a ship and a space ship, in future. W. A Rice developed an electromagnetic pump for the liquid metal transfer. There are two electromagnetic propulsions : a superconductive electricity propulsion and a superconductive electromagnetic propulsion. A superconductive electricity propulsion ship uses a screw driven by a superconducting motor. This technique has merits of excellent navigation-ability, and the free degree of t...

  13. CubeSat High Impulse Propulsion System (CHIPS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes the ground test validation of a nanosat primary propulsion subsystem using non-toxic propellant with 3-axis ACS for orbit change and/or...

  14. Space Systems Technology Conference, San Diego, CA, June 9-12, 1986, Technical Papers

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Papers are presented on liquid droplet radiator thermal characteristics, battery designs, mobile satellite communications, space-based air traffic surveillance, the Italsat regenerative downlink performance, nondisruptive group delay and amplitude measurement, the Polar Platform of the Space Shuttle, EVA tasks and services, fault diagnosis, and an autonomous power system test bed. Topics discussed include space debris and manned space operations, data transport and command management services for the Space Station, a thermodynamic approach to data processor analysis, anomaly detection and resolution system, the Telemetry, Timing, Command, and Control system, the Space Construction Shuttle Flight experiment, and structural analysis of the Space Shuttle propulsion components. Consideration is given to electrostatic charging and arc discharges on satellite dielectrics, the attitude control system of the IUE, orbital acceleration, spaceborne distributed aperture/coherent array processing, the propulsion module for the Columbus Space Platform, the next-generation STS, trajectory performance evaluation, the Hubble Space Telescope, a linear quadratic tracker for control moment gyro based attitude control of the Space Station, and existing satellite systems and networks

  15. The Heliopause Electrostatic Rapid Transit System (HERTS) - Design, Trades, and Analyses Performed in a Two Year NASA Investigation of Electric Sail Propulsion Systems

    Science.gov (United States)

    Wiegmann, Bruce M.; Scheider, Todd; Heaton, Andrew; Vaughn, Jason; Stone, Nobie; Wright, Ken

    2017-01-01

    Personnel from NASA's MSFC have been investigating the feasibility of an advanced propulsion system known as the Electric Sail (E-Sail) for future scientific exploration missions. This team initially won a NASA Space Technology Mission Directorate (STMD) Phase I NASA Innovative Advanced Concept (NIAC) award and then a two-year follow-on Phase II NIAC award in October 2015. This paper documents the findings from this three-year investigation. An Electric sail, a propellant-less propulsion system, uses solar wind ions to rapidly travel either to deep space or the inner solar system. Scientific spacecraft could reach Pluto in 5 years, or the boundary of the solar system in ten to twelve years compared to the thirty-five plus years the Voyager spacecraft took. The team's recent focuses have been: 1) Developing a Particle in Cell (PIC) numeric engineering model from MSFC's experimental data on the interaction between simulated solar wind and a charged bare wire that can be applied to a variety of missions, 2) Determining what missions could benefit from this revolutionary propulsion system, 3) Conceptualizing spacecraft designs for various tasks: to reach the solar system's edge, to orbit the sun as Heliophysics sentinels, or to examine a multitude of asteroids.

  16. Propulsion Systems Laboratory, Bldg. 125

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Systems Laboratory (PSL) is NASAs only ground test facility capable of providing true altitude and flight speed simulation for testing full scale gas...

  17. Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats

    Science.gov (United States)

    Bock, Daniel; Tajmar, Martin

    2018-03-01

    A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.

  18. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  19. A cermet fuel reactor for nuclear thermal propulsion

    Science.gov (United States)

    Kruger, Gordon

    1991-01-01

    Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.

  20. To Mars and beyond, fast! how plasma propulsion will revolutionize space exploration

    CERN Document Server

    Chang Díaz, Franklin

    2017-01-01

    As advanced space propulsion moves slowly from science fiction to achievable reality, the Variable Specific Impulse Magnetoplasma Rocket, or VASIMR, is a leading contender for making 'Mars in a month' a possibility. Developed by Ad Astra Rockets, which was founded by astronaut Franklin Chang-Diaz and backed by NASA, its first commercial tests are imminent. VASIMR heats plasma to extreme temperatures using radio waves. Strong magnetic fields then funnel this plasma out the back of the engine, creating thrust. The continuous propulsion may place long, fast interplanetary journeys within reach in the near future. While scientists dream of the possibilities of using fusion or well-controlled matter-antimatter interactions to propel spacecraft fast and far, that goal is still some way over the horizon. VASIMR provides a more attainable propulsion technology that is based on the matter-antimatter concept. The book describes a landmark technology grounded in plasma physics and offering a practical technological solu...

  1. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  2. An N+3 Technology Level Reference Propulsion System

    Science.gov (United States)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  3. Integrated Propulsion Data System Public Web Site

    Science.gov (United States)

    Hamilton, Kimberly

    2001-01-01

    The Integrated Propulsion Data System's (IPDS) focus is to provide technologically-advanced philosophies of doing business at SSC that will enhance the existing operations, engineering and management strategies and provide insight and metrics to assess their daily impacts, especially as related to the Propulsion Test Directorate testing scenarios for the 21st Century.

  4. Deep space propulsion a roadmap to interstellar flight

    CERN Document Server

    Long, K F

    2012-01-01

    As humans take their first tentative steps off our home planet, and debate the costs/benefits of sending people back to the Moon and perhaps on to Mars, we must also start to make plans for the day when we will venture forth as pioneers farther out into the Solar System and beyond - perhaps far, far beyond - to explore and settle new worlds around other stars. It is vital that we develop the deep space propulsion technologies that will take us there, first to explore with robotic probes, then to follow ourselves. This is necessary so that if anything catastrophic happened to Earth, our species would survive. And the possibilities for catastrophe are great. An impacting asteroid ended the reign of the dinosaurs, and today we have many other threats such as global war, climate change, pollution, resource limitations and overpopulation. In this book, Kelvin F. Long takes us on all the possible journeys - the mission targets, the technologies we might use to power such journeys, and what scientific knowledge we a...

  5. Artist's concept of Antimatter propulsion system

    Science.gov (United States)

    1999-01-01

    This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.

  6. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  7. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    Science.gov (United States)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  8. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  9. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  10. 100-lbf Non-Toxic Storable Liquid Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Road Maps for both Launch and In Space Propulsion call for the development of non-toxic, monopropellant reaction control systems to replace current...

  11. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  12. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    Science.gov (United States)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  13. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  14. NASA Solar Sail Propulsion Technology Development

    Science.gov (United States)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  15. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  16. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  17. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    Science.gov (United States)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  18. Multi-disciplinary coupling for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  19. Solar Sail Propulsion Technology at NASA

    Science.gov (United States)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  20. Electrospray Propulsion Engineering Toolkit (ESPET), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To accelerate the development of scaled-up Electrospray Propulsion emitter array systems with practical thrust levels, Spectral Sciences, Inc. (SSI), in...

  1. 12th Symposium on Space Nuclear Power and Propulsion. Conference on Alternative Power from Space (APFS),Conference on Accelerator-Driven Transmutation Technologies and Applications (A-DTTA)

    International Nuclear Information System (INIS)

    Mohamed, S.E.

    1995-01-01

    These proceedings represent papers presented at the 12th symposium on Space Nuclear Power and Propulsion held in Albuquerque, New Mexico. The symposium theme was ''commercialization and technology transfer''. The topics discussed include: wireless power transmission, solar power from space next generation spacecraft, space power electronics and power management, flight testing of components, manufacturing and processing of materials, nuclear propulsion, reactors and shielding and many others of interest to the scientific community representing industry, government and academic institutions. There were 163 papers presented at the conference and 60 have been abstracted for the Energy Science and Technology database

  2. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  3. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  4. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  5. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  6. Nuclear safety considerations in the conceptual design of a fast reactor for space electric power and propulsion

    Science.gov (United States)

    Hsieh, T.-M.; Koenig, D. R.

    1977-01-01

    Some nuclear safety aspects of a 3.2 mWt heat pipe cooled fast reactor with out-of-core thermionic converters are discussed. Safety related characteristics of the design including a thin layer of B4C surrounding the core, the use of heat pipes and BeO reflector assembly, the elimination of fuel element bowing, etc., are highlighted. Potential supercriticality hazards and countermeasures are considered. Impacts of some safety guidelines of space transportation system are also briefly discussed, since the currently developing space shuttle would be used as the primary launch vehicle for the nuclear electric propulsion spacecraft.

  7. Nuclear-microwave-electric propulsion

    International Nuclear Information System (INIS)

    Nordley, G.D.; Brown, W.C.

    1986-01-01

    Electric propulsion can move more mass through space than chemical propulsion by virtue of the higher exhaust velocities achieved by electric propulsion devices. This performance is achieved at the expense of very heavy power sources or very long trip times, which in turn create technical and economic penalties of varying severity. These penalties include: higher operations costs, delayed availability of the payload, and increased exposure to Van Allen Belt radiation. It is proposed to reduce these penalties by physically separating the power source from the propulsion and use microwave energy beaming technology, recently explored and partially developed/tested for Solar Power Satellite concept studies, as an extension cord. This paper summarizes the state of the art of the technology needed for space based beam microwave power cost/performance trades involved with the use beamed microwave/electric propulsion for some typical orbit transfer missions and offers some suggestions for additional work

  8. Advanced Chemical Propulsion for Science Missions

    Science.gov (United States)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  9. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    Science.gov (United States)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  10. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    Science.gov (United States)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  11. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    International Nuclear Information System (INIS)

    Clark, J.S.; George, J.A.; Gefert, L.P.; Doherty, M.P.; Sefcik, R.J.

    1994-03-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power

  12. Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems

    Science.gov (United States)

    Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.

    1998-01-01

    A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.

  13. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  14. Recent Electric Propulsion Development Activities for NASA Science Missions

    Science.gov (United States)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated

  15. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon the solvent AsahiKlin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  16. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  17. NUCLEAR THERMIONIC SPACE POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R. C.; Rasor, N. S.

    1963-03-15

    The various concepts for utilizing thermionic conversion in space reactor power plants are described and evaluated. The problems (and progress toward their solution) of the in-core concept, particularly, are considered. Progress in thermionic conversion technology is then reviewed from both the hardware and research points of view. Anticipated progress in thermionic conversion and the possible consequences for the performance of electrical propulsion systems are summarized. 46 references. (D.C.W.)

  18. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  19. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    International Nuclear Information System (INIS)

    Ohashi, S.; Nishio, R.; Hashikawa, T.

    2010-01-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  20. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kanasi-u.ac.j [Kansai University 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Nishio, R.; Hashikawa, T. [Kansai University 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2010-11-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  1. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors

  2. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    Science.gov (United States)

    Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  3. Nuclear Thermal Propulsion Development Risks

    Science.gov (United States)

    Kim, Tony

    2015-01-01

    There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available

  4. On-Orbit Propulsion and Methods of Momentum Management for the International Space Station

    Science.gov (United States)

    Russell, Samuel P.; Spencer, Victor; Metrocavage, Kevin; Swanson, Robert A.; Krajchovich, Mark; Beisner, Matthew; Kamath, Ulhas P.

    2010-01-01

    Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.

  5. Economic effects of propulsion system technology on existing and future transport aircraft

    Science.gov (United States)

    Sallee, G. P.

    1974-01-01

    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.

  6. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  7. Lessons Learned (3 Years of H2O2 Propulsion System Testing Efforts at NASA's John C. Stennis Space Center)

    Science.gov (United States)

    Taylor, Gary O.

    2001-01-01

    John C. Stennis Space Center continues to support the Propulsion community in an effort to validate High-Test Peroxide as an alternative to existing/future oxidizers. This continued volume of peroxide test/handling activity at Stennis Space Center (SSC) provides numerous opportunities for the SSC team to build upon previously documented 'lessons learned'. SSC shall continue to strive to document their experience and findings as H2O2 issues surface. This paper is intended to capture all significant peroxide issues that we have learned over the last three years. This data (lessons learned) has been formulated from practical handling, usage, storage, operations, and initial development/design of our systems/facility viewpoint. The paper is intended to be an information type tool and limited in technical rational; therefore, presenting the peroxide community with some issues to think about as the continued interest in peroxide evolves and more facilities/hardware are built. These lessons learned are intended to assist industry in mitigating problems and identifying potential pitfalls when dealing with the requirements for handling high-test peroxide.

  8. The Potential for Ambient Plasma Wave Propulsion

    Science.gov (United States)

    Gilland, James H.; Williams, George J.

    2016-01-01

    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  9. Ultrahigh Specific Impulse Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Anne Charmeau; Brandon Cunningham; Samim Anghaie

    2009-02-09

    Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

  10. Nuclear Bi-Brayton system for aircraft propulsion

    International Nuclear Information System (INIS)

    Pierce, B.L.

    1979-01-01

    Recent studies have shown the desirability of new system concept for nuclear aircraft propulsion utilizing the Bi-Brayton system concept, permits coupling of a gas cooled reactor to the power transmission and conversion system in a manner such as to fulfill the safety criteria while eliminating the need for a high temperature intermediate heat exchanger or shaft penetrations of the containment vessel. This system has been shown to minimize the component development required and to allow reduction in total propulsion system weight. This paper presents a description of the system concept and the results of the definition and evaluation studies to date. Parametric and reference system definition studies have been performed. The closed-cycle Bi-Brayton system and component configurations and weight estimates have been derived. Parametric evaluation and cycle variation studies have been performed and interpreted. 7 refs

  11. Multi-disciplinary coupling effects for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  12. Design of an Electric Propulsion System for SCEPTOR

    Science.gov (United States)

    Dubois, Arthur; van der Geest, Martin; Bevirt, JoeBen; Clarke, Sean; Christie, Robert J.; Borer, Nicholas K.

    2016-01-01

    The rise of electric propulsion systems has pushed aircraft designers towards new and potentially transformative concepts. As part of this effort, NASA is leading the SCEPTOR program which aims at designing a fully electric distributed propulsion general aviation aircraft. This article highlights critical aspects of the design of SCEPTOR's propulsion system conceived at Joby Aviation in partnership with NASA, including motor electromagnetic design and optimization as well as cooling system integration. The motor is designed with a finite element based multi-objective optimization approach. This provides insight into important design tradeoffs such as mass versus efficiency, and enables a detailed quantitative comparison between different motor topologies. Secondly, a complete design and Computational Fluid Dynamics analysis of the air breathing cooling system is presented. The cooling system is fully integrated into the nacelle, contains little to no moving parts and only incurs a small drag penalty. Several concepts are considered and compared over a range of operating conditions. The study presents trade-offs between various parameters such as cooling efficiency, drag, mechanical simplicity and robustness.

  13. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  14. Development costs for a nuclear electric propulsion stage.

    Science.gov (United States)

    Mondt, J. F.; Prickett, W. Z.

    1973-01-01

    Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.

  15. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  16. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    Science.gov (United States)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  17. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    Science.gov (United States)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  18. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  19. Definition of propulsion system for V/STOL research and technology aircraft

    Science.gov (United States)

    1977-01-01

    Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.

  20. An advanced regulator for the helium pressurization systems of the Space Shuttle OMS and RCS

    Science.gov (United States)

    Wichmann, H.

    1973-01-01

    The Space Shuttle Orbit Maneuvering System and Reaction Control System are pressure-fed rocket propulsion systems utilizing earth storable hypergolic propellants and featuring engines of 6000 lbs and 900 lbs thrust, respectively. The helium pressurization system requirements for these propulsion systems are defined and the current baseline pressurization systems are described. An advanced helium pressure regulator capable of meeting both OMS and RCS helium pressurization system requirements is presented and its operating characteristics and predicted performance characteristics are discussed.

  1. An Advanced Light Weight Recuperator for Space Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear Electric Propulsion (NEP) technology holds great promise for power and propulsion demands of NASA current and future deep space explorations. Closed Brayton...

  2. Integrated System Modeling for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Ryan, Stephen W.; Borowski, Stanley K.

    2014-01-01

    Nuclear thermal propulsion (NTP) has long been identified as a key enabling technology for space exploration beyond LEO. From Wernher Von Braun's early concepts for crewed missions to the Moon and Mars to the current Mars Design Reference Architecture (DRA) 5.0 and recent lunar and asteroid mission studies, the high thrust and specific impulse of NTP opens up possibilities such as reusability that are just not feasible with competing approaches. Although NTP technology was proven in the Rover / NERVA projects in the early days of the space program, an integrated spacecraft using NTP has never been developed. Such a spacecraft presents a challenging multidisciplinary systems integration problem. The disciplines that must come together include not only nuclear propulsion and power, but also thermal management, power, structures, orbital dynamics, etc. Some of this integration logic was incorporated into a vehicle sizing code developed at NASA's Glenn Research Center (GRC) in the early 1990s called MOMMA, and later into an Excel-based tool called SIZER. Recently, a team at GRC has developed an open source framework for solving Multidisciplinary Design, Analysis and Optimization (MDAO) problems called OpenMDAO. A modeling approach is presented that builds on previous work in NTP vehicle sizing and mission analysis by making use of the OpenMDAO framework to enable modular and reconfigurable representations of various NTP vehicle configurations and mission scenarios. This approach is currently applied to vehicle sizing, but is extensible to optimization of vehicle and mission designs. The key features of the code will be discussed and examples of NTP transfer vehicles and candidate missions will be presented.

  3. A graphical user-interface for propulsion system analysis

    Science.gov (United States)

    Curlett, Brian P.; Ryall, Kathleen

    1993-01-01

    NASA LeRC uses a series of computer codes to calculate installed propulsion system performance and weight. The need to evaluate more advanced engine concepts with a greater degree of accuracy has resulted in an increase in complexity of this analysis system. Therefore, a graphical user interface was developed to allow the analyst to more quickly and easily apply these codes. The development of this interface and the rationale for the approach taken are described. The interface consists of a method of pictorially representing and editing the propulsion system configuration, forms for entering numerical data, on-line help and documentation, post processing of data, and a menu system to control execution.

  4. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  5. Advanced Propulsion Physics Lab: Eagleworks Investigations

    Science.gov (United States)

    Scogin, Tyler

    2014-01-01

    Eagleworks Laboratory is an advanced propulsions physics laboratory with two primary investigations currently underway. The first is a Quantum Vacuum Plasma Thruster (QVPT or Q-thrusters), an advanced electric propulsion technology in the development and demonstration phase. The second investigation is in Warp Field Interferometry (WFI). This is an investigation of Dr. Harold "Sonny" White's theoretical physics models for warp field equations using optical experiments in the Electro Optical laboratory (EOL) at Johnson Space Center. These investigations are pursuing technology necessary to enable human exploration of the solar system and beyond.

  6. Laser Propulsion - Is it another myth or a real potential?

    International Nuclear Information System (INIS)

    Cook, Joung R.

    2008-01-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades

  7. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  8. Intelligent Propulsion System Foundation Technology: Summary of Research

    Science.gov (United States)

    2008-01-01

    The purpose of this cooperative agreement was to develop a foundation of intelligent propulsion technologies for NASA and industry that will have an impact on safety, noise, emissions, and cost. These intelligent engine technologies included sensors, electronics, communications, control logic, actuators, smart materials and structures, and system studies. Furthermore, this cooperative agreement helped prepare future graduates to develop the revolutionary intelligent propulsion technologies that will be needed to ensure pre-eminence of the U.S. aerospace industry. This Propulsion 21 - Phase 11 program consisted of four primary research areas and associated work elements at Ohio universities: 1.0 Turbine Engine Prognostics, 2.0 Active Controls for Emissions and Noise Reduction, 3.0 Active Structural Controls and Performance, and 4.0 System Studies and Integration. Phase l, which was conducted during the period August 1, 2003, through September 30, 2004, has been reported separately.

  9. Mars Sample Return Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom

    2012-01-01

    Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2

  10. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  11. Atoms for space

    International Nuclear Information System (INIS)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig

  12. Integrated Control Modeling for Propulsion Systems Using NPSS

    Science.gov (United States)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  13. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Low specific mass (< 3  kg/kW) in-space electric power and propulsion can drastically alter the paradigm for exploration of the Solar System, changing human...

  14. Vehicle configuration options using nuclear propulsion for Mars missions

    Science.gov (United States)

    Emrich, William J.

    1993-01-01

    The solid core nuclear thermal rocket (NTR) provides an attractive means of providing the propulsive force needed to accomplish a wide array of space missions. With its factor of two or more advantage in Isp over chemical engines, nuclear propulsion provides the opportunity to accomplish space missions which are impractical by other means. This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle bed reactor (PBR) type nuclear engine was chosen as the baseline engine used to conduct the present study because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study baselines a particle bed reactor engine with an engine thrust-to-weight ratio (~11.5) and a specific impulse of ~950 s. It is shown that a PBR engine of this type will offer distinct advantages over the larger and heavier NERVA type nuclear engines.

  15. Vehicle configuration options using nuclear propulsion for Mars missions

    International Nuclear Information System (INIS)

    Emrich, W.J. Jr.

    1993-01-01

    The solid core nuclear thermal rocket (NTR) provides an attractive means of providing the propulsive force needed to accomplish a wide array of space missions. With its factor of two or more advantage in Isp over chemical engines, nuclear propulsion provides the opportunity to accomplish space missions which are impractical by other means. This paper focuses on the use of a nuclear thermal rocket to accomplish a variety of space missions with emphasis on the manned Mars mission. The particle bed reactor (PBR) type nuclear engine was chosen as the baseline engine used to conduct the present study because of its perceived versatility over other nuclear propulsion systems in conducting a wide variety of tasks. This study baselines a particle bed reactor engine with an engine thrust-to-weight ratio (∼11.5) and a specific impulse of ∼950 s. It is shown that a PBR engine of this type will offer distinct advantages over the larger and heavier NERVA type nuclear engines

  16. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    Science.gov (United States)

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie; Raitses, Yevgeny; Mazouffre, Stéphane; Henning, Torsten; Klar, Peter J.; Shinohara, Shunjiro; Schein, Jochen; Garrigues, Laurent; Kim, Minkwan; Lev, Dan; Taccogna, Francesco; Boswell, Rod W.; Charles, Christine; Koizumi, Hiroyuki; Shen, Yan; Scharlemann, Carsten; Keidar, Michael; Xu, Shuyan

    2018-03-01

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  17. The Chameleon Solid Rocket Propulsion Model

    International Nuclear Information System (INIS)

    Robertson, Glen A.

    2010-01-01

    The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

  18. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  19. A logistics model for large space power systems

    Science.gov (United States)

    Koelle, H. H.

    Space Power Systems (SPS) have to overcome two hurdles: (1) to find an attractive design, manufacturing and assembly concept and (2) to have available a space transportation system that can provide economical logistic support during the construction and operational phases. An initial system feasibility study, some five years ago, was based on a reference system that used terrestrial resources only and was based partially on electric propulsion systems. The conclusion was: it is feasible but not yet economically competitive with other options. This study is based on terrestrial and extraterrestrial resources and on chemical (LH 2/LOX) propulsion systems. These engines are available from the Space Shuttle production line and require small changes only. Other so-called advanced propulsion systems investigated did not prove economically superior if lunar LOX is available! We assume that a Shuttle derived Heavy Lift Launch Vehicle (HLLV) will become available around the turn of the century and that this will be used to establish a research base on the lunar surface. This lunar base has the potential to grow into a lunar factory producing LOX and construction materials for supporting among other projects also the construction of space power systems in geostationary orbit. A model was developed to simulate the logistics support of such an operation for a 50-year life cycle. After 50 years 111 SPS units with 5 GW each and an availability of 90% will produce 100 × 5 = 500 GW. The model comprises 60 equations and requires 29 assumptions of the parameter involved. 60-state variables calculated with the 60 equations mentioned above are given on an annual basis and as averages for the 50-year life cycle. Recycling of defective parts in geostationary orbit is one of the features of the model. The state-of-the-art with respect to SPS technology is introduced as a variable Mg mass/MW electric power delivered. If the space manufacturing facility, a maintenance and repair facility

  20. Nuclear space power systems for orbit raising and maneuvering

    International Nuclear Information System (INIS)

    Buden, D.; Sullivan, J.A.

    1984-01-01

    Reference is made to recent studies which have shown that direct thrust nuclear rockets for routine orbit raising and near-earth space tug missions are probably not cost-effective. The need for additional trade-off studies and comparisons of direct-thrust nuclear systems with chemical systems to clarify the role of nuclear rockets in missions requiring rapid orbit maneuvering is stressed. Attention is confined here to nuclear electric propulsion considerations. Low-mass nuclear power plants are constructed to optimize nuclear electric propulsion systems. Electric power levels from 100 kilowatts to as much as several megawatts are desirable. The goals for the power plant specific mass are 20-30 kg/kW at the lower powers to 2-4 kg/kW at the higher powers

  1. Investigation of Various Novel Air-Breathing Propulsion Systems

    Science.gov (United States)

    Wilhite, Jarred M.

    The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable

  2. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  3. JANNAF 17th Propulsion Systems Hazards Subcommittee Meeting. Volume 1

    Science.gov (United States)

    Cocchiaro, James E. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)

    1998-01-01

    Volume 1, the first of two volumes is a compilation of 16 unclassified/unlimited technical papers presented at the 17th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Systems Hazards Subcommittee (PSHS) held jointly with the 35th Combustion Subcommittee (CS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7 - 11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include projectile and shaped charge jet impact vulnerability of munitions; thermal decomposition and cookoff behavior of energetic materials; damage and hot spot initiation mechanisms with energetic materials; detonation phenomena of solid energetic materials; and hazard classification, insensitive munitions, and propulsion systems safety.

  4. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  5. Propulsion Powertrain Real-Time Simulation Using Hardware-in-the-Loop (HIL) for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Brown, Gerald V.

    2017-01-01

    It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).

  6. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  7. Nuclear modules for space electric propulsion

    International Nuclear Information System (INIS)

    Difilippo, F.C.

    1998-01-01

    Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab

  8. Turboelectric Distributed Propulsion System Modelling

    OpenAIRE

    Liu, Chengyuan

    2013-01-01

    The Blended-Wing-Body is a conceptual aircraft design with rear-mounted, over wing engines. Turboelectric distributed propulsion system with boundary layer ingestion has been considered for this aircraft. It uses electricity to transmit power from the core turbine to the fans, therefore dramatically increases bypass ratio to reduce fuel consumption and noise. This dissertation presents methods on designing the TeDP system, evaluating effects of boundary layer ingestion, modelling engine perfo...

  9. Nuclear safety policy working group recommendations on nuclear propulsion safety for the space exploration initiative

    Science.gov (United States)

    Marshall, Albert C.; Lee, James H.; Mcculloch, William H.; Sawyer, J. Charles, Jr.; Bari, Robert A.; Cullingford, Hatice S.; Hardy, Alva C.; Niederauer, George F.; Remp, Kerry; Rice, John W.

    1993-01-01

    An interagency Nuclear Safety Working Group (NSPWG) was chartered to recommend nuclear safety policy, requirements, and guidelines for the Space Exploration Initiative (SEI) nuclear propulsion program. These recommendations, which are contained in this report, should facilitate the implementation of mission planning and conceptual design studies. The NSPWG has recommended a top-level policy to provide the guiding principles for the development and implementation of the SEI nuclear propulsion safety program. In addition, the NSPWG has reviewed safety issues for nuclear propulsion and recommended top-level safety requirements and guidelines to address these issues. These recommendations should be useful for the development of the program's top-level requirements for safety functions (referred to as Safety Functional Requirements). The safety requirements and guidelines address the following topics: reactor start-up, inadvertent criticality, radiological release and exposure, disposal, entry, safeguards, risk/reliability, operational safety, ground testing, and other considerations.

  10. Advanced Propulsion System Studies for General Aviation Aircraft

    Science.gov (United States)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  11. Radio Frequency Plasma Applications for Space Propulsion

    International Nuclear Information System (INIS)

    Baity, F.W. Jr.; Barber, G.C.; Carter, M.D.; Chang-Diaz, F.R.; Goulding, R.H.; Ilin, A.V.; Jaeger, E.F.; Sparks, D.O.; Squire, J.P.

    1999-01-01

    Recent developments in solid-state radio frequency (RF) power technologies allow for the practical consideration of RF heated plasmas for space propulsion. These technologies permit the use of any electrical power source, de-couple the power and propellant sources, and allow for the efficient use of both the propellant mass and power. Efficient use of the propellant is obtained by expelling the rocket exhaust at the highest possible velocity, which can be orders of magnitude higher than those achieved in chemical rockets. Handling the hot plasma exhaust requires the use of magnetic nozzles, and the basic physics of ion detachment from the magnetic eld is discussed. The plasma can be generated by RF using helicon waves to heat electrons. Further direct heating of the ions helps to reduce the line radiation losses, and the magnetic geometry is tailored to allow ion cyclotron resonance heating. RF eld and ion trajectory calculations are presented to give a reasonably self-consistent picture of the ion acceleration process

  12. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  13. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Ballard, Richard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  14. REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion

    Science.gov (United States)

    Ballard, RIchard O.

    2006-01-01

    This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system

  15. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  16. NASA Propulsion Sub-System Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    Science.gov (United States)

    Trinh, Huu P.

    2015-01-01

    NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta

  17. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  18. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    Science.gov (United States)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  19. Development of technology for creating intelligent control systems for power plants and propulsion systems for marine robotic systems

    Science.gov (United States)

    Iakovleva, E. V.; Momot, B. A.

    2017-10-01

    The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.

  20. Dynamic analysis and design of air spring mounting system for marine propulsion system

    Science.gov (United States)

    He, Lin; Xu, Wei; Bu, Wenjun; Shi, Liang

    2014-09-01

    Marine propulsion unit (MPU) is one of the dominant vibration and noise sources onboard ship. Its vibration can be attenuated effectively by isolating MPU with low-frequency mounting system. But this is difficult to implement due to the stringent requirement of MPU alignment with the propulsion shafting. In this paper a novel air spring mounting system (ASMS) for propulsion system is proposed consisting of air spring subsystem, alignment control subsystem and safety protection subsystem. The load distribution optimization method and dynamic model of ASMS are presented. The factors that affect system stability and natural frequencies are analyzed, as well as the design measures to enhance system performance. A theoretical model is presented to estimate the isolation effect of ASMS. The monitoring model of alignment between MPU and propulsion shafting is established, followed by the alignment control algorithm and converge rule which assures the fast and uniform convergence of both air springs load distribution and alignment control process. Safety protection mechanism is designed to ensure that the MPU can operate safely in case of ASMS failure or other extreme circumstances. A scaled ASMS prototype is manufactured and tested on a special experimental setup. Experimental results validate the effectiveness of theoretical models and show that the performance of ASMS satisfies the operation requirements of MPU.

  1. Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations

    Science.gov (United States)

    Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor

    2014-01-01

    One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service

  2. Green micro-resistojet research at Delft University of Technology: the new frontiers of Cubesat propulsion

    NARCIS (Netherlands)

    Cervone, A.; Zandbergen, B.T.C.; Cordeiro Guerrieri, D. C.; de Athayde Costa e Silva, Marsil A. C.; van Zeijl, H.W.

    2016-01-01

    The aerospace industry is recently expressing a growing interest in green, safe and non-toxic propellants for the propulsion systems of the new generation of space vehicles, which is especially true in the case of Cubesat micro-propulsion systems. Demanding requirements are associated to the future

  3. LOX/LH2 propulsion system for launch vehicle upper stage, test results

    Science.gov (United States)

    Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.

    1984-01-01

    The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.

  4. Waves from Propulsion Systems of Fast Ferries

    DEFF Research Database (Denmark)

    Taatø, Søren Haugsted; Aage, Christian; Arnskov, Michael M.

    1998-01-01

    Waves from fast ferries have become an environmental problem of growing concern to the public. Fast ferries produce not only higher waves than conventional ships but also fundamentally different wave systems when they sail at supercritical speeds. Hitherto, ship waves have been considered as being...... generated by the ship hulls alone. Whereas this assumption may be reasonable for conventional ships with large hulls and limited propulsive power, the situation is different for fast ferries with their smaller hulls and very large installed power. A simple theoretical model and a series of model tests...... on a monohull fast ferry seem to indicate that a substantial part of the wave-making can be directly attributed to the propulsion system itself. Thus, two wave systems are created with different phases, but with similar frequency contents, which means that they merge into one system behind the ship, very...

  5. A Future with Hybrid Electric Propulsion Systems: A NASA Perspective

    Science.gov (United States)

    DelRosario, Ruben

    2014-01-01

    The presentation highlights a NASA perspective on Hybrid Electric Propulsion Systems for aeronautical applications. Discussed are results from NASA Advance Concepts Study for Aircraft Entering service in 2030 and beyond and the potential use of hybrid electric propulsion systems as a potential solution to the requirements for energy efficiency and environmental compatibility. Current progress and notional potential NASA research plans are presented.

  6. Overview and future prospects of laser plasma propulsion technology

    International Nuclear Information System (INIS)

    Zheng Zhiyuan; Lu Xin; Zhang Jie

    2003-01-01

    Due to its high cost, low efficiency, complex operation and unsatisfactory recycling, traditional rocket propulsion by chemical fuels has hindered the exploration of outer space to further limits. With the rapid development of laser and space technology, the new technology of laser propulsion exhibits unique advantages and prospects. The mechanism and current development of laser plasma propulsion are reviewed, with mention of the technical problems and focus issues of laser plasma in micro-flight propulsion

  7. A Cubesat Asteroid Mission: Propulsion Trade-offs

    Science.gov (United States)

    Landis, Geoffrey A.; Oleson, Steven R.; McGuire, Melissa L.; Bur, Michael J.; Burke, Laura M.; Fittje, James E.; Kohout, Lisa L.; Fincannon, James; Packard, Thomas W.; Martini, Michael C.

    2014-01-01

    A conceptual design was performed for a 6-U cubesat for a technology demonstration to be launched on the NASA Space Launch System (SLS) test launch EM-1, to be launched into a free-return translunar trajectory. The mission purpose was to demonstrate use of electric propulsion systems on a small satellite platform. The candidate objective chosen was a mission to visit a Near-Earth asteroid. Both asteroid fly-by and asteroid rendezvous missions were analyzed. Propulsion systems analyzed included cold-gas thruster systems, Hall and ion thrusters, incorporating either Xenon or Iodine propellant, and an electrospray thruster. The mission takes advantage of the ability of the SLS launch to place it into an initial trajectory of C3=0.

  8. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    International Nuclear Information System (INIS)

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-01

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System

  9. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  10. Solar Electric Propulsion (SEP) Tug Power System Considerations

    Science.gov (United States)

    Kerslake, Thomas W.; Bury, Kristen M.; Hojinicki, Jeffrey S.; Sajdak, Adam M.; Scheiddegger, Robert J.

    2011-01-01

    Solar electric propulsion (SEP) technology is truly at the "intersection of commercial and military space" as well as the intersection of NASA robotic and human space missions. Building on the use of SEP for geosynchronous spacecraft station keeping, there are numerous potential commercial and military mission applications for SEP stages operating in Earth orbit. At NASA, there is a resurgence of interest in robotic SEP missions for Earth orbit raising applications, 1-AU class heliocentric missions to near Earth objects (NEOs) and SEP spacecraft technology demonstrations. Beyond these nearer term robotic missions, potential future human space flight missions to NEOs with high-power SEP stages are being considered. To enhance or enable this broad class of commercial, military and NASA missions, advancements in the power level and performance of SEP technologies are needed. This presentation will focus on design considerations for the solar photovoltaic array (PVA) and electric power system (EPS) vital to the design and operation of an SEP stage. The engineering and programmatic pros and cons of various PVA and EPS technologies and architectures will be discussed in the context of operating voltage and power levels. The impacts of PVA and EPS design options on the remaining SEP stage subsystem designs, as well as spacecraft operations, will also be discussed.

  11. Advanced Chemical Propulsion Study

    Science.gov (United States)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  12. Transient Region Coverage in the Propulsion IVHM Technology Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the last several years researchers at NASA Glenn and Ames Research Centers have developed a real-time fault detection and isolation system for propulsion...

  13. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  14. Hypersonic Vehicle Propulsion System Simplified Model Development

    Science.gov (United States)

    Stueber, Thomas J.; Raitano, Paul; Le, Dzu K.; Ouzts, Peter

    2007-01-01

    This document addresses the modeling task plan for the hypersonic GN&C GRC team members. The overall propulsion system modeling task plan is a multi-step process and the task plan identified in this document addresses the first steps (short term modeling goals). The procedures and tools produced from this effort will be useful for creating simplified dynamic models applicable to a hypersonic vehicle propulsion system. The document continues with the GRC short term modeling goal. Next, a general description of the desired simplified model is presented along with simulations that are available to varying degrees. The simulations may be available in electronic form (FORTRAN, CFD, MatLab,...) or in paper form in published documents. Finally, roadmaps outlining possible avenues towards realizing simplified model are presented.

  15. Technology Area Roadmap for In-Space Propulsion Technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2012-01-01

    The exponential increase of launch system size.and cost.with delta-V makes missions that require large total impulse cost prohibitive. Led by NASA fs Marshall Space Flight Center, a team from government, industry, and academia has developed a flight demonstration mission concept of an integrated electrodynamic (ED) tethered satellite system called PROPEL: \\Propulsion using Electrodynamics.. The PROPEL Mission is focused on demonstrating a versatile configuration of an ED tether to overcome the limitations of the rocket equation, enable new classes of missions currently unaffordable or infeasible, and significantly advance the Technology Readiness Level (TRL) to an operational level. We are also focused on establishing a far deeper understanding of critical processes and technologies to be able to scale and improve tether systems in the future. Here, we provide an overview of the proposed PROPEL mission. One of the critical processes for efficient ED tether operation is the ability to inject current to and collect current from the ionosphere. Because the PROPEL mission is planned to have both boost and deboost capability using a single tether, the tether current must be capable of flowing in both directions and at levels well over 1 A. Given the greater mobility of electrons over that of ions, this generally requires that both ends of the ED tether system can both collect and emit electrons. For example, hollow cathode plasma contactors (HCPCs) generally are viewed as state-of-the-art and high TRL devices; however, for ED tether applications important questions remain of how efficiently they can operate as both electron collectors and emitters. Other technologies will be highlighted that are being investigated as possible alternatives to the HCPC such as Solex that generates a plasma cloud from a solid material (Teflon) and electron emission (only) technologies such as cold-cathode electron field emission or photo-electron beam generation (PEBG) techniques

  16. An Affordable Autonomous Hydrogen Flame Detection System for Rocket Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has long used liquid hydrogen as a fuel and plans to continue using it in association with their advanced nuclear thermal propulsion technology. Hydrogen fire...

  17. Nuclear propulsion systems for orbit transfer based on the particle bed reactor

    International Nuclear Information System (INIS)

    Powell, J.R.; Ludewig, H.; Horn, F.L.

    1987-01-01

    The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ΔV missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined

  18. Advanced Propulsion and TPS for a Rapidly-Prototyped CEV

    Science.gov (United States)

    Hudson, Gary C.

    2005-02-01

    Transformational Space Corporation (t/Space) is developing for NASA the initial designs for the Crew Exploration Vehicle family, focusing on a Launch CEV for transporting NASA and civilian passengers from Earth to orbit. The t/Space methodology is rapid prototyping of major vehicle systems, and deriving detailed specifications from the resulting hardware, avoiding "written-in-advance" specs that can force the costly invention of new capabilities simply to meet such specs. A key technology shared by the CEV family is Vapor Pressurized propulsion (Vapak) for simplicity and reliability, which provides electrical power, life support gas and a heat sink in addition to propulsion. The CEV family also features active transpiration cooling of re-entry surfaces (for reusability) backed up by passive thermal protection.

  19. System analysis and test-bed for an atmosphere-breathing electric propulsion system using an inductive plasma thruster

    Science.gov (United States)

    Romano, F.; Massuti-Ballester, B.; Binder, T.; Herdrich, G.; Fasoulas, S.; Schönherr, T.

    2018-06-01

    Challenging space mission scenarios include those in low altitude orbits, where the atmosphere creates significant drag to the S/C and forces their orbit to an early decay. For drag compensation, propulsion systems are needed, requiring propellant to be carried on-board. An atmosphere-breathing electric propulsion system (ABEP) ingests the residual atmosphere particles through an intake and uses them as propellant for an electric thruster. Theoretically applicable to any planet with atmosphere, the system might allow to orbit for unlimited time without carrying propellant. A new range of altitudes for continuous operation would become accessible, enabling new scientific missions while reducing costs. Preliminary studies have shown that the collectible propellant flow for an ion thruster (in LEO) might not be enough, and that electrode erosion due to aggressive gases, such as atomic oxygen, will limit the thruster lifetime. In this paper an inductive plasma thruster (IPT) is considered for the ABEP system. The starting point is a small scale inductively heated plasma generator IPG6-S. These devices are electrodeless and have already shown high electric-to-thermal coupling efficiencies using O2 and CO2 . The system analysis is integrated with IPG6-S tests to assess mean mass-specific energies of the plasma plume and estimate exhaust velocities.

  20. The MOA thruster. A high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2009-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other, terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in Vienna, Austria, which has been set up to further develop and test the Alfven wave technology and its applications. (author)

  1. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  2. Liquid Oxygen/Liquid Methane Integrated Power and Propulsion

    Science.gov (United States)

    Banker, Brian; Ryan, Abigail

    2016-01-01

    The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing

  3. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  4. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  5. Propulsion system research and development for electric and hybrid vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1980-01-01

    An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.

  6. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  7. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  8. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    Science.gov (United States)

    Rote, D.M.; He, J.; Johnson, L.R.

    1994-01-04

    A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

  9. Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles

    Science.gov (United States)

    Rote, Donald M.; He, Jianliang; Johnson, Larry R.

    1994-01-01

    A propulsion and stabilization system comprising a series of FIG. 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the FIG. 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

  10. Development of solid-gas equilibrium propulsion system for small spacecraft

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  11. Radionuclide inventories for short run-time space nuclear reactor systems

    International Nuclear Information System (INIS)

    Coats, R.L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems

  12. The Enabling Use of Ion Propulsion on Dawn

    Science.gov (United States)

    Rayman, M.; Russell, C. T.; Raymond, C. A.; Mase, R. M.

    2011-12-01

    Dawn's mission to orbit both Vesta and Ceres is enabled by its use of ion propulsion. Even orbiting Vesta alone with conventional propulsion would have been unaffordable within the constraints of the Discovery Program, and orbiting both would have been impossible. In fact, no other spacecraft has been targeted to orbit two solar system destinations, which is only one of the many firsts that Dawn will achieve. The successful testing of ion propulsion on Deep Space 1 paved the way for Dawn not only to use the hardware with confidence but also to learn how to design the flight system and design the mission to take advantage of its capabilities. In addition to allowing Dawn to reach these two important targets, ion propulsion allows the spacecraft to accomplish significant changes in its orbit. Therefore, science observations of Vesta are planned from four different orbits, at varying altitudes and solar geometry. The use of ion propulsion results in a significant mission design effort since the trajectory is constantly being refined. This also creates a flexible mission architecture, which allows for optimization of the mission as conditions change. Solar electric ion propulsion is especially well suited to missions to the Main Asteroid Belt since solar energy is still a viable power source, whereas the size of the solar array needed beyond 3.5 AU is a potential limitation. Dawn has already surpassed the record for greatest propulsive velocity, but its greatest achievements will no doubt be the incredible bounty of science data enabled by this innovative flight system.

  13. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  14. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  15. Initial Validation of Robotic Operations for In-Space Assembly of a Large Solar Electric Propulsion Transport Vehicle

    Science.gov (United States)

    Komendera, Erik E.; Dorsey, John T.

    2017-01-01

    Developing a capability for the assembly of large space structures has the potential to increase the capabilities and performance of future space missions and spacecraft while reducing their cost. One such application is a megawatt-class solar electric propulsion (SEP) tug, representing a critical transportation ability for the NASA lunar, Mars, and solar system exploration missions. A series of robotic assembly experiments were recently completed at Langley Research Center (LaRC) that demonstrate most of the assembly steps for the SEP tug concept. The assembly experiments used a core set of robotic capabilities: long-reach manipulation and dexterous manipulation. This paper describes cross-cutting capabilities and technologies for in-space assembly (ISA), applies the ISA approach to a SEP tug, describes the design and development of two assembly demonstration concepts, and summarizes results of two sets of assembly experiments that validate the SEP tug assembly steps.

  16. Discrete Event Supervisory Control Applied to Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  17. Propulsion systems from takeoff to high-speed flight

    Science.gov (United States)

    Billig, F. S.

    Potential applications for missiles and aircraft requiring highly efficient engines serve as the basis for discussing new propulsion concepts and novel combinations of existing cycles. Comparisons are made between rocket and airbreathing powered missiles for anti-ballistic and surface-to-air missions. The properties of cryogenic hydrogen are presented to explain the mechanics and limitations of liquid air cycles. Conceptual vehicle designs of a transatmospheric accelerator are introduced to permit examination of the factors that guide the choice of the optimal propulsion system.

  18. Direct Estimation of Power Distribution in Reactors for Nuclear Thermal Space Propulsion

    Science.gov (United States)

    Aldemir, Tunc; Miller, Don W.; Burghelea, Andrei

    2004-02-01

    A recently proposed constant temperature power sensor (CTPS) has the capability to directly measure the local power deposition rate in nuclear reactor cores proposed for space thermal propulsion. Such a capability reduces the uncertainties in the estimated power peaking factors and hence increases the reliability of the nuclear engine. The CTPS operation is sensitive to the changes in the local thermal conditions. A procedure is described for the automatic on-line calibration of the sensor through estimation of changes in thermal .conditions.

  19. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  20. Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

    Science.gov (United States)

    Şöhret, Yasin

    2018-05-01

    The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.

  1. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    Science.gov (United States)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power

  2. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  3. The Ion Propulsion System for the Asteroid Redirect Robotic Mission

    Science.gov (United States)

    Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard; Sekerak, Michael

    2016-01-01

    The Asteroid Redirect Robotic Mission is a Solar Electric Propulsion Technology Demonstration Mission (ARRM) whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of NASA's future beyond-low-Earth-orbit, human-crewed exploration plans. This presentation presents the conceptual design of the ARRM ion propulsion system, the status of the NASA in-house thruster and power processing development activities, the status of the planned technology maturation for the mission through flight hardware delivery, and the status of the mission formulation and spacecraft acquisition.

  4. The TRANSRAPID propulsion system - development and test results

    Energy Technology Data Exchange (ETDEWEB)

    Henning, U [Siemens AG, Erlangen (Germany); Kamp, P G [Siemens AG, Erlangen (Germany); Hochleitner, J [Siemens AG, Erlangen (Germany)

    1996-12-31

    The structure of the propulsion system for the Transrapid comprises a number of components which are located along the guideway. These drive components are temporarily switched together to form the drive control zones necessary to permit maglev operation over the guideway. The paper describes the development of the stationary propulsion converter with GTO thyristors. The drive components are tested under realistic operating conditions. The test results confirm the performance capability as well as verify the suitability of the concept for use in revenue service. (HW)

  5. Solar Sail Propulsion Technology Readiness Level Database

    Science.gov (United States)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  6. Innovative Applications of DoD Propulsion Technology for Low-Cost Satellite Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to leverage the Missile Defense Agency investments in high-performance propulsion systems for low-cost space missions with large Dv requirements,...

  7. Vehicle Propulsion Systems Introduction to Modeling and Optimization

    CERN Document Server

    Guzzella, Lino

    2013-01-01

    This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons and the reduction of the fuel consumption of these vehicles has become a top priority. Increasing concerns over fossil fuel consumption and the associated environmental impacts have motivated many groups in industry and academia to propose new propulsion systems and to explore new optimization methodologies. This third edition has been prepared to include many of these developments. In the third edition, exercises are included at the end of each chapter and the solutions are available on the web.

  8. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    International Nuclear Information System (INIS)

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-01-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  9. Superconducting Electric Boost Pump for Nuclear Thermal Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A submersible, superconducting electric boost pump sized to meet the needs of future Nuclear Thermal Propulsion systems in the 25,000 lbf thrust range is proposed....

  10. Multiple NEO Rendezvous Using Solar Sail Propulsion

    Science.gov (United States)

    Johnson, Les; Alexander, Leslie; Fabisinski, Leo; Heaton, Andy; Miernik, Janie; Stough, Rob; Wright, Roosevelt; Young, Roy

    2012-01-01

    The NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office performed an assessment of the feasibility of using a near-term solar sail propulsion system to enable a single spacecraft to perform serial rendezvous operations at multiple Near Earth Objects (NEOs) within six years of launch on a small-to-moderate launch vehicle. The study baselined the use of the sail technology demonstrated in the mid-2000 s by the NASA In-Space Propulsion Technology Project and is scheduled to be demonstrated in space by 2014 as part of the NASA Technology Demonstration Mission Program. The study ground rules required that the solar sail be the only new technology on the flight; all other spacecraft systems and instruments must have had previous space test and qualification. The resulting mission concept uses an 80-m X 80-m 3-axis stabilized solar sail launched by an Athena-II rocket in 2017 to rendezvous with 1999 AO10, Apophis and 2001 QJ142. In each rendezvous, the spacecraft will perform proximity operations for approximately 30 days. The spacecraft science payload is simple and lightweight; it will consist of only the multispectral imager flown on the Near Earth Asteroid Rendezvous (NEAR) mission to 433 Eros and 253 Mathilde. Most non-sail spacecraft systems are based on the Messenger mission spacecraft. This paper will describe the objectives of the proposed mission, the solar sail technology to be employed, the spacecraft system and subsystems, as well as the overall mission profile.

  11. A Flight Demonstration of Plasma Rocket Propulsion

    Science.gov (United States)

    Petro, Andrew; Chang-Diaz, Franklin; Schwenterly, WIlliam; Hitt, Michael; Lepore, Joseph

    2000-01-01

    The Advanced Space Propulsion Laboratory at the NASA Johnson Space Center has been engaged in the development of a variable specific impulse magnetoplasma rocket (V ASIMR) for several years. This type of rocket could be used in the future to propel interplanetary spacecraft and has the potential to open the entire solar system to human exploration. One feature of this propulsion technology is the ability to vary its specific impulse so that it can be operated in a mode that maximizes propellant efficiency or a mode that maximizes thrust. Variation of specific impulse and thrust enhances the ability to optimize interplanetary trajectories and results in shorter trip times and lower propellant requirements than with a fixed specific impulse. In its ultimate application for interplanetary travel, the VASIMR would be a multi-megawatt device. A much lower power system is being designed for demonstration in the 2004 timeframe. This first space demonstration would employ a lO-kilowatt thruster aboard a solar powered spacecraft in Earth orbit. The 1O-kilowatt V ASIMR demonstration unit would operate for a period of several months with hydrogen or deuterium propellant with a specific impulse of 10,000 seconds.

  12. Shielding requirements for particle bed propulsion systems

    Science.gov (United States)

    Gruneisen, S. J.

    1991-06-01

    Nuclear Thermal Propulsion systems present unique challenges in reliability and safety. Due to the radiation incident upon all components of the propulsion system, shielding must be used to keep nuclear heating in the materials within limits; in addition, electronic control systems must be protected. This report analyzes the nuclear heating due to the radiation and the shielding required to meet the established criteria while also minimizing the shield mass. Heating rates were determined in a 2000 MWt Particle Bed Reactor (PBR) system for all materials in the interstage region, between the reactor vessel and the propellant tank, with special emphasis on meeting the silicon dose criteria. Using a Lithium Hydride/Tungsten shield, the optimum shield design was found to be: 50 cm LiH/2 cm W on the axial reflector in the reactor vessel and 50 cm LiH/2 cm W in a collar extension of the inside shield outside of the pressure vessel. Within these parameters, the radiation doses in all of the components in the interstage and lower tank regions would be within acceptable limits for mission requirements.

  13. Nuclear electric propulsion mission engineering study. Volume 2: Final report

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.

  14. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    International Nuclear Information System (INIS)

    O'Brien, Robert C.; Klein, Andrew C.; Taitano, William T.; Gibson, Justice; Myers, Brian; Howe, Steven D.

    2011-01-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  15. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Science.gov (United States)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  16. A Status of the Advanced Space Transportation Program from Planning to Action

    Science.gov (United States)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and

  17. Pump-Fed, Compact, High Performance Green Propulsion System for Secondary Payloads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its micropump-fed propulsion technology to the development of a low cost, compact, low tank pressure, high performance LPM-103S...

  18. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  19. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  20. Development of An Intelligent Flight Propulsion Control System

    Science.gov (United States)

    Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.

    1999-01-01

    The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of

  1. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  2. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An

  3. Health management and controls for Earth-to-orbit propulsion systems

    Science.gov (United States)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  4. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  5. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    Science.gov (United States)

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include

  6. Laser power beaming: an emerging technology for power transmission and propulsion in space

    Science.gov (United States)

    Bennett, Harold E.

    1997-05-01

    A ground based laser beam transmitted to space can be used as an electric utility for satellites. It can significantly increase the electric power available to operate a satellite or to transport it from low earth orbit (LEO) to mid earth or geosynchronous orbits. The increase in electrical power compared to that obtainable from the sun is as much as 1000% for the same size solar panels. An increase in satellite electric power is needed to meet the increasing demands for power caused by the advent of 'direct to home TV,' for increased telecommunications, or for other demands made by the burgeoning 'space highway.' Monetary savings as compared to putting up multiple satellites in the same 'slot' can be over half a billion dollars. To obtain propulsion, the laser power can be beamed through the atmosphere to an 'orbit transfer vehicle' (OTV) satellite which travels back and forth between LEO and higher earth orbits. The OTV will transport the satellite into orbit as does a rocket but does not require the heavy fuel load needed if rocket propulsion is used. Monetary savings of 300% or more in launch costs are predicted. Key elements in the proposed concept are a 100 to 200 kW free- electron laser operating at 0.84 m in the photographic infrared region of the spectrum and a novel adaptive optic telescope.

  7. Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel

    Science.gov (United States)

    Johnson, Les

    2015-01-01

    NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.

  8. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 1

    Science.gov (United States)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.

  9. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  10. Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS)

    Science.gov (United States)

    Herman, Daniel A.; Tofil, Todd A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John S.; Hofer, Richard R.; Picha, Frank Q.; Jackson, Jerry; Allen, May

    2018-01-01

    NASA remains committed to the development and demonstration of a high-power solar electric propulsion capability for the Agency. NASA is continuing to develop the 14 kW Advanced Electric Propulsion System (AEPS), which has recently completed an Early Integrated System Test and System Preliminary Design Review. NASA continues to pursue Solar Electric Propulsion (SEP) Technology Demonstration Mission partners and mature high-power SEP mission concepts. The recent announcement of the development of a Power and Propulsion Element (PPE) as the first element of an evolvable human architecture to Mars has replaced the Asteroid Redirect Robotic Mission (ARRM) as the most probable first application of the AEPS Hall thruster system. This high-power SEP capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned exploration architecture. This paper presents the status of the combined NASA and Aerojet Rocketdyne AEPS development activities and updated mission concept for implementation of the AEPS hardware as part of the ion propulsion system for a PPE.

  11. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  12. NASA's progress in nuclear electric propulsion technology

    International Nuclear Information System (INIS)

    Stone, J.R.; Doherty, M.P.; Peecook, K.M.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has established a requirement for Nuclear Electric Propulsion (NEP) technology for robotic planetary science mission applications with potential future evolution to systems for piloted Mars vehicles. To advance the readiness of NEP for these challenging missions, a near-term flight demonstration on a meaningful robotic science mission is very desirable. The requirements for both near-term and outer planet science missions are briefly reviewed, and the near-term baseline system established under a recent study jointly conducted by the Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL) is described. Technology issues are identified where work is needed to establish the technology for the baseline system, and technology opportunities which could provide improvement beyond baseline capabilities are discussed. Finally, the plan to develop this promising technology is presented and discussed. 19 refs

  13. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  14. A home away from home. [life support system design for Space Station

    Science.gov (United States)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  15. Numerical analysis of a waterjet propulsion system

    NARCIS (Netherlands)

    Bulten, N.W.H.

    2006-01-01

    A waterjet propulsion system is used to propel ships, using a pump which produces a high speed jet. A standard waterjet installation can be divided into an inlet, a pump and a nozzle. For manoeuvring and reversing purposes an additional steering device can be integrated into the installation. The

  16. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  17. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    Science.gov (United States)

    1995-10-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  18. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    Science.gov (United States)

    1995-01-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  19. Feasibility of a responsive, hybrid propulsion augmented, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit launch system

    Science.gov (United States)

    Pelaccio, Dennis G.

    1996-03-01

    A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.

  20. A Review of Propulsion Industrial Base Studies and an Introduction to the National Institute of Rocket Propulsion Systems

    Science.gov (United States)

    Doreswamy, Rajiv; Fry, Emma K.

    2012-01-01

    Over the past decade there have been over 40 studies that have examined the state of the industrial base and infrastructure that supports propulsion systems development in the United States. This paper offers a comprehensive, systematic review of these studies and develops conclusions and recommendations in the areas of budget, policy, sustainment, infrastructure, workforce retention and development and mission/vision and policy. The National Institute for Rocket Propulsion System (NIRPS) is a coordinated, national organization that is responding to the key issues highlighted in these studies. The paper outlines the case for NIRPS and the specific actions that the Institute is taking to address these issues.

  1. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Jerred; Troy Howe; Adarsh Rajguru; Dr. Steven Howe

    2014-06-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical

  2. Maneuvering Environment for Tiltwing Aircraft with Distributed Electric Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The tiltwing class of aircraft consists of vehicles with the ability to rotate the wing and propulsion system as a unit a full 90 degrees from the standard fixed...

  3. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  4. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 2; Appendices

    Science.gov (United States)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.

  5. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 2

    Science.gov (United States)

    Levak, Daniel

    1993-01-01

    The Alternate Propulsion Subsystem Concepts contract had five tasks defined for the first year. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, Space Shuttle Main Engine (SSME) Upper Stage Use, and CER's for Liquid Propellant Rocket Engines. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume 1.

  6. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Key steps to ensure identification of relevant effluent treatment technologies for Nuclear Thermal Propulsion (NTP) testing include the following. 1. Review of...

  7. Systems Analysis Developed for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2004-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane (PEM) and solid oxide fuel cells (SOFCs), alternative fuels and fuel processing, and fuel storage. A multidisciplinary effort is underway at the NASA Glenn Research Center to develop and evaluate concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. As part of this effort, system studies are being conducted to identify concepts with high payoff potential and associated technology areas for further development. To support this effort, a suite of component models was developed to estimate the mass, volume, and performance for a given system architecture. These models include a hydrogen-air PEM fuel cell; an SOFC; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. First-order feasibility studies were completed for an all-electric personal air vehicle utilizing a fuel-cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including a PEM fuel cell with liquid hydrogen storage, a direct methanol PEM fuel cell, and a direct internal reforming SOFC/turbine hybrid system using liquid methane fuel. Each configuration was compared with the baseline case on a mass and range basis.

  8. Integrated controls pay-off. [for flight/propulsion aircraft systems

    Science.gov (United States)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  9. Development of 1 MW-class HTS motor for podded ship propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Umemoto, K; Aizawa, K; Yokoyama, M; Yoshikawa, K [Kawasaki Heavy Industries LTD., 673-8666, Hyogo (Japan); Kimura, Y; Izumi, M [Tokyo University of Marine Science Technology, 135-8533, Tokyo (Japan); Ohashi, K; Numano, M [National Maritime Research Institute, 181-0004, Tokyo (Japan); Okumura, K; Yamaguchi, M; Gocho, Y; Kosuge, E, E-mail: umemoto@ati.khi.co.j [Japan Super-conductivity Organization Co. LTD., 135-8533, Tokyo (Japan)

    2010-06-01

    To reduce fuel consumption and lead to a major reduction of pollution from NOx, SOx and CO{sub 2}, the electric ship propulsion system is one of the most prospective substitutes for conventional ship propulsion systems. In order to spread it, innovative technologies for the improvement of the power transmission are required. The high temperature superconducting technology has the possibility for a drastic reduction of power transmission loss. Recently, electric podded propulsions have become popular for large cruise vessels, icebreakers and chemical tankers because of the flexibility of the equipment arrangement and the stern hull design, and better maneuverability in harbour, etc. In this paper, a 1 MW-class High temperature superconducting (HTS) motor with high efficiency, smaller size and simple structure, which is designed and manufactured for podded propulsion, is reported. For the case of a coastal ship driven by the optimized podded propulsion in which the 1MW HTS motor is equipped, the reductions of fluid dynamic resistance and power transmission losses are demonstrated. The present research and development has been supported by the New Energy and Industrial Technology Development Organization (NEDO).

  10. Development and Qualification of ATV Propulsion Assemblies

    Science.gov (United States)

    Riehle, M.; Jost, R.

    2002-01-01

    In the frame of the development and operation of the International Space Station ISS, the European Space Agency ESA is not only contributing experiments and a laboratory module but also logistics capacity. This purpose of supplying the ISS shall be covered by an unmanned, Automated Transfer Vehicle (ATV) that will be launched for the first time in 2004 by Ariane 5. The development of the ATV is in close conjunction to the future Ariane 5 launch capacity of about 20 tons injected into low earth orbit. Thus this unmanned transporter will be a quite large space craft that is subjected to fulfil several mission objectives apart of only delivering cargo such as multiple automatic docking/de-docking, re-boost services and re-fuelling. For those reasons and due to its dimensions the propulsion sub-system is one of the most sophisticated in the field of space propulsion. Even safety issues of manned space flight have to be applied since the pressurised cargo section is part of the ISS when docked to the manned modules. This leads to by far the largest but also the most sophisticated propulsion system ever built in Europe. Astrium as one of the major partners of this european project is responsible for this major system that will be described in the paper. Focusing on the major core assemblies such as multi thruster platforms, pressure control system incl. safety and redundancy mechanisms as well as tanks and other components that completes a propulsion system. System Design and Qualification Starting from the basic criteria the paper will present the major performance requirements such as pressures, thrust levels and other parameters that led to the selection of major components of the system such as thrusters, valves, tanks, etc. Some of the component could be selected from off the shelve, whereas other core components such as the 200N Attitude Control and Braking Thrusters or Propellant Tanks had to be newly developed. The stepwise approach of development and careful

  11. Propulsion Design With Freeform Fabrication (PDFF)

    Science.gov (United States)

    Barnes, Daudi; McKinnon, James; Priem, Richard

    2010-01-01

    The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in

  12. Mars mission performance enhancement with hybrid nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, J. E. [Pacific Northwest Lab., Richland, WA (United States); Noffsinger, K. E. [Pacific Northwest Lab., Richland, WA (United States); Segna, D. R. [USDOE Richland Operations Office, WA (United States)

    1992-01-01

    Nuclear electric propulsion (NEP), compared with chemical and nuclear thermal propulsion (NTP), can effectively deliver the same mass to Mars using much less propellant, consequently requiring less mass delivered to Earth orbit. The lower thrust of NEP requires a spiral trajectory near planetary bodies, which significantly increases the travel time. Although the total travel time is long, the portion of the flight time spent during interplanetary transfer is shorter, because the vehicle is thrusting for much longer periods of time. This has led to the supposition that NEP, although very attractive for cargo missions, is not suitable for piloted missions to Mars. However, with the application of a hybrid application of a hybrid approach to propulsion, the benefits of NEP can be utilized while drastically reducing the overall travel time required. Development of a dual-mode system, which utilizes high-thrust NTP to propel the spacecraft from the planetary gravitational influence and low-thrust NEP to accelerate in interplanetary space, eliminates the spiral trajectory and results in a much faster transit time than could be obtained by either NEP or NTP alone. This results in a mission profile with a lower initial mass in low Earth orbit. In addition, the propulsion system would have the capability to provide electrical power for mission applications.

  13. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung

    2015-01-01

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW th power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H 2 corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the preliminary design

  14. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    Science.gov (United States)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in

  15. Approach to an Affordable and Sustainable Space Transportation System

    Science.gov (United States)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  16. Nuclear electric propulsion mission engineering study. Volume 1: Executive summary

    Science.gov (United States)

    1973-01-01

    Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.

  17. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  18. High power electromagnetic propulsion research at the NASA Glenn Research Center

    International Nuclear Information System (INIS)

    LaPointe, Michael R.; Sankovic, John M.

    2000-01-01

    Interest in megawatt-class electromagnetic propulsion has been rekindled to support newly proposed high power orbit transfer and deep space mission applications. Electromagnetic thrusters can effectively process megawatts of power to provide a range of specific impulse values to meet diverse in-space propulsion requirements. Potential applications include orbit raising for the proposed multi-megawatt Space Solar Power Satellite and other large commercial and military space platforms, lunar and interplanetary cargo missions in support of the NASA Human Exploration and Development of Space strategic enterprise, robotic deep space exploration missions, and near-term interstellar precursor missions. As NASA's lead center for electric propulsion, the Glenn Research Center is developing a number of high power electromagnetic propulsion technologies to support these future mission applications. Program activities include research on MW-class magnetoplasmadynamic thrusters, high power pulsed inductive thrusters, and innovative electrodeless plasma thruster concepts. Program goals are highlighted, the status of each research area is discussed, and plans are outlined for the continued development of efficient, robust high power electromagnetic thrusters

  19. Improved CVD Coatings for Carbide Based Nuclear Thermal Propulsion Fuel Elements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the great hurdles to further development and evaluation of nuclear thermal propulsion systems is the issue surrounding the release of radioactive material...

  20. Application of a bi-modal PBR nuclear propulsion and power system to military missions

    Science.gov (United States)

    Venetoklis, Peter S.

    1995-01-01

    The rapid proliferation of arms technology and space access combined with current economic realities in the United States are creating ever greater demands for more capable space-based military assets. The paper illustrates that bi-modal nuclear propulsion and power based on the Particle Bed Reactor (PBR) is a high-leverage tehcnology that can maximize utility while minimizing cost. Mission benefits offered by the bi-modal PBR, including enhanced maneuverability, lifetime, survivability, payload power, and operational flexibility, are discussed. The ability to deliver desired payloads on smaller boosters is also illustrated. System descriptions and parameters for 10 kWe and 100 kWe power output levels are summarized. It is demonstrated via design exercise that bi-modal PBR dramtically enhances performance of a military satellite in geosynchronous orbit, increasing payload mass, payload power, and maneuverability.

  1. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    International Nuclear Information System (INIS)

    Clark, J.S.; Mcdaniel, P.; Howe, S.; Helms, I.; Stanley, M.

    1993-04-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies

  2. 10 KWe dual-mode space nuclear power system for military and scientific applications

    International Nuclear Information System (INIS)

    Malloy, J.; Westerman, K.; Rochow, R.; Scoles, S.

    1992-01-01

    This paper discusses a 10 KWe dual-mode space power system concept which has been identified and is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. This paper will focus on the nuclear power system design, including: the reactor with its UO 2 fuel in tungsten clad, 36 thermionic heat pipe modules (THPMs) which produce electricity within the reactor and remove waste heat, radiation shielding, waste heat radiators, and reactivity control systems. The use of non-vented fuel elements for short lifetime missions (under five years) will be described

  3. SP-100 space reactor power system readiness

    International Nuclear Information System (INIS)

    Josloff, A.T.; Matteo, D.N.; Bailey, H.S.

    1992-01-01

    This paper discusses the SP-100 Space Reactor Power System which is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996-1997 time frame

  4. Recent developments of the MOA thruster, a high performance plasma accelerator for nuclear power and propulsion applications

    International Nuclear Information System (INIS)

    Frischauf, N.; Hettmer, M.; Grassauer, A.; Bartusch, T.; Koudelka, O.

    2008-01-01

    More than 60 years after the late Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA -Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilization strategy. This paper presents the recent developments of the MOA Thruster R and D activities at QASAR, the company in

  5. An historical collection of papers on nuclear thermal propulsion

    Science.gov (United States)

    The present volume of historical papers on nuclear thermal propulsion (NTP) encompasses NTP technology development regarding solid-core NTP technology, advanced concepts from the early years of NTP research, and recent activities in the field. Specific issues addressed include NERVA rocket-engine technology, the development of nuclear rocket propulsion at Los Alamos, fuel-element development, reactor testing for the Rover program, and an overview of NTP concepts and research emphasizing two decades of NASA research. Also addressed are the development of the 'nuclear light bulb' closed-cycle gas core and a demonstration of a fissioning UF6 gas in an argon vortex. The recent developments reviewed include the application of NTP to NASA's Lunar Space Transportation System, the use of NTP for the Space Exploration Initiative, and the development of nuclear rocket engines in the former Soviet Union.

  6. Revisiting alpha decay-based near-light-speed particle propulsion

    International Nuclear Information System (INIS)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-01-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150 km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days. - Highlights: • SRIM was used to study the alpha particle penetration depth and efficiency. • Correlation between thickness of decayable foil and propulsion force was established. • With the hypothesis of SAND, the travel time to Mars may be shortened to <20 days.

  7. Advanced Electric Propulsion NextSTEP BAA Activity

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the AES Advanced Electric Propulsion Next Space Technologies for Exploration Partnerships (NextSTEP) Broad Agency Announcement (BAA) activity is to...

  8. Space Station Freedom - Accommodation for technology R&D

    Science.gov (United States)

    Holt, Alan C.

    1989-01-01

    The paper examines the features of the accommodation equipment designed for the candidate technology payloads of the Space Station, which include magnetic plasma thruster systems and a hypothetical advanced electromagnetic propulsion system utilizing high-temperature superconductivity materials. The review of the accommodation-equipment concepts supports the assumption that some propulsion technologies can be tested on the Space Station while being attached externally to the station's truss structure. For testing technologies with inherent operation or performance hazards, space platforms and smaller free-flyers coordinated with the Space Station can be used. Diagrams illustrating typical accommodation equipment configurations are included.

  9. Hybrid Propulsion Technology for Robotic Science Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — C3 Propulsion's Hybrid Propulsion Technology will be applied to a NASA selected Sample Return Mission. Phase I will demonstrate Proof-of-Principle and Phase II will...

  10. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  11. A study on optimal control of the aero-propulsion system acceleration process under the supersonic state

    Directory of Open Access Journals (Sweden)

    Fengyong Sun

    2017-04-01

    Full Text Available In order to solve the aero-propulsion system acceleration optimal problem, the necessity of inlet control is discussed, and a fully new aero-propulsion system acceleration process control design including the inlet, engine, and nozzle is proposed in this paper. In the proposed propulsion system control scheme, the inlet, engine, and nozzle are simultaneously adjusted through the FSQP method. In order to implement the control scheme design, an aero-propulsion system component-level model is built to simulate the inlet working performance and the matching problems between the inlet and engine. Meanwhile, a stabilizing inlet control scheme is designed to solve the inlet control problems. In optimal control of the aero-propulsion system acceleration process, the inlet is an emphasized control unit in the optimal acceleration control system. Two inlet control patterns are discussed in the simulation. The simulation results prove that by taking the inlet ramp angle as an active control variable instead of being modulated passively, acceleration performance could be obviously enhanced. Acceleration objectives could be obtained with a faster acceleration time by 5%.

  12. Lunar lander and return propulsion system trade study

    Science.gov (United States)

    Hurlbert, Eric A.; Moreland, Robert; Sanders, Gerald B.; Robertson, Edward A.; Amidei, David; Mulholland, John

    1993-01-01

    This trade study was initiated at NASA/JSC in May 1992 to develop and evaluate main propulsion system alternatives to the reference First Lunar Outpost (FLO) lander and return-stage transportation system concept. Thirteen alternative configurations were developed to explore the impacts of various combinations of return stage propellants, using either pressure or pump-fed propulsion systems and various staging options. Besides two-stage vehicle concepts, the merits of single-stage and stage-and-a-half options were also assessed in combination with high-performance liquid oxygen and liquid hydrogen propellants. Configurations using an integrated modular cryogenic engine were developed to assess potential improvements in packaging efficiency, mass performance, and system reliability compared to non-modular cryogenic designs. The selection process to evaluate the various designs was the analytic hierarchy process. The trade study showed that a pressure-fed MMH/N2O4 return stage and RL10-based lander stage is the best option for a 1999 launch. While results of this study are tailored to FLO needs, the design date, criteria, and selection methodology are applicable to the design of other crewed lunar landing and return vehicles.

  13. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  14. An evaluation of some special techniques for nuclear waste disposal in space

    Science.gov (United States)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  15. Full fuel-cycle comparison of forklift propulsion systems

    International Nuclear Information System (INIS)

    Gaines, L.L.; Elgowainy, A.; Wang, M.Q.

    2008-01-01

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis

  16. Full fuel-cycle comparison of forklift propulsion systems.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  17. Cold Gas Micro Propulsion

    NARCIS (Netherlands)

    Louwerse, M.C.

    2009-01-01

    This thesis describes the development of a micro propulsion system. The trend of miniaturization of satellites requires small sized propulsion systems. For particular missions it is important to maintain an accurate distance between multiple satellites. Satellites drift apart due to differences in

  18. Intelligent neuroprocessors for in-situ launch vehicle propulsion systems health management

    Science.gov (United States)

    Gulati, S.; Tawel, R.; Thakoor, A. P.

    1993-01-01

    Efficacy of existing on-board propulsion systems health management systems (HMS) are severely impacted by computational limitations (e.g., low sampling rates); paradigmatic limitations (e.g., low-fidelity logic/parameter redlining only, false alarms due to noisy/corrupted sensor signatures, preprogrammed diagnostics only); and telemetry bandwidth limitations on space/ground interactions. Ultra-compact/light, adaptive neural networks with massively parallel, asynchronous, fast reconfigurable and fault-tolerant information processing properties have already demonstrated significant potential for inflight diagnostic analyses and resource allocation with reduced ground dependence. In particular, they can automatically exploit correlation effects across multiple sensor streams (plume analyzer, flow meters, vibration detectors, etc.) so as to detect anomaly signatures that cannot be determined from the exploitation of single sensor. Furthermore, neural networks have already demonstrated the potential for impacting real-time fault recovery in vehicle subsystems by adaptively regulating combustion mixture/power subsystems and optimizing resource utilization under degraded conditions. A class of high-performance neuroprocessors, developed at JPL, that have demonstrated potential for next-generation HMS for a family of space transportation vehicles envisioned for the next few decades, including HLLV, NLS, and space shuttle is presented. Of fundamental interest are intelligent neuroprocessors for real-time plume analysis, optimizing combustion mixture-ratio, and feedback to hydraulic, pneumatic control systems. This class includes concurrently asynchronous reprogrammable, nonvolatile, analog neural processors with high speed, high bandwidth electronic/optical I/O interfaced, with special emphasis on NASA's unique requirements in terms of performance, reliability, ultra-high density ultra-compactness, ultra-light weight devices, radiation hardened devices, power stringency

  19. A propulsion technology challenge — An abortable. Continuous use vehicle

    Science.gov (United States)

    Czysz, Paul A.; Froning, H. David

    1996-02-01

    Propulsion is the enabling technology for an abortable, continuous use vehicle. Propulsion performance purchases margin in the other material, structural, and system requirements. But what is abortability, and continuous use? Why is it necessary? What are its characteristics? And, what specifically is required in the propulsion system to enable these characteristics? Is the cost of the launcher really trivial, or is that the incomplete cost analysis limited to expendables and rebuilt, reusables. This paper identifies what constitutes an abortable, continuous use vehicle, the propulsion characteristics required, and the technology necessary to provide those characteristics. The proposition resulting is that this is not a technology issue, it is a concept of operation and a bureaucratic issue. The required goal is not as distant as some might propose, and the technology not as unprepared for commercial application as some assumed. The conclusion is that clearly we cannot continue to base the next century's orbital operations on an expendable rebuilt for reuse concept. What is required is a rocket based combined cycle (RBCC) engine based on those now in space operation 1,2; not a combination of cycles that remains to be shown as a practical, achievable reality.

  20. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    Science.gov (United States)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  1. Phase 1 space fission propulsion system testing and development progress

    International Nuclear Information System (INIS)

    Van Dyke, Melissa; Houts, Mike; Godfroy, Tom; Dickens, Ricky; Poston, David; Kapernick, Rick; Reid, Bob; Salvail, Pat; Ring, Peter

    2002-01-01

    Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. The Safe Affordable Fission Engine (SAFE) test series, whose ultimate goal is the demonstration of a 300 kW flight configuration system, has demonstrated that realistic testing can be performed using non-nuclear methods. This test series, carried out in collaboration with other NASA centers, other government agencies, industry, and universities, successfully completed a testing program with a 30 kWt core. Stirling engine, and ion engine configuration. Additionally, a 100 kWt core is in fabrication and appropriate test facilities are being reconfigured. This paper describes the current SAFE non-nuclear tests, which includes test article descriptions, test results and conclusions, and future test plans

  2. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  3. Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

    International Nuclear Information System (INIS)

    Dudeck, M; Doveil, F; Arcis, N; Zurbach, S

    2012-01-01

    The advantages of electric propulsion for the orbit maintenance of geostationary satellites for telecommunications are described. Different types of plasma sources for space propulsion are presented. Due to its large performances, one of them, named Hall effect thruster is described in detail and two recent missions in space (Stentor and Smart1) using French Hall thrusters are briefly presented.

  4. Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems

    International Nuclear Information System (INIS)

    Mazouffre, Stephane

    2009-01-01

    This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)

  5. Electric vehicle propulsion alternatives

    Science.gov (United States)

    Secunde, R. R.; Schuh, R. M.; Beach, R. F.

    1983-01-01

    Propulsion technology development for electric vehicles is summarized. Analytical studies, technology evaluation, and the development of technology for motors, controllers, transmissions, and complete propulsion systems are included.

  6. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  7. Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)

    National Research Council Canada - National Science Library

    Behbahani, Alireza R

    2007-01-01

    .... Distributed control is potentially an enabling technology for advanced intelligent propulsion system concepts and is one of the few control approaches that is able to provide improved component...

  8. Solid Propulsion Systems, Subsystems, and Components Service Life Extension

    Science.gov (United States)

    Hundley, Nedra H.; Jones, Connor

    2011-01-01

    The service life extension of solid propulsion systems, subsystems, and components will be discussed based on the service life extension of the Space Transportation System Reusable Solid Rocket Motor (RSRM) and Booster Separation Motors (BSM). The RSRM is certified for an age life of five years. In the aftermath of the Columbia accident there were a number of motors that were approaching the end of their five year service life certification. The RSRM Project initiated an assessment to determine if the service life of these motors could be extended. With the advent of the Constellation Program, a flight test was proposed that would utilize one of the RSRMs which had been returned from the launch site due to the expiration of its five year service life certification and twelve surplus Chemical Systems Division BSMs which had exceeded their eight year service life. The RSRM age life tracking philosophy which establishes when the clock starts for age life tracking will be described. The role of the following activities in service life extension will be discussed: subscale testing, accelerated aging, dissecting full scale aged hardware, static testing full scale aged motors, data mining industry data, and using the fleet leader approach. The service life certification and extension of the BSMs will also be presented.

  9. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    Science.gov (United States)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  10. Miniaturized Low-Power Piezo Microvalve for NanoSat and CubeSat Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In space propulsion applications, an increasingly unmet need is compact, low-power, precision flow regulating valves. Propulsion for increasingly small spacecraft is...

  11. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.

    Science.gov (United States)

    van Drongelen, Stefan; Arnet, Ursina; Veeger, Dirkjan H E J; van der Woude, Lucas H V

    2013-03-01

    To investigate the influence of workload setting (speed at constant power, method to impose power) on the propulsion technique (i.e. force and timing characteristics) in handrim wheelchair propulsion. Twelve able-bodied men participated in this study. External forces were measured during handrim wheelchair propulsion on a motor driven treadmill at different velocities and constant power output (to test the forced effect of speed) and at power outputs imposed by incline vs. pulley system (to test the effect of method to impose power). Outcome measures were the force and timing variables of the propulsion technique. FEF and timing variables showed significant differences between the speed conditions when propelling at the same power output (p propulsion technique parameters despite an overall constant power output. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  13. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  14. Preliminary Thermohydraulic Analysis of a New Moderated Reactor Utilizing an LEU-Fuel for Space Nuclear Thermal Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    The Korea Advanced NUclear Thermal Engine Rocket utilizing an LEU fuel (KANUTER-LEU) is a non-proliferative and comparably efficient NTR engine with relatively low thrust levels of 40 - 50 kN for in-space transportation. The small modular engine can expand mission versatility, when flexibly used in a clustered engine arrangement, so that it can perform various scale missions from low-thrust robotic science missions to high-thrust manned missions. In addition, the clustered engine system can enhance engine redundancy and ensuing crew safety as well as the thrust. The propulsion system is an energy conversion system to transform the thermal energy of the reactor into the kinetic energy of the propellant to produce the powers for thrust, propellant feeding and electricity. It is mainly made up of a propellant Feeding System (PFS) comprising a Turbo-Pump Assembly (TPA), a Regenerative Nozzle Assembly (RNA), etc. For this core design study, an expander cycle is assumed to be the propulsion system. The EGS converts the thermal energy of the EHTGR in the idle operation (only 350 kW{sub th} power) to electric power during the electric power mode. This paper presents a preliminary thermohydraulic design analysis to explore the design space for the new reactor and to estimate the referential engine performance. The new non-proliferative NTR engine concept, KANUTER-LEU, is under designing to surmount the nuclear proliferation obstacles on allR and Dactivities and eventual commercialization for future generations. To efficiently implement a heavy LEU fuel for the NTR engine, its reactor design innovatively possesses the key characteristics of the high U density fuel with high heating and H{sub 2} corrosion resistances, the thermal neutron spectrum core and also minimizing non-fission neutron loss, and the compact reactor design with protectively cooling capability. To investigate feasible design space for the moderated EHTGR-LEU and resultant engine performance, the

  15. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  16. Control Strategy for Power Distribution in Dual Motor Propulsion System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Pedro Daniel Urbina Coronado

    2015-01-01

    Full Text Available Electric Vehicles with more than one electric motor can offer advantages in saving energy from the batteries. In order to do that, the control strategy plays an important role in distributing the required torque between the electric motors. A dual motor propulsion system with a differential transmission is simulated in this work. A rule based control strategy for this propulsion system is proposed and analyzed. Two parameters related to the output speed of the transmission and the required torque are used to switch the two modes of operation in which the propulsion system can work under acceleration. The effect of these parameters is presented over the driving cycles of NEDC, UDDS, and NYCC, which are followed using a PID controller. The produced energy losses are calculated as well as an indicator of drivability, which is related to the difference between the desired speed and the actual speed obtained. The results show that less energy losses are present when the vehicle is maintained with one electric motor most of the time, switching only when the extended speed granted by the second motor is required. The propulsion system with the proposed control strategy represents a feasible alternative in the spectrum of sustainable transportation architectures with extending range capabilities.

  17. The Livingstone Model of a Main Propulsion System

    Science.gov (United States)

    Bajwa, Anupa; Sweet, Adam; Korsmeyer, David (Technical Monitor)

    2003-01-01

    Livingstone is a discrete, propositional logic-based inference engine that has been used for diagnosis of physical systems. We present a component-based model of a Main Propulsion System (MPS) and say how it is used with Livingstone (L2) in order to implement a diagnostic system for integrated vehicle health management (IVHM) for the Propulsion IVHM Technology Experiment (PITEX). We start by discussing the process of conceptualizing such a model. We describe graphical tools that facilitated the generation of the model. The model is composed of components (which map onto physical components), connections between components and constraints. A component is specified by variables, with a set of discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the model specifies the component's behavior and transitions. We describe the MPS components' nominal and fault modes and associated Livingstone variables and data structures. Given this model, and observed external commands and observations from the system, Livingstone tracks the state of the MPS over discrete time-steps by choosing trajectories that are consistent with observations. We briefly discuss how the compiled model fits into the overall PITEX architecture. Finally we summarize our modeling experience, discuss advantages and disadvantages of our approach, and suggest enhancements to the modeling process.

  18. Electric Propulsion Induced Secondary Mass Spectroscopy

    Science.gov (United States)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  19. Propulsion Physics Using the Chameleon Density Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will require a new theory of propulsion. Specifically one that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. The Chameleon Density Model (CDM) is one such model that could provide new paths in propulsion toward this end. The CDM is based on Chameleon Cosmology a dark matter theory; introduced by Khrouy and Weltman in 2004. Chameleon as it is hidden within known physics, where the Chameleon field represents a scalar field within and about an object; even in the vacuum. The CDM relates to density changes in the Chameleon field, where the density changes are related to matter accelerations within and about an object. These density changes in turn change how an object couples to its environment. Whereby, thrust is achieved by causing a differential in the environmental coupling about an object. As a demonstration to show that the CDM fits within known propulsion physics, this paper uses the model to estimate the thrust from a solid rocket motor. Under the CDM, a solid rocket constitutes a two body system, i.e., the changing density of the rocket and the changing density in the nozzle arising from the accelerated mass. Whereby, the interactions between these systems cause a differential coupling to the local gravity environment of the earth. It is shown that the resulting differential in coupling produces a calculated value for the thrust near equivalent to the conventional thrust model used in Sutton and Ross, Rocket Propulsion Elements. Even though imbedded in the equations are the Universe energy scale factor, the reduced Planck mass and the Planck length, which relates the large Universe scale to the subatomic scale.

  20. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    Science.gov (United States)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.