WorldWideScience

Sample records for space proposed experiments

  1. Proposal of a Tethered Space Walking Robot - REX-J: Robot Experiment on JEM -

    Science.gov (United States)

    Oda, Mitsushige; Sawada, Hirotaka; Yoshi, Masahiro; Konoue, Kazuya; Kato, Hiroki; Suzuki, Satoshi; Hagiwara, Yusuke; Ueno, Taihei

    A unique space robot is proposed to support astronauts' EVA work. The robot moves around the surface of a space facility, e.g. a space station. Usefulness of the proposed robot system will be tested in 2012 on the International Space Station Japanese Experiment Module.

  2. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  3. Impurity study experiment proposal

    International Nuclear Information System (INIS)

    1975-05-01

    ISX is a modest tokamak which emphasizes the production of a predictable test plasma, experimental flexibility, ease of assembly and disassembly, and good diagnostic access. Its plasma models the outer cooler layers in EPR like plasmas. In addition, provisions will be made for long discharge times which may be necessary to observe some impurity effects. These machine characteristics will enable one to study the collisional transport of impurities in the plasma, perform systematic studies of wall and limiter materials and geometries, study methods of cleaning the walls, and develop and test new diagnostic techniques. ISX will employ water-cooled copper coils to produce a maximum toroidal magnetic field of 20 kG at the plasma axis, which is 77 cm from the major axis. The plasma minor radius will be about 15 cm, and the maximum plasma current will be 100 kA which will be induced by an iron core transformer with a capability of up to 0.9 volt-sec for long discharges. An aspect ratio of five and the modest magnetic field permit a design with ample space for thick wall structures such as honeycomb walls. The ''picture frame'' toroidal field coil provides additional space, while removable coil top sections allow easy replacement of the vacuum chamber. The 72-turn toroidal field coil is grouped into 24 sections for increased access. Absence of a conducting shell and placement of the vertical field and transformer primary coils away from the plasma allow easy viewing of the plasma and good diagnostic access. (U.S.)

  4. The OTTI space experiments

    International Nuclear Information System (INIS)

    Brewer, D.A.; Clifton, K.S.; Pearson, S.D.; Barth, J.L.; LaBel, K.; Ritter, J.C.; Peden, J.; Campbell, A.; Liang, R.

    1999-01-01

    The orbiting technology tested initiative (OTTI) provides a concept for a series of space experiment platforms to be flown at 2-year interval over the next ten years. The long-term purpose of this program is to provide a convenient test-beds to simulate high radiation environments. The purposes of the first platform is to evaluate the on-orbit performance of novel, emerging, breakthrough technologies and advanced state-of-the-art devices in high radiation orbits and to provide correlations between the natural space radiation environment and the device response in the flight test-bed. This short article presents the concept of the OTTI program

  5. Fundamental Physics with Space Experiments

    Science.gov (United States)

    Vitale, S.

    I review a category of experiments in fundamental physics that need space as a laboratory. All these experiments have in common the need of a very low gravity environment to achieve as an ideal free fall as possible: LISA, the gravitational wave observatory, and its technology demonstrator SMART-2. The satellite tests of the equivalence principle Microscope, and the ultimate sensitivity one STEP, with its close heritage from GP-B, the experiment to measure the gravito-magnetic field of the Earth. Finally the entirely new field of cold atoms in space with its promise to produce the next generation of inertial gravitational and inertial sensors for general relativity experiments.

  6. Shear History Extensional Rheology Experiment: A Proposed ISS Experiment

    Science.gov (United States)

    Hall, Nancy R.; Logsdon, Kirk A.; Magee, Kevin S.

    2007-01-01

    The Shear History Extensional Rheology Experiment (SHERE) is a proposed International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. Collectively referred to as Boger fluids, these polymer solutions have become a popular choice for rheological studies of non-Newtonian fluids and are the non-Newtonian fluid used in this experiment. The SHERE hardware consists of the Rheometer, Camera Arm, Interface Box, Cabling, Keyboard, Tool Box, Fluid Modules, and Stowage Tray. Each component will be described in detail in this paper. In the area of space exploration, the development of in-situ fabrication and repair technology represents a critical element in evolution of autonomous exploration capability. SHERE has the capability to provide data for engineering design tools needed for polymer parts manufacturing systems to ensure their rheological properties have not been impacted in the variable gravity environment and this will be briefly addressed.

  7. Emulsion chamber experiments for the Space Station

    Science.gov (United States)

    Wilkes, R. J.

    Emulsion chambers offer several unique features for the study of ultrahigh-energy cosmic-ray interactions and spectra aboard a permanent manned Space Station. Emulsion-chamber experiments provide the highest acceptance/weight ratio of any current experimental technique, are invulnerable to mechanical shocks and temperature excursions associated with space flight, do not employ volatile or explosive components or materials, and are not dependent upon data communications or recording systems. Space-Station personnel would be employed to replace track-sensitive materials as required by background accumulation. Several emulsion-chamber designs are proposed, including both conventional passive calorimetric detectors and a hybrid superconducting-magnetic-spectrometer system. Results of preliminary simulation studies are presented. Operational logistics are discussed.

  8. Battery selection for space experiments

    Science.gov (United States)

    Francisco, David R.

    1992-10-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.

  9. A proposed experiment on ball lightning model

    Energy Technology Data Exchange (ETDEWEB)

    Ignatovich, Vladimir K., E-mail: v.ignatovi@gmail.com [Frank Laboratory for Neutron Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Ignatovich, Filipp V. [1565 Jefferson Rd., 420, Rochester, NY 14623 (United States)

    2011-09-19

    Highlights: → We propose to put a glass sphere inside an excited gas. → Then to put a light ray inside the glass in a whispering gallery mode. → If the light is resonant to gas excitation, it will be amplified at every reflection. → In ms time the light in the glass will be amplified, and will melt the glass. → A liquid shell kept integer by electrostriction forces is the ball lightning model. -- Abstract: We propose an experiment for strong light amplification at multiple total reflections from active gaseous media.

  10. Proposal for a minimal surface code experiment

    Science.gov (United States)

    Wootton, James R.; Peter, Andreas; Winkler, János R.; Loss, Daniel

    2017-09-01

    Current quantum technology is approaching the system sizes and fidelities required for quantum error correction. It is therefore important to determine exactly what is needed for proof-of-principle experiments, which will be a major step towards fault-tolerant quantum computation. Here we propose a surface code based experiment that is the smallest, both in terms of code size and circuit depth, that would allow errors to be detected and corrected for both the X and Z bases of a qubit. This requires 17 physical qubits initially prepared in a product state, on which 16 two-qubit entangling gates are applied before a final measurement of all qubits. A platform agnostic error model is applied to give some idea of the noise levels required for success. It is found that a true demonstration of quantum error correction will require fidelities for the preparation and measurement of qubits and the entangling gates to be above 99 % .

  11. The Creation of Experience Spaces

    DEFF Research Database (Denmark)

    Pedersen, Michael Thyrrestrup

    2013-01-01

    for the theoretical discussions, mainly inspired by Harvey (2009), Brenner (2004) and Mackinnon (2010), to put in to context the relations between national – regional – municipal, in the light of relational space (Massey, 2005) and the quality of place (Healey, 2010). The third space of Soja (1996) will be addressed...

  12. EXCALIBIR - A space experiment in orbital debris lethality

    Science.gov (United States)

    Culp, Robert D.; Dickey, Michael R.

    1991-01-01

    The study proposes a space experiment using extended Space Shuttle external tanks to test the impact of orbital debris. The External Tank Calibrated Impact Response test, EXCALIBIR, is a low-cost low-risk, high-payoff approach to investigating the threat to resident space objects posed by untrackable orbital debris, to provide lethality data to the kinetic energy weapons community, and to aid in the testing of space and missile interceptor technology. This experiment is a feasible use of existing assets - the external tank, observation and data collection facilities, launch facilities, and interceptor technology and tests planned for other programs.

  13. Proposal to upgrade the MIPP experiment

    Energy Technology Data Exchange (ETDEWEB)

    Isenhower, D.; Sadler, M.; Towell, R.; Watson, S. [Abilene Christian Univ., TX (United States); Peterson, R. J. [Univ. of Colorado, Boulder, CO (United States); Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gutbrod, H.; Peters, K. [GSI-Darmstadt (Germany); Feldman, G. [Harvard Univ., Cambridge, MA (United States); Torun, Y. [Illinois Inst. of Technology, Chicago, IL (United States); Messier, M. D.; Paley, J. [Indiana Univ., Bloomington, IN (United States)

    2006-09-01

    The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

  14. The 'OMITRON' and 'MODEL OMITRON' proposed experiments

    International Nuclear Information System (INIS)

    Sestero, A.

    1997-12-01

    In the present paper the main features of the OMITRON and MODEL OMITRON proposed high field tokamaks are illustrated. Of the two, OMITRON is an ambitious experiment, aimed at attaining plasma burning conditions. its key physics issues are discussed, and a comparison is carried out with corresponding physics features in ignition experiments such as IGNITOR and ITER. Chief asset and chief challenge - in both OMITRON and MODEL OMITRON is the conspicuous 20 Tesla toroidal field value on the plasma axis. The advanced features of engineering which consent such a reward in terms of toroidal magnet performance are discussed in convenient depth and detail. As for the small, propaedeutic device MODEL OMITRON among its goals one must rank the purpose of testing key engineering issues in vivo, which are vital for the larger and more expensive parent device. Besides that, however - as indicated by ad hoc performed scoping studies - the smaller machine is found capable also of a number of quite interesting physics investigations in its own right

  15. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  16. Spaces of interaction, places for experience

    CERN Document Server

    Benyon, David

    2014-01-01

    Spaces of Interaction, Places for Experience is a book about Human-Computer Interaction (HCI), interaction design (ID) and user experience (UX) in the age of ubiquitous computing. The book explores interaction and experience through the different spaces that contribute to interaction until it arrives at an understanding of the rich and complex places for experience that will be the focus of the next period for interaction design. The book begins by looking at the multilayered nature of interaction and UX-not just with new technologies, but with technologies that are embedded in the world. Peop

  17. Microgravity Experiment for Attitude Control of a Tethered Space Robot

    Science.gov (United States)

    Nohmi, Masahiro

    A tethered space robot, which is connected to a mother spacecraft through a peace of tether, is a new space system proposed in the previous work. The tethered subsystem is envisioned to be a multi-body system for a robot, whose attitude can be controlled under tether tension by its own link motion. This paper discusses about microgravity experiment for a tethered space robot. Design and mechanism of the experimental device, required for the proposed attitude control, were explained. Also, link motion control algorithm was designed for the experimental device. Characteristics of the proposed attitude control were confirmed by microgravity experiment using a drop shaft, which can provide high quality microgravity condition during 4.5s.

  18. Aesthetic experiences of designed organizational space

    NARCIS (Netherlands)

    van Marrewijk, A.H.

    2011-01-01

    The paper explores employees' aesthetic experiences of designed organisational space. These experiences are important because designs are incomplete until they are realised in action. However, one of the main issues in this is the difficulty to grasp employees' perceptions and judgements of spatial

  19. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  20. Fast critical experiment data for space reactors

    International Nuclear Information System (INIS)

    Collins, P.J.; McFarlane, H.F.; Olsen, D.N.; Atkinson, C.A.; Ross, J.R.

    1987-01-01

    Data from a number of previous critical experiments exist that are relevant to the design concepts being considered for SP-100 and MMW space reactors. Although substantial improvements in experiment techniques have since made some of the measured quantities somewhat suspect, the basic criticality data are still useful in most cases. However, the old experiments require recalculation with modern computational methods and nuclear cross section data before they can be applied to today's designs. Recently, we have calculated about 20 fast benchmark critical experiments with the latest ENDF/B data and modern transport codes. These calculations were undertaken as a part of the planning process for a new series of benchmark experiments aimed at supporting preliminary designs of SP-100 and MMW space reactors

  1. Crystalline beams: Theory, experiments, and proposals

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.

    1995-12-31

    Crystalline Beams are an ordered state of an ensemble of ions, circulating in a storage ring, with very small velocity fluctuations. They can be obtained from ordinary warm ion beams with the application of intense cooling techniques (stochastic, electron, laser). A phase transition occurs when sufficiently small velocity spreads are reached, freezing the particle-to-particle spacing in strings, Zigzags, and helices ... The properties and the feasibility of Crystalline Beams depend on the choice of the lattice of the Storage Ring. There are three issues closely related to the design of the Storage Ring; namely: the determination of Equilibrium Configurations, Confinement Conditions, and Stability Conditions. Of particular concern is the effect of the trajectory curvature and of the beam momentum spread, since they set the requirements on the amount of momentum cooling, on the focussing, and on the distribution of bending in the lattice of the storage ring. The practical demonstration of Crystalline Beams may create the basis for an advanced technology for particle accelerators, where the limitations due to Coulomb intrabeam scattering and space-charge forces would finally be brought under control, so that beams of ions, more dense than normal, can be achieved for a variety of new applications.

  2. Crystalline beams: Theory, experiments, and proposals

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    Crystalline Beams are an ordered state of an ensemble of ions, circulating in a storage ring, with very small velocity fluctuations. They can be obtained from ordinary warm ion beams with the application of intense cooling techniques (stochastic, electron, laser). A phase transition occurs when sufficiently small velocity spreads are reached, freezing the particle-to-particle spacing in strings, Zigzags, and helices ... The properties and the feasibility of Crystalline Beams depend on the choice of the lattice of the Storage Ring. There are three issues closely related to the design of the Storage Ring; namely: the determination of Equilibrium Configurations, Confinement Conditions, and Stability Conditions. Of particular concern is the effect of the trajectory curvature and of the beam momentum spread, since they set the requirements on the amount of momentum cooling, on the focussing, and on the distribution of bending in the lattice of the storage ring. The practical demonstration of Crystalline Beams may create the basis for an advanced technology for particle accelerators, where the limitations due to Coulomb intrabeam scattering and space-charge forces would finally be brought under control, so that beams of ions, more dense than normal, can be achieved for a variety of new applications

  3. Proposed Reactor Operating Experience Feedback System Development

    International Nuclear Information System (INIS)

    Ahn, Seung Hoon; Kim, Min Chul; Huh, Chang Wook; Lee, Durk Hun; Bae, Koo Hyun

    2006-01-01

    Most events occurring in nuclear power plants are not individually significant, and prevented from progressing to accident conditions by a series of barriers against core damage and radioactive releases. Significant events, if occur, are almost always a breach of these multiple barriers. As illustrated in the 'Swiss cheese' model, the individual layers of defense or 'cheese slices' have weakness or 'holes.' These weaknesses are inconstant, i.e., the holes are open or close at random. When by chance all the holes are aligned, a hazard causes the significant event of concern. Elements of low significant events, inattention to detail, time or economic pressure, uncorrected poor practices/habits, marginal maintenance and equipment care, etc., make holes in the layers of defense; some elements may make more holes in different layers, incurring more chances to be aligned. An effective reduction of the holes, therefore, is gained through better knowledge or awareness of increasing trends of the event elements, followed by appropriate actions. According to the Swiss cheese metaphor, attention to the Operating Experience (OE) feedback system, as opposed to the individual and to randomness, is drawn from a viewpoint of reactor safety

  4. he First Superconductivity Experiment in Space

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.

    1999-01-01

    One of the most promising applications of high Tc superconductors is in the field of satellite communications. In view of the rapidly increasing demand for satellite communication channels due to the formation of global networks of cellular phones, internet, etc., one needs to (develop more efficient ways of dividing the finite frequency band into more and more channels without paying for it with excessive interference or an increasingly large weight of conventional filters. Superconductive components can save an order of magnitude on the weight and volume of such filters, a very important factor in satellite design. Yet, up to now superconductors were never tested in space. We present the design and performance of the first such experiment to reach space. The experiment consists of a thin film HTSC device integrated with a miniature cryo cooler. It was launched into space in July 1998 aboard the Thatch's-II micro satellite. We will present data obtained from this experiment until the present time. Long term survivability of HTSC devices in space would be discussed

  5. On minimalism in architecture - space as experience

    Directory of Open Access Journals (Sweden)

    Vasilski Dragana

    2016-01-01

    Full Text Available Architecture has to be experienced to be understood. The complexity of the experience is seen through a better understanding of the relationship between objectivity (architecture and subjectivity (our life. Being physically, emotionally and psychologically aware of the space we occupy is an experience that could be described as being present, which is a sensation that is personal and difficult to explicitly describe. Research into experience through perception and emotion positions architecture within scientific fields, in particular psychological disciplines. Relying on the standpoints of Immanuel Kant, the paper considers the juxtaposition between (minimalism in architecture and philosophy on the topic of experience. Starting from the basic aspects of perception and representation of the world around us, a thesis is presented in which the notions of silence and light as experienced in minimalism (in architecture are considered as adequate counterparts to Kant’s factors of experience - the awareness of the objective order of events and the impossibility to perceive time itself. Through a case study we verify the starting hypothesis on minimalism (in architecture whereby space becomes an experience of how the world touches us.

  6. Photovoltaic array space power plus diagnostics experiment

    Science.gov (United States)

    Guidice, Donald A.

    1990-01-01

    The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.

  7. Recovery of In-Space Cubesat Experiments (RICE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ELORET Corporation, in collaboration with the Space Systems Design Laboratory of Georgia Institute of Technology, proposes developing and demonstrating a...

  8. Drinking in Space: The Capillary Beverage Experiment

    Science.gov (United States)

    Wollman, Andrew; Weislogel, Mark; Jenson, Ryan; Graf, John; Pettit, Donald; Kelly, Scott; Lindgren, Kjell; Yui, Kimiya

    2015-11-01

    A selection from as many as 50 different drinks including coffees, teas, and fruit smoothies are consumed daily by astronauts aboard the International Space Station. For practical reasons, the drinks are generally sipped through straws inserted in sealed bags. We present the performance of a special cup designed to allow the drinking operation in much the same manner as on earth, only with the role of gravity replaced by the combined effects of surface tension, wetting, and special container geometry. One can finally `smell the coffee.' Six so-called Space Cups are currently in orbit as part of the Capillary Beverage Experiment which aims to demonstrate specific passive control of poorly wetting aqueous capillary systems through a fun mealtime activity. The mathematical fluid mechanical design process with full numerical simulations is presented alongside experimental results acquired using a drop tower and low-g aircraft before complete characterization aboard the Space Station. Astronaut commentary is both humorous and informative, but the insightful experimental results of the potable space experiment testify to the prospects of new no-moving-parts capillary solutions for certain water-based life support operations aboard spacecraft.

  9. Space Environmental NanoSat Experiment (SENSE)

    Science.gov (United States)

    Kalamaroff, K. I.; Thompson, D. C.; Gentile, L. C.; Cooke, D. L.; Bonito, N.; La Tour, P.

    2012-12-01

    The Space Environmental NanoSat Experiment (SENSE) program is a rapid development effort of the USAF Space and Missiles Center Development Planning Directorate (SMC/XR) which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner. The three primary objectives for the SENSE mission are: 1) to develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations; 2) to mature CubeSat bus and sensor component technology readiness levels; and 3) to demonstrate the operational utility of CubeSat measurements by flowing validated, low-latency data into operational space weather models. SENSE consists of two 3-U CubeSats scheduled for launch in summer 2013. Both satellites are 3-axis stabilized with star cameras for attitude determination and are equipped with a Compact Total Electron Density Sensor (CTECS) to provide radio occultation measurements of total electron content and L-band scintillation. One satellite has a Cubesat Tiny Ionospheric Photometer (CTIP) monitoring 135.6 nm photons produced by the recombination of O+ ions and electrons. The other satellite has a Wind Ion Neutral Composite Suite (WINCS) to acquire simultaneous co-located, in situ measurements of atmospheric and ionospheric density, composition, temperature and winds/drifts. Mission data will be used to improve current and future space weather models and demonstrate the utility of data from CubeSats for operational weather requirements.

  10. Longevity of a Paramecium cell clone in space: Hypergravity experiments as a basis for microgravity experiments

    Science.gov (United States)

    Kato, Yuko; Mogami, Yoshihiro; Baba, Shoji A.

    We proposed a space experiment aboard International Space Station to explore the effects of microgravity on the longevity of a Paramecium cell clone. Earlier space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. In preparation of the space experiment, we assessed the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age. It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment supports the prediction that the clonal longevity of Paramecium under microgravity decreases. Effects of gravity on proliferation are discussed in terms of energetics of swimming during gravikinesis and gravitaxis of Paramecium.

  11. FCJ-133 The Scripted Spaces of Urban Ubiquitous Computing: The experience, poetics, and politics of public scripted space

    Directory of Open Access Journals (Sweden)

    Christian Ulrik Andersen

    2011-12-01

    Full Text Available This article proposes and introduces the concept of ‘scripted space’ as a new perspective on ubiquitous computing in urban environments. Drawing on urban history, computer games, and a workshop study of the city of Lund the article discusses the experience of digitally scripted spaces, and their relation to the history of public spaces. In conclusion, the article discusses the potential for employing scripted spaces as a reinvigoration of urban public space.

  12. Tourism Spaces: The New Experience Design

    Directory of Open Access Journals (Sweden)

    Sara Cipolletti

    2014-06-01

    Full Text Available The aim of this article is to offer a theoretical contribution to the organisation, design and significance of tourism spaces, at a time when tourist practices are experiencing both change and intensification. From an architectural perspective, the study seeks to understand the evolutionary link between holiday practices and spaces, interpreting tourism as a context of creative relations between people, aspects, things and the places in which practices take place.Based on this interpretation, the paper defines architectural and urban categories of tourism, briefly comparing various literature on tourist organisations. In the second part, through the examination of recent examples of tourist experiences, planning actions and their ability to generate new tourism landscapes are evaluated. For both places and tourist experiences, that which emerges and the fields of application involved constitute guidelines and development tools for a form of tourism design that is more knowledgeable about the encounter between tourists and residents, and more reliable given that it is founded on the distinctive features of territories. The study demonstrates that tourism spaces, if intended as contexts of creative relations between people, aspects, things and places in which practices take place, may now develop a certain potential that once again calls into question a series of much debated opposites, tourists - residents, free time - work time, holiday space - day-to-day space, attractive resources and their transformation into elements of tourism, which had otherwise previously been consolidated by the tourist phenomenon. In the end, tourism proves itself to be an imaginative impulse, which is capable of reinventing the qualities of places and successfully orientating urban events.

  13. Laser ignition application in a space experiment

    Science.gov (United States)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  14. Proposed advanced satellite applications utilizing space nuclear power systems

    Science.gov (United States)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  15. Aesthetic Experience Explained by the Affect-Space Framework

    Directory of Open Access Journals (Sweden)

    Emery Schubert

    2017-04-01

    Full Text Available A framework for organizing the semantic structure of aesthetic experience is proposed. The new framework is presented in an 'affect-space' and consists of three sets of dichotomous classifications: (1 internal locus (the felt experience versus external locus (the description of the object, (2 'affect-valence' — the attraction to (positive valence, e.g. preference, awe or repulsion from (negative valence, e.g. hatred, disgust the artwork/object — versus 'emotion-valence' — the character/contemplation of an emotion (happiness-an example of positive valence, sadness-an example of negative valence, and (3 deep versus shallow hedonic tone—e.g. 'awe' is deep, 'preference' is shallow. Deep hedonic tone is proposed as a better index of aesthetic experience (awe, being moved etc. than shallow hedonic tone (preference, pleasure, enjoyment. Deep, internal locus, affect-valence during the contemplation of an object amenable to an aesthetic judgement (beautiful, ugly etc. presents the necessary and sufficient conditions for an aesthetic experience. The framework allows future researchers to consider which aspects of an experience come closest to actual aesthetic experience from an empirical aesthetics perspective. It also highlights the limited value in grouping together so many aesthetic experiences under the rubric of emotion, such as aesthetic emotions, preference, basic emotions and so forth. Our framework paves the way for testing and further development of theory on aesthetic experience.

  16. WALES: water vapour lidar experiment in space

    Science.gov (United States)

    Guerin, F.; Pain, Th.; Palmade, J.-L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2017-11-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  17. Morse potential in DNA molecule – An experiment proposal

    Indian Academy of Sciences (India)

    belonging to different strands is modelled by a Morse potential energy. This potential depends on two parameters that ... DNA molecule; experiment proposal; helicoidal Peyrard-Bishop model; micromanipulative experiments. Published online: 27 July 2012 ... Hence, one single molecule can be mechanically manipulated ...

  18. Concept definition for space station technology development experiments. Experiment definition, task 2

    Science.gov (United States)

    1986-01-01

    The second task of a study with the overall objective of providing a conceptual definition of the Technology Development Mission Experiments proposed by LaRC on space station is discussed. During this task, the information (goals, objectives, and experiment functional description) assembled on a previous task was translated into the actual experiment definition. Although still of a preliminary nature, aspects such as: environment, sensors, data acquisition, communications, handling, control telemetry requirements, crew activities, etc., were addressed. Sketches, diagrams, block diagrams, and timeline analyses of crew activities are included where appropriate.

  19. Battery selection for Space Shuttle experiments

    Science.gov (United States)

    Francisco, David R.

    1993-04-01

    This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.

  20. The physics of space and time III: Classification of space-time experiments and the twin paradox

    OpenAIRE

    Field, J. H.

    2008-01-01

    A nomenclature for inertial frames and a notation for space and time coordinates is proposed to give an unambigous description of space-time experiments in special relativity. Of particular importance are the concepts of `base' and `travelling' frames and `primary' and `reciprocal' experiments. A detailed discussion of the twin paradox is presented. The physical basis of the differential aging effect is found to be a relativistic relative-velocity transformation relation, not, as hitherto sup...

  1. Commercial suborbital space tourism-proposal on passenger's medical selection

    Science.gov (United States)

    Kluge, Götz; Stern, Claudia; Trammer, Martin; Chaudhuri, Indra; Tuschy, Peter; Gerzer, Rupert

    2013-12-01

    Commercial human spaceflight has excellent economic and technical perspectives in the next decades. Passengers will be persons from a general population differing from culture, age, gender and health status. They all will have to withstand physical loads of spaceflight such as acceleration and deceleration forces, microgravity, vibration, noise and radiation. There is a necessity to mitigate all negative impacts on the passengers' health. Besides precautionary measures in construction and equipment, a diligent medical selection and pre-flight training is recommended. To ensure an easy and at the same time qualified selection procedure, it is necessary to define medical selection criteria and training methods. As experiences with suborbital spaceflight of private passengers are still few we recommend to implement in the beginning of this new era maximum safety standards. Having performed a satisfactory number of successful flights, some of the selection criteria and training sessions might be loosened or modified. This judicious approach is in the interest of the spaceflight participants as well as of the providing companies. As a guideline we propose a four step approach that allows a quick decision concerning the fitness of participants to fly as well as an intensive preparation of the passengers. For the first two steps positive experiences from medical screening and examination of professional pilots can be utilised. According to JAR-FCL 3 (Joint Aviation Requirements-Flight Crew Licensing, Chapter 3) a questionnaire with medical interview targeting the medical background of the respective person and including no-go criteria provides a first estimation for applicants and medical examiners whether there will be a chance to be accepted as a passenger. The second step of selection comprises the physical examination of the applicant adjusted to the professional pilot's examination procedure. As the physical challenges of the suborbital flight will exceed the impact

  2. Passive radiation shielding considerations for the proposed space elevator

    Science.gov (United States)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  3. Lidar In-Space Technology Experiment (LITE) L1

    Data.gov (United States)

    National Aeronautics and Space Administration — LITE_L1 data are LIDAR Vertical profile data along the orbital flight path of STS-64.Lidar In-Space Technology Experiment (LITE) used a three-wavelength (355 nm, 532...

  4. NASA physics and chemistry experiments in-space program

    Science.gov (United States)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  5. Calibration and application of medical particle accelerators to space radiation experiments

    International Nuclear Information System (INIS)

    Ryu, Kwangsun; Park, Miyoung; Chae, Jangsoo; Yoon, Sangpil; Shin, Dongho

    2012-01-01

    In this paper, we introduce radioisotope facilities and medical particle accelerators that can be applied to space radiation experiments and the experimental conditions required by the space radiation experiments. Space radiation experiments on the ground are critical in determining the lifetimes of satellites and in choosing or preparing the appropriate electrical parts to assure the designated mission lifetime. Before the completion of building the 100-MeV proton linear accelerator in Gyeongju, or even after the completion, the currently existing proton accelerators for medical purposes could suggest an alternative plan. We have performed experiments to calibrate medical proton beam accelerators to investigate whether the beam conditions are suitable for applications to space radiation experiments. Based on the calibration results, we propose reference beam operation conditions for space radiation experiments.

  6. Presence Experiences - the eventalisation of urban space

    DEFF Research Database (Denmark)

    Pløger, John

    2010-01-01

    ’ and Hans Martin Gumbrecht on ‘presence-events’, I focus on subcultural and subpolitical groups trying to capture urban commercial spaces and to reverse or reveal their symbolic meaning. Using the oppositional youth group Pirate Parties, I argue that it is exactly the eventalisation and the presence quality......Cultural events are, as part of an urban development strategy, about (symbolic) representations, but for the human beings participating in the event it may include acts of in/visibility (anonymity versus expressivity) and different articulations of meaning or subjectivity in space. A particular...... and virtual qualities of presence-event spaces and the eventalisation of urban space...

  7. A Proposal for the Common Safety Approach of Space Programs

    Science.gov (United States)

    Grimard, Max

    2002-01-01

    For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.

  8. Summary of Data Analysis of the YES2 Tethered SpaceMail Experiment

    NARCIS (Netherlands)

    Kruijff, M.; Van der Heide, E.J.; Ockels, W.J.; Gill, E.K.A.

    2008-01-01

    The 2nd Young Engineers' Satellite (YES2) is a 36 kg student-built experiment that piggybacked on the Foton-M3 microgravity platform in September 2007. YES2 intended to demonstrate tethered SpaceMail, a concept for frequent sample return originally proposed for the International Space Station (ISS).

  9. ISS SpaceCube Experiment – Mini

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of flight software for the Fabry-Perot Spectrometer (FPS) and the integration of the Autonomous On-board Processing for Sensor Systems (AOPSS) technology...

  10. ETSON proposal on the European operational experience feedback system

    International Nuclear Information System (INIS)

    Maqua, Michael; Bertrand, Remy; Gelder, Pieter de

    2007-01-01

    The new IAEA Safety Fundamentals states regarding the operating experience feedback: The feedback of operating experience from facilities and activities - and, where relevant, from elsewhere - is a key means of enhancing safety. Processes must be put in place for the feedback and analysis of operating experience, including initiating events, accident precursors, near misses, accidents and unauthorized acts, so that lessons may be learned, shared and acted upon. This presentation deals with the proposal of the ETSON (European TSO Network) to optimize the European operating experiences feedback (OEF). It is generally recognized that the efficiency of nuclear safety supervision by public authorities is based on two key requirements: - the existence of a competent authority at national level, benefiting from an appropriate legislative and regulatory basis, from adequate (quantitatively and qualitatively) human resources, particularly for inspection purposes, - the availability of resources devoted to highly specialised independent technical expertise, in order to provide competent authorities with pertinent technical opinions on: -- the safety files provided by operators, for the purpose of licensing corresponding activities, -- the exploitation for regulatory purposes of the operating experience feed back from licensed nuclear installations. There are two worldwide systems intended to learn lessons from experience: the WANO (World Association of Nuclear Operators) system established by the licensees with access restricted to operating organizations and the IRS system jointly operated by IAEA and OECD/NEA accessible to regulators and to some other users nominated by the regulators in their countries. The IRS itself is dedicated to the analysis of safety significant operating events. NEA/CNRA runs a permanent working group on operating experience (WGOE). WGOE provides among other things also generic reports on safety concerns related to operating experiences and

  11. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    Science.gov (United States)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  12. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  13. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  14. Hybrid Experience Space for Cultural Heritage Communication

    OpenAIRE

    Veirum, Niels Einar; Christensen, Mogens Fiil; Mayerhofer, Mikkel

    2006-01-01

    Cultural heritage institutions like the museums are challenged in the global experience society. On the one hand it is more important than ever to offer “authentic” and geographically rooted experiences at sites of historic glory and on the other hand the au-dience’s expectations are biased by daily use of experience products like computer-games, IMAX cinemas and theme parks featuring virtual reality installations. “It’s a question of stone-axe displays versus Disney-power installations” as o...

  15. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  16. In situ biodosimetric experiment for space applications.

    Science.gov (United States)

    Goldschmidt, Gergely; Kovaliczky, Eva; Szabó, József; Rontó, Györgyi; Bérces, Attila

    2012-06-01

    This paper presents the principles and application of DNA based biological UV dosimeters, as developed by Research Group for Biophysics (RGB). These dosimeters are used for assessing the biological hazard of living systems on the Earth's surface and in different waters (rivers, lakes, seas, etc.). The UV dosimetry system has also been used in the space. In dosimeters a bacterial virus, bacteriophage T7 and polycrystalline uracil thin layers have been used as biological detectors. On the Earth's surface the UV radiation induces dimer formation in phage T7 and in the uracil detector, which was evaluated by loss of viability of the phage particles and by the decrease of the characteristic optical density (OD) of uracil thin layers. Recently the development of human space activities has also increased the need to measure the biological effect of extraterrestrial solar radiation, too. The evaluation of the space samples occurred on ground, thus only the starting and the final state were taken into account. A new improved, automated method is presented below which makes data collection more efficient and also makes the dynamics of the process observable.

  17. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  18. The City's new hybrid experience spaces

    DEFF Research Database (Denmark)

    Andersson, Lasse; Kiib, Hans

    2007-01-01

    In a series of workshops in Danish cities during the last couple of years, we have been establishing new ways of working with a clear local perspective in the new global discourse on culture, creativity and urbanity - urban innovation and urban branding in what could be called the experience city...... serve as frameworks for traditional functions, while simultaneously taking on new roles, new meanings and new narratives. This article serves as the first tentative reflection on results from a workshop at the ‘Skanok 05'; a conference on the experience economy held in Aalborg, October 2005.In...

  19. Giving Children Space: A Phenomenological Exploration of Student Experiences in Space Science Inquiry

    Science.gov (United States)

    Horne, Christopher R.

    2011-01-01

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived…

  20. Hybrid Experience Space for Cultural Heritage Communication

    DEFF Research Database (Denmark)

    Veirum, Niels Einar; Christensen, Mogens Fiil; Mayerhofer, Mikkel

    2006-01-01

    by daily use of experience products like computer-games, IMAX cinemas and theme parks featuring virtual reality installations. “It’s a question of stone-axe displays versus Disney-power installations” as one of the involved museum professionals point it, “but we don’t want any of these possibilities...

  1. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Benage, John F. [Los Alamos National Laboratory; Albright, Brian J. [Los Alamos National Laboratory; Fernandez, Juan C. [Los Alamos National Laboratory

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL

  2. Frog experiment onboard space station Mir.

    Science.gov (United States)

    Izumi-Kurotani, A; Mogami, Y; Okuno, M; Yamashita, M

    1997-01-01

    Japanese tree frogs (Hyla japonica) showed unique postures and behavior during an 8-day flight to the Russian space station Mir. When floating in the air, the animals arched their back and extended their four limbs. This posture resembles that observed during jumping or parachuting of the animals on the ground. Frog sitting on a surface bent their neck backward sharply, did not fold their hind limbs completely, and pressed their abdomen against the substrate. They walked backwards in this posture. The typical posture resembles that adopted during the emetic behavior process on the ground, although the posture in space lasts much longer. The possible mechanism of induction of this unique posture in orbit is discussed. Frogs in this posture might be in an emetic state, possibly due to motion sickness. Response behavior to some stimuli was observed in orbit. Body color change in response to the background color appeared to be delayed or slowed down. Response behavior to other stimuli showed little change as long as the animal maintained contact with a substrate. Once it left the surface, the floating frog could not control its movements so as to provide coordinated motility for locomotion and orientation. Adaptation to microgravity was observed in the landing behavior after jumping. Readaptation of the frogs to the Earth environment took place within a few hours after return. Postflight histological and biochemical analysis of organs and tissues showed some changes after the 8-day spaceflight. Weakening and density loss in vertebrae was noted. The beta-adrenoreceptor activity of the gastrocnemius was natriuretic decreased. Skin collagen and liver protein synthesis were lowered. The distribution of the atrial factor-like peptides in the brain was changed.

  3. Overview of Materials International Space Station Experiment 7B

    Science.gov (United States)

    Jaworske, Donald A.; Siamidis, John

    2009-01-01

    Materials International Space Station Experiment 7B (MISSE 7B) is the most recent in a series of experiments flown on the exterior of International Space Station for the purpose of determining the durability of materials and components in the space environment. A collaborative effort among the Department of Defense, the National Aeronautics and Space Administration, industry, and academia, MISSE 7B will be flying a number of NASA experiments designed to gain knowledge in the area of space environmental effects to mitigate risk for exploration missions. Consisting of trays called Passive Experiment Containers, the suitcase sized payload opens on hinges and allows active and passive experiments contained within to be exposed to the ram and wake or zenith and nadir directions in low Earth orbit, in essence, providing a test bed for atomic oxygen exposure, ultraviolet radiation exposure, charged particle radiation exposure, and thermal cycling. New for MISSE 7B is the ability to monitor experiments actively, with data sent back to Earth via International Space Station communications. NASA?s active and passive experiments cover a range of interest for the Agency. Materials relevant to the Constellation Program include: solar array materials, seal materials, and thermal protection system materials. Materials relevant to the Exploration Technology Development Program include: fabrics for spacesuits, materials for lunar dust mitigation, and new thermal control coatings. Sensors and components on MISSE 7B include: atomic oxygen fluence monitors, ultraviolet radiation sensors, and electro-optical components. In addition, fundamental space environmental durability science experiments are being flown to gather atomic oxygen erosion data and thin film polymer mechanical and optical property data relevant to lunar lander insulation and the James Web Space Telescope. This paper will present an overview of the NASA experiments to be flown on MISSE 7B, along with a summary of the

  4. Structural Design and Analysis of a Rigidizable Space Shuttle Experiment

    National Research Council Canada - National Science Library

    Holstein

    2004-01-01

    .... Once in space, the experiment will inflate and rigidize three composite structures and perform a vibration analysis on each by exciting the tubes using piezoelectric patches and collecting data via an accelerometer...

  5. MESSAGE 2 space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid agar rich media was sent to the ISS in October 2003 (MESSAGE-part 2 experiment). After 10 days flight R. rubrum cultures returned...

  6. Software Acquisition Best Practices: Experiences From the Space Systems Domain

    National Research Council Canada - National Science Library

    Adams, R

    2004-01-01

    This report describes a comprehensive set of software acquisition best practices that the Software Acquisition MOlE research team has identified based on their experience with numerous space programs over many years...

  7. Students' Experience of University Space: An Exploratory Study

    Science.gov (United States)

    Cox, Andrew M.

    2011-01-01

    The last decade has seen a wave of new building across British universities, so that it would appear that despite the virtualization discourses around higher education, space still matters in learning. Yet studies of student experience of the physical space of the university are rather lacking. This paper explores the response of one group of…

  8. Robotic servicing system for space material experiment

    Science.gov (United States)

    Yamawaki, Toshihiko; Shimoji, Haruhiko; Abe, Toshio

    1994-10-01

    A containerless image furnace with an electrostatic positioning device has been developed as one of the material experiment facilities on the Japanese experimental module (JEM). It is characterized by heating/melting/cooling the sample whose position is kept without any contacts by actively controlled electrostatic force exerted between the sample and a set of electrodes. The experiment using the image furnace requires various servicing operations. We have been developing a robotic servicing system with an internal robot accommodated in the rack as an alternative to the crew. It aims to reduce the load on the crew by automating regular tasks and to increase the flexibility applicable to simple irregular tasks by introducing a remote teleoperation scheme. The present robot has poor capability to replace the crew. In order to compensate it, introducing of the concept of the robot friendliness and improving the controllability of the teleoperation by the ground operator aids are essential. In this paper, we identify the tasks to be performed by the robotic servicing system and discuss the way to compensate the capability of the robot. In addition we describe the evaluation tests using an experimental model.

  9. The Colorado Student Space Weather Experiment : A CubeSat for Space Physics

    Science.gov (United States)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Turner, Drew; Hoxie, V.; Kohnert, Rick; Batiste, Susan

    Energetic particles, electrons and protons either directly associated with solar flares or trapped in the terrestrial radiation belt, have a profound space weather impact. A National Science Foundation supported 3U CubeSat mission with a single instrument, Relativistic Electrons and Proton Telescope integrated little experiment (REPTile), is proposed to address fundamental scientific questions relating to these high energy particles. Of key importance are the relation-ship between solar flares and energetic particles and the acceleration and loss mechanism of outer radiation belt electrons. REPTile, operating in a highly inclined low earth orbit, will measure differential fluxes of relativistic electrons in the energy range of 0.5-3.5 MeV and pro-tons in 10-40 MeV. The Colorado Student Space Weather Experiment cubesat will be designed, integrated and testing by students at the University of Colorado under the oversight of pro-fessional engineers with the Laboratory of Atmospheric and Space Physics who have extensive space hardware experience. Our design philosophy is to use commercially off the shelf (COTS) parts where available and only engage in detailed designed where COTS parts cannot meet the system needs. The top level science requirements for the mission have driven the system and subsystem level performance requirements and the specific design choices such as a passive magnetic attitude system and instrument design. In this paper we will present details of the CSSWE design and management approach. Specifically we will discuss the top level science requirements for the mission and show that these measurements are novel and will address open questions in the scientific community. The overall system architecture resulting from a flow-down of these requirements will be presented with a focus on the novel aspects of the system including the instrument design. Finally we will discuss how this project is organized and man-aged as part of the Department of

  10. New space processing experiments for the Skylab missions.

    Science.gov (United States)

    Bredt, J. H.

    1972-01-01

    The M512 Materials Processing Facility, which is the main item of equipment for the Skylab space manufacturing experiments is described. It is basically an electron-beam welding apparatus, consisting of a battery power supply, a 20-kV electron beam source, and a spherical 40-cm-diam vacuum chamber. It will be used to perform the M551 Metals Melting Experiment, the M552 Exothermic Brazing Experiment, the M553 Sphere Forming Experiment, the M554 Composite Casting Experiment, the M555 Gallium Arsenide Crystal Growth Experiment, the M561 Whisker-Reinforced Composites Experiment, the M562 Indium Antimonide Crystal Growth, Experiment, the M563 Mixed III-V Crystal Growth Experiment, the M564 Alkali Halide Eutectics Experiment, the M565 Silver Grids Melted in Space Experiment, and the M566 Copper-Aluminum Eutectic Experiment. Three apparatus systems designed to broaden the technical scope of the experiments and to gain experience with new experimental techniques are described. These are an electrophoretic separator, an electromagnetic levitation system, and a versatile electric furnace with an electronic control system.

  11. Laboratory science with space data accessing and using space-experiment data

    CERN Document Server

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  12. Lead-Free Experiment in a Space Environment

    Science.gov (United States)

    Blanche, J. F.; Strickland, S. M.

    2012-01-01

    This Technical Memorandum addresses the Lead-Free Technology Experiment in Space Environment that flew as part of the seventh Materials International Space Station Experiment outside the International Space Station for approximately 18 months. Its intent was to provide data on the performance of lead-free electronics in an actual space environment. Its postflight condition is compared to the preflight condition as well as to the condition of an identical package operating in parallel in the laboratory. Some tin whisker growth was seen on a flight board but the whiskers were few and short. There were no solder joint failures, no tin pest formation, and no significant intermetallic compound formation or growth on either the flight or ground units.

  13. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  14. Which Space? Whose Space? An Experience in Involving Students and Teachers in Space Design

    Science.gov (United States)

    Casanova, Diogo; Di Napoli, Roberto; Leijon, Marie

    2018-01-01

    To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the…

  15. Space Station Freedom power - A reliability, availability, and maintainability assessment of the proposed Space Station Freedom electric power system

    Science.gov (United States)

    Turnquist, S. R.; Twombly, M.; Hoffman, D.

    1989-01-01

    A preliminary reliability, availability, and maintainability (RAM) analysis of the proposed Space Station Freedom electric power system (EPS) was performed using the unit reliability, availability, and maintainability (UNIRAM) analysis methodology. Orbital replacement units (ORUs) having the most significant impact on EPS availability measures were identified. Also, the sensitivity of the EPS to variations in ORU RAM data was evaluated for each ORU. Estimates were made of average EPS power output levels and availability of power to the core area of the space station. The results of assessments of the availability of EPS power and power to load distribution points in the space stations are given. Some highlights of continuing studies being performed to understand EPS availability considerations are presented.

  16. The reach of the ATLAS experiment in SUSY parameter space

    CERN Document Server

    Dietrich, Janet

    2009-01-01

    Already with very first data, the ATLAS experiment should be sensitive to a SUSY signal well beyond the regions explored by the Tevatron. We present a detailed study of the ATLAS discovery reach in the parameter space for various SUSY models. The expected uncertainties on the background estimates are taken ito account.

  17. Students' Experience of Problem-Based Learning in Virtual Space

    Science.gov (United States)

    Gibbings, Peter; Lidstone, John; Bruce, Christine

    2015-01-01

    This paper reports outcomes of a study focused on discovering qualitatively different ways students experience problem-based learning in virtual space. A well-accepted and documented qualitative research method was adopted for this study. Five qualitatively different conceptions are described, each revealing characteristics of increasingly complex…

  18. Mission Possible: BioMedical Experiments on the Space Shuttle

    Science.gov (United States)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical

  19. Proposal on data collection for an international earthquake experience data

    International Nuclear Information System (INIS)

    Masopust, R.

    2001-01-01

    Earthquake experience data was recognized as an efficient basis for verification of seismic adequacy of equipment installed on NPPs. This paper is meant to initiate a database setup in order to use the seismic experience to establish the generic seismic resistance of NPPs equipment applicable namely to the Middle and East European countries. Such earthquake experience database should be then compared to the already existing and well-known SQUG-GIP database. To set up such an operational earthquake database will require an important amount of effort. It must be understood that this goal can be achieved only based on a long term permanent activities and coordinated cooperation of various institutions. (author)

  20. 76 FR 31356 - Notice of Proposed Information Collection for Public Comment; Technical Assistance Experience...

    Science.gov (United States)

    2011-05-31

    ... Information Collection for Public Comment; Technical Assistance Experience, Expertise, and Awards Received.... This Notice Also Lists the Following Information: Title of Proposal: Technical Assistance Experience... Assistance Experience, Expertise, and Awards Received Matrices will allow the Office of Special Needs...

  1. BIOSPEX: Biological space experiments, a compendium of life sciences experiments carried on US spacecraft

    Science.gov (United States)

    Anderson, M.; Rummel, J. A. (Editor); Deutsch, S. (Editor)

    1979-01-01

    United States space life science experiments, encompassing 27 years of experience beginning with sounding rocket flights carrying primates (1948) to the last U.S. spaceflight, the joint US/USSR Apollo Test Project (1975), are presented. The information for each experiment includes Principal Investigators, the program and mission on which it was flown, the specimens used, the objectives, protocol, equipment, results, conclusions, and bibliographic reference citations for publications derived from each experiment.

  2. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  3. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    Science.gov (United States)

    Wilson, Thomas L.; Wefel, John P.

    1999-06-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  4. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  5. Setting priorities for space research: An experiment in methodology

    Science.gov (United States)

    1995-01-01

    In 1989, the Space Studies Board created the Task Group on Priorities in Space Research to determine whether scientists should take a role in recommending priorities for long-term space research initiatives and, if so, to analyze the priority-setting problem in this context and develop a method by which such priorities could be established. After answering the first question in the affirmative in a previous report, the task group set out to accomplish the second task. The basic assumption in developing a priority-setting process is that a reasoned and structured approach for ordering competing initiatives will yield better results than other ways of proceeding. The task group proceeded from the principle that the central criterion for evaluating a research initiative must be its scientific merit -- the value of the initiative to the proposing discipline and to science generally. The group developed a two-stage methodology for priority setting and constructed a procedure and format to support the methodology. The first of two instruments developed was a standard format for structuring proposals for space research initiatives. The second instrument was a formal, semiquantitative appraisal procedure for evaluating competing proposals. This report makes available complete templates for the methodology, including the advocacy statement and evaluation forms, as well as an 11-step schema for a priority-setting process. From the beginning of its work, the task group was mindful that the issue of priority setting increasingly pervades all of federally supported science and that its work would have implications extending beyond space research. Thus, although the present report makes no recommendations for action by NASA or other government agencies, it provides the results of the task group's work for the use of others who may study priority-setting procedures or take up the challenge of implementing them in the future.

  6. Permafrost in Space: first results of experiment "EXOBIOFROST"

    Science.gov (United States)

    Spirina, Elena; Rivkina, Elizaveta; Shmakova, Lubov; Mironov, Vasiliy; Shatilovich, Anastasiya

    Experiment "EXOBIOFROST" was conducted as part of BION-M project of Russian Space Agency. We investigated a response of microbial complexes, including the pure cultures of microorganisms isolated from permafrost and the initial permafrost samples of different origin and age on space conditions. Duration of experiment was 1 month, from April, 19 to May, 19, 2013. All samples were investigated before and after the space flight. For the experiment we selected five samples of permafrost soil from Kolyma-Indigirka Lowland and Antarctica, and also the cultures of microorganisms: Exiguobacterium sibiricum - gram negative bacteria; Colpoda Steinii and Exocolpoda augustini — ciliates, and two strains of Acanthamoeba castelliane. Studies have revealed differences in structure and composition of microbial communities in control and in post-flight samples. All Arctic samples were characterized by a significant, 3-5 orders of magnitude, increase in the number of microorganisms compared to the control samples. However, there is a marked reduction in the amount of extracted DNA in post-flight permafrost samples. Post-flight analysis of ciliates, Colpoda Steinii and Exocolpoda augustini, revealed that 70-97% of cysts are damaged. In general, the primary post-flight analysis and a comparison with the control samples showed that the modern tundra colpoda more resistant to space conditions than they from the ancient permafrost sediments and strain of Colpoda steinii more resistant than the strain Exocolpoda augustini. Post-flight analysis of Acanthamoeba castelliane showed presence of viable cysts capable of excystation. Thus, we can conclude that the experiment "EXOBIOFROST" conducted in open space on the apparatus BION-M No.1 does not prove fatal to permafrost microorganisms.

  7. Proposal to Participate in J-Parc KL Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Myron [Univ. of Michigan, Ann Arbor, MI (United States); Tecchio, Monica [Univ. of Michigan, Ann Arbor, MI (United States)

    2013-02-03

    During the previous grant period we have been working on the J-PARC KL E14 (KOTO) experiment with the goal to discover and measure the rate of the rare decay neutral kaons to a pion and two neutrinos. This CP-violating flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement to the branching ratio, which in the Standard Model predicted to be about 2.80 x 10-11. The experiment is expected to observe 100 events at the Standard Model branching ratio for a 10% measurement. The experiment is a follow-up to E391a at KEK and has been approved as experiment E14 at J-PARC. The main barrel vacuum vessel, the charged veto detectors, and the main barrel photon veto system will be reused from E391a. The main calorimeter has been replaced with Cesium Iodide crystals that are both smaller to provide improved shower reconstruction and longer to prevent energy leakage out of the back of the calorimeter. New trigger and data acquisitions electronics will be used.

  8. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  9. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  10. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  11. The AMS experiment: a magnetic spectrometer in space

    Science.gov (United States)

    Casaus, J.

    2003-01-01

    The Alpha Magnetic Spectrometer (AMS) on the International Space Station (ISS) is the first large acceptance magnetic spectrometer to perform high statistics studies of cosmic rays in space. The experiment will address fundamental questions regarding primary antimatter and dark matter contents of the universe. In addition, the precision studies of cosmic rays in a wide energy range will result in a greatly improved understanding of the cosmic ray propagation in our galaxy. A prototype of the final detector was flown on the space shuttle Discovery in June 1998. The detector components are described and the results obtained on the recorded sample are presented. The final version of the detector will be placed on the ISS in 2005 for a 3-year exposure. The detector upgrades are presented and the sensitivity of the setup is outlined.

  12. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  13. CCSDS telemetry systems experience at the Goddard Space Flight Center

    Science.gov (United States)

    Carper, Richard D.; Stallings, William H., III

    1990-01-01

    NASA Goddard Space Flight Center (GSFC) designs, builds, manages, and operates science and applications spacecraft in near-earth orbit, and provides data capture, data processing, and flight control services for these spacecraft. In addition, GSFC has the responsibility of providing space-ground and ground-ground communications for near-earth orbiting spacecraft, including those of the manned spaceflight programs. The goal of reducing both the developmental and operating costs of the end-to-end information system has led the GSFC to support and participate in the standardization activities of the Consultative Committee for Space Data Systems (CCSDS), including those for packet telemetry. The environment in which such systems function is described, and the GSFC experience with CCSDS packet telemetry in the context of the Gamma-Ray Observatory project is discussed.

  14. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  15. Report of space experiment project, 'Rad Gene', performed in the International Space Station Kibo

    International Nuclear Information System (INIS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nagamatsu, Aiko

    2010-01-01

    This report summarizes results of the project in the title adopted by Japan Aerospace Exploration Agency (JAXA) (in 2000) aiming to elucidate the biological effect of space environment, and contains 3 major parts of the process of the experiment, and of findings by analysis after flight and in radioadaptive response. The process for the experiment includes training of the experimenter crew (Dr. S. Magnus) in JAXA, preparation of samples (frozen cells with normal and mutated p53 genes derived from human lymphoblast TK6) and their transfer to the Space Shuttle Endeavour STS-126 launched on Nov. 15, 2008 (Japanese time) for cell culturing in Feb., 2009. Analyses after flight back to the Kennedy Space Center on Mar. 29, 2009, done on the ground in Japan thereafter include the physical evaluation, confirmation of DNA damage, and phenotypic expression with DNA- and protein-arrays (genes induced for expression of p53-related phenotypes in those cells which were stored frozen in the space, thawed on the ground and then cultured, genes induced for expressing the phenotypes and p53-related proteins expressed in cells cultured in space). Physically, total absorbed dose and dose equivalent are found to be respectively 43.5 mGy and 71.2 mSv (0.5 mSv/day). Interestingly, the biologically estimated dose by DNA-double strand breaks detected by γH2AX staining, 94.5 mSv (0.7 mSv/day), in living, frozen cells in space, is close to the above physical dose. Expression experiments of p53-related phenotypes have revealed that expression of 750 or more genes in 41,000 genes in the array is changed: enhanced or suppressed by space radiation, micro-gravity and/or their mixed effects in space environment. In 642 protein antibodies in the array, 2 proteins are found enhanced and 8, suppressed whereas heat-shock protein is unchanged. Radioadaptive response is the acquisition of radio-resistance to acute exposure by previous irradiation of small dose (window width 20-100 mSv) in normal p53

  16. A General Purpose Experiment Controller for low cost Space Application

    Science.gov (United States)

    Guzman-Garcia, D.; Rowland, D. E.; Uribe, P.; Nieves-Chinchilla, T.

    2012-12-01

    Space activities are very expensive and include a high degree of risk. Nowadays, CubeSat missions represent a fast and inexpensive way to conduct scientific space research. These platforms are less expensive to develop and build than conventional satellites. There are ample demonstration that these platforms are well suited for a wide range of science missions in different fields, such as astrobiology, astronomy, atmospheric science, space weather and biology. This paper presents a hybrid "processor in an Field Programmable Gate Array (FPGA)" experiment/spacecraft controller for Cubesat missions. The system has two objectives, first is to obtain a multipurpose and easily customizable system aimed at processing the data from the widest kind of instruments and second, to provide the system with the highest processing capabilities in order to be able to perform complex onboard algorithms. Due to the versatility of the system and its reduced dimensions, it can be employed in different space platforms. The system is envisioned to be employed for the first time as the smart radio receiver for the upcoming NASA FireStation instrument. It is one of four experiments manifested to fly on an experiment pallet the U.S Department of Defense plans to deploy on the International Space Station in 2013. FireStation will continue analyzing the link between the Lightning and the Terrestrial Gamma Rays initiated by the FireFly Cubesat. The system is responsible for the management of a set of small Heliophysics instrumentats, including a photometer, magnetometer, and electric and magnetic field antennas. A description of the system architecture and its main features are presented. The main functional and performance tests during the integration and calibration phase of the instruments are also discussed.

  17. Proposal of a growth chamber for growing Super-Dwarf Rice in Space Agriculture

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Tsukamoto, Koya; Yamashita, Youichirou; Hirai, Takehiro

    Space agriculture needs to be considered to supply food for space crew who stay in space over an extended time period. So far crops such as wheat, onion, oat, pea and lettuce grew to explore the possibility of space agriculture. Although rice is a staple food for most of the world, research on rice cultivation in space has not been done much. Rice grains are nutrient-rich with carbohydrate, protein and dietary fiber. Moreover, rice is a high yield crop and harvested grains have a long shelf life. However, the plant height of standard rice cultivars is relatively long, requiring much space. In addition, rice plants require higher light intensities for greater yield. For these reasons, it is difficult to establish facilities for rice culture in a limited space with a low cost. We propose to employee a super-dwarf cultivar and a small growth chamber with a new type of LEDs. The super-dwarf rice is a short-grain japonica variety and the plant height is approximately 20 cm that is one-fifth as tall as standard cultivars. The LED light used as a light source for this study can provide full spectrum of 380 nm to 750 nm. Air temperature and humidity were controlled by a Peltier device equipped in the chamber. The characteristics of the new type of LEDs and other equipments of the chamber and the ground based performance of super-dwarf rice plants grown in the chamber will be reported.

  18. The Architectonic Experience of Body and Space in Augmented Interiors

    Directory of Open Access Journals (Sweden)

    Isabella Pasqualini

    2018-04-01

    Full Text Available The environment shapes our experience of space in constant interaction with the body. Architectonic interiors amplify the perception of space through the bodily senses; an effect also known as embodiment. The interaction of the bodily senses with the space surrounding the body can be tested experimentally through the manipulation of multisensory stimulation and measured via a range of behaviors related to bodily self-consciousness. Many studies have used Virtual Reality to show that visuotactile conflicts mediated via a virtual body or avatar can disrupt the unified subjective experience of the body and self. In the full-body illusion paradigm, participants feel as if the avatar was their body (ownership, self-identification and they shift their center of awareness toward the position of the avatar (self-location. However, the influence of non-bodily spatial cues around the body on embodiment remains unclear, and data about the impact of architectonic space on human perception and self-conscious states are sparse. We placed participants into a Virtual Reality arena, where large and narrow virtual interiors were displayed with and without an avatar. We then applied synchronous or asynchronous visuotactile strokes to the back of the participants and avatar, or, to the front wall of the void interiors. During conditions of illusory self-identification with the avatar, participants reported sensations of containment, drift, and touch with the architectonic environment. The absence of the avatar suppressed such feelings, yet, in the large space, we found an effect of continuity between the physical and the virtual interior depending on the full-body illusion. We discuss subjective feelings evoked by architecture and compare the full-body illusion in augmented interiors to architectonic embodiment. A relevant outcome of this study is the potential to dissociate the egocentric, first-person view from the physical point of view through augmented

  19. Deep space propagation experiments at Ka-band

    Science.gov (United States)

    Butman, Stanley A.

    1990-01-01

    Propagation experiments as essential components of the general plan to develop an operational deep space telecommunications and navigation capability at Ka-band (32 to 35 GHz) by the end of the 20th century are discussed. Significant benefits of Ka-band over the current deep space standard X-band (8.4 GHz) are an improvement of 4 to 10 dB in telemetry capacity and a similar increase in radio navigation accuracy. Propagation experiments are planned on the Mars Observer Mission in 1992 in preparation for the Cassini Mission to Saturn in 1996, which will use Ka-band in the search for gravity waves as well as to enhance telemetry and navigation at Saturn in 2002. Subsequent uses of Ka-band are planned for the Solar Probe Mission and the Mars Program.

  20. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine

    2016-01-01

    BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess....... physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. METHODS: The study builds on ethnographic fieldwork in a public school in Denmark...... to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. RESULTS: An analysis of the least physically active children's "lived experiences" of space, body, time...

  1. Short-range inverse-square law experiment in space

    Science.gov (United States)

    Strayer, D.; Paik, H. J.; Moody, M. V.

    2002-01-01

    The objective of ISLES (Inverse-Square Law Experiment in Space) is to perform a null test ofNewton's law on the ISS with a resolution of one part in lo5 at ranges from 100 pm to 1 mm. ISLES will be sensitive enough to detect axions with the strongest allowed coupling and to test the string-theory prediction with R z 5 pm.

  2. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  3. Multinational Experiment 7. Space: Dependencies, Vulnerabilities and Threats

    Science.gov (United States)

    2012-01-01

    attack. b. Electronic attack ( LASER dazzle , radio frequency jamming, EMP). 4-2 Multinational Experiment 7 Vulnerabilities, Hazards and Threats c...their size, few launcher/payload combinations pose problems for radar detection. Ground-based optical and laser -based systems can also provide...Data collection may be conducted using a range of sensors including ground optical (including laser ranging and imaging) and radar as well as space

  4. Flight Experience from Space Photovoltaic Concentrator Arrays and its Implication on Terrestrial Concentrator Systems

    Science.gov (United States)

    Piszczor, Michael F., Jr.

    2003-01-01

    Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.

  5. "Smart" Magnetic Fluids Experiment Operated on the International Space Station

    Science.gov (United States)

    Agui, Juan H.; Lekan, Jack F.

    2004-01-01

    InSPACE is a microgravity fluid physics experiment that was operated on the International Space Station (ISS) in the Microgravity Science Glovebox from late March 2003 through early July 2003. (InSPACE is an acronym for Investigating the Structure of Paramagnetic Aggregates From Colloidal Emulsions.) The purpose of the experiment is to obtain fundamental data of the complex properties of an exciting class of smart materials termed magnetorheological (MR) fluids. MR fluids are suspensions, or colloids, comprised of small (micrometer-sized) superparamagnetic particles in a nonmagnetic medium. Colloids are suspensions of very small particles suspended in a liquid. (Examples of other colloids are blood, milk, and paint.) These controllable fluids can quickly transition into a nearly solid state when exposed to a magnetic field and return to their original liquid state when the magnetic field is removed. Controlling the strength of the magnetic field can control the relative stiffness of these fluids. MR fluids can be used to improve or develop new seat suspensions, robotics, clutches, airplane landing gear, and vibration damping systems. The principal investigator for InSPACE is Professor Alice P. Gast of the Massachusetts Institute of Technology (MIT). The InSPACE hardware was developed at the NASA Glenn Research Center. The InSPACE samples were delivered to the ISS in November 2002, on the Space Shuttle Endeavour, on Space Station Utilization Flight UF-2/STS113. Operations began on March 31, 2003, with the processing of three different particle size samples at multiple test parameters. This investigation focused on determining the structural organization of MR colloidal aggregates when exposed to a pulsing magnetic field. On Earth, the aggregates take the shape of footballs with spiky tips. This characteristic shape may be influenced by the pull of gravity, which causes most particles initially suspended in the fluid to sediment, (i.e., settle and collect at the

  6. Estimating health state utility values from discrete choice experiments--a QALY space model approach.

    Science.gov (United States)

    Gu, Yuanyuan; Norman, Richard; Viney, Rosalie

    2014-09-01

    Using discrete choice experiments (DCEs) to estimate health state utility values has become an important alternative to the conventional methods of Time Trade-Off and Standard Gamble. Studies using DCEs have typically used the conditional logit to estimate the underlying utility function. The conditional logit is known for several limitations. In this paper, we propose two types of models based on the mixed logit: one using preference space and the other using quality-adjusted life year (QALY) space, a concept adapted from the willingness-to-pay literature. These methods are applied to a dataset collected using the EQ-5D. The results showcase the advantages of using QALY space and demonstrate that the preferred QALY space model provides lower estimates of the utility values than the conditional logit, with the divergence increasing with worsening health states. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Experience with a proposed teleradiology system for digital mammography

    Science.gov (United States)

    Saulnier, Emilie T.; Mitchell, Robert J.; Abdel-Malek, Aiman A.; Dudding, Kathryn E.

    1995-05-01

    Teleradiology offers significant improvement in efficiency and effectiveness over current practices in traditional film/screen-based diagnosis. In the context of digital mammography, the increasing number of women who need to be screened for breast cancer, including those in remote rural regions, make the advantages of teleradiology especially attractive for digital mammography. At the same time, the size and resolution of digital mammograms are among the most challenging to support in a cost effective teleradiology system. This paper describes a teleradiology architecture developed for use with digital mammography by GE Corporate Research and Development in collaboration with Massachusetts General Hospital under National Cancer Institute (NCI/NIH) grant number R01 CA60246-01. Experience with a testbed prototype is described. The telemammography architecture is intended to consist of a main mammography diagnostic site serving several remote screening sites. As patient exams become available, they are forwarded by an image server to the diagnostic site over a WAN communications link. A radiologist at the diagnostic site views a patient exam as it arrives, interprets it, and then relays a report back to the technician at the remote site. A secondary future scenario consists of mobile units which forward images to a remote site, which then forwards them to the main diagnostic site. The testbed architecture is based on the Digital Imaging and Communications in Medicine (DICOM) standard, created by the American College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA). A specification of vendor-independent data formats and data transfer services for digital medical images, DICOM specifies a protocol suite starting at the application layer downward, including the TCP/IP layers. The current DICOM definition does not provide an information element that is specifically tailored to mammography, so we have used the DICOM secondary capture data format

  8. Managing a duopolistic water market with confirmed proposals. An experiment

    Directory of Open Access Journals (Sweden)

    García-Gallego, Aurora

    2012-03-01

    Full Text Available We report results from experimental water markets in which owners of two different sources of water supply water to households and farmers. The final water quality consumed by each type of consumer is determined through mixing of qualities from two different resources. We compare the standard duopolistic market structure with an alternative market clearing mechanism inspired by games with confirmed strategies (which have been shown to yield collusive outcomes. As in the static case, complex dynamic markets operating under a confirmed proposals protocol yield less efficient outcomes because coordination among independent suppliers has the usual effects of restricting output and increasing prices to the users. Our results suggest that, when market mechanisms are used to allocate water to its users, the rule of thumb used by competition authorities can also serve as a guide towards water market regulation.

    Se presentan resultados de un experimento con mercados acuíferos en el que los propietarios de agua de distinta calidad la ofrecen a hogares y agricultores. La calidad finalmente consumida por cada tipo de consumidor se determina a partir de una mezcla de las dos calidades. Se compara el duopolio estándar con una forma alternativa de cerrar el mercado que está inspirada en los juegos con propuestas confirmadas, que consiguen resultados relativamente más colusivos. Como en el caso estático, los mercados dinámicos y complejos que operan bajo un protocolo de propuestas confirmadas son menos eficientes porque la coordinación entre oferentes independientes tiene los efectos de restringir el output y de provocar un crecimiento de los precios. Nuestros resultados sugieren que cuando los mecanismos de mercado se utilizan para distribuir el agua a sus usuarios, la regla utilizada por parte de las autoridades de la competencia puede servir también como guía para la regulación de los mercados acuíferos.

  9. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Science.gov (United States)

    Jerath, Ravinder; Crawford, Molly W.; Barnes, Vernon A.

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system. PMID:26379573

  10. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience

    Directory of Open Access Journals (Sweden)

    Ravinder eJerath

    2015-08-01

    Full Text Available The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information is filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  11. A unified 3D default space consciousness model combining neurological and physiological processes that underlie conscious experience.

    Science.gov (United States)

    Jerath, Ravinder; Crawford, Molly W; Barnes, Vernon A

    2015-01-01

    The Global Workspace Theory and Information Integration Theory are two of the most currently accepted consciousness models; however, these models do not address many aspects of conscious experience. We compare these models to our previously proposed consciousness model in which the thalamus fills-in processed sensory information from corticothalamic feedback loops within a proposed 3D default space, resulting in the recreation of the internal and external worlds within the mind. This 3D default space is composed of all cells of the body, which communicate via gap junctions and electrical potentials to create this unified space. We use 3D illustrations to explain how both visual and non-visual sensory information may be filled-in within this dynamic space, creating a unified seamless conscious experience. This neural sensory memory space is likely generated by baseline neural oscillatory activity from the default mode network, other salient networks, brainstem, and reticular activating system.

  12. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    International Nuclear Information System (INIS)

    Cooley, W.T.; Adams, S.F.; Reinhardt, K.C.; Piszczor, M.F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cell or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application

  13. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    Science.gov (United States)

    Cooley, William T.; Adams, Steven F.; Reinhardt, Kitt C.; Piszczor, Michael F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cells or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application.

  14. Interrelationship between Plasma Experiments in the Laboratory and in Space

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, Mark E. [West Virginia Univ., Morgantown, WV (United States)

    2017-05-25

    Funds were expended to offset the travel costs of three students and three postdoctoral research associates to participate in and present work at the 2015 International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS2015), 23-28 August 2015, Pitlochry, Scotland, UK. Selection was priority-ranked by lab-space engagement, first, and topic relevance, second. Supplementary selection preference was applied to under-represented populations, applicants lacking available travel-resources in their home research group, applicants unusually distant from the conference venue, and the impact of the applicant’s attendance in increasing the diversity of conference participation. One support letter per student was required. The letters described the specific benefit of IPELS2015 to the student dissertation or the postdoc career development, and document the evidence for the ordering criteria.

  15. Short-range inverse-square law experiment in space

    International Nuclear Information System (INIS)

    Strayer, D.M.; Paik, H.J.; Moody, M.V.

    2003-01-01

    The objective of ISLES (inverse-square law experiment in space) is to perform a null test of Newton's law on the ISS with a resolution of one part in 10 5 at ranges from 100 mm to 1 mm. ISLES will be sensitive enough to detect axions with the strongest allowed coupling and to test the string-theory prediction with R>= 5 μm. To accomplish these goals on the rather noisy International Space Station, the experiment is set up to provide immunity from the vibrations and other common-mode accelerations. The measures to be applied for reducing the effects of disturbances will be described in this presentation. As designed, the experiment will be cooled to less than 2 K in NASA's low temperature facility the LTMPF, allowing superconducting magnetic levitation in microgravity to obtain very soft, low-loss suspension of the test masses. The low-damping magnetic levitation, combined with a low-noise SQUID, leads to extremely low intrinsic noise in the detector. To minimize Newtonian errors, ISLES employs a near-null source of gravity, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a distance of 100 μm to 1 mm. The signal is detected by a superconducting differential accelerometer, making a highly sensitive sensor of the gravity force generated by the source mass

  16. Space Experiment on Tuber Development and Starch Accumulation for CELSS

    Science.gov (United States)

    Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.

    1997-01-01

    Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.

  17. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    International Nuclear Information System (INIS)

    Agodi, C; Bondì, M; Cavallaro, M; Carbone, D; Cirrone, G A P; Cuttone, G; Abou-Haidar, Z; Alvarez, M A G; Bocci, A; Aumann, T; Durante, M; Balestra, F; Battistoni, G; Bohlen, T T; Boudard, A; Brunetti, A; Carpinelli, M; Cappuzzello, F; Cortes-Giraldo, M A; Napoli, M De

    2013-01-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) carbon target.

  18. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Science.gov (United States)

    Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.

    2013-03-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.

  19. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  20. A 12 years brazilian space education activity experience

    Science.gov (United States)

    Stancato, Fernando; Gustavo Catalani Racca, João; Ballarotti, MaurícioG.

    2001-03-01

    A multidisciplinary group of students from the university and latter also from the high school was formed in 1988 with the objective to make them put in practice their knowledge in physics, chemistry and mathematics and engineering fields in experimental rocketry. The group was called "Grupo de Foguetes Experimentais", GFE. Since that time more than 150 students passed throw the group and now many of them are in the space arena. The benefits for students in a space hands-on project are many: More interest in their school subjects is gotten as they see an application for them; Interrelation attitudes are learned as space projects is a team activity; Responsibility is gained as each is responsible for a part of a critical mission project; Multidisciplinary and international experience is gotten as these are space project characteristics; Learn how to work in a high stress environment as use to be a project launch. This paper will cover the educational experiences gotten during these years and how some structured groups work. It is explained the objectives and how the group was formed. The group structure and the different phases that at each year the new team passes are described. It is shown the different activities that the group uses to do from scientific seminars, scientific club and international meetings to technical tours and assistance to rocket activities in regional schools. It is also explained the group outreach activities as some launches were covered by the media in more then 6 articles in newspaper and 7 television news. In 1999 as formed an official group called NATA, Núcleo de Atividades Aerospaciais within the Universidade Estadual de Londrina, UEL, by some GFE members and teachers from university. It is explained the first group project results.

  1. Citygml and the Streets of New York - a Proposal for Detailed Street Space Modelling

    Science.gov (United States)

    Beil, C.; Kolbe, T. H.

    2017-10-01

    Three-dimensional semantic city models are increasingly used for the analysis of large urban areas. Until now the focus has mostly been on buildings. Nonetheless many applications could also benefit from detailed models of public street space for further analysis. However, there are only few guidelines for representing roads within city models. Therefore, related standards dealing with street modelling are examined and discussed. Nearly all street representations are based on linear abstractions. However, there are many use cases that require or would benefit from the detailed geometrical and semantic representation of street space. A variety of potential applications for detailed street space models are presented. Subsequently, based on related standards as well as on user requirements, a concept for a CityGML-compliant representation of street space in multiple levels of detail is developed. In the course of this process, the CityGML Transportation model of the currently valid OGC standard CityGML2.0 is examined to discover possibilities for further developments. Moreover, a number of improvements are presented. Finally, based on open data sources, the proposed concept is implemented within a semantic 3D city model of New York City generating a detailed 3D street space model for the entire city. As a result, 11 thematic classes, such as roadbeds, sidewalks or traffic islands are generated and enriched with a large number of thematic attributes.

  2. Laser Calibration Experiment for Small Objects in Space

    Science.gov (United States)

    Campbell, Jonathan; Ayers, K.; Carreras, R.; Carruth, R.; Freestone, T.; Sharp, J.; Rawleigh, A.; Brewer, J.; Schrock, K.; Bell, L.; hide

    2001-01-01

    The Air Force Research Laboratory/Directed Energy Directorate (AFRL/DE) and NASA/Marshall Space Flight Center (MSFC) are looking at a series of joint laser space calibration experiments using the 12J 15Hz CO2 High Performance CO2 Ladar Surveillance Sensor (FU-CLASS) system on the 3.67 meter aperture Advanced Electro-Optics System (AEOS). The objectives of these experiments are to provide accurate range and signature measurements of calibration spheres, demonstrate high resolution tracking capability of small objects, and support NASA in technology development and tracking projects. Ancillary benefits include calibrating radar and optical sites, completing satellite conjunction analyses, supporting orbital perturbations analyses, and comparing radar and optical signatures. In the first experiment, a Global Positioning System (GPS)/laser beacon instrumented microsatellite about 25 cm in diameter will be deployed from a Space Shuttle Hitchhiker canister or other suitable launch means. Orbiting in low earth orbit, the microsatellite will pass over AEOS on the average of two times per 24-hour period. An onboard orbit propagator will activate the GPS unit and a visible laser beacon at the appropriate times. The HI-CLASS/AEOS system will detect the microsatellite as it rises above the horizon, using GPS-generated acquisition vectors. The visible laser beacon will be used to fine-tune the tracking parameters for continuous ladar data measurements throughout the pass. This operational approach should maximize visibility to the ground-based laser while allowing battery life to be conserved, thus extending the lifetime of the satellite. GPS data will be transmitted to the ground providing independent location information for the microsatellite down to sub-meter accuracies.

  3. Capacity building in emerging space nations: Experiences, challenges and benefits

    Science.gov (United States)

    Jason, Susan; da Silva Curiel, Alex; Liddle, Doug; Chizea, Francis; Leloglu, Ugur Murat; Helvaci, Mustafa; Bekhti, Mohammed; Benachir, Djouad; Boland, Lee; Gomes, Luis; Sweeting, Martin

    2010-09-01

    This paper focuses on ways in which space is being used to build capacity in science and technology in order to: Offer increasing support for national and global solutions to current and emerging problems including: how to improve food security; resource management; understanding the impacts of climate change and how to deal with them; improving disaster mitigation, management and response. Support sustainable economic development. We present some of the experiences, lessons learned and benefits gained in capacity building projects undertaken by Surrey Satellite Technology Ltd. and our partners from developing and mature space nations. We focus on the Turkish, Algerian and Nigerian know-how and technology transfer programmes which form part of the first Disaster Monitoring Constellation (DMC) in orbit. From the lessons learned on Surrey's know-how and technology transfer partnership programmes, it is clear that space technology needs to be implemented responsibly as part of a long-term capacity building plan to be a sustainable one. It needs to be supported with appropriate policy and legal frameworks, institutional development, including community participation, human resources development and strengthening of managerial systems. In taking this on board, DMC has resulted in a strong international partnership combining national objectives, humanitarian aid and commerce. The benefits include: Ownership of space-based and supporting ground assets with low capital expenditure that is in line with national budgets of developing nations. Ownership of data and control over data acquisition. More for the money via collaborative consortium. Space related capacity building in organisations and nations with the goal of sustainable development. Opportunities for international collaboration, including disaster management and relief.

  4. Deep Space Networking Experiments on the EPOXI Spacecraft

    Science.gov (United States)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  5. GNSS-R Altimetry Performance Analysis for the GEROS Experiment on Board the International Space Station.

    Science.gov (United States)

    Camps, Adriano; Park, Hyuk; Sekulic, Ivan; Rius, Juan Manuel

    2017-07-06

    The GEROS-ISS (GNSS rEflectometry, Radio Occultation and Scatterometry onboard International Space Station) is an innovative experiment for climate research, proposed in 2011 within a call of the European Space Agency (ESA). This proposal was the only one selected for further studies by ESA out of ~25 ones that were submitted. In this work, the instrument performance for the near-nadir altimetry (GNSS-R) mode is assessed, including the effects of multi-path in the ISS structure, the electromagnetic-bias, and the orbital height decay. In the absence of ionospheric scintillations, the altimetry rms error is GNSS spacecrafts), mission requirements (rms error is 20 dB at equatorial regions, mainly after sunset, which will seriously degrade the altimetry and the scatterometry performances of the instrument.

  6. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    Science.gov (United States)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  7. Dedicated Slosh Dynamics Experiment on ISS using SPHERES (Advanced Space Operations in CR)

    Data.gov (United States)

    National Aeronautics and Space Administration — At the Kennedy Space Center (KSC) the Launch Services Program is leading an effort to conduct an experiment aboard the International Space Station (ISS) to validate...

  8. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  9. Lichens survive in space: results from the 2005 LICHENS experiment.

    Science.gov (United States)

    Sancho, Leopoldo G; de la Torre, Rosa; Horneck, Gerda; Ascaso, Carmen; de Los Rios, Asunción; Pintado, Ana; Wierzchos, J; Schuster, M

    2007-06-01

    This experiment was aimed at establishing, for the first time, the survival capability of lichens exposed to space conditions. In particular, the damaging effect of various wavelengths of extraterrestrial solar UV radiation was studied. The lichens used were the bipolar species Rhizocarpon geographicum and Xanthoria elegans, which were collected above 2000 m in the mountains of central Spain and as endolithic communities inhabiting granites in the Antarctic Dry Valleys. Lichens were exposed to space in the BIOPAN-5 facility of the European Space Agency; BIOPAN-5 is located on the outer shell of the Earth-orbiting FOTON-M2 Russian satellite. The lichen samples were launched from Baikonur by a Soyuz rocket on May 31, 2005, and were returned to Earth after 16 days in space, at which time they were tested for survival. Chlorophyll fluorescence was used for the measurement of photosynthetic parameters. Scanning electron microscopy in back-scattered mode, low temperature scanning electron microscopy, and transmission electron microscopy were used to study the organization and composition of both symbionts. Confocal laser scanning microscopy, in combination with the use of specific fluorescent probes, allowed for the assessment of the physiological state of the cells. All exposed lichens, regardless of the optical filters used, showed nearly the same photosynthetic activity after the flight as measured before the flight. Likewise, the multimicroscopy approach revealed no detectable ultrastructural changes in most of the algal and fungal cells of the lichen thalli, though a greater proportion of cells in the flight samples had compromised membranes, as revealed by the LIVE/DEAD BacLight Bacterial Viability Kit. These findings indicate that most lichenized fungal and algal cells can survive in space after full exposure to massive UV and cosmic radiation, conditions proven to be lethal to bacteria and other microorganisms. The lichen upper cortex seems to provide adequate

  10. Space Environment NanoSat Experiment (SENSE) - A New Frontier in Operational Space Environmental Monitoring (Invited)

    Science.gov (United States)

    Kalamaroff, K. I.; Thompson, D. C.; Cooke, D. L.; Gentile, L. C.; Bonito, N. A.; La Tour, P.; Sondecker, G.; Bishop, R. L.; Nicholas, A. C.; Doe, R. A.

    2013-12-01

    The Space Environmental NanoSat Experiment (SENSE) program is a rapid development effort of the USAF Space and Missiles Center Development Planning Directorate (SMC/XR) which will demonstrate the capability of NanoSats to perform space missions in an affordable and resilient manner. The three primary objectives for the SENSE mission are: 1) to develop best practices for operational CubeSat/NanoSat procurement, development, test, and operations; 2) to mature CubeSat bus and sensor component technology readiness levels; and 3) to demonstrate the operational utility of CubeSat measurements by flowing validated, low-latency data into operational space weather models. SENSE consists of two 3-U CubeSats built by Boeing Phantom Works. Both satellites are 3-axis stabilized with star cameras for attitude determination and are equipped with a Compact Total Electron Density Sensor (CTECS) to provide radio occultation measurements of total electron content and L-band scintillation. One satellite has a Cubesat Tiny Ionospheric Photometer (CTIP) monitoring 135.6 nm photons produced by the recombination of O+ ions and electrons. The other satellite has a Wind Ion Neutral Composite Suite (WINCS) to acquire simultaneous co-located, in situ measurements of atmospheric and ionospheric density, composition, temperature and winds/drifts. Mission data will be used to improve current and future space weather models and demonstrate the utility of data from CubeSats for operational weather requirements. Launch is scheduled for November 2013, and we will discuss the first 30 days of on-orbit operations.

  11. Special relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Raogudimetla, V. S.

    1994-01-01

    There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the

  12. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    Science.gov (United States)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (art for tracking such emission from space is defined by single antennas (Wind/WAVES, Stereo/SWAVES), in which the tracking is accomplished by assuming a frequency-to-density mapping; there has been some success in triangulating the emission between the spacecraft, but considerable uncertainties remain. We describe the Sun Radio Imaging Space Experiment (SunRISE) mission concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Viscosity Measurement via Drop Coalescence: A Space Station Experiment

    Science.gov (United States)

    Antar, Basil; Ethridge, Edwin C.

    2010-01-01

    The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.

  14. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights

    Science.gov (United States)

    Nechitailo, Galina S.; Kondyurin, Alexey

    2016-07-01

    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  15. From laboratory plasma experiments to space plasma experiments with `CubeSat' nano-satellites

    Science.gov (United States)

    Charles, Christine

    2016-09-01

    `CubeSat' nano-satellites provide low-cost access to space. SP3 laboratory's involvement in the European Union `QB50' `CubeSat' project [www.qb50.eu] which will launch into space 50 `CubeSats' from 27 Countries to study the ionosphere and the lower thermosphere will be presented. The Chi Kung laboratory plasma experiment and the Helicon Double Layer Thruster prototype can be tailored to investigate expanding magnetized plasma physics relevant to space physics (solar corona, Earth's aurora, adiabatic expansion and polytropic studies). Chi Kung is also used as a plasma wind tunnel for ground-based calibration of the University College London QB50 Ion Neutral Mass Spectrometer. Space qualification of the three Australian QB50 `CubeSats' (June 2016) is carried out in the WOMBAT XL space simulation chamber. The QB50 satellites have attitude control but altitude control is not a requirement. SP3 is developing end-to-end miniaturised radiofrequency plasma propulsion systems (such as the Pocket Rocket and the MiniHel thrusters with power and propellant sub-systems) for future `CubeSat' missions.

  16. A comment on a proposed ''crucial experiment'' to test Einstein's special theory of relativity

    International Nuclear Information System (INIS)

    Rodrigues Jr, W.A.; Buonamano, V.

    1976-01-01

    A proposed ''crucial experiment'' to test Einstein's special theory of relativity is analysed and it is shown that it falls into the set of unsatisfactory proposals that attempt to make an experimental distinction between Einstein's special theory of relativity and a ''Lorentzian type'' special theory of relativity

  17. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  18. A natural language query system for Hubble Space Telescope proposal selection

    Science.gov (United States)

    Hornick, Thomas; Cohen, William; Miller, Glenn

    1987-01-01

    The proposal selection process for the Hubble Space Telescope is assisted by a robust and easy to use query program (TACOS). The system parses an English subset language sentence regardless of the order of the keyword phases, allowing the user a greater flexibility than a standard command query language. Capabilities for macro and procedure definition are also integrated. The system was designed for flexibility in both use and maintenance. In addition, TACOS can be applied to any knowledge domain that can be expressed in terms of a single reaction. The system was implemented mostly in Common LISP. The TACOS design is described in detail, with particular attention given to the implementation methods of sentence processing.

  19. JSC flight experiment recommendation in support of Space Station robotic operations

    Science.gov (United States)

    Berka, Reginald B.

    1993-02-01

    The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.

  20. The proposed EROSpace institute, a national center operated by space grant universities

    Science.gov (United States)

    Smith, Paul L.; Swiden, LaDell R.; Waltz, Frederick A.

    1993-01-01

    The "EROSpace Institute" is a proposed visiting scientist program in associated with the U.S. Geological Survey's EROS Data Center (EDC). The Institute would be operated by a consortium of universities, possible drawn from NASA's Space Grant College and Fellowship Program consortia and the group of 17 capability-enhancement consortia, or perhaps from consortia though out the nation with a topical interest in remote sensing. The National Center for Atmospheric Research or the Goddard Institute for Space Studies provide models for the structure of such an institute. The objectives of the Institute are to provide ready access to the body of data housed at the EDC and to increase the cadre of knowledgeable and trained scientists able to deal with the increasing volume of remote sensing data to become available from the Earth Observing System. The Institute would have a staff of about 100 scientists at any one time, about half permanent staff, and half visiting scientists. The latter would include graduate and undergraduate students, as well as faculty on temporary visits, summer fellowships, or sabbatical leaves. The Institute would provide office and computing facilities, as well as Internet linkages to the home institutions so that scientists could continue to participate in the program from their home base.

  1. Proposal of a Simple Plant Growth System under Microgravity Conditions in Space

    Science.gov (United States)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro; Tsukamoto, Koya; Yamashita, Youichirou

    2012-07-01

    Plant culture in space has multiple functions for human life support such as providing food and purifying air and water. It is also suggested that crew can relieve their stress by watching growing plants and by enjoying fresh vegetable food during staying for several months in the International Space Station. Under such circumstances, it is an utmost importance to develop plant culture equipment that can be handled more easily by crew. This study aims to develop an easy-to-use plant growth system with modification of commercial household plant culture equipment. The item is equipped with a peltier device for cooling air and collecting water vapor in the growth room. The study was conducted to examine the performance of the equipment under microgravity conditions that were created by the parabolic airplane flights. As a result, the temperature of the peltier device was affected under the microgravity conditions due to the absence of heat convection. When an air flow was made with an air circulation fan, the temperature of the peltier device was stable to gravity changes. The water recycling method for an automatic nutrient solution supply system in the closed plant culture equipment under microgravity is proposed. In addition, a high output white LEDs showing a good performance for growing leafy vegetables will be introduced.

  2. Embodiment and the experience of built space: the contributions of ...

    African Journals Online (AJOL)

    This paper explores the problem of how we perceive built space and the ways that we relate to its abstract representations. Poincaré presented the problem that space poses for the 20th century in his essay 'The Relativity of Space', in which the human body and technics are already a part of our spatial perceptions.

  3. Droplet Combustion Experiments Aboard the International Space Station

    Science.gov (United States)

    Dietrich, Daniel L.; Nayagam, Vedha; Hicks, Michael C.; Ferkul, Paul V.; Dryer, Frederick L.; Farouk, Tanvir; Shaw, Benjamin D.; Suh, Hyun Kyu; Choi, Mun Y.; Liu, Yu Cheng; Avedisian, C. Thomas; Williams, Forman A.

    2014-10-01

    This paper summarizes the first results from isolated droplet combustion experiments performed on the International Space Station (ISS). The long durations of microgravity provided in the ISS enable the measurement of droplet and flame histories over an unprecedented range of conditions. The first experiments were with heptane and methanol as fuels, initial droplet droplet diameters between 1.5 and 5.0 m m, ambient oxygen mole fractions between 0.1 and 0.4, ambient pressures between 0.7 and 3.0 a t m and ambient environments containing oxygen and nitrogen diluted with both carbon dioxide and helium. The experiments show both radiative and diffusive extinction. For both fuels, the flames exhibited pre-extinction flame oscillations during radiative extinction with a frequency of approximately 1 H z. The results revealed that as the ambient oxygen mole fraction was reduced, the diffusive-extinction droplet diameter increased and the radiative-extinction droplet diameter decreased. In between these two limiting extinction conditions, quasi-steady combustion was observed. Another important measurement that is related to spacecraft fire safety is the limiting oxygen index (LOI), the oxygen concentration below which quasi-steady combustion cannot be supported. This is also the ambient oxygen mole fraction for which the radiative and diffusive extinction diameters become equal. For oxygen/nitrogen mixtures, the LOI is 0.12 and 0.15 for methanol and heptane, respectively. The LOI increases to approximately 0.14 (0.14 O 2/0.56 N 2/0.30 C O 2) and 0.17 (0.17 O 2/0.63 N 2/0.20 C O 2) for methanol and heptane, respectively, for ambient environments that simulated dispersing an inert-gas suppressant (carbon dioxide) into a nominally air (1.0 a t m) ambient environment. The LOI is approximately 0.14 and 0.15 for methanol and heptane, respectively, when helium is dispersed into air at 1 atm. The experiments also showed unique burning behavior for large heptane droplets. After the

  4. Space experiment "Cellular Responses to Radiation in Space (CELLRAD)": Hardware and biological system tests

    Science.gov (United States)

    Hellweg, Christine E.; Dilruba, Shahana; Adrian, Astrid; Feles, Sebastian; Schmitz, Claudia; Berger, Thomas; Przybyla, Bartos; Briganti, Luca; Franz, Markus; Segerer, Jürgen; Spitta, Luis F.; Henschenmacher, Bernd; Konda, Bikash; Diegeler, Sebastian; Baumstark-Khan, Christa; Panitz, Corinna; Reitz, Günther

    2015-11-01

    One factor contributing to the high uncertainty in radiation risk assessment for long-term space missions is the insufficient knowledge about possible interactions of radiation with other spaceflight environmental factors. Such factors, e.g. microgravity, have to be considered as possibly additive or even synergistic factors in cancerogenesis. Regarding the effects of microgravity on signal transduction, it cannot be excluded that microgravity alters the cellular response to cosmic radiation, which comprises a complex network of signaling pathways. The purpose of the experiment ;Cellular Responses to Radiation in Space; (CELLRAD, formerly CERASP) is to study the effects of combined exposure to microgravity, radiation and general space flight conditions on mammalian cells, in particular Human Embryonic Kidney (HEK) cells that are stably transfected with different plasmids allowing monitoring of proliferation and the Nuclear Factor κB (NF-κB) pathway by means of fluorescent proteins. The cells will be seeded on ground in multiwell plate units (MPUs), transported to the ISS, and irradiated by an artificial radiation source after an adaptation period at 0 × g and 1 × g. After different incubation periods, the cells will be fixed by pumping a formaldehyde solution into the MPUs. Ground control samples will be treated in the same way. For implementation of CELLRAD in the Biolab on the International Space Station (ISS), tests of the hardware and the biological systems were performed. The sequence of different steps in MPU fabrication (cutting, drilling, cleaning, growth surface coating, and sterilization) was optimized in order to reach full biocompatibility. Different coatings of the foil used as growth surface revealed that coating with 0.1 mg/ml poly-D-lysine supports cell attachment better than collagen type I. The tests of prototype hardware (Science Model) proved its full functionality for automated medium change, irradiation and fixation of cells. Exposure of

  5. The Proposal to “Snapshot” Raim Method for Gnss Vessel Receivers Working in Poor Space Segment Geometry

    Directory of Open Access Journals (Sweden)

    Nowak Aleksander

    2015-12-01

    Full Text Available Nowadays, we can observe an increase in research on the use of small unmanned autonomous vessel (SUAV to patrol and guiding critical areas including harbours. The proposal to “snapshot” RAIM (Receiver Autonomous Integrity Monitoring method for GNSS receivers mounted on SUAV operating in poor space segment geometry is presented in the paper. Existing “snapshot” RAIM methods and algorithms which are used in practical applications have been developed for airborne receivers, thus two main assumptions have been made. The first one is that the geometry of visible satellites is strong. It means that the exclusion of any satellite from the positioning solution don’t cause significant deterioration of Dilution of Precision (DOP coefficients. The second one is that only one outlier could appear in pseudorange measurements. In case of SUAV operating in harbour these two assumptions cannot be accepted. Because of their small dimensions, GNSS antenna is only a few decimetres above sea level and regular ships, buildings and harbour facilities block and reflect satellite signals. Thus, different approach to “snapshot” RAIM is necessary. The proposal to method based on analyses of allowable maximal separation of positioning sub-solutions with using some information from EGNOS messages is described in the paper. Theoretical assumptions and results of numerical experiments are presented.

  6. THE ORGANIZATION OF SPACE AND EDUCATION SCHOOL-TIME: ANALYSIS OF AN INTEGRAL EDUCATION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Marília Andrade Torales Campos

    2016-07-01

    Full Text Available This article proposes a reflection upon the public policies in education with regard to the experiences on full-time education – more specifically, on the process of extension and use of school-educational time, carried out in Apucarana/PR. The choice of this research object is justified by the emergence of a new political-economic reality in the country, which imposes the need to rethink school and its social functions. Thus, from the analyzed experience, the emergence of a new concept of school was noticed. This concept is based on a communitarian structure, or on learning communities, and it transcends the classic teacher-student dichotomy, including new learning-teaching individuals. In order to understand the data, it is important to rethink the meaning of time and space, not only in school, but also in families and communities from the social context.

  7. Problems for the Purported Cognitive Penetration of Perceptual Color Experience and Macpherson’s Proposed Mechanism

    Directory of Open Access Journals (Sweden)

    Steven Gross

    2014-12-01

    Full Text Available Fiona Macpherson (2012 argues that various experimental results provide strong evidence in favor of the cognitive penetration of perceptual color experience. Moreover, she proposes a mechanism for how such cognitive penetration occurs. We argue, first, that the results on which Macpherson relies do not provide strong grounds for her claim of cognitive penetrability; and, second, that, if the results do reflect cognitive penetrability, then time-course considerations raise worries for her proposed mechanism. We base our arguments in part on several of our own experiments, reported herein.

  8. Proposal for the ZT-40 reversed-field Z-pinch experiment

    International Nuclear Information System (INIS)

    Baker, D.A.; Machalek, M.D.

    1977-08-01

    A next-generation, toroidal, reversed-field Z-pinch experiment to be constructed at LASL is proposed. On the basis of encouraging ZT-I and ZT-S experimental results, a larger device with a 40-cm bore and a 114-cm major radius is proposed, to extend the confinement time by about an order of magnitude. The new experiment will explore the physics of programming reversed-field pinches in a size range unexplored by previous reversed-field pinch experiments. Model reversed-field pinch reactor calculations show that, if stability is assumed, small fusion reactors are possible if the pinch current density is high. A basic aim will be to delineate the plasma and current density ranges in which stable reversed-field pinches can be produced. Improved vacuum techniques will be used to overcome the radiation losses that probably kept electron temperatures low in the earlier, smaller experiments

  9. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Sindoni, Giampiero; Koenig, Rolf; Ries, John C.; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger; Rubincam, David; Paris, Claudio

    2017-08-01

    We introduce the LARES 2 space experiment recently approved by the Italian Space Agency (ASI). The LARES 2 satellite is planned for launch in 2019 with the new VEGA C launch vehicle of ASI, ESA and ELV. The orbital analysis of LARES 2 experiment will be carried out by our international science team of experts in General Relativity, theoretical physics, space geodesy and aerospace engineering. The main objectives of the LARES 2 experiment are gravitational and fundamental physics, including accurate measurements of General Relativity, in particular a test of frame-dragging aimed at achieving an accuracy of a few parts in a thousand, i.e., aimed at improving by about an order of magnitude the present state-of-the-art and forthcoming tests of this general relativistic phenomenon. LARES 2 will also achieve determinations in space geodesy. LARES 2 is an improved version of the LAGEOS 3 experiment, proposed in 1984 to measure frame-dragging and analyzed in 1989 by a joint ASI and NASA study.

  10. The YES2 Experience : Towards Sustainable Space Transportation using Tethers

    NARCIS (Netherlands)

    Van der Heide, E.J.; Kruijff, M.; Ockels, W.J.

    2008-01-01

    Today there is no common vision on sustainable space transportation. Rockets expel gasses and solid rockets often small particles. These have negative effect on the environment, but it is not understood to what extent. With ever growing demand for access to space, sustainable technology developments

  11. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  12. Material Requirements, Selection And Development for the Proposed JIMO SpacePower System

    International Nuclear Information System (INIS)

    Ring, P.J.; Sayre, E.D.

    2004-01-01

    NASA is proposing a major new nuclear Space initiative--The Jupiter Icy Moons Orbiter (JIMO). A mission such as this inevitably requires a significant power source both for propulsion and for on-board power. Three reactor concepts, liquid metal cooled, heat pipe cooled and gas cooled are being considered together with three power conversion systems Brayton (cycle), Thermoelectric and Stirling cycles, and possibly Photo voltaics for future systems. Regardless of the reactor system selected it is almost certain that high temperature (materials), refractory alloys, will be required. This paper revisits the material selection options, reviewing the rationale behind the SP-100 selection of Nb-1Zr as the major cladding and structural material and considers the alternatives and developments needed for the longer duty cycle of the JIMO power supply. A side glance is also taken at the basis behind the selection of Uranium nitride fuel over UO2 or UC and a brief discussion of the reason for the selection of Lithium as the liquid metal coolant for SP-100 over other liquid metals

  13. Using a Computer Microphone Port to Study Circular Motion: Proposal of a Secondary School Experiment

    Science.gov (United States)

    Soares, A. A.; Borcsik, F. S.

    2016-01-01

    In this work we present an inexpensive experiment proposal to study the kinematics of uniform circular motion in a secondary school. We used a PC sound card to connect a homemade simple sensor to a computer and used the free sound analysis software "Audacity" to record experimental data. We obtained quite good results even in comparison…

  14. Crucible: A System for Space Synthetic Biology Experiments

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to expand the capability and methodologies in experimental extreme biology as a step towards Martian ecopoiesis. The objectives in...

  15. Upper-Atmospheric Space and Earth Weather Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The USEWX project is seeking to monitor, record, and distribute atmospheric measurements of the radiation environment by installing a variety of dosimeters and other...

  16. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal)

    Science.gov (United States)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3team with two successful flights (2007 Engineering, 2009 Science). FB-1 provided the strongest constrains on intergalactic and circumgalactic (IGM, CGM) emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is in the final stages of integration for a September 2016 flight from Ft. Sumner, New Mexico. The spectrograph has been redesigned with a wider field of view and greater efficiency. An upgraded detector system including a groundbreaking high QE, low-noise, UV optimized CCD detector is under final dark current and noise testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and gondola flight support team, with construction of all components complete and final alignment and testing ongoing. We propose three additional years of funding to support the FIREBall-2 team in one additional flight in 2018 to fully utilize the upgraded spectrograph. This second flight, along with the funded 2016 flight, will conduct an initial blind CGM survey of dense fields at z 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award

  17. Computational exploration of a protein receptor binding space with student proposed peptide ligands.

    Science.gov (United States)

    King, Matthew D; Phillips, Paul; Turner, Matthew W; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M

    2016-01-01

    Computational molecular docking is a fast and effective in silico method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The DockoMatic tutorial described herein provides a framework by which instructors can guide students through a drug screening exercise. Using receptor models derived from readily available protein crystal structures, docking programs have the ability to predict ligand binding properties, such as preferential binding orientations and binding affinities. The use of computational studies can significantly enhance complimentary wet chemical experimentation by providing insight into the important molecular interactions within the system of interest, as well as guide the design of new candidate ligands based on observed binding motifs and energetics. In this laboratory tutorial, the graphical user interface, DockoMatic, facilitates docking job submissions to the docking engine, AutoDock 4.2. The purpose of this exercise is to successfully dock a 17-amino acid peptide, α-conotoxin TxIA, to the acetylcholine binding protein from Aplysia californica-AChBP to determine the most stable binding configuration. Each student will then propose two specific amino acid substitutions of α-conotoxin TxIA to enhance peptide binding affinity, create the mutant in DockoMatic, and perform docking calculations to compare their results with the class. Students will also compare intermolecular forces, binding energy, and geometric orientation of their prepared analog to their initial α-conotoxin TxIA docking results. © 2015 The International Union of Biochemistry and Molecular Biology.

  18. The Experience of Acusmatic Listening: a Proposal of an Integrative Analysis

    Directory of Open Access Journals (Sweden)

    Federico Schumacher Ratti

    2017-07-01

    Full Text Available We propose a theoretical framework of a set of guidelines for a methodology of analysis of the listener experience in acousmatic music. A critical review of the relevant literature is presented in order to point out principles, guidelines or convergences, in relation to certain approaches from the musical analysis. These are justified in terms of their relevance to the discipline, particularly as relate to the conceptual framework developed by Stéphane Roy and François Delalande, which stems from the field of cognitive linguistics. Considering the cases examined by Roy and Delalande, it seems clear that the subjects reporting their listening experience resort to a set of cognitive metaphors, such as image schemes and fictitious movement. These have been studied and described as theoretical constructs both linguistically and neuroanatomically. The cognitive metaphors are likely to be used by auditors of acousmatic music to describe their listening experience, considering that acousmatic music makes an extensive use of sound spatialization techniques, and that every description is a linguistic report of a listening experience. On the basis of this, we propose the development of a mixed methodology, both qualitative and experimental, designed to ascertain on an empirical basis the subjective experience of the subjects and, at the same time, establish correlations between the experience and the acoustic trace.

  19. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  20. Space-Charge Experiments at the CERN Proton Synchrotron

    CERN Document Server

    Franchetti, Giuliano; Hofmann, I; Martini, M; Métral, E; Qiang, J; Ryne, D; Steerenberg, R; CFA Beam Dynamics Workshop “High Intensity and Brightness Hadron Beams”

    2005-01-01

    Benchmarking of the simulation codes used for the design of the next generation of high beam power accelerators is of paramount importance due to the very demanding requirements on the level of beam losses. This is usually accomplished by comparing simulation results against available theories, and more importantly, against experimental observations. To this aim, a number of well-defined test cases, obtained by accurate measurements made in existing machines, are of great interest. Such measurements have been made in the CERN Proton Synchrotron to probe three space-charge effects: (i) transverse emittance blow-up due to space-charge induced crossing of the integer or half-integer stop-band, (ii) space-charge and octupole driven resonance trapping, and (iii) intensity-dependent emittance transfer between the two transverse planes. The last mechanism is discussed in detail in this paper and compared to simulation predictions.

  1. Primary and reciprocal space-time experiments, relativistic reciprocity relations and Einstein's train-embankment thought experiment

    OpenAIRE

    Field, J. H.

    2008-01-01

    The concepts of primary and reciprocal experiments and base and travelling frames in special relativity are concisely described and applied to several different space-time experiments. These include Einstein's train/embankment thought experiment and a related thought experiment, due to Sartori, involving two trains in parallel motion with different speeds. Spatially separated clocks which are synchronised in their common proper frame are shown to be so in all inertial frames and their spatial...

  2. Preliminary design of two Space Shuttle fluid physics experiments

    Science.gov (United States)

    Gat, N.; Kropp, J. L.

    1984-01-01

    The mid-deck lockers of the STS and the requirements for operating an experiment in this region are described. The design of the surface tension induced convection and the free surface phenomenon experiments use a two locker volume with an experiment unique structure as a housing. A manual mode is developed for the Surface Tension Induced Convection experiment. The fluid is maintained in an accumulator pre-flight. To begin the experiment, a pressurized gas drives the fluid into the experiment container. The fluid is an inert silicone oil and the container material is selected to be comparable. A wound wire heater, located axisymmetrically above the fluid can deliver three wattages to a spot on the fluid surface. These wattages vary from 1-15 watts. Fluid flow is observed through the motion of particles in the fluid. A 5 mw He/Ne laser illuminates the container. Scattered light is recorded by a 35mm camera. The free surface phenomena experiment consists of a trapezoidal cell which is filled from the bottom. The fluid is photographed at high speed using a 35mm camera which incorporated the entire cell length in the field of view. The assembly can incorporate four cells in one flight. For each experiment, an electronics block diagram is provided. A control panel concept is given for the surface induced convection. Both experiments are within the mid-deck locker weight and c-g limits.

  3. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    Science.gov (United States)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  4. Proposal for FRX-C and multiple-cell Compact Torus experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, H.

    1979-10-01

    A Compact Torus (CT) is a configuration for plasma confinement that offers possible engineering advantages for fusion power generation such as small size, simple blanket geometry, natural divertor, and spatially separable functions of plasma production and fusion energy generation. Two experiments to study the physics and technology of some particular CT configurations are proposed here as part of the LASL Compact Torus Program Plan. One experiment, FRX-C, is designed to study CT stability and transport properties by scaling the parameters of the existing FRX-B field-reversed theta-pinch experiment to higher temperatures, larger size, and increased plasma lifetime. The second experiment, a modification of the existing Scylla IV-P device, would form a linear array of CTs with the aim of understanding the effect on CT transport of improved plasma confinement on the open field lines outside the separatrix, as well as other multiple-cell effects.

  5. The microbe capture experiment in space: Fluorescence microscopic detection of microbes captured by aerogel

    Science.gov (United States)

    Sugino, Tomohiro; Yokobori, Shin-Ichi; Yang, Yinjie; Kawaguchi, Yuko; Okudaira, Kyoko; Tabata, Makoto; Kawai, Hideyuki; Hasegawa, Sunao; Yamagishi, Akihiko

    Microbes have been collected at the altitude up to about 70 km in the sampling experiment done by several groups[1]. We have also collected high altitude microbes, by using an airplane and balloons[2][3][4][5]. We collected new deinococcal strain (Deinococcus aetherius and Deinococ-cus aerius) and several strains of spore-forming bacilli from stratosphere[2][4][5]. However, microbe sampling in space has never been reported. On the other hand, "Panspermia" hy-pothesis, where terrestrial life is originated from outside of Earth, has been proposed[6][7][8][9]. Recent report suggesting existence of the possible microbe fossils in the meteorite of Mars origin opened the serious debate on the possibility of migration of life embedded in meteorites (and cosmic dusts)[10][11]. If we were able to find terrestrial microbes in space, it would suggest that the terrestrial life can travel between astronomical bodies. We proposed a mission "Tanpopo: Astrobiology Exposure and Micrometeoroid Capture Experiments" to examine possible inter-planetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module of the International Space Station (ISS)[12]. Two of six sub themes in this mission are directly related to interplanetary migration of microbes. One is the direct capturing experi-ment of microbes (probably within the particles such as clay) in space by the exposed ultra-low density aerogel. Another is the exposure experiment to examine survivability of the microbes in harsh space environment. They will tell us the possibility of interplanetary migration of microbes (life) from Earth to outside of Earth (or vise versa). In this report, we will report whether aerogel that have been used for the collection of space debris and cosmic dusts can be used for microbe sampling in space. We will discuss how captured particles by aerogel can be detected with DNA-specific fluorescent dye, and how to distinguish microbes from other mate-rials (i.e. aerogel and

  6. Space Shuttle Orbiter thermal protection system design and flight experience

    Science.gov (United States)

    Curry, Donald M.

    1993-01-01

    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding.

  7. The journey to school: Space, geography and experiences of rural ...

    African Journals Online (AJOL)

    ... in dialogue and discussion. The study provided insights into the implications of family dynamics on children's school journey and the meaning of the school journey to the children. It illuminated how children actively define and re-define the varied places, power-laden spaces and social relations embedded in the journey.

  8. The effect of vibration noise in space relevant experiments.

    Science.gov (United States)

    Fossum, Knut R; Johnsson, Anders; Iversen, Tor-Henning

    2002-07-01

    The experiments performed were initiated as a part of the post-flight investigations after the "PROTO" experiment performed on IML-1. The present experiments were performed with protoplasts prepared using the same standard isolation procedures as for the IML-1. The protoplasts were vibrated for 24 h with and without air bubbles in the protoplast cultivation bags and in the range of 1 to 20 Hz with 4 mm amplitude. The vibrations were found to have a negative effect on the viability of the protoplasts in bags without air bubbles and the vibration threshold seemed to lie around 20 Hz. Air bubbles are likely to cause cavitation-like conditions, thus increasing the mechanical strain on the free-floating protoplasts. During the 30 days microgravity mode on the ISS, mechanical vibrations would not be expected to have a significant influence on potential protoplast experiments. Experiments with durations overlapping the rendezvous and reboost mode may be exposed to critical vibration levels.

  9. Einstein, the exponential metric, and a proposed gravitational Michelson-Morley experiment

    International Nuclear Information System (INIS)

    Yilmaz, H.

    1979-01-01

    An early but potentially important remark of Einstein on the exponential nature of time-dilation is discussed. Using the same argument for the length-contraction, plus two alternative kinematical assumptions, the Schwarzschild and exponential metrics are derived. A gravitational Michelson-Morley experiment with one arm directed along the vertical is proposed to test the metrics. The experiment may be considered as a laboratory test of the Schwarzschild field and possibly a test of the black-hole interpretation of collapsed matter

  10. 75 FR 32360 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Science.gov (United States)

    2010-06-08

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...

  11. 78 FR 44536 - Proposed Information Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems

    Science.gov (United States)

    2013-07-24

    ... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...

  12. Research Proposal for an Experiment to Search for the Decay {\\mu} -> eee

    CERN Document Server

    Blondel, A.; Pohl, M.; Bachmann, S.; Berger, N.; Kiehn, M.; Schoning, A.; Wiedner, D.; Windelband, B.; Eckert, P.; Schultz-Coulon, H.-C.; Shen, W.; Fischer, P.; Peric, I.; Hildebrandt, M.; Kettle, P.-R.; Papa, A.; Ritt, S.; Stoykov, A.; Dissertori, G.; Grab, C.; Wallny, R.; Gredig, R.; Robmann, P.; Straumann, U.

    2013-01-01

    We propose an experiment (Mu3e) to search for the lepton flavour violating decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16 mu-decays, four orders of magnitude better than previous searches. This sensitivity is made possible by exploiting modern silicon pixel detectors providing high spatial resolution and hodoscopes using scintillating fibres and tiles providing precise timing information at high particle rates.

  13. Experience with use and proposals for improvement of the SMAR system in Mochovce

    International Nuclear Information System (INIS)

    Simko, J.; Urban, P.; Miskovic, J.; Repa, M.; Vanco, P.; Sipka, J.

    2001-01-01

    A system for monitoring the accuracy and reliability characteristics of standard temperature measurements both at fuel channel exits and at the reactor inlet and outlet, was partially installed in Mochovce Units 1 and 2 simultaneously with their commissioning. In the paper, the way of implementation of the SMAR system at both units, experience with its use since the start-up and proposals for the improvement of the system are presented. (Authors)

  14. Experiments as Liminal Learning Spaces in Leadership Development

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette; Meier, Frank; Tangkjær, Christian

    In this paper we address the question of what professional practitioner students learn from experiments in leadership development programs. Drawing from our own design and teaching in a leadership programme, we explore how certain models and frameworks become threshold concepts for students’ lear...... practical implications for using threshold concepts in designing experiments in leadership development education for professional practitioners.......In this paper we address the question of what professional practitioner students learn from experiments in leadership development programs. Drawing from our own design and teaching in a leadership programme, we explore how certain models and frameworks become threshold concepts for students...

  15. Experimental investigation of Popper’s proposed ghost-diffraction experiment

    Science.gov (United States)

    Bolduc, Eliot; Karimi, Ebrahim; Piché, Kevin; Leach, Jonathan; Boyd, Robert W.

    2017-10-01

    In an effort to challenge the Copenhagen interpretation of quantum mechanics, Karl Popper proposed an experiment involving spatially separated entangled particles. In this experiment, one of the particles passes through a very narrow slit, and thereby its position becomes well-defined. This particle therefore diffracts into a large divergence angle; this effect can be understood as a consequence of the Heisenberg uncertainty principle. Popper further argued that its entangled partner would become comparably localized in position, and that, according to his understanding of the Copenhagen interpretation of quantum mechanics, the ‘mere knowledge’ of the position of this particle would cause it also to diffract into a large divergence angle. Popper recognized that such behavior could violate the principle of causality in that the slit could be removed and the partner particle would be expected to respond instantaneously. Popper thus concluded that it was most likely the case that, in an actual experiment, the partner photon would not undergo increased diffractive spreading and thus that the Copenhagen interpretation is incorrect. Here, we report and analyze the results of an implementation of Popper’s proposal. We find that the partner beam does not undergo increased diffractive spreading. Our work helps to clarify the issues raised in Popper’s proposal, and it provides further insight into the nature of entanglement and its relation to the uncertainty principle as applied to correlated particles.

  16. Embodied Space: a Sensorial Approach to Spatial Experience

    Science.gov (United States)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  17. Space experiments on basic technologies for a space elevator using microsatellites

    Science.gov (United States)

    Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito

    2017-09-01

    We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.

  18. [Special Issue of In-Space Flight Experiments of Electrodynamic Tether]Experiment for Attitude Control of a Tethered Space Robot on the Sounding Rocket

    Science.gov (United States)

    Nohmi, Masahiro; Tanikawa, Jun; Hosoda, Takayuki

    This paper describes the space experimental result for the Tethered Space Robot -S (TSR-S) on the sounding rocket “S-520-25.” A tethered space robot is a new type of space robot connected to tether. The major advantage of the tethered space robot is that its attitude can be controlled under tether tension by its own link motion. The S-520-25 was launched on August 31. The TSR-S experiment was started at 285 seconds after the launch. The launch lock was unlocked and the robot was deployed by the springs. The tether was extended and kept its tension, and the attitude control of the robot was performed. The disturbed vibration of attitude was suppressed, and also the desired attitude was controlled by link motion of the robot.

  19. Exploring Inpatients' Experiences of Healing and Healing Spaces

    Science.gov (United States)

    Bellanti, Dawn; Sakallaris, Bonnie R.

    2016-01-01

    In order to understand a patient’s healing experience it is essential to understand the elements that they, the patient, believes contributed to their healing. Previous research has focused on symptom reducers or contributors through environment such as stress. A person’s experience of healing happens over time not instantaneous. Therefore, in this study, the interviews with patients happened after forty-eight hours of hospitalization. This mixed methods study describes the experiences of seventeen inpatients from two healthcare systems using a phenomenological approach combined with evidence based design evaluation methods to document the setting. The qualitative data was analyzed first for reoccurring themes then further explored and defined through quantitative environmental observations. The seventeen patients defined healing as “getting better/well.” Seventy three statements were recorded about contributors and detractors to healing in the physical environment. Three primary themes emerged from the data as positive influencers of a healing experience: being cared for, being comfortable and experiencing something familiar or like home. These results demonstrate that patients perceive their inpatient healing experience through a supported environment. PMID:28725848

  20. Exploring Inpatients' Experiences of Healing and Healing Spaces

    Directory of Open Access Journals (Sweden)

    Lorissa MacAllister PhD, AIA

    2016-12-01

    Full Text Available In order to understand a patient’s healing experience it is essential to understand the elements that they, the patient, believes contributed to their healing. Previous research has focused on symptom reducers or contributors through environment such as stress. A person’s experience of healing happens over time not instantaneous. Therefore, in this study, the interviews with patients happened after forty-eight hours of hospitalization. This mixed methods study describes the experiences of seventeen inpatients from two healthcare systems using a phenomenological approach combined with evidence based design evaluation methods to document the setting. The qualitative data was analyzed first for reoccurring themes then further explored and defined through quantitative environmental observations. The seventeen patients defined healing as “getting better/well.” Seventy three statements were recorded about contributors and detractors to healing in the physical environment. Three primary themes emerged from the data as positive influencers of a healing experience: being cared for, being comfortable and experiencing something familiar or like home. These results demonstrate that patients perceive their inpatient healing experience through a supported environment.

  1. DEVELOPING AND PROPOSING A CONCEPTUAL MODEL OF THE FLOW EXPERIENCE DURING ONLINE INFORMATION SEARCH

    Directory of Open Access Journals (Sweden)

    Lazoc Alina

    2012-07-01

    Full Text Available Information search is an essential part of the consumer`s decision making process. The online medium offers new opportunities and challenges for information search activities (in and outside the marketing context. We are interested in the way human information experiences and behaviors are affected by this. Very often online games and social web activities are perceived as challenging, engaging and enjoyable, while online information search is far below this evaluation. Our research proposal implies that using the online medium for information search may provoke enjoyable experiences through the flow state, which may in turn positively influence an individual`s exploratory information behavior and encourage his/her pro-active market behavior. The present study sets out to improve the understanding of the online medium`s impact on human`s exploratory behavior. We hypothesize that the inclusion of the online flow experience in our research model will better explain exploratory information search behaviors. A 11-component conceptual framework is proposed to explain the manifestations of flow, its personal and technological determinants and its behavioral consequence in the context of online information search. Our research has the primary purpose to present an integrated online flow model. Its secondary objective is to stimulate extended research in the area of informational behaviors in the digital age. The paper is organized in three sections. In the first section we briefly report the analysis results of the most relevant online flow theory literature and, drawing on it, we are trying to identify variables and relationships among these. In the second part we propose a research model and use prior flow models to specify a range of testable hypothesis. Drawing on the conceptual model developed, the last section of our study presents the final conclusions and proposes further steps in evaluating the model`s validity. Future research directions

  2. Design reuse experience of space and hazardous operations robots

    Science.gov (United States)

    Oneil, P. Graham

    1994-01-01

    A comparison of design drivers for space and hazardous nuclear waste operating robots details similarities and differences in operations, performance and environmental parameters for these critical environments. The similarities are exploited to provide low risk system components based on reuse principles and design knowledge. Risk reduction techniques are used for bridging areas of significant differences. As an example, risk reduction of a new sensor design for nuclear environment operations is employed to provide upgradeable replacement units in a reusable architecture for significantly higher levels of radiation.

  3. Still Life. The Experience of Space in Modernist Prose

    DEFF Research Database (Denmark)

    Tygstrup, Frederik

    2007-01-01

    book abstract Modernism has constituted one of the most prominent fields of literary studies for decades. While it was perhaps temporarily overshadowed by postmodernism, recent years have seen a resurgence of interest in modernism on both sides of the Atlantic. These volumes respond to a need for...... to philosophical, environmental, urban, and political domains, including issues of race and space, gender and fashion, popular culture and trauma, science and exile, ­all of which have an urgent bearing on the poetics of modernity...

  4. Tests of gravity with future space-based experiments

    Science.gov (United States)

    Sakstein, Jeremy

    2018-03-01

    Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.

  5. Optical and Scanning Electron Microscopy of the Materials International Space Station Experiment (MISSE) Spacecraft Silicone Experiment

    Science.gov (United States)

    Hung, Ching-cheh; de Groh, Kim K.; Banks, Bruce A.

    2012-01-01

    Under a microscope, atomic oxygen (AO) exposed silicone surfaces are crazed and seen as "islands" separated by numerous crack lines, much analogous to mud-tile cracks. This research characterized and compared the degree of AO degradation of silicones by analyzing optical microscope images of samples exposed to low Earth orbit (LEO) AO as part of the Spacecraft Silicone Experiment. The Spacecraft Silicone Experiment consisted of eight DC 93-500 silicone samples exposed to eight different AO fluence levels (ranged from 1.46 to 8.43 10(exp 21) atoms/sq cm) during two different Materials International Space Station Experiment (MISSE) missions. Image analysis software was used to analyze images taken using a digital camera. To describe the morphological degradation of each AO exposed flight sample, three different parameters were selected and estimated: (1) average area of islands was determined and found to be in the 1000 to 3100 sq mm range; (2) total length of crack lines per unit area of the sample surface were determined and found to be in the range of 27 to 59 mm of crack length per sq mm of sample surface; and (3) the fraction of sample surface area that is occupied by crack lines was determined and found to be in the 25 to 56 percent range. In addition, average crack width can be estimated from crack length and crack area measurements and was calculated to be about 10 mm. Among the parameters studied, the fraction of sample surface area that is occupied by crack lines is believed to be most useful in characterizing the degree of silicone conversion to silicates by AO because its value steadily increases with increasing fluence over the entire fluence range. A series of SEM images from the eight samples exposed to different AO fluences suggest a complex sequence of surface stress due to surface shrinkage and crack formation, followed by re-distribution of stress and shrinking rate on the sample surface. Energy dispersive spectra (EDS) indicated that upon AO

  6. Public open space as the only urban space for walking: Sumatera Utara experience

    Science.gov (United States)

    Nasution, A. D.; Zahrah, W.; Ginting, Nurlisa

    2018-03-01

    One of successful public open space (POS) criteria is the proper pedestrian linkage. Furthermore, a good quality POS should pay attention to pedestrian activities. This will contribute to the physical and mental health of people and enhance their quality of life. The research means to investigate how POS accommodate the pedestrians. The study takes place in twenty small towns in Sumatra Utara province, Indonesia. The analysis is a descriptive, explorative study that collects data about physical elements of POS. The survey also uses a set of questionnaire to get information about the visitors walking tradition. The result of the study shows that most of the citizens approach and get to the POS by vehicle, both cars, and motorcycles. They use their private vehicles although the distance between their houses and the POS is less than one kilometer. There is no pedestrian linkage that connects the POS with the other part of urban space. However, the POS is active by various physical activities, such as walking, playing and exercising. These events occur both in pedestrian ways in the periphery, inside the POS, and in the other spots of the POS, such as grass field or multipurpose plaza. The visitors’ vehicle tradition relates to the whole urban space which is planned in a car-oriented way. Thus, the POS becomes the only space that people can walk and enjoy the environment.

  7. Shared Space, Liminal Space: Five Years into a Community-University Place-Based Experiment

    Science.gov (United States)

    Barajas, Heidi Lasley; Martin, Lauren

    2016-01-01

    This article explores shared space at the University of Minnesota's Robert J. Jones Urban Research and Outreach Engagement Center (UROC), located four miles off campus in a community strong in assets, but facing inequality, disinvestment and racism. UROC's mission promotes university-community collaboration to solve critical urban challenges. We…

  8. Space potential profiles in ELMO Bumpy Torus (EBT) experiment

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Connor, K.A.

    1983-01-01

    Spatially resolved measurements of the electric space potential in the ELMO Bumpy Torus (EBT) have been made by a heavy ion beam probe. The EBT-I device is characterized by positive potentials in the surface plasma the order of 100 V and by a nearly symmetric potential well in the core plasma of up to 300 V with respect to the surface potential. The EBT-S device has a similar potential structure with well depth and peak potential similar to or greater than that of EBT-I. Peak potential and well depth increase as the edge gas pressure is lowered and as the microwave power is increased. The potential structure is strongly linked to the specific heating geometry. The ambipolar electric field is large enough generally to dominate the core electron neoclassical diffusion. The potential profile is approximately parabolic in the core, which is shown to be a natural consequence of the spatially uniform plasma source function

  9. The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space

    Science.gov (United States)

    Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.

    2017-12-01

    New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.

  10. Symbolic Spaces in Late Capitalism, Where Art is A Proposal and not a Conclusion

    Directory of Open Access Journals (Sweden)

    Mariano O. de Blas

    2013-06-01

    Finally, this scheme has to be included in a new revolutionary tool, the web, a virtual multidimensional space, where contemporary art takes part. Therefore, in the “space” of the web, art can communicate more than ever and can transform itself and present this transformation beyond the established limits, contributing to produce a more flexible and imaginative way of thinking.

  11. Designing with Space Syntax : A configurative approach to architectural layout, proposing a computational methodology

    NARCIS (Netherlands)

    Nourian, P.; Rezvani, S.; Sariyildiz, I.S.

    2013-01-01

    This paper introduces a design methodology and a toolkit developed as a parametric CAD program for configurative design of architectural plan layouts. Using this toolkit, designers can start plan layout process with sketching the way functional spaces need to connect to each other. A tool draws an

  12. T-Rex: A Japanese Space Tether Experiment

    Science.gov (United States)

    Johnson, Les

    2009-01-01

    Electrodynamic tether (EDT) thrusters work by virtue of the force a magnetic field exerts on a wire carrying an electrical current. The force, which acts on any charged particle moving through a magnetic field (including the electrons moving in a current-carrying wire), were concisely expressed by Lorentz in 1895 in an equation that now bears his name. The force acts in a direction perpendicular to both the direction of current flow and the magnetic field vector. Electric motors make use of this force: a wire loop in a magnetic field is made to rotate by the torque the Lorentz Force exerts on it due to an alternating current in the loop times so as to keep the torque acting in the same sense. The motion of the loop is transmitted to a shaft, thus providing work. Although the working principle of EDT thrusters is not new, its application to space transportation may be significant. In essence, an EDT thruster is just a clever way of getting an electrical current to flow in a long orbiting wire (the tether) so that the Earth s magnetic field will accelerate the wire and, consequently the payload attached to the wire. The direction of current flow in the tether, either toward or away from the Earth along the local vertical, determines whether the magnetic force will raise or lower the orbit. The bias voltage of a vertically deployed metal tether, which results just from its orbital motion (assumed eastward) through Earth s magnetic field, is positive with respect to the ambient plasma at the top and negative at the bottom. This polarization is due to the action of the Lorentz force on the electrons in the tether. Thus, the natural current flow is the result of negative electrons being attracted to the upper end and then returned to the plasma at the lower end. The magnetic force in this case has a component opposite to the direction of motion, and thus leads to a lowering of the orbit and eventually to re-entry. In this generator mode of operation the Lorentz Force

  13. Exploring Children's Lived School Experiences in Zambia: Negotiating School Social Spaces

    OpenAIRE

    Mwinsa, Mapoma Grant

    2013-01-01

    Just like other parts of the world, schools in Zambia are, by and large, expected to be spaces for children to socialize and acquire knowledge and skills. However, the school practices in most parts of the world suggest that school spaces are 'ideal spaces for children's training' and 'preparation for the future'. They are seen as places that keep children away from danger and misdemeanor. In view of the foregoing, the aim of this thesis was to explores children's lived school experiences...

  14. International cooperation in the Space Station programme - Assessing the experience to date

    Science.gov (United States)

    Logsdon, John M.

    1991-01-01

    The origins and framework for cooperation in the Space Station program are outlined. Particular attention is paid to issues and commitments between the countries and to the political context of the Station partnership. A number of conclusions concerning international cooperation in space are drawn based on the Space Station experience. Among these conclusions is the assertion that an international partnership requires realistic assesments, mutual trust, and strong commitments in order to work.

  15. Multinational Experiment 7: A Process for Deterring and Influencing Actors in Space, v1.01

    Science.gov (United States)

    2013-01-31

    UNCLASSIFIED Page 1 of 29 UNCLASSIFIED Version 1·01 A Process for Deterring and Influencing Actors in Space v1.01 31 Jan 2013...COVERED 4. TITLE AND SUBTITLE Multinational Experiment 7: Outcome 3: Space-A Process for Deterring and Influencing Actors in Space v1.01 31 Jan... PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) JOINT STAFF-MN//ACT Integration 116 Lakeview Parkway Suffolk, VA 23435 8. PERFORMING ORGANIZATION

  16. Design and Development of the Observation and Analysis of Smectic Islands in Space Experiment

    Science.gov (United States)

    Hall, Nancy Rabel; Tin, Padetha; Sheehan, C. C.; Stannarius, R.; Trittel, T.; Clark, N.; Maclennan, J.; Glaser, M.; Park, C.

    2012-01-01

    The primary objective of Observation and Analysis of Smectic Islands in Space (OASIS) experiment is to exploit the unique characteristics of freely suspended liquid crystals in a microgravity environment to advance the understanding of fluid state physics

  17. BASE-A space experiment with Rhodospirillum rubrum S1H

    Data.gov (United States)

    National Aeronautics and Space Administration — R. rubrum S1H inoculated on solid minimal media was sent to the ISS in September 2006 (BASE-A experiment). After 10 days flight R. rubrum cultures returned back to...

  18. Working with Space and Shape in Early Childhood Education: Experiences in Collaboration

    Directory of Open Access Journals (Sweden)

    Karina Luiza da Silva Fernandes

    2016-11-01

    Full Text Available This report shows the experience of a work conducted with the Meli-Melo puzzle in two early childhood education classes at two different schools in the state of São Paulo, Brazil. With the work’s activities as a starting point, aspects related to space and shape, as well as quantities and measures, were approached. Children from two and a half to five years old participated in the playful activities, which had the following goals: to develop spatial and geometric skills, to allow measuring actions, to favor dialogue and to boost group work experience. There were several activities, like handling the pieces, assembling images freely or according with outlines and models, assembling three-dimensional figures, and the length game. The following questions were considered in the evaluation of the work: how was the children’s participation in large groups and small groups? How did children of different age groups engage in the different proposals? Which activities were easier or more difficult for each group? Which behaviors and conversations showed us new knowledge? The fulfillment of the planned activities showed that the children had several hypotheses regarding shapes and that they were able to identify similarities and differences, use geometry vocabulary, and discuss their thoughts, particularly when working in small groups, which favored the participation of nearly all children. We believe the work reported has allowed learnings and a contact with mathematics in early childhood education.

  19. The Frog in Space (FRIS) experiment onboard Space Station Mir: final report and follow-on studies.

    Science.gov (United States)

    Yamashita, M; Izumi-Kurotani, A; Mogami, Y; Okuno, M; Naitoh, T; Wassersug, R J

    1997-12-01

    The "Frog in Space" (FRIS) experiment marked a major step for Japanese space life science, on the occasion of the first space flight of a Japanese cosmonaut. At the core of FRIS were six Japanese tree frogs, Hyla japonica, flown on Space Station Mir for 8 days in 1990. The behavior of these frogs was observed and recorded under microgravity. The frogs took up a "parachuting" posture when drifting in a free volume on Mir. When perched on surfaces, they typically sat with their heads bent backward. Such a peculiar posture, after long exposure to microgravity, is discussed in light of motion sickness in amphibians. Histological examinations and other studies were made on the specimens upon recovery. Some organs, such as the liver and the vertebra, showed changes as a result of space flight; others were unaffected. Studies that followed FRIS have been conducted to prepare for a second FRIS on the International Space Station. Interspecific diversity in the behavioral reactions of anurans to changes in acceleration is the major focus of these investigations. The ultimate goal of this research is to better understand how organisms have adapted to gravity through their evolution on earth.

  20. A proposal to measure the hadronic contribution to the g-2 in the space-like region*

    Directory of Open Access Journals (Sweden)

    Trentadue Luca

    2018-01-01

    Full Text Available We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists in a measurement of the effective electromagnetic coupling in the space-like region. This method may become feasible at flavor factories as well as with μ e scattering resulting in a determination potentially competitive with the dispersive approach via time-like data.

  1. INSPIRE: Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Franzen, K. A.; Garcia, L. N.; Webb, P. A.; Green, J. L.

    2007-12-01

    The INSPIRE Project is a non-profit scientific and educational corporation whose objective is to bring the excitement of observing very low frequency (VLF) natural radio waves to high school students. Underlying this objective is the conviction that science and technology are the underpinnings of our modern society, and that only with an understanding of these disciplines can people make correct decisions in their lives. Since 1989, the INSPIRE Project has provided specially designed radio receiver kits to over 2,500 students and other groups to make observations of signals in the VLF frequency range. These kits provide an innovative and unique opportunity for students to actively gather data that can be used in a basic research project. Natural VLF emissions that can be studied with the INSPIRE receiver kits include sferics, tweeks, whistlers, and chorus, which originate from phenomena such as lightning. These emissions can either come from the local atmospheric environment within a few tens of kilometers of the receiver or from outer space thousands of kilometers from the Earth. VLF emissions are at such low frequencies that they can be received, amplified and turned into sound that we can hear, with each emission producing in a distinctive sound. In 2006 INSPIRE was re-branded and its mission has expanded to developing new partnerships with multiple science projects. Links to magnetospheric physics, astronomy, and meteorology are being identified. This presentation will introduce the INSPIRE project, display the INSPIRE receiver kits, show examples of the types of VLF emissions that can be collected and provide information on scholarship programs being offered.

  2. Erosion Results of the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2017-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft, it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. A spaceflight experiment, called the Polymers Experiment, which contained 42 samples, was developed to determine the effect of solar exposure on the AO E(sub y) of fluoropolymers flown in ram, wake, or zenith orientations. The Polymers Experiment was exposed to the LEO space environment on the exterior of the International Space Station (ISS) as part of the Materials International Space Station Experiment 8 (MISSE 8) mission. The MISSE 8 mission included samples flown in a zenith/nadir orientation for 2.14 years in the MISSE 8 Passive Experiment Container (PEC), and samples flown in a ram/wake orientation for 2.0 years in the Optical Reflector Materials Experiment-III (ORMatEIII) tray. The experiment included Kapton H (Registered Trademark) witness samples for AO fluence determination in each orientation. This paper provides an overview of the MISSE 8 mission, a description of the flight experiment with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) of Teflon fluorinated ethylene propylene (FEP) samples flown in ram, wake, and zenith orientations have been compared, and the E(sub y) was found to be highly dependent on orientation and therefore environmental exposure. The FEP E(sub y) was found to directly correlate with the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher E(sub y) than clear FEP or Al-FEP further

  3. The space experiment CERASP: Definition of a space-suited radiation source and growth conditions for human cells

    Science.gov (United States)

    Hellweg, Christine E.; Baumstark-Khan, Christa; Spitta, Luis; Thelen, Melanie; Arenz, Andrea; Franz, Markus; Schulze-Varnholt, Dirk; Berger, Thomas; Reitz, Günther

    The combined action of ionizing radiation and microgravity will continue to influence future space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. It has been estimated that on a 3-year mission to Mars about 3% of the bodies' cell nuclei would have been hit by one iron ion with the consequence that nuclear DNA will be heavily damaged. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. DNA repair studies in space on bacteria, yeast cells and human fibroblasts, which were irradiated before, flight, gave contradictory results: from inhibition of repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. The space experiment CERASP (CEllular Responses to RAdiation in SPace) to be performed at the International Space Station (ISS) is aimed to supply basic information on the cellular response in microgravity to radiation applied during flight. It makes use of a recombinant human cell line as reporter for cellular signal transduction modulation by genotoxic environmental conditions. The main biological endpoints under investigation will be gene activation based on enhanced green fluorescent protein (EGFP, originally isolated from the bioluminescent jellyfish Aequorea victoria) expression controlled by a DNA damage-dependent promoter element which reflects the activity of the nuclear factor kappa B (NF- κB) pathway. The NF- κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, anti-apoptosis and tumorgenesis. For radiation exposure during space flight a radiation source has been constructed as damage accumulation by cosmic radiation will certainly be insufficient for analysis. The space experiment specific hardware consists of a specially designed radiation source made up of the β-emitter promethium-147, combined with a

  4. Stereosat: A proposed private sector/government joint venture in remote sensing from space

    Science.gov (United States)

    Anglin, R. L.

    1980-01-01

    Stereosat, a free flying Sun synchronous satellite whose purpose is to obtain worldwide cloud-free stereoscopic images of the Earth's land masses, is proposed as a joint private sector/government venture. A number of potential organization models are identified. The legal, economic, and institutional issues which could impact the continuum of potential joint private sector/government institutional structures are examined.

  5. Experiences of the REACH testing proposals system to reduce animal testing.

    Science.gov (United States)

    Taylor, Katy; Stengel, Wolfgang; Casalegno, Carlotta; Andrew, David

    2014-01-01

    In order to reduce animal testing, companies registering chemical substances under the EU REACH legislation must propose rather than conduct certain tests on animals. Third parties can submit 'scientifically valid information' relevant to these proposals to the Agency responsible, the European Chemicals Agency (ECHA), who are obliged to take the information into account. The European Coalition to End Animal Experiments (ECEAE) provided comments on nearly half of the 817 proposals for vertebrate tests on 480 substances published for comment for the first REACH deadline (between 1 August 2009 and 31 July 2012). The paper summarises the response by registrants and the Agency to third party comments and highlights issues with the use of read across, in vitro tests, QSAR and weight of evidence approaches. Use of existing data and evidence that testing is legally or scientifically unjustified remain the most successful comments for third parties to submit. There is a worrying conservatism within the Agency regarding the acceptance of alternative approaches and examples of where registrants have also failed to maximise opportunities to avoid testing.

  6. Experience with Space Forums and Engineering Courses Organized for the Broad Dissemination of Space-related Information

    Science.gov (United States)

    Dessimoz, J.-D.; D'Aquino, U.; Gander, J.-G.; Sekler, J.

    2002-01-01

    , the basics of propulsion techniques, and selected chapters in specific fields, such as communication, microgravity issues, space journeys, telerobotics, space instrumentation or bio-medical experiments, to mention just a few topics. Both types of actions are complementary and have each so far involved more than thousand participants, notably with very little overlap between both groups of attendees. Those numbers are particularly significant in view of the small country size and the low urban concentration of Switzerland. For the successful organisation of such actions, the co-ordinated effort of several institutions is mandatory. Among other main contributors, the SRV could gratefully count on the support and help from the European Space Agency (ESA), the Swiss Space Office (SSO), the Swiss Academy for Technical Sciences (SATW), as well as on numerous universities, schools, space industries and dedicated individuals. The communication mainly reports here on two types of actions: the Space technology courses for engineering students and professionals and our Space Forums for the interested public. In addition, the SRV association is also active in the realisation of yet other kinds of events: Space days, initiatives at the Swiss Transportation Museum, encouragement of applied R&D studies sponsored by the Swiss government (i.e. the CTI - Swiss Commission for Technology and Innovation), website offering and maintenance, newsletters, etc.

  7. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Science.gov (United States)

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    Science.gov (United States)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  9. PHILOSOPHICAL AND PSYCHOPATHOLOGICAL PERSPECTIVE OF EXILE. ON TIME AND SPACE EXPERIENCES.

    Directory of Open Access Journals (Sweden)

    Matías eSilva Rojas

    2015-05-01

    Full Text Available This article addresses the experience of exile from an interdisciplinary perspective, philosophy and mainy psychiatry, trying to understand the experiences of both space and time that people who live in exile have. The main purpose is to try to understand the experience of exile by rehearsing a psychopathological perspective to address it, so it can help with the treatment of disorders that come with this experience. The latter without cloistering it to the psychologically insane. Furthermore, the article tries to exploit the experience and reflection of philosophers and thinkers who, being exiled themselves, tried to understand and explain this radical human experience.

  10. The Alpha Magnetic Spectrometer (AMS) experiment on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet E-mail: behcet.alpat@pg.infn.it

    2001-04-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to operate in space to search for antimatter components in cosmic ray, the annihilation products of darkmatter and to study the antiprotons, positrons and light nuclei. A 'baseline' version of the experiment has successfully completed the precursor flight on Space Shuttle Discovery (June 2-12, 1998). The complete AMS is programmed for installation on International Space Station in year 2003 for an operational period of 3 years. In this contribution we report on the experimental configuration of AMS that will be installed on International Space Station.

  11. Simulations of Ground and Space-Based Oxygen Atom Experiments

    Science.gov (United States)

    Minton, T. K.; Cline, J. A.; Braunstein, M.

    2002-01-01

    obtained from separate measurements. These computations use basic engineering models for the gas-gas and gas-surface scattering and focus on the influence of multi-collision effects. These simulations characterize many important quantities of interest including the actual flux of atoms that reach the surface, the energy distribution of this flux, as well as the direction of the velocity of the flux that strikes the surface. These quantities are important in characterizing the conditions which give rise to measured surface erosion. The calculations also yield time- snapshots of the pulse as it impacts and flows around the surface. These snapshots reveal the local environment of gas near the surface for the duration of the pulse. We are also able to compute the flux of molecules that travel downstream and reach the spectrometer, and we characterize their velocity distribution. The number of atoms that reach the spectrometer can in fact be influenced by the presence of the surface due to gas-gas collisions from atoms scattered h m the surface, and it will generally be less than that with the surface absent. This amounts to an overall normalization factor in computing erosion yields. We discuss these quantities and their relationship to the gas-surf$ce interaction parameters. We have also performed similar calculations corresponding to conditions (number densities, temperatures, and velocities) of low-earth orbit. The steady-state nature and lower overall flux of the actual space environment give rise to differences in the nature of the gas-impacts on the surface from those of the ground-based measurements using a pulsed source.

  12. Space, the final frontier: A critical review of recent experiments performed in microgravity.

    Science.gov (United States)

    Vandenbrink, Joshua P; Kiss, John Z

    2016-02-01

    Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Experience and Meaning in Qualitative Research: A Conceptual Review and a Methodological Device Proposal

    Directory of Open Access Journals (Sweden)

    Marianne Daher

    2017-07-01

    Full Text Available The relevance of experience and meaning in qualitative research is mostly accepted and is common ground for qualitative studies. However, there is an increasing trend towards trivializing the use of these notions. As a consequence, a mechanistic use of these terms has emerged within qualitative analysis, which has resulted in the loss of the original richness derived from the theoretical roots of these concepts. In this article, we aim to recover these origins by reviewing theoretical postulates from phenomenological and hermeneutic traditions and to propose their convergence in a holistic perspective. The challenge is to find the local source of meanings that will enlighten on how to understand people's experiences. This discussion is the basis for the encounter context themes (ECT methodological device, which emphasizes the importance of studying experience and meaning as part of a larger whole: the participants' life-world. Hence, ECT seeks to complement the available methodological tools for qualitatively-oriented studies, recovering—rather than re-creating—a theoretical discussion useful for current qualitative research practices.

  14. Space-Time Uncertainty and Cosmology: a Proposed Quantum Model of the Universe [ 245Kb

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-10-01

    Full Text Available The paper introduces a cosmological model of the quantum universe. The aim of the model is (i to identify the possible mechanism that governs the matter/antimatter ratio existing in the universe and concurrently to propose (ii a reasonable growth mechanism of the universe and (iii a possible explanation of the dark energy. The concept of timespace uncertainty, on which is based the present quantum approach, has been proven able to bridge quantum mechanics and relativity.

  15. Aesthetic and Affective Experiences in Coffee Shops: A Deweyan Engagement with Ordinary Affects in Ordinary Spaces

    Science.gov (United States)

    Nautiyal, Jaishikha

    2016-01-01

    Can everyday spaces, such as coffee shops bustling with rapid activity, promise an aesthetic experience that remains untapped and undertheorized? If so, what kinds of communicative habits make the coffee shop experience aesthetically wholesome? To this end, I engage and extend American pragmatist John Dewey's mission of recovering aesthetic…

  16. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Science.gov (United States)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  17. Understanding macrophage differentiation during space flight: The importance of ground-based experiments before space flight.

    Science.gov (United States)

    Chapes, Stephen K; Ortega, M Teresa

    2013-06-01

    In preparation for a space flight on STS-126, two in vitro culture systems were used to investigate macrophage colony stimulating factor-dependent macrophage differentiation from mouse primary bone marrow cells. The patented Techshot Cell Cult Bioreactor and the BioServe Fluid Processing Apparatus (FPA) were operated in different orientations to determine their impact on macrophage growth and differentiation. Bone marrow cell parameters were determined after cells were grown in FPAs incubated at 37°C in vertical or horizontal orientations, and macrophage cell recovery was significantly higher from FPAs that were incubated in the horizontal orientation compared to "vertical" FPAs. Similarly, when bone marrow cells were grown in the Techshot bioreactor, there were significant differences in the numbers of macrophages recovered after 7 days, depending on movement and orientation of the bioreactor. Macrophage recovery was highest when the patented bioreactor was rotated in the horizontal, x-axis plane (merry-go-round fashion) compared to static and vertically, y-axis plane rotated (Ferris wheel fashion) bioreactors. In addition, the expression of F4/80 and other differentiation markers varied depending on whether macrophages differentiated in FPAs or in bioreactors. After 7 days, significant differences in size, granularity and molecule expression were seen even when the same primary bone marrow cells were used to seed the cultures. These data show that culture outcomes are highly dependent on the culture device and device orientation. Moreover, the impact of the culture system needs to be understood in order to interpret space flight data.

  18. Erosion Results of the MISSE 7 Polymers Experiment and Zenith Polymers Experiment After 1.5 Years of Space Exposure

    Science.gov (United States)

    De Groh, Kim K.; Banks, Bruce A.; Yi, Grace T.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.; Asmar, Olivia C.; Leneghan, Halle A.; Sechkar, Edward A.

    2016-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft it is important to know the LEO AO erosion yield (E(sub y), volume loss per incident oxygen atom) of materials susceptible to AO reaction. Two spaceflight experiments, the Polymers Experiment and the Zenith Polymers Experiment, were developed to determine the AO E(sub y) of various polymers flown in ram, wake or zenith orientations in LEO. These experiments were flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). The experiments included Kapton H(TradeMark) witness samples for AO fluence determination in ram and zenith orientations. The Polymers Experiment also included samples to determine whether AO erosion of high and low ash containing polymers is dependent on fluence. This paper provides an overview of the MISSE 7 mission, a description of the flight experiments with details on the polymers flown, the characterization techniques used, the AO fluence for each exposure orientation, and the LEO E(sub y) results. The E(sub y) values ranged from 7.99x10(exp -28)cu cm/atom for TiO2/Al2O3 coated Teflon(TradeMark) fluorinated ethylene propylene (FEP) flown in the ram orientation to 1.22x10(exp -23cu cm/atom for polyvinyl alcohol (PVOH) flown in the zenith orientation. The E(sub y) of similar samples flown in different orientations has been compared to help determine solar exposure and associated heating effects on AO erosion. The E(sub y) data from these ISS spaceflight experiments provides valuable information for LEO spacecraft design purposes.

  19. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historic fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a

  20. Refuelling the SLOWPOKE-2 reactor at Ecole Polytechnique: procedure and proposed experiments

    International Nuclear Information System (INIS)

    Kennedy, G.; Marleau, G.

    1997-01-01

    As the expected lifetime of the present fuel in the SLOWPOKE-2 reactor at Ecole Polytechnique de Montreal was seen to approach, a project was initiated which will lead to the refueling of the reactor in 1997. Two aspects of this project require major development work: the defueling and fuel loading procedures need to be revised since this is the first time a SLOWPOKE reactor will be refueled; work is also required to bring safety analysis and documentation in line with recent regulatory requirements. Here, we present the proposed overall refueling strategy and discuss the changes in the operation of the core resulting from the use of low-enriched fuel. Additional experiments, which should be carried out during commissioning, are also analyzed. (author)

  1. Space Radiation Effects and Reliability Consideration for the Proposed Jupiter Europa Orbiter

    Science.gov (United States)

    Johnston, Allan

    2011-01-01

    The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.The proposed Jupiter Europa Orbiter (JEO) mission to explore the Jovian moon Europa poses a number of challenges. The spacecraft must operate for about seven years during the transit time to the vicinity of Jupiter, and then endure unusually high radiation levels during exploration and orbiting phases. The ability to withstand usually high total dose levels is critical for the mission, along with meeting the high reliability standards for flagship NASA missions. Reliability of new microelectronic components must be sufficiently understood to meet overall mission requirements.

  2. The "Alfvén" proposal for the European Space Agency M5 Mission Call

    Science.gov (United States)

    Berthomier, M.; Fazakerley, A. N.

    2017-12-01

    The Alfvén mission objective is to elucidate the particle acceleration processes and their consequences for electromagnetic radiation and energy transport in strongly magnetised plasmas. The Earth's Auroral Acceleration Region is a unique laboratory for investigating these processes. The only way to distinguish between the models describing acceleration processes at the heart of Magnetosphere-Ionosphere Coupling is to combine high-time resolution in situ measurements (as pioneered by FAST), multi-point measurements (as pioneered by CLUSTER), and auroral arc imaging in one mission. Charged particle acceleration in strongly magnetized plasmas requires the conversion of electromagnetic energy into magnetic-field-aligned particle kinetic energy. Alfvén will measure for the first time the occurrence and distribution of small scale parallel electric fields in space and time. In order to determine the relative efficiency of the different conversion mechanisms, Alfvén will also measure the corresponding particle energy fluxes locally and into the aurora. Alfvén will discover how electromagnetic radiation is generated in the acceleration region and how it escapes. Alfvén will make key measurements of Auroral Kilometric Radiation needed to test competing models of wave generation, mode conversion and escape from their source region. These will reveal the mode conversion processes and which information is ultimately carried by the polarization of radio waves reaching free space. Alfvén will discover the global impact of particle acceleration on the dynamic coupling between a magnetized object and its plasma environment. Dual spacecraft measurements offer the unique opportunity to unambiguously determine which part of the energy flowing into the ionosphere is eventually dissipated in this collisional plasma and which part is transmitted to outflowing ions of ionospheric origin. The Alfvén mission design involves use of two simple identical spacecraft, a comprehensive

  3. Proposal for an Experiment to Search for Light Dark Matter at the SPS

    CERN Document Server

    Gninenko, Sergei

    2013-01-01

    Several models of dark matter suggest the existence of dark sectors consisting of $SU(3)_C \\times SU(2)_L \\times U(1)_Y$ singlet fields. These sectors of particles do not interact with the ordinary matter directly but could couple to it via gravity. In addition to gravity, there might be another very weak interaction between the ordinary and dark matter mediated by $U'(1)$ gauge bosons $A'$ (dark photons) mixing with our photons. In a class of models the corresponding dark gauge bosons could be light and have the $\\g - A'$ coupling strength laying in the experimentally accessible and theoretically interesting region. If such $A'$ mediators exist, their di-electron decays $\\aee$ could be searched for in a light-shining-through-a-wall experiment looking for an excess of events with the two-shower signature generated by a single high energy electron in the detector. A proposal to perform such an experiment aiming to probe the still unexplored area of the mixing strength $10^{-5}\\lesssim \\epsilon \\les...

  4. Symbolic Spaces in Late Capitalism, Where Art is A Proposal and not a Conclusion

    Directory of Open Access Journals (Sweden)

    Mariano O. de Blas

    2013-06-01

    Full Text Available Capitalism is the predominant conceptual system configuring and forming our reality. It is difficult, perhaps almost impossible, to imagine another one, because we are immersed in the conceptual approaches of this reality, the one of capitalism. Art is able to represent, symbolically and accurately this conceptual reality, but also to encourage us to imagine other realities even if it is only able display this one accurately (without critic. The concept of this reality is based now on consumption through virtual identities. The value of art is affected by this premise, meaning that the artist is valuable mainly because he is converted into a logo, a valuable signature on the work. This phenomenon not only reflects our conceptual approach to reality but also unveils it, revealing new aspects of our reality and what we think about it. However, art is able to go further and present different approaches to our concepts about reality. It could mean that art promotes us to imagine other realities, at least unconsciously, for both art producers and viewers. Finally, this scheme has to be included in a new revolutionary tool, the web, a virtual multidimensional space, where contemporary art takes part. Therefore, in the “space” of the web, art can communicate more than ever and can transform itself and present this transformation beyond the established limits, contributing to produce a more flexible and imaginative way of thinking.

  5. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    Science.gov (United States)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  6. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    Science.gov (United States)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  7. The experience of lived space in persons with dementia: a systematic meta-synthesis.

    Science.gov (United States)

    Førsund, Linn Hege; Grov, Ellen Karine; Helvik, Anne-Sofie; Juvet, Lene Kristine; Skovdahl, Kirsti; Eriksen, Siren

    2018-02-01

    Identifying how persons with dementia experience lived space is important for enabling supportive living environments and creating communities that compensate for the fading capabilities of these persons. Several single studies have explored this topic; however, few studies have attempted to explicitly review and synthesize this research literature. The aim of this systematic meta-synthesis was therefore to interpret and synthesize knowledge regarding persons with dementia's experience of space. A systematic, computerized search of AgeLine, CINAHL Complete, Embase, Medline and PsycINFO was conducted using a search strategy that combined MeSH terms and text words for different types of dementia with different descriptions of experience. Studies with 1) a sample of persons with dementia, 2) qualitative interviews as a research method and 3) a description of experiences of lived space were included. The search resulted in 1386 articles, of which 136 were identified as eligible and were read and assessed using the CASP criteria. The analysis was inspired by qualitative content analyses. This interpretative qualitative meta-synthesis included 45 articles encompassing interviews with 672 persons with dementia. The analysis showed that living in one's own home and living in long-term care established different settings and posed diverse challenges for the experience of lived space in persons with dementia. The material revealed four main categories that described the experience of lived space: (1) belonging; (2) meaningfulness; (3) safety and security; and (4) autonomy. It showed how persons with dementia experienced a reduction in their lived space due to the progression of dementia. A comprehensive understanding of the categories led to the latent theme: "Living with dementia is like living in a space where the walls keep closing in". This meta-synthesis reveals a process whereby lived space gradually becomes smaller for persons with dementia. This underscores the

  8. Materials processing in space - New challenges for industry. [zero-g experiments on Skylab

    Science.gov (United States)

    Bredt, J. H.; Montgomery, B. O.

    1975-01-01

    A summary is presented of NASA's activity in materials research in zero-g. Very simple experiments to determine the effects of zero-g upon solidification processes, upon heat flow, convection and mass transport, and upon the separation of biological cells were conducted during three Apollo flights. The investigations were continued in a series of experiments conducted on Skylab. The experiments provided data on a wide range of space-processing topics. The various tests and the results obtained in them are discussed. Attention is also given to experiments planned for the Apollo-Soyuz experiment, studies to be conducted with the aid of sounding rockets, and an evaluation of the possibilities provided by space processing for industry.

  9. The influence of space flight on erythrokinetics in man. Space Life Sciences Missions 1 and 2. Experiment E261

    Science.gov (United States)

    Alfrey, Clarence P.

    1995-01-01

    The purpose of this contract was to design and conduct experiments that would increase our understanding of the influence of space flight on erythrokinetics and the rapid change that occurs in the red blood cell mass during spaceflight. The experiment designated E261, was flown on Space Life Science missions SLS-1 and SLS-2 (STS 40 and STS 58). Unique features of this experiment included radionuclide tracer studies during flight and frequent in-flight blood samples specifically for the first three or four days of the mission. Plasma volume measurements were made early and late in the missions. Radioactive iron kinetics studies were initiated after one or three days in microgravity since the magnitude of the red blood cell mass decrease dictated that bone marrow production must be decreased very early in the flight. The schedule was designed to study the time course of the changes that occur during spaceflight and to possibly define a mechanism for the rapid reduction in red blood cell mass.

  10. A PROPOSAL TO MEASURE THE CROSS SECTION OF THE SPACE STAR IN NEUTRON-DEUTERON BREAKUP IN A RECOIL GEOMETRY SETUP. Final report

    International Nuclear Information System (INIS)

    Crowe, Benjamin J. III

    2009-01-01

    Nucleon-deuteron (Nd) breakup is an important tool for obtaining a better understanding of three-nucleon (3N) dynamics and for developing meson exchange descriptions of nuclear systems. The kinematics of the nd breakup reaction enable observables to be studied in a variety of exit-channel configurations that show sensitivity to realistic nucleon-nucleon (NN) potential models and three-nucleon force (3NF) models. Rigorous 3N calculations give very good descriptions of most 3N reaction data. However, there are still some serious discrepancies between data and theory. The largest discrepancy observed between theory and data for nd breakup is for the cross section for the space-star configuration. This discrepancy is known as the 'Space Star Anomaly'. Several experimental groups have obtained results consistent with the 'Space Star Anomaly', but it is important to note that they all used essentially the same experimental setup and so their experimental results are subject to the same systematic errors. We propose to measure the space-star cross-section at the Triangle Universities Nuclear Laboratory (TUNL) using an experimental technique that is significantly different from the one used in previous breakup experiments. This technique has been used by a research group from the University of Bonn to measure the neutron-neutron scattering length. There are three possible scenarios for the outcome of this work: (1) the new data are consistent with previous measurements; (2) the new data are not in agreement with previous measurements, but are in agreement with theory; and (3) the new data are not in agreement with either theory or previous measurements. Any one of the three scenarios will provide valuable insight on the Space Star Anomaly.

  11. Preliminary analyses of WL experiment No. 701, space environment effects on operating fiber optic systems

    Science.gov (United States)

    Taylor, E. W.; Berry, J. N.; Sanchez, A. D.; Padden, R. J.; Chapman, S. P.

    1992-01-01

    A brief overview of the analyses performed to date on WL Experiment-701 is presented. Four active digital fiber optic links were directly exposed to the space environment for a period of 2114 days. The links were situated aboard the Long Duration Exposure Facility (LDEF) with the cabled, single fiber windings atop an experimental tray containing instrumentation for exercising the experiment in orbit. Despite the unplanned and prolonged exposure to trapped and galactic radiation, wide temperature extremes, atomic oxygen interactions, and micro-meteorite and debris impacts, in most instances the optical data links performed well within the experimental limits. Analysis of the recorded orbital data clearly indicates that fiber optic applications in space will meet with success. Ongoing tests and analysis of the experiment at the Phillips Laboratory's Optoelectronics Laboratory will expand this premise, and establish the first known and extensive database of active fiber optic link performance during prolonged space exposure. WL Exp-701 was designed as a feasibility demonstration for fiber optic technology in space applications, and to study the performance of operating fiber systems exposed to space environmental factors such as galactic radiation, and wide temperature cycling. WL Exp-701 is widely acknowledged as a benchmark accomplishment that clearly demonstrates, for the first time, that fiber optic technology can be successfully used in a variety of space applications.

  12. Radiation Environment in EARTH-MOON Space: Results from Radom Experiment Onboard CHANDRAYAAN-1

    Science.gov (United States)

    Vadawale, S. V.; Goswami, J. N.; Dachev, T. P.; Tomov, B. T.; Girish, V.

    2011-07-01

    The radiation monitor (RADOM) payload is a miniature dosimeter spectrometer onboard Chandrayaan-1 mission for monitoring the local radiation environment in near-Earth space and in lunar space. RADOM measured the total absorbed dose and spectrum of the deposited energy from high-energy particles in near-Earth space, en-route and in lunar orbit. RADOM was the first experiment to be switched on soon after the launch of Chandrayaan-1 and was operational till the end of the mission. This article summarizes the observations carried out by RADOM during the entire life time of the Chandrayaan-1 mission and some of the salient results.

  13. Free-Operant Field Experiences: Differentially Reinforcing Successive Approximations to Behavior Analysis through a ShaperSpace

    Directory of Open Access Journals (Sweden)

    Lee L . Mason

    2016-11-01

    Full Text Available Over the past few years an increasing number of schools and community organizations have developed transformative learning spaces referred to as “MakerSpaces” for research and training purposes. MakerSpaces are organizations in which members sharing similar interests in science, technology, engineering, and math (STEM gather to work on self-selected projects. Proponents of MakerSpaces highlight the implicit benefits arising from participants’ increased engagement with complex technical content in a voluntary, authentic context. We extend the MakerSpace concept to applications of training special education teachers to address the needs of students with Autism Spectrum Disorder (ASD. Applied behavior analysis (ABA has vast empirical support for treating ASD. We believe the MakerSpace model provides a platform for developing a new generation of special education teachers. However, rather than making novel products, the focus is on shaping the behavior-analytic repertoires of special education teachers. In the field of ABA, the term “shaping” describes the differential reinforcement of successive approximations to a target behavior. Accordingly, we propose the name ShaperSpace to describe a novel clinical training approach to developing special education teachers who employ research-validated interventions for individuals with ASD. The supervision model described in this article is provided, not as a recommendation, but as an exemplar that has developed over four years’ contingency shaping and continues to be refined. We appeal to the reader to consider the ShaperSpace as a starting point from which skills developed through free-operant field experiences will ultimately be shaped and selected by the naturally occurring contingencies of the environment.

  14. A proposal to demonstrate production of salad crops in the space station mockup facility with particular attention to space, energy, and labor constraints

    Science.gov (United States)

    Brooks, Carolyn A.; Sharma, Govind C.; Beyl, Caula A.

    1990-01-01

    A desire for fresh vegetables for consumption during long term space missions has been foreseen. To meet this need in a microgravity environment within the limited space and energy available on Space Station requires highly productive vegetable cultivars of short stature to optimize vegetable production per volume available. Special water and nutrient delivery systems must also be utilized. As a first step towards fresh vegetable production in the microgravity of Space Station, several soil-less capillary action media were evaluated for the ability to support growth of two root crops (radish and carrot) which are under consideration for inclusion in a semi-automated system for production of salad vegetables in a microgravity environment (Salad Machine). In addition, productivity of different cultivars of radish was evaluated as well as the effect of planting density and cultivar on carrot production and size. Red Prince radish was more productive than Cherry Belle and grew best on Jiffy Mix Plus. During greenhouse studies, vermiculite and rock wool supported radish growth to a lesser degree than Jiffy Mix Plus but more than Cellular Rooting Sponge. Comparison of three carrot cultivars (Planet, Short n Sweet, and Goldinhart) and three planting densities revealed that Short n Sweet planted at 25.6 sq cm/plant had the greatest root fresh weight per pot, the shortest mean top length, and intermediate values of root length and top fresh weight per pot. Red Prince radish and Short n Sweet carrot showed potential as productive cultivars for use in a Salad Machine. Results of experiments with solid capillary action media were disappointing. Further research must be done to identify a solid style capillary action media which can productively support growth of root crops such as carrot and radish.

  15. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  16. ``From seed-to-seed'' experiment with wheat plants under space-flight conditions

    Science.gov (United States)

    Mashinsky, A.; Ivanova, I.; Derendyaeva, T.; Nechitailo, G.; Salisbury, F.

    1994-11-01

    An important goal with plant experiments in microgravity is to achieve a complete life cycle, the ``seed-to-seed experiment''. Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.

  17. Optimal Electricity Distribution Framework for Public Space: Assessing Renewable Energy Proposals for Freshkills Park, New York City

    Directory of Open Access Journals (Sweden)

    Kaan Ozgun

    2015-03-01

    Full Text Available Integrating renewable energy into public space is becoming more common as a climate change solution. However, this approach is often guided by the environmental pillar of sustainability, with less focus on the economic and social pillars. The purpose of this paper is to examine this issue in the speculative renewable energy propositions for Freshkills Park in New York City submitted for the 2012 Land Art Generator Initiative (LAGI competition. This paper first proposes an optimal electricity distribution (OED framework in and around public spaces based on relevant ecology and energy theory (Odum’s fourth and fifth law of thermodynamics. This framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. Next, the study uses the OED framework to analyse the top twenty-five projects submitted for the LAGI 2012 competition. The findings reveal an electricity distribution imbalance and suggest a lack of in-depth understanding about sustainable electricity distribution within public space design. The paper concludes with suggestions for future research.

  18. Calculation methods for estimating the prospects of a space experiment by means of impact by asteroid Apophis on the Moon surface

    Science.gov (United States)

    Ostrik, A. V.; Kazantsev, A. M.

    2018-01-01

    The problem of principal change of asteroid 99952 (Apophis) orbit is formulated. Aim of this change is the termination of asteroid motion in Solar system. Instead of the passive rescue tactics from asteroid threat, an option is proposed for using the asteroid for setting up a large-scale space experiment on the impact interaction of the asteroid with the Moon. The scientific and methodical apparatus for calculating the possibility of realization, searching and justification the scientific uses of this space experiment is considered.

  19. Foucault pendulum at the south pole: Proposal for an experiment to detect the earth's general relativistic gravitomagnetic field

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Polnarev, A.G.; Thorne, K.S.

    1984-01-01

    An experiment is proposed for measuring the earth's gravitomagnetic field by monitoring its effect on the plane of swing of a Foucault pendulum at the south pole (''dragging of inertial frames by earth's rotation''). With great effort a 10% experiment in a measurement time of several months might be achieved

  20. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  1. Race Has Always Mattered: An Intergeneration Look at Race, Space, Place, and Educational Experiences of Blacks

    OpenAIRE

    Yull, Denise G.

    2014-01-01

    Within school settings race continues to be one of the most formidable obstacles for Black children in the United States (US) school system. This paper expands the discussions of race in education by exploring how the social links among race, space, and place provide a lens for understanding the persistence of racism in the educational experiences of Black children. This paper examines how differences in a rural versus urban geographical location influence a student’s experience with race, ra...

  2. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX)

    OpenAIRE

    Pengcheng Yu; Yu Liu; Jinxiang Cao; Jiuhou Lei; Zhongkai Zhang; Xiao Zhang

    2017-01-01

    In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6) into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase du...

  3. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  4. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    Science.gov (United States)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  5. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  6. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Science.gov (United States)

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  7. Seeds-in-space education experiment during the Dutch soyuz mission DELTA

    Science.gov (United States)

    Weterings, Koen; Wamsteker, Jasper; Loon, Jack van

    2007-09-01

    We have used the broad appeal of the universe and space flight to boost interest in science education in The Netherlands via a classroom experiment designated Seeds In Space (SIS). By germinating Rucola seeds in the dark and in the light in ground classrooms and by comparing these results with those obtained in the same experiment performed in the International Space Station (ISS) during the Dutch Soyuz mission DELTA, students could learn about the cues that determine direction of plant growth. This paper describes both the preparations that led up to the SIS experiment as well as the popular and scientific outcome. Within The Netherlands, some 80.000 students participated, representing 15% of the population in the age group of 10-14 years old. In addition, another 80.000 German pupils, a few local schools in the Moscow -Koroljov- area and some in the Dutch Antilles also participated in the SIS experiment. Considering these numbers, it can be concluded that SIS was a very successful educational project and might be considered for future space flight missions.

  8. Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    On the one hand, a rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space and as we move to the second quantization, a Fock space. On the other hand, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we utilize some novel reinterpretations of basic E (∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. Proceeding in this way, we gain a better understanding of the physico-mathematical structure of quantum spacetime which is at the heart of the paradoxical and non-intuitive outcome of the famous quantum two-slit gedanken experiment

  9. The large area crop inventory experiment: An experiment to demonstrate how space-age technology can contribute to solving critical problems here on earth

    Science.gov (United States)

    1977-01-01

    The large area crop inventory experiment is being developed to predict crop production through satellite photographs. This experiment demonstrates how space age technology can contribute to solving practical problems of agriculture management.

  10. Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment with Aspicilia fruticulosa

    Science.gov (United States)

    Raggio, J.; Pintado, A.; Ascaso, C.; De La Torre, R.; De Los Ríos, A.; Wierzchos, J.; Horneck, G.; Sancho, L. G.

    2011-05-01

    The Lithopanspermia space experiment was launched in 2007 with the European Biopan facility for a 10-day spaceflight on board a Russian Foton retrievable satellite. Lithopanspermia included for the first time the vagrant lichen species Aspicilia fruticulosa from Guadalajara steppic highlands (Central Spain), as well as other lichen species. During spaceflight, the samples were exposed to selected space conditions, that is, the space vacuum, cosmic radiation, and different spectral ranges of solar radiation (λ ≥ 110, ≥ 200, ≥ 290, or ≥ 400 nm, respectively). After retrieval, the algal and fungal metabolic integrity of the samples were evaluated in terms of chlorophyll a fluorescence, ultrastructure, and CO2 exchange rates. Whereas the space vacuum and cosmic radiation did not impair the metabolic activity of the lichens, solar electromagnetic radiation, especially in the wavelength range between 100 and 200 nm, caused reduced chlorophyll a yield fluorescence; however, there was a complete recovery after 72 h of reactivation. All samples showed positive rates of net photosynthesis and dark respiration in the gas exchange experiment. Although the ultrastructure of all flight samples showed some probable stress-induced changes (such as the presence of electron-dense bodies in cytoplasmic vacuoles and between the chloroplast thylakoids in photobiont cells as well as in cytoplasmic vacuoles of the mycobiont cells), we concluded that A. fruticulosa was capable of repairing all space-induced damage. Due to size limitations within the Lithopanspermia hardware, the possibility for replication on the sun-exposed samples was limited, and these first results on the resistance of the lichen symbiosis A. fruticulosa to space conditions and, in particular, on the spectral effectiveness of solar extraterrestrial radiation must be considered preliminary. Further testing in space and under space-simulated conditions will be required. Results of this study indicate that the

  11. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes.

    Science.gov (United States)

    Pooley, C M; Bishop, S C; Marion, G

    2015-06-06

    Bayesian statistics provides a framework for the integration of dynamic models with incomplete data to enable inference of model parameters and unobserved aspects of the system under study. An important class of dynamic models is discrete state space, continuous-time Markov processes (DCTMPs). Simulated via the Doob-Gillespie algorithm, these have been used to model systems ranging from chemistry to ecology to epidemiology. A new type of proposal, termed 'model-based proposal' (MBP), is developed for the efficient implementation of Bayesian inference in DCTMPs using Markov chain Monte Carlo (MCMC). This new method, which in principle can be applied to any DCTMP, is compared (using simple epidemiological SIS and SIR models as easy to follow exemplars) to a standard MCMC approach and a recently proposed particle MCMC (PMCMC) technique. When measurements are made on a single-state variable (e.g. the number of infected individuals in a population during an epidemic), model-based proposal MCMC (MBP-MCMC) is marginally faster than PMCMC (by a factor of 2-8 for the tests performed), and significantly faster than the standard MCMC scheme (by a factor of 400 at least). However, when model complexity increases and measurements are made on more than one state variable (e.g. simultaneously on the number of infected individuals in spatially separated subpopulations), MBP-MCMC is significantly faster than PMCMC (more than 100-fold for just four subpopulations) and this difference becomes increasingly large. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Erosion Data from the MISSE 8 Polymers Experiment After 2 Years of Space Exposure on the International Space Station

    Science.gov (United States)

    de Groh, Kim K.; Banks, Bruce A.; Asmar, Olivia C.; Yi, Grace T.; Mitchell, Gianna G.; Guo, Aobo; Sechkar, Edward A.

    2016-01-01

    The Polymers Experiment was exposed to the low Earth orbit (LEO) space environment for 2.14 and 2.0 years as part of the Materials International Space Station Experiment 8 (MISSE 8) and the Optical Reflector Materials Experiment-III (ORMatE-III), respectively. The experiment contained 42 samples, which were flown in either ram, wake, or zenith orientations. The primary objective was to determine the effect of solar exposure on the atomic oxygen erosion yield (Ey) of fluoropolymers. This paper provides an overview of the experiment with details on the polymers flown, the characterization techniques used, the atomic oxygen fluence for each exposure orientation, and the LEO Ey results. The Ey values for the fluoropolymers range from 1.45 x 10(exp -25) cm(exp 3)/atom for white Tedlar Registered Trademark? (polyvinyl fluoride with white titanium dioxide pigment) flown in the ram orientation to 6.32 x 10(exp -24) cm(exp 3)/atom for aluminized-Teflon Registered Trademark? fluorinated ethylene propylene (Al-FEP) flown in the zenith orientation. Erosion yield data for FEP flown in ram, wake and zenith orientations are compared, and the Ey was found to be highly dependent on orientation, hence environmental exposure. Teflon FEP had an order of magnitude higher Ey when flown in the zenith direction (6.32 x10(exp -24) cm(exp3)/atom) as compared to the ram direction (2.37 x 10(exp -25) cm(exp 3)/atom). The Ey of FEP was found to increase with a direct correlation to the solar exposure/AO fluence ratio showing the effect of solar radiation and/or heating due to solar exposure on FEP erosion. In addition, back-surface carbon painted FEP (C-FEP) flown in the zenith orientation had a significantly higher Ey than clear FEP or Al-FEP further indicating that heating has a significant impact on the erosion of FEP, particularly in the zenith orientation.

  13. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX

    Directory of Open Access Journals (Sweden)

    Pengcheng Yu

    2017-10-01

    Full Text Available In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6 into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase due to the decrease of the electron density. Compared to the traditional active release experiments, the laboratory scheme can be more efficient, high repetition rate and simpler measurement of the varying plasma parameter after chemical releasing. Therefore, it can effective building the bridge between the theoretical work and real space observation.

  14. Materials International Space Station Experiment (MISSE): Overview, Accomplishments and Future Needs

    Science.gov (United States)

    deGroh, Kim K.; Jaworske, Donald A.; Pippin, Gary; Jenkins, Philip P.; Walters, Robert J.; Thibeault, Sheila A.; Palusinski, Iwona; Lorentzen, Justin R.

    2014-01-01

    Materials and devices used on the exterior of spacecraft in low Earth orbit (LEO) are subjected to environmental threats that can cause degradation in material properties, possibly threatening spacecraft mission success. These threats include: atomic oxygen (AO), ultraviolet and x-ray radiation, charged particle radiation, temperature extremes and thermal cycling, micrometeoroid and debris impacts, and contamination. Space environmental threats vary greatly based on spacecraft materials, thicknesses and stress levels, and the mission environment and duration. For more than a decade the Materials International Space Station Experiment (MISSE) has enabled the study of the long duration environmental durability of spacecraft materials in the LEO environment. The overall objective of MISSE is to test the stability and durability of materials and devices in the space environment in order to gain valuable knowledge on the performance of materials in space, as well as to enable lifetime predictions of new materials that may be used in future space flight. MISSE is a series of materials flight experiments, which are attached to the exterior of the International Space Station (ISS). Individual experiments were loaded onto suitcase-like trays, called Passive Experiment Containers (PECs). The PECs were transported to the ISS in the Space Shuttle cargo bay and attached to, and removed from, the ISS during extravehicular activities (EVAs). The PECs were retrieved after one or more years of space exposure and returned to Earth enabling post-flight experiment evaluation. MISSE is a multi-organization project with participants from the National Aeronautics and Space Administration (NASA), the Department of Defense (DoD), industry and academia. MISSE has provided a platform for environmental durability studies for thousands of samples and numerous devices, and it has produced many tangible impacts. Ten PECs (and one smaller tray) have been flown, representing MISSE 1 through MISSE

  15. First results from the PROTEIN experiment on board the International Space Station

    Science.gov (United States)

    Decanniere, Klaas; Potthast, Lothar; Pletser, Vladimir; Maes, Dominique; Otalora, Fermin; Gavira, Jose A.; Pati, Luis David; Lautenschlager, Peter; Bosch, Robert

    On March 15 2009 Space Shuttle Discovery was launched, carrying the Process Unit of the Protein Crystallization Diagnostics Facility (PCDF) to the International Space Station. It contained the PROTEIN experiment, aiming at the in-situ observation of nucleation and crystal growth behaviour of proteins. After installation in the European Drawer Rack (EDR) and connection to the PCDF Electronics Unit, experiment runs were performed continuously for 4 months. It was the first time that protein crystallization experiments could be modified on-orbit in near real-time, based on data received on ground. The data included pseudo-dark field microscope images, interferograms, and Dynamic Light Scattering data. The Process Unit with space grown crystals was returned to ground on July 31 2009. Results for the model protein glucose isomerase (Glucy) from Streptomyces rubiginosus crystallized with ammonium sulfate will be reported concerning nucleation and the growth from Protein and Impurities Depletion Zones (PDZs). In addition, results of x-ray analyses for space-grown crystals will be given.

  16. Space Communication and Navigation SDR Testbed, Overview and Opportunity for Experiments

    Science.gov (United States)

    Reinhart, Richard C.

    2013-01-01

    NASA has developed an experimental flight payload (referred to as the Space Communication and Navigation (SCAN) Test Bed) to investigate software defined radio (SDR) communications, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developments underway by NASA and industry partners launched in 2012. The payload is externally mounted to the International Space Station truss to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system will communicate with NASAs orbiting satellite relay network, the Tracking and Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station. The system is available for experiments by industry, academia, and other government agencies to participate in the SDR technology assessments and standards advancements.

  17. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    Science.gov (United States)

    Selcow, Elizabeth C.; Cerbone, Ralph J.; Ludewig, Hans; Mughabghab, Said F.; Schmidt, Eldon; Todosow, Michael; Parma, Edward J.; Ball, Russell M.; Hoovler, Gary S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors.

  18. MCNP benchmark analyses of critical experiments for the Space Nuclear Thermal Propulsion program

    International Nuclear Information System (INIS)

    Selcow, E.C.; Cerbone, R.J.; Ludewig, H.; Mughabghab, S.F.; Schmidt, E.; Todosow, M.; Parma, E.J.; Ball, R.M.; Hoovler, G.S.

    1993-01-01

    Benchmark analyses have been performed of Particle Bed Reactor (PBR) critical experiments (CX) using the MCNP radiation transport code. The experiments have been conducted at the Sandia National Laboratory reactor facility in support of the Space Nuclear Thermal Propulsion (SNTP) program. The test reactor is a nineteen element water moderated and reflected thermal system. A series of integral experiments have been carried out to test the capabilities of the radiation transport codes to predict the performance of PBR systems. MCNP was selected as the preferred radiation analysis tool for the benchmark experiments. Comparison between experimental and calculational results indicate close agreement. This paper describes the analyses of benchmark experiments designed to quantify the accuracy of the MCNP radiation transport code for predicting the performance characteristics of PBR reactors

  19. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.

    Science.gov (United States)

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  20. The Mice Drawer System (MDS experiment and the space endurance record-breaking mice.

    Directory of Open Access Journals (Sweden)

    Ranieri Cancedda

    Full Text Available The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS, contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS. The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th, 2009. MDS returned to Earth on November 27(th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  1. Perception, experience and the use of public urban spaces by residents of urban neighbourhoods

    Directory of Open Access Journals (Sweden)

    Nataša Bratina Jurkovič

    2014-06-01

    Full Text Available In cities, public green open spaces offer residents a potentially better quality of life. The behavioural patterns by which people experience and use these spaces is therefore a valuable source of information for spatial planning. Indeed, studying how these spaces are used has also shown a significant difference between the intentions of planners and users. Only the frequency of visits to these public green spaces ultimately testifies to their appropriate and successful planning. Based on empirical research conducted in a residential area of Ljubljana, this article addresses the significance and methods of obtaining information on the experience and use of urban open spaces by residents of that neighbourhood. The article identifies factors (that could also be used by planners that significantly impact satisfaction levels among the intended users of the neighbourhood. The focus group method and socio spatial schema method were used, based on the assumption that a multi method approach provides more accurate and reliable information that is verifiable, and therefore more useful in developing planning policies. According to the research findings, residents perceive their “neighbourhood” to be the area around their home in which they know each other and socialise with neighbours. The factors that trigger a sense of satisfaction with their neighbourhood are well maintained green areas in the vicinity of their home, parks with trees that provide spaces for a variety of activities, tree lined streets, green areas connected into a system, the opportunity to use these areas for recreation and sports, and street furniture for rest or play. The spatial elements that hinder the use of such open spaces are, in particular, busy streets, unprotected pedestrian crossings, large garage areas and car parking.

  2. Proposing a Managerial Model to Higher Education Sector: Lifelong Educational Experiences of Overseas Students on Impediments

    Science.gov (United States)

    Erden, Ali

    2017-01-01

    Lifelong education is a process including positive and negative experiences at the same time. Negative experiences mostly appear as impediments to the overseas students. They need to overcome impediments they experience throughout their education. The paper discussed the key findings of a two-year research project for identifying the impediments…

  3. Alpha Magnetic Spectrometer (AMS02) experiment on the International Space Station (ISS)

    CERN Document Server

    Alpat, Behcet

    2003-01-01

    The Alpha Magnetic Spectrometer experiment is realized in two phases. A precursor flight (STS-91) with a reduced experimental configuration (AMS01) has successfully flown on space shuttle Discovery in June 1998. The final version (AMS02) will be installed on the International Space Station (ISS) as an independent module in early 2006 for an operational period of three years. The main scientific objectives of AMS02 include the searches for the antimatter and dark matter in cosmic rays. In this work we will discuss the experimental details as well as the improved physics capabilities of AMS02 on ISS.

  4. Mechanical and thermal design of an experiment aboard the space shuttle: the Spacelab spectrometer

    International Nuclear Information System (INIS)

    Besson, J.

    1985-01-01

    The spectrometer designed by ONERA and IASB (Belgium Space Aeronomy Institute) to measure atmospheric trace constituents was flown aboard Spacelab 1 during the 9 th mission of the American Space Shuttle from November 28 to December 8, 1983. After a brief summary of the history of the project related to Spacelab, the mechanical and thermal design of the spectrometer is described. Some methods, calculations and characteristic tests are detailed as examples. The behaviour of the experiment during the mission and the results of the post-flight tests are shortly analyzed in order to prepare the qualification for a reflight [fr

  5. Experience from the Student Programme REXUS/BEXUS: A Stepping Stone to a Space Career

    Science.gov (United States)

    Berquand, A.

    2015-09-01

    The aim of this paper is to give an inside view to the REXUS/BEXUS programme from the perspective of a student who has been involved in the project. Each year, the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB), in cooperation with the European Space Agency (ESA), offer the opportunity to European University Students to fly an experiment on board sounding rockets or stratospheric balloons in the frame of the REXUS/BEXUS programme. From December 2012 to May 2014 a team of master students from KTH, the Royal Institute of Technology, worked on ISAAC project, an atmospheric experiment launched on board REXUS 15. The author was part of this student team and was involved in the whole process of the ISAAC project from design building and testing phases to the launch campaign and results analysis. The points raised in this article were presented on the occasion of a keynote speech during the 22nd ESA Symposium on European Rocket and Balloon Programmes and Related Research, in Tromsø (Norway) from the 7th to the 12th ofJune 2015. The aim of this presentation was to demonstrate the benefits of hands-on Education programme at University level. In addition to the research opportunities, future space engineers and scientists can profit from a first practical experience under the supervision of experimented experts. The results of the ISAAC project were also presented in the frame of this conference [1].

  6. Cosmic-ray interaction data for designing biological experiments in space

    Science.gov (United States)

    Straume, T.; Slaba, T. C.; Bhattacharya, S.; Braby, L. A.

    2017-05-01

    There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered.

  7. Your place or mine: shared sensory experiences elicit a remapping of peripersonal space.

    Science.gov (United States)

    Maister, Lara; Cardini, Flavia; Zamariola, Giorgia; Serino, Andrea; Tsakiris, Manos

    2015-04-01

    Our perceptual systems integrate multisensory information about objects that are close to our bodies, which allow us to respond quickly and appropriately to potential threats, as well as act upon and manipulate useful tools. Intriguingly, the representation of this area close to our body, known as the multisensory 'peripersonal space' (PPS), can expand or contract during social interactions. However, it is not yet known how different social interactions can alter the representation of PPS. In particular, shared sensory experiences, such as those elicited by bodily illusions such as the enfacement illusion, can induce feelings of ownership over the other's body which has also been shown to increase the remapping of the other's sensory experiences onto our own bodies. The current study investigated whether such shared sensory experiences between two people induced by the enfacement illusion could alter the way PPS was represented, and whether this alteration could be best described as an expansion of one's own PPS towards the other or a remapping of the other's PPS onto one's own. An audio-tactile integration task allowed us to measure the extent of the PPS before and after a shared sensory experience with a confederate. Our results showed a clear increase in audio-tactile integration in the space close to the confederate's body after the shared experience. Importantly, this increase did not extend across the space between participant and confederate, as would be expected if the participant's PPS had expanded. Thus, the pattern of results is more consistent with a partial remapping of the confederate's PPS onto the participant's own PPS. These results have important consequences for our understanding of interpersonal space during different kinds of social interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A proposal for laminated pie mechanical construction of a toroidal magnet for the far detector for the MINOS experiment

    International Nuclear Information System (INIS)

    Fields, T.; Guarino, V.; Petereit, E.; Schoessow, P.; Thompson, K.

    1996-01-01

    This proposal describes an alternative to the reference design for the construction of the toroidal magnet for the detector for the MINOS experiment. This design proposes to construct the steel planes from several steel sheets and laminate them into the required thickness of four centimeters. The 8 meter planes are constructed by cutting all of the steel plates to the same size, which is pie a pie shaped segment of either 30 or 22.5 degrees each. All of the plates in the construction are identical, which is conducive to rapid production and lower cost. The advantages of the proposed laminated construction over the reference design are listed in this paper

  9. Sports Management for Sports Massification Planned and Executed by Social Organizations. Critics to Models, Experiences and Proposal Methodological Accompaniment

    OpenAIRE

    Lorenza Antonia Reyes de Duran

    2016-01-01

    The proposal analysis, interpretation, disassembly, self-criticism and guidance is born and comes from work experience planned mass sports and social organizations opposed-not in the conventional sense comparative-private business models and sport, state and management. The contribution made by the sports management experience from positions of power, either state or business are undeniable and its impact is difficult to express in numbers for its humanistic value, which is incalculable. Howe...

  10. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  11. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  12. Experiences of technology-rich innovation in European schools within the Open Discovery Space project

    Directory of Open Access Journals (Sweden)

    Sonia PEINADO

    2015-11-01

    Full Text Available The Open Discovery Space (ODS project was conceived to introduce innovative resource-based teaching and learning practices in European schools, to promote the creation of communities between European school members and to boost the demand for open educational resources among teachers. After 3 years of applying the ODS innovation model, more than 2,000 European schools have carried out diverse experiences of technology-rich innovation to achieve the project aims. This paper describes the experiences and results of ODS in 7 different European countries, along with the international activities that aim at expanding the scope of the project beyond the European limits.

  13. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  14. Race Has Always Mattered: An Intergeneration Look at Race, Space, Place, and Educational Experiences of Blacks

    Directory of Open Access Journals (Sweden)

    Denise G. Yull

    2014-01-01

    Full Text Available Within school settings race continues to be one of the most formidable obstacles for Black children in the United States (US school system. This paper expands the discussions of race in education by exploring how the social links among race, space, and place provide a lens for understanding the persistence of racism in the educational experiences of Black children. This paper examines how differences in a rural versus urban geographical location influence a student’s experience with race, racism, and racial identity across four generations of Black people in the context of school and community. Implications for research and practice are discussed.

  15. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  16. Beyond the Physical Realm: A proposed theory regarding a consumer’s place experience

    Directory of Open Access Journals (Sweden)

    Mark Rosenbaum, Ph.D.

    2005-03-01

    Full Text Available Marketers view place as a marketing mix tool that denotes activitiesassociated with the distribution of products and services. Thus, thediscipline believes that places are alienated from consumers’ livesand experiences. This article looks at the place concept anew andoffers an original theory of consumers’ experience in place.

  17. Training for life science experiments in space at the NASA Ames Research Center

    Science.gov (United States)

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  18. Genetic changes induced in human cells in Space Shuttle experiment (STS-95).

    Science.gov (United States)

    Ishizaki, K; Nishizawa, K; Kato, T; Kitao, H; Han, Z B; Hirayama, J; Suzuki, F; Cannon, T F; Kamigaichi, S; Tawarayama, Y; Masukawa, M; Shimazu, T; Ikenaga, M

    2001-09-01

    Results of past space experiments suggest that the biological effect of space radiation could be enhanced under microgravity. To assess the radiation risk for humans during long-term spaceflight, it is very important to clarify whether human cells exhibit a synergistic effect of radiation and microgravity. If significant synergism occurs in human cells, genetic changes induced during spaceflight may be detected by using human tumor HCT-116 cells which are hypermutable due to a defect in the DNA mismatch repair system. Cultured HCT-116 cells were loaded on the Space Shuttle Discovery (STS-95) and grown during the 9-d mission. After landing, many single-cell clones were isolated, microsatellite repetitive sequences in each clone were amplified by PCR, and mutations in the microsatellite loci were detected as changes in the length of PCR fragments. Mutation frequencies of ouabain-resistant phenotype were also analyzed. The frequencies of microsatellite mutations as well as ouabain-resistant mutations in the flight sample were similar to those of the ground control samples. Some cells were treated in space with bleomycin which mimics the action of radiation, but the frequencies of microsatellite mutations were not significantly different between the flight and the ground control samples. Under the present flight conditions, neither space radiation (about 20 mSv during this mission) nor microgravity caused excess mutations in human cells.

  19. The experience to use space data as educational resources for secondary school students

    Science.gov (United States)

    Zaitzev, A.; Boyarchuk, K.

    The space science data available free from Internet and include all kind of data: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, ground-based and satellite aurora images and magnetic field variations in real time, ionospheric data etc. Beside that we have the direct transmissions of meteorological images from NOAA satellites in the APT and HRPT modes. All such sources of data can be used for educational programs for secondary school students. During last 10 years we conduct special classes in local school, where we use such space data. After introduction course each student might choose the topic which he can study in details. Each year the students prepare the original papers and participate in the special conferences, which one is in The Space Day, April 12. As curriculum materials we also use Russian language magazine "Novosti Kosmonavtiki", original data bases with space data available on CD-ROMs and publications in English. Such approach stimulate students to lean English also. After finish the classes K-12 students motivated well to continue education into space science and IZMIRAN will plan to support that students. In past two years we pay attention to use microsatellites for education. Last one is Russian-Australian KOLIBRI-2000 microsatellite, which was launched March 2002. KOLIBRI-2000 conduct simple measurements as magnetic field and particles. The experience in the usage of microsatellites data in classes are analyzed. The prospects and recommendations are discussed.

  20. Stratospheric aerosol and gas experiment III (SAGE III) mission aboard the International Space Station

    Science.gov (United States)

    Szatkowski, Lorelei S.; Bradley, Obie H.; Mauldin, Lemuel E.; Wusk, Mary B.; Chu, William P.; Farwell, Lester C.; Galeone, Piero

    1999-10-01

    This paper presents the SAGE III mission for the International Space Station. SAGE III is fifth in a series of instruments developed to monitor aerosols and gaseous constituents in the stratosphere and troposphere. Three instruments are being developed by the National Aeronautics and Space Administration (NASA) Langley Research Center for the Earth Science Enterprise: one for a high-inclined orbit aboard the Russian Meteor-3M (M3M) spacecraft; one for a mid-inclined (51.6 deg) orbit on the International Space Station, the subject of this paper; and a third for a potential flight of opportunity (FOO) mission. The SAGE III/ISS payload is comprised of international components: a pointing platform called the Hexapod, provided by the European Space Agency and the Expedite the Processing of Experiments to International Space Station (ISS) (EXPRESS) pallet adapter, (part of a carrier system to be built by Brazil for NASA. The SAGE III/ISS mission is manifested for a launch on the ISS Utilization Flight (UF) 3, currently scheduled to launch February 2003.

  1. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  2. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  3. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  4. Analysis and proposal of the new architecture of the selected parts of the software support of the COMPASS experiment

    CERN Document Server

    Jary, Vladimir

    This work focuses on the data acquisition system of the Compass experiment at CERN. At first the database current subsystem that suffered from increased load during year 2009 is analysed. The reasons of problems are identified and new architecture that includes replication, backups, and monitoring for achieving the high availability and reliability is proposed and implemented. Several advanced database features including partitioned tables or storage engines are described and tested. Then, the process of implementation of the remote control and monitoring of the experiment is explained. As the existing data acquisition system is partly based on a deprecated technologies, development of a new architecture has started. We focus on requirements analysis and proposal of a control and monitoring software for the new hardware platform based on the FPGA technology. The software is to be deployed in a heterogenous network environment. According to the proposal, the system is built on the DIM communication library. Ro...

  5. Negotiating and Designing Public Space. Experiences with a new M.Sc. in Urban Design Program in Hong Kong

    Directory of Open Access Journals (Sweden)

    Hendrik Tieben

    2013-05-01

    Full Text Available This contribution reflects on first experiences made with a newly launched Master of Science in Urban Design program at the Chinese University of Hong Kong. As an important part of this program, students have to develop their design proposal in response to feedback of different stakeholders and community members. Thus the program responds to the growing aspiration of Hong Kong’s citizens to shape the urban development of their city and a lack of a meaningful participation process in the region. With its high density, protected country parks, efficient public transport and large scale housing program, generally, Hong Kong offers important lessons for contemporary urbanism. However, since the end of the British colonial rule and in face of increasing property prices, pollution and the disappearance of local heritage, intensive debates started about the regions future. Another central point of the recent discussion in Hong Kong – and key theme of the new urban design program - is the demand for the rights and qualities of public space. The paper presents the set-up of the design studio, which was closely linked to a course on “urban processes”. During the semester, students had to organize community forums and street exhibitions in a specific district, invite stakeholders and residents and discuss with them their ideas. Their projects, then, had to respond on the various feedbacks and integrate them in their design and policy proposals. The text reflects on the student projects and the lessons learned in the process. It addresses general questions such as the challenges in communicating with a diverse community (e.g. language barriers and culturally different ideas of public space. It addresses the question of the intended and unintended effects of a participatory design studio in the community, and possible follow-ups. And it reflects on the general role of design and designers in shaping community spaces.

  6. Laboratory Modeling of Space experiments on Expulsion of CO2 ions. Application to Global Warming.

    Science.gov (United States)

    Wong, A. Y.

    2007-05-01

    An approach to expel minority species which can contribute to global warming from the upper atmosphere in the Arctic region by the use of HF electromagnetic waves has been proposed [1]. Laboratory plasma experiments have been designed to model various aspects of this concept - from the acquisiton of negative charges by green house gases such as CO2 to their ascent to the upper atmosphere and their acceleration and expulsion along the open magnetic field lines. Laboratory results are presented which confirmed the efficient gyro-resonance acceleration of minority ion species made possible through the space charge cancellation by majority species. The outflow of CO2 ions from the divergent magnetic field of a laboratory plasma device is measured at various background neutral pressures and for different amount of currents along the axial magnetic field. The central idea is to impart perpendicular energy to a selective ion species gyrating around the geomagnetic field at its cyclotron resonance. The wave field is produced by either modulating the auroral electrojet or from the nonlinear interaction between two electron plasma resonances. In the presence of the divergent polar geomagnetic field the accelerated perpendicular ion velocity is converted into an upward motion along open magnetic field lines. The ions thus removed will unlikely find their way back to the lower atmosphere. Negatively charged particles move upward by the fair-weather electric field and by atmospheric convection. When these ions reach above 120 km altitude where the ion gyro frequency is comparable to or greater than the ion- neutral collision frequency, they can be accelerated by EM fields through the gyro resonance interaction. The propagation of these low frequency waves to the upper atmosphere along the earth's magnetic field is permitted by the plasma dispersion relation. Laboratory experiments play an important role in confirming the theoretical prediction that ion cyclotron waves can grow

  7. Semiotics and consumption: spaces, identities, experiences Semiótica e consumo: espaços, identidades, experiências

    Directory of Open Access Journals (Sweden)

    Isabella Pezzini

    2008-11-01

    Full Text Available This article sets forth a methodological proposal of a semiotic nature aimed at analyzing the phenomena of contemporary consumption. To this end, a unitary picture is presented of instruments that emerge from consolidated researches (e.g., semiotics of communication, of marketing and advertising, aesthetic sociosemiotics, analysis of practices. After reflections concerning the relations between consumption and culture in today's society, the study of consumption is broached starting from the spaces where consumption self-celebrates today: stores — large and small, as well as cultural spaces and museums. O artigo se configura como uma proposta metodólogica, de caráter semiótico, voltada à análise dos fenômenos do consumo contemporâneo. A esse propósito, serão apresentados — em um quadro unitário — instrumentos que emergem de pesquisas consolidadas (semiótica da comunicação, semiótica do marketing, da publicidade, sociossemiótica "estésica", análise das práticas. Após uma reflexão sobre as relações entre consumo e cultura na sociedade atual, o estudo do consumo será abordado a partir dos espaços em que, hoje em dia, se autocelebra: os store — grandes e pequenos — e; por outro lado, os espaços culturais e os museus.

  8. The MISSE 7 Flexural Stress Effects Experiment After 1.5 Years of Wake Space Exposure

    Science.gov (United States)

    Snow, Kate E.; De Groh, Kim K.; Banks, Bruce A.

    2017-01-01

    Low Earth orbit space environment conditions, including ultraviolet radiation, thermal cycling, and atomic oxygen exposure, can cause degradation of exterior spacecraft materials over time. Radiation and thermal exposure often results in bond- breaking and embrittlement of polymers, reducing mechanical strength and structural integrity. An experiment called the Flexural Stress Effects Experiment (FSEE) was flown with the objective of determining the role of space environmental exposure on the degradation of polymers under flexural stress. The FSEE samples were flown in the wake orientation on the exterior of International Space Station for 1.5 years. Twenty-four samples were flown: 12 bent over a 0.375 in. mandrel and 12 were over a 0.25 in. mandrel. This was designed to simulate flight configurations of insulation blankets on spacecraft. The samples consisted of assorted polyimide and fluorinated polymers with various coatings. Half the samples were designated for bend testing and the other half will be tensile tested. A non-standard bend-test procedure was designed to determine the surface strain at which embrittled polymers crack. All ten samples designated for bend testing have been tested. None of the control samples' polymers cracked, even under surface strains up to 19.7%, although one coating cracked. Of the ten flight samples tested, seven show increased embrittlement through bend-test induced cracking at surface strains from 0.70%to 11.73%. These results show that most of the tested polymers are embrittled due to space exposure, when compared to their control samples. Determination of the extent of space induced embrittlement of polymers is important for designing durable spacecraft.

  9. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  10. NASA Virtual Glovebox (VBX): Emerging Simulation Technology for Space Station Experiment Design, Development, Training and Troubleshooting

    Science.gov (United States)

    Smith, Jeffrey D.; Twombly, I. Alexander; Maese, A. Christopher; Cagle, Yvonne; Boyle, Richard

    2003-01-01

    The International Space Station demonstrates the greatest capabilities of human ingenuity, international cooperation and technology development. The complexity of this space structure is unprecedented; and training astronaut crews to maintain all its systems, as well as perform a multitude of research experiments, requires the most advanced training tools and techniques. Computer simulation and virtual environments are currently used by astronauts to train for robotic arm manipulations and extravehicular activities; but now, with the latest computer technologies and recent successes in areas of medical simulation, the capability exists to train astronauts for more hands-on research tasks using immersive virtual environments. We have developed a new technology, the Virtual Glovebox (VGX), for simulation of experimental tasks that astronauts will perform aboard the Space Station. The VGX may also be used by crew support teams for design of experiments, testing equipment integration capability and optimizing the procedures astronauts will use. This is done through the 3D, desk-top sized, reach-in virtual environment that can simulate the microgravity environment in space. Additional features of the VGX allow for networking multiple users over the internet and operation of tele-robotic devices through an intuitive user interface. Although the system was developed for astronaut training and assisting support crews, Earth-bound applications, many emphasizing homeland security, have also been identified. Examples include training experts to handle hazardous biological and/or chemical agents in a safe simulation, operation of tele-robotic systems for assessing and diffusing threats such as bombs, and providing remote medical assistance to field personnel through a collaborative virtual environment. Thus, the emerging VGX simulation technology, while developed for space- based applications, can serve a dual use facilitating homeland security here on Earth.

  11. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    Science.gov (United States)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  12. Design and development status of ETS-7, an RVD and space robot experiment satellite

    Science.gov (United States)

    Oda, M.; Inagaki, T.; Nishida, M.; Kibe, K.; Yamagata, F.

    1994-01-01

    ETS-7 (Engineering Test Satellite #7) is an experimental satellite for the in-orbit experiment of the Rendezvous Docking (RVD) and the space robot (RBT) technologies. ETS-7 is a set of two satellites, a chaser satellite and a target satellite. Both satellites will be launched together by NASDA's H-2 rocket into a low earth orbit. Development of ETS-7 started in 1990. Basic design and EM (Engineering Model) development are in progress now in 1994. The satellite will be launched in mid 1997 and the above in-orbit experiments will be conducted for 1.5 years. Design of ETS-7 RBT experiment system and development status are described in this paper.

  13. THE ORGANIZATION OF SPACE AND EDUCATION SCHOOL-TIME: ANALYSIS OF AN INTEGRAL EDUCATION EXPERIENCE

    OpenAIRE

    Marília Andrade Torales Campos; Veronica Branco; Leziany Silveira Daniel

    2016-01-01

    This article proposes a reflection upon the public policies in education with regard to the experiences on full-time education – more specifically, on the process of extension and use of school-educational time, carried out in Apucarana/PR. The choice of this research object is justified by the emergence of a new political-economic reality in the country, which imposes the need to rethink school and its social functions. Thus, from the analyzed experience, the emergence of a new concept of sc...

  14. Research in Space Physics at the University of Iowa. [spaceborne experiments and instruments

    Science.gov (United States)

    Vanallen, J. A.

    1981-01-01

    Currently active projects conducted to extend knowledge of the energetic particles and the electric, magnetic, and electromagnetic fields associated with Earth, other celestial bodies, and the interplanetary medium are summarized. These include investigations and/or instruments for Hawkeye 1; Pioneers 10 and 11; Voyagers 1 and 2; ISEE; IMP 8; Dynamics Explorer; Galileo; Spacelab and Orbital flight test missions; VLBI; and the International Solar Polar mission. Experiments and instruments proposed for the future international comet mission, the origin of plasmas in the Earth's environment mission, and the NASA active magnetospheric particle tracer experiment are mentioned.

  15. Calibration of TEPC for CubeSat Experiment to Measure Space Radiation

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    2015-06-01

    Full Text Available A newly designed Tissue Equivalent Proportional Counter (TEPC has been developed for the CubeSat mission, SIGMA (Scientific cubesat with Instruments for Global Magnetic field and rAdiation to investigate space radiation. In order to test the performance of the TEPC, we have performed heavy ion beam experiments with the Heavy Ion Medical Accelerator in Chiba (HIMAC, Japan. In space, human cells can be exposed to complex radiation sources, such as X-ray, Gamma ray, energetic electrons, protons, neutrons and heavy charged particles in a huge range of energies. These generate much a larger range of Linear Energy Transfer (LET than on the ground and cause unexpected effects on human cells. In order to measure a large range of LET, from 0.3 to 1,000 keV/μm, we developed a compact TEPC which measures ionized particles produced by collisions between radiation sources and tissue equivalent materials in the detector. By measuring LET spectra, we can easily derive the equivalent dose from the complicated space radiation field. In this HIMAC experiment, we successfully obtained the linearity response for the TEPC with Fe 500 MeV/u and C 290 MeV/u beams and demonstrated the performance of the active radiation detector.

  16. Two-phase reduced gravity experiments for a space reactor design

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-08-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed, to coordinate all ongoing and planned reduced gravity flow experiments

  17. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  18. Tiredness and slleppiness in rural bus drivers during their job performance: peruvian experience and proposals

    OpenAIRE

    de Castro, Jorge Rey; Centro de Trastornos Respiratorios del Sueño (CENTRES), Clínica Anglo Americana. Lima, Perú. Facultad de Medicina, Universidad Peruana Cayetano Heredia. Lima, Perú. Grupo de Investigación en Sueño (GIS). Lima, Perú. Médico neumólogo. Magister en Medicina; Rosales-Mayor, Edmundo; Centro de Trastornos Respiratorios del Sueño (CENTRES), Clínica Anglo Americana. Lima, Perú. Facultad de Medicina, Universidad Peruana Cayetano Heredia. Lima, Perú. Grupo de Investigación en Sueño (GIS). Lima, Perú. Magister en Medicina. Médico, Magister en Sueño.

    2010-01-01

    The information indicates that the traffic accidents caused by bus drivers’ sleepiness or tiredness are frequent in our country. A driver that falls asleep while driving cannot perform evasive maneuvers in order to avoid crashes or getting off the track, being the result of this kind of accidents a great number of victims and infrastructure destruction. In this article we discuss the original data published in Peru up to date and make general proposals to face the problem. La informació...

  19. Things That Squeak and Make You Feel Bad: Building Scalable User Experience Programs for Space Assessment

    Directory of Open Access Journals (Sweden)

    Rebecca Kuglitsch

    2018-04-01

    Full Text Available This article suggests a process for creating a user experience (UX assessment of space program that requires limited resources and minimal prior UX experience. By beginning with small scale methods, like comment boxes and easel prompts, librarians can overturn false assumptions about user behaviors, ground deeper investigations such as focus groups, and generate momentum. At the same time, these methods should feed into larger efforts to build trust and interest with peers and administration, laying the groundwork for more in-depth space UX assessment and more significant changes. The process and approach we suggest can be scaled for use in both large and small library systems. Developing a user experience space assessment program can seem overwhelming, especially without a dedicated user experience librarian or department, but does not have to be. In this piece, we explore how to scale and sequence small UX projects, communicate UX practices and results to stakeholders, and build support in order to develop an intentional but still manageable space assessment program. Our approach takes advantage of our institutional context—a large academic library system with several branch locations, allowing us to pilot projects at different scales. We were able to coordinate across a complex multi-site system, as well as in branch libraries with a staffing model analogous to libraries at smaller institutions. This gives us confidence that our methods can be applied at libraries of different sizes. As subject librarians who served as co-coordinators of a UX team on a voluntary basis, we also confronted the question of how we could attend to user needs while staying on top of our regular workload. Haphazard experimentation is unsatisfying and wasteful, particularly when there is limited time, so we sought to develop a process we could implement that applied approachable, purposeful UX space assessments while building trust and buy-in with colleagues

  20. On the Stratospheric Aerosol and Gas Experiment III on the International Space Station

    Science.gov (United States)

    Hernandez, Gloria; Zawodny, Joseph M.; Cisewski, Michael S.; Thornton, Brooke M.; Panetta, Andrew D,; Roell, Marilee M.; Vernier, Jean-Paul

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on International Space Station (SAGE3/ISS) is anticipated to be delivered to Cape Canaveral in the spring of 2015. This is the fourth generation, fifth instrument, of visible/near-IR solar occultation instruments operated by the National Aeronautics and Space Agency (NASA) to investigate the Earth's upper atmosphere. The instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. The SAGE3/ISS validation program will be based upon internal consistency of the measurements, detailed analysis of the retrieval algorithm, and comparisons with independent correlative measurements. The Instrument Payload (IP), mission architecture, and major challenges are also discussed.

  1. Scientific investigations planned for the lidar in-space technology experiment (LITE)

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, M.P.; Winker, D.M.; Browell, E.V. (NASA/Langley Research Center, Hampton, VA (United States)); Coakley, J.A. (Oregon State Univ., Corvallis (United States)); Gardner, C.S. (Univ. of Illinois, Urbana (United States)); Hoff, R.M. (Center for Atmospheric Research Experiments, Egbert, Ontario (Canada)); Kent, G.S. (Science and Technology Corp., Hampton, VA (United States)); Melfi, S.H. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States)); Menzies, R.T. (Jet Propulsion Lab., Pasadena, CA (United States)); Platt, C.M.R. (CSIRO, Aspendale, Victoria (Australia)); Randall, D.A. (Colorado State Univ., Fort Collins (United States)); Reagan, J.A. (Univ. of Arizona, Tucson (United States))

    1993-02-01

    The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series off lights on the space shuttle beginning in 1994. Employing a three-wave-length ND:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.

  2. Experiments Using a Ground-Based Electrostatic Levitator and Numerical Modeling of Melt Convection for the Iron-Cobalt System in Support of Space Experiments

    Science.gov (United States)

    Lee, Jonghyun; SanSoucie, Michael P.

    2017-08-01

    Materials research is being conducted using an electromagnetic levitator installed in the International Space Station. Various metallic alloys were tested to elucidate unknown links among the structures, processes, and properties. To accomplish the mission of these space experiments, several ground-based activities have been carried out. This article presents some of our ground-based supporting experiments and numerical modeling efforts. Mass evaporation of Fe50Co50, one of flight compositions, was predicted numerically and validated by the tests using an electrostatic levitator (ESL). The density of various compositions within the Fe-Co system was measured with ESL. These results are being served as reference data for the space experiments. The convection inside a electromagnetically-levitated droplet was also modeled to predict the flow status, shear rate, and convection velocity under various process parameters, which is essential information for designing and analyzing the space experiments of some flight compositions influenced by convection.

  3. Calocube—A highly segmented calorimeter for a space based experiment

    International Nuclear Information System (INIS)

    D'Alessandro, R.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.

    2016-01-01

    Future research in High Energy Cosmic Ray Physics concerns fundamental questions on their origin, acceleration mechanism, and composition. Unambiguous measurements of the energy spectra and of the composition of cosmic rays at the “knee” region could provide some of the answers to the above questions. Only ground based observations, which rely on sophisticated models describing high energy interactions in the earth's atmosphere, have been possible so far due to the extremely low particle rates at these energies. A calorimeter based space experiment can provide not only flux measurements but also energy spectra and particle identification, especially when coupled to a dE/dx measuring detector, and thus overcome some of the limitations plaguing ground based experiments. For this to be possible very large acceptances are needed if enough statistic is to be collected in a reasonable time. This contrasts with the lightness and compactness requirements for space based experiments. A novel idea in calorimetry is discussed here which addresses these issues while limiting the mass and volume of the detector. In fact a small prototype is currently being built and tested with ions. In this paper the results obtained will be presented in light of the simulations performed.

  4. The Paucity Problem: Where Have All the Space Reactor Experiments Gone?

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D.; Marshall, Margaret A.

    2016-10-01

    The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that the international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.

  5. Results of the Fluid Merging Viscosity Measurement International Space Station Experiment

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William; Antar, Basil

    2009-01-01

    The purpose of FMVM is to measure the rate of coalescence of two highly viscous liquid drops and correlate the results with the liquid viscosity and surface tension. The experiment takes advantage of the low gravitational free floating conditions in space to permit the unconstrained coalescence of two nearly spherical drops. The merging of the drops is accomplished by deploying them from a syringe and suspending them on Nomex threads followed by the astronaut s manipulation of one of the drops toward a stationary droplet till contact is achieved. Coalescence and merging occurs due to shape relaxation and reduction of surface energy, being resisted by the viscous drag within the liquid. Experiments were conducted onboard the International Space Station in July of 2004 and subsequently in May of 2005. The coalescence was recorded on video and down-linked near real-time. When the coefficient of surface tension for the liquid is known, the increase in contact radius can be used to determine the coefficient of viscosity for that liquid. The viscosity is determined by fitting the experimental speed to theoretically calculated contact radius speed for the same experimental parameters. Recent fluid dynamical numerical simulations of the coalescence process will be presented. The results are important for a better understanding of the coalescence process. The experiment is also relevant to liquid phase sintering, free form in-situ fabrication, and as a potential new method for measuring the viscosity of viscous glass formers at low shear rates.

  6. In-Flight Thermal Performance of the Lidar In-Space Technology Experiment

    Science.gov (United States)

    Roettker, William

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.

  7. The social representation of public space for the design and management of sustainable territories A theoretical-practical and methodological proposal for participatory planning

    Directory of Open Access Journals (Sweden)

    Heidi Natalie Contreras-Lovich

    2016-04-01

    , experiential representations of individuals who build knowledge and knowledge from the cultural space lived, where experiences were evident and spatial practices prevailing in the development of a participatory urbanism. The proposal consolidates from making, knowledge and assessing, in a humanized trialectics environment. This article concludes with the contributions of the proposal in theoretical, practical and methodological terms, in order to validate a participatory human management in which the individual will become a creative being that fosters quality of life and social welfare.Keywords: Urban development, urban design, public space, urban, imaginary urban management, citizen participation.Recibido: diciembre 15/2013Evaluado: octubre 5/2014Aceptado: octubre 2/2015Publicación: 12 de abril de 2016.               Actualización: 12 de abril de 2016

  8. Near minimum-time maneuvers of the advanced space structures technology research experiment (ASTREX) test article: Theory and experiments

    Science.gov (United States)

    Vadali, Srinivas R.; Carter, Michael T.

    1994-01-01

    The Phillips Laboratory at the Edwards Air Force Base has developed the Advanced Space Structures Technology Research Experiment (ASTREX) facility to serve as a testbed for demonstrating the applicability of proven theories to the challenges of spacecraft maneuvers and structural control. This report describes the work performed on the ASTREX test article by Texas A&M University under contract NAS119373 as a part of the Control-Structure Interaction (CSI) Guest Investigator Program. The focus of this work is on maneuvering the ASTREX test article with compressed air thrusters that can be throttled, while attenuating structural excitation. The theoretical foundation for designing the near minimum-time thrust commands is based on the generation of smooth, parameterized optimal open-loop control profiles, and the determination of control laws for final position regulation and tracking using Lyapunov stability theory. Details of the theory, mathematical modeling, model updating, and compensation for the presence of 'real world' effects are described and the experimental results are presented. The results show an excellent match between theory and experiments.

  9. Genotoxicity Testing on the International Space Station: Preparatory Work on the Experiment TRIPLE-LUX

    Science.gov (United States)

    Stojicic, N.; Walrafen, D.; Rabbow, E.; Baumstark-Khan, C.; Rettberg, P.; Weisshaar, M. P.; Horneck, G.

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SWITCH test, which is part of the German space experiment ``Gene, immune and cellular responses to single and combined space flight conditions'' (TRIPLE-LUX) which has been selected by NASA to be performed on the International Space Station. It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). This luminescent/fluorescent bioassay for rapid toxicity (genotoxicity and cytotoxicity) testing, the SWITCH test (SWITCH: {S}almonella {W}eighting of {I}nduced {T}oxicity {C}yto/GenoTox for Human {H}ealth), makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-Lux test and the LAC-Fluoro test. The SWICH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of ß-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation of various qualities (from UVC to UVA) have given insights into cellular mechanisms

  10. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim, E-mail: wadim.jaeger@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Sanchez Espinoza, Victor Hugo [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, DE-76344 Eggenstein-Leopoldshafen (Germany); Hurtado, Antonio [Technical University of Dresden, Institute of Power Engineering, DE-01062 Dresden (Germany)

    2011-06-15

    Highlights: > Implementation of heat transfer correlations for supercritical water into TRACE. > Simulation of several heat transfer experiments with modified TRACE version. > Most correlations are not able to reproduce the experimental results. > Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  11. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments

    International Nuclear Information System (INIS)

    Jaeger, Wadim; Sanchez Espinoza, Victor Hugo; Hurtado, Antonio

    2011-01-01

    Highlights: → Implementation of heat transfer correlations for supercritical water into TRACE. → Simulation of several heat transfer experiments with modified TRACE version. → Most correlations are not able to reproduce the experimental results. → Bishop, Sandberg and Tong correlation is most suitable for TRACE applications. - Abstract: This paper summarizes the activities of the TRACE code validation at the Institute for Neutron Physics and Reactor Technology related to supercritical water conditions. In particular, the providing of the thermo physical properties and its appropriate use in the wall-to-fluid heat transfer models in the frame of the TRACE code is the object of this investigation. In a first step, the thermo physical properties of the original TRACE code were modified in order to account for supercritical conditions. In a second step, existing Nusselt correlations were reviewed and implemented into TRACE and available experiments were simulated to identify the most suitable Nusselt correlation(s).

  12. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  13. Experiments on Ion Space-Charge Neutralization with Pulsed Electron Beams

    CERN Document Server

    Herleb, U

    1996-01-01

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes has been experimentally investigated. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source may be increased by one order of magnitude. For elevated charge states the intensity amplification is more significant than for low charge states. For $Al^(7+)$ ions from an aluminium target a charge enhancement by a factor of 4 has been achieved by electron beam focusing.

  14. Experiments on Ion Beam Space-Charge Neutralization with Pulsed Electron Beams

    CERN Document Server

    Herleb, U

    1998-01-01

    Space-charge neutralization of heavy ion beams with electron beam pulses generated by electron guns incorporating ferroelectric cathodes has been experimentally investigated. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant than for low charge states. A charge enhancement factor of four has been achieved by neutralization with pulsed electron beams for Al7+ ions generated from an aluminium target.

  15. Turbulent Magnetohydrodynamic Acceleration Processes: Theory SSX Experiments and Connections to Space and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    W Matthaeus; M Brown

    2006-07-15

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end ofthe project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  16. Nuclear radiation interference and damage effects in charged particle experiments for extended space missions.

    Science.gov (United States)

    Trainor, J. H.; Teegarden, B. J.

    1971-01-01

    Demonstration that meaningful galactic and solar cosmic radiation measurements can be carried out on deep space missions. The radioisotopic thermoelectric generators (RTGs) which must be used as a source of power and perhaps of heat are a problem, but with proper separation from the experiments, with orientation, and with some shielding the damage effects can be reduced to an acceptable level. The Pioneer spacecraft are crucial in that they are targeted at the heart of Jupiter's radiation belts, and should supply the details of those belts. The subsequent Grand Tour opportunities can be selected for those periods which result in larger distances of closest approach to Jupiter if necessary.

  17. The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision

    Energy Technology Data Exchange (ETDEWEB)

    Carey, R. M.; Lynch, K. R.; Miller, J. P.; Roberts, B. L.; Morse, W. M.; Semertzides, Y. K.; Druzhinin, V. P.; Khazin, B. I.; Koop, I. A.; Logashenko, I. [et al.; Redin, S. I.

    2009-02-01

    We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned

  18. The relative benefits of green versus lean office space: three field experiments.

    Science.gov (United States)

    Nieuwenhuis, Marlon; Knight, Craig; Postmes, Tom; Haslam, S Alexander

    2014-09-01

    Principles of lean office management increasingly call for space to be stripped of extraneous decorations so that it can flexibly accommodate changing numbers of people and different office functions within the same area. Yet this practice is at odds with evidence that office workers' quality of life can be enriched by office landscaping that involves the use of plants that have no formal work-related function. To examine the impact of these competing approaches, 3 field experiments were conducted in large commercial offices in The Netherlands and the U.K. These examined the impact of lean and "green" offices on subjective perceptions of air quality, concentration, and workplace satisfaction as well as objective measures of productivity. Two studies were longitudinal, examining effects of interventions over subsequent weeks and months. In all 3 experiments enhanced outcomes were observed when offices were enriched by plants. Implications for theory and practice are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. A proposal to demonstrate production of salad crops in the Space Station Mockup facility with particular attention to space, energy, and labor constraints

    Science.gov (United States)

    Brooks, Carolyn

    1992-01-01

    This research has continued along two lines, one at Marshall Space Flight Center with Salad Machine Rack development and the design and construction of a mockup for placement in the Huntsville Space Station Freedom mockup. The second avenue of research has addressed issues of relevance to the operation of the Salad Machine and Bioregenerative systems. These issues include plant species compatibility when grown on shared hydroponic systems and microbial populations of mixed species hydroponic systems. Significant progress is reported.

  20. Proposal of commercialization of Swietenia macrophylla King seeds genetic improved in the UCTB Experiment Station

    Directory of Open Access Journals (Sweden)

    Alain Puig Pérez

    2013-12-01

    Full Text Available This work was conducted at the Agroforestry Experimental Station of Guise in 2013, with the aim of establishing a proposal for the marketing of seed of Swietenia macrophylla with high added value. A brief characterization of the entity and description of the species under study was carried out. Internal and external environment was also characterized by identifying strengths, weaknesses, opportunities, threats, noting that the station should take advantage of opportunities and mitigate weaknesses and threats. The macro market segmentation and the action plan for marketing programs of the seeds were performed. With the marketing of seed of high added value of this valuable plantations will increase and latifolia seed growths will be greater.

  1. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  2. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  3. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  4. NASA's Rodent Research Project: Validation of Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, Sungshin Y.; Cole, Nicolas; Reyes, America; Lai, San-Huei; Klotz, Rebecca; Beegle, Janet E.; Wigley, Cecilia L.; Pletcher, David; Globus, Ruth K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen

  5. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    Science.gov (United States)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid

  6. The game of catapult to understand the design of experiments: one proposal of playful approach for teaching

    Directory of Open Access Journals (Sweden)

    Noel Torres Júnior

    2014-08-01

    Full Text Available This paper proposes the use of the Catapult game for teaching design of experiments. This game consists of a small catapult capable of launching small objects. This can have different settings, so up to five control variables can be changed. The possibility of introducing different adjustments to the catapult allows driving of several types of treatments and the use of various DOE techniques. In this direction, one 2k factorial experiment was performed and is presented. Moreover, the text addresses the DOE through the Multiple Linear Regression using the regression coefficient R2 as a measure for assessing the significance of the factors and the interaction between them. Despite the simplicity of the catapult device, several existing activities in conducting industrial experiments are present in this game. This work provides several important concepts of this technique through play.

  7. Proposal for an experiment to search for Randall-Sundrum-type corrections to Newton's law of gravitation

    International Nuclear Information System (INIS)

    Azam, Mofazzal; Sami, M.; Unnikrishnan, C. S.; Shiromizu, T.

    2008-01-01

    String theory, as well as the string inspired brane-world models such as the Randall-Sundrum (RS) one, suggest a modification of Newton's law of gravitation at small distance scales. Search for modifications of standard gravity is an active field of research in this context. It is well known that short range corrections to gravity would violate the Newton-Birkhoff theorem. Based on calculations of RS-type non-Newtonian forces for finite size spherical bodies, we propose a torsion balance based experiment to search for the effects of violation of this theorem valid in Newtonian gravity as well as in the general theory of relativity. We explain the main principle behind the experiment and provide detailed calculations suggesting optimum values of the parameters of the experiment. The projected sensitivity is sufficient to probe the RS parameter up to 10 microns

  8. Mice Drawer System: a Long Duration Animal Experiment on the International Space Station

    Science.gov (United States)

    Cotronei, Vittorio; Liu, Yi; Pignataro, Salvatore

    Mice represent one of the most important animal models for biomedical research. In the past decade mice have been used as surrogates to understand physiological adaption and its under-lying mechanisms to orbital spaceflight. A breakthrough in this field has been achieved with the launch of MDS experiment inside Shuttle Discovery (mission STS-128) on August 28, 2009 at 23:58 EST, and its re-entry to earth by Shuttle Atlantis (mission STS-129) on November 27 2009 at 9:47 EST, marking this as the first long duration animal experiment on the Interna-tional Space Station (ISS). This presentation will provide the life history and milestones starting from the project brainstorm to the post-ground activities of the recent MDS payload mission. The Italian Space Agency (ASI) initiated and coordinated this multi-disciplinary project by focusing on five areas: the development of a multi-purpose automated payload by industry; bio-compatibility tests of subsystems throughout various critical phases of the payload development by researchers, development of a ground segment to interface with NASA Payload Operations Center and three different geographically distributed Italian Operations Centers; establishment of an international tissue sharing program; specialized bio-specimen intercontinental shipment. With close collaboration with NASA, activities such as pre-flight payload acceptance, animal preparation, in-flight crew intervention and re-entry animal recovery were smoothly and swiftly accomplished.

  9. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    Science.gov (United States)

    Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2016-01-01

    An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.

  10. The Colorado Student Space Weather Experiment: A successful student-run scientific spacecraft mission

    Science.gov (United States)

    Schiller, Q.; Li, X.; Palo, S. E.; Blum, L. W.; Gerhardt, D.

    2015-12-01

    The Colorado Student Space Weather Experiment is a spacecraft mission developed and operated by students at the University of Colorado, Boulder. The 3U CubeSat was launched from Vandenberg Air Force Base in September 2012. The massively successful mission far outlived its 4 month estimated lifetime and stopped transmitting data after over two years in orbit in December 2014. CSSWE has contributed to 15 scientific or engineering peer-reviewed journal publications. During the course of the project, over 65 undergraduate and graduate students from CU's Computer Science, Aerospace, and Mechanical Engineering Departments, as well as the Astrophysical and Planetary Sciences Department participated. The students were responsible for the design, development, build, integration, testing, and operations from component- to system-level. The variety of backgrounds on this unique project gave the students valuable experience in their own focus area, but also cross-discipline and system-level involvement. However, though the perseverance of the students brought the mission to fruition, it was only possible through the mentoring and support of professionals in the Aerospace Engineering Sciences Department and CU's Laboratory for Atmospheric and Space Physics.

  11. Movie of phase separation during physics of colloids in space experiment

    Science.gov (United States)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  12. Phase separation during the Experiment on Physics of Colloids in Space

    Science.gov (United States)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  13. Science Support for Space-Based Droplet Combustion: Drop Tower Experiments and Detailed Numerical Modeling

    Science.gov (United States)

    Marchese, Anthony J.; Dryer, Frederick L.

    1997-01-01

    This program supports the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies. Experimental emphasis is on the study of simple alcohols (methanol, ethanol) and alkanes (n-heptane, n-decane) as fuels with time dependent measurements of drop size, flame-stand-off, liquid-phase composition, and finally, extinction. Experiments have included bench-scale studies at Princeton, studies in the 2.2 and 5.18 drop towers at NASA-LeRC, and both the Fiber Supported Droplet Combustion (FSDC-1, FSDC-2) and the free Droplet Combustion Experiment (DCE) studies aboard the shuttle. Test matrix and data interpretation are performed through spherically-symmetric, time-dependent numerical computations which embody detailed sub-models for physical and chemical processes. The computed burning rate, flame stand-off, and extinction diameter are compared with the respective measurements for each individual experiment. In particular, the data from FSDC-1 and subsequent space-based experiments provide the opportunity to compare all three types of data simultaneously with the computed parameters. Recent numerical efforts are extending the computational tools to consider time dependent, axisymmetric 2-dimensional reactive flow situations.

  14. Source-space EEG neurofeedback links subjective experience with brain activity during effortless awareness meditation.

    Science.gov (United States)

    van Lutterveld, Remko; Houlihan, Sean D; Pal, Prasanta; Sacchet, Matthew D; McFarlane-Blake, Cinque; Patel, Payal R; Sullivan, John S; Ossadtchi, Alex; Druker, Susan; Bauer, Clemens; Brewer, Judson A

    2017-05-01

    Meditation is increasingly showing beneficial effects for psychiatric disorders. However, learning to meditate is not straightforward as there are no easily discernible outward signs of performance and thus no direct feedback is possible. As meditation has been found to correlate with posterior cingulate cortex (PCC) activity, we tested whether source-space EEG neurofeedback from the PCC followed the subjective experience of effortless awareness (a major component of meditation), and whether participants could volitionally control the signal. Sixteen novice meditators and sixteen experienced meditators participated in the study. Novice meditators were briefly trained to perform a basic meditation practice to induce the subjective experience of effortless awareness in a progressively more challenging neurofeedback test-battery. Experienced meditators performed a self-selected meditation practice to induce this state in the same test-battery. Neurofeedback was provided based on gamma-band (40-57Hz) PCC activity extracted using a beamformer algorithm. Associations between PCC activity and the subjective experience of effortless awareness were assessed by verbal probes. Both groups reported that decreased PCC activity corresponded with effortless awareness (Pneurofeedback to link an objective measure of brain activity with the subjective experience of effortless awareness, and suggest potential utility of this paradigm as a tool for meditation training. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Space, place and atmosphere. Emotion and peripherical perception in architectural experience

    Directory of Open Access Journals (Sweden)

    Juhani Pallasmaa

    2014-07-01

    Full Text Available Architectural experiences are essentially multi-sensory and simultaneous, and a complex entity is usually grasped as an atmosphere, ambience or feeling. In fact, the judgement concerning the character of a space or place calls for categories of sensing that extend beyond the five Aristotelian senses, such as the embodied existential sense, and, as a result, the entity is perceived in a diffuse, peripheral and unconscious manner. Paradoxically, we grasp an atmosphere before we have consciously identified its constituent factors and ingredients. «We perceive atmospheres through our emotional sensibility – a form of perception that works incredibly quickly, and which we humans evidently need to help us survive», Peter Zumthor suggests. We are mentally and emotionally affected by works of art before we understand them, or we may not understand them intellectually at all. Sensitive artists and architects intuit experiential and emotive qualities of spaces, places and images. This capacity calls for a specific kind of imagination, an emphatic imagination. Atmospheres are percieved peripherally through diffuse vision interacting with other sense modalities, and they are experienced emotionally rather than intellectually. The studies on the differentiation of the two brain hemispheres suggest that atmospheres are perceived through the right hemisphere. Somewhat surprisingly, atmospheres are more conscious objectives in literature, cinema, theater, painting and music than in architecture, which has been traditionally approached formally and perceived primarily through focused vision. Yet, when we see a thing in focus, we are outsiders to it, whereas the experience of being in a space calls for peripheral and unfocused perception. One of the reasons for the experiential poverty of contemporary settings could be in the poverty of their peripheral stimuli.

  16. Visual Experience Shapes the Neural Networks Remapping Touch into External Space.

    Science.gov (United States)

    Crollen, Virginie; Lazzouni, Latifa; Rezk, Mohamed; Bellemare, Antoine; Lepore, Franco; Collignon, Olivier

    2017-10-18

    Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space. SIGNIFICANCE STATEMENT In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception. Copyright © 2017 the authors 0270-6474/17/3710097-07$15.00/0.

  17. CaloCube: an innovative homogeneous calorimeter for the next-generation space experiments

    Science.gov (United States)

    Pacini, L.; Adriani, O.; Agnesi, A.; Albergo, S.; Auditore, L.; Basti, A.; Berti, E.; Bigongiari, G.; Bonechi, L.; Bonechi, S.; Bongi, M.; Bonvicini, V.; Bottai, S.; Brogi, P.; Cappello, G.; Carotenuto, G.; Castellini, G.; Cattaneo, P. W.; Chiari, M.; Daddi, N.; DAlessandro, R.; Detti, S.; Fasoli, M.; Finetti, N.; Lenzi, P.; Maestro, P.; Marrocchesi, P. S.; Miritello, M.; Mori, N.; Orzan, G.; Olmi, M.; Papini, P.; Pellegriti, M. G.; Pirzio, F.; Rappoldi, A.; Ricciarini, S.; Spillantini, P.; Starodubtsev, O.; Stolzi, F.; Suh, J. E.; Sulaj, A.; Tiberio, A.; Tricomi, A.; Trifirò, A.; Trimarchi, M.; Vannuccini, E.; Vedda, A.; Zampa, G.; Zampa, N.

    2017-11-01

    The direct measurement of the cosmic-ray spectrum, up to the knee region, is one of the instrumental challenges for next generation space experiments. The main issue for these measurements is a steeply falling spectrum with increasing energy, so the physics performance of the space calorimeters are primarily determined by their geometrical acceptance and energy resolution. CaloCube is a three-year R&D project, approved and financed by INFN in 2014, aiming to optimize the design of a space-born calorimeter. The peculiarity of the design of CaloCube is its capability of detecting particles coming from any direction, and not only those on its upper surface. To ensure that the quality of the measurement does not depend on the arrival direction of the particles, the calorimeter will be designed as homogeneous and isotropic as possible. In addition, to achieve a high discrimination power for hadrons and nuclei with respect to electrons, the sensitive elements of the calorimeter need to have a fine 3-D sampling capability. In order to optimize the detector performances with respect to the total mass of the apparatus, which is the most important constraint for a space launch, a comparative study of different scintillating materials has been performed using detailed Monte Carlo simulation based on the FLUKA package. In parallel to simulation studies, a prototype consisting in 14 layers of 3 x 3 CsI(Tl) crystals per layer has been assembled and tested with particle beams. An overview of the obtained results during the first two years of the project will be presented and the future of the detector will be discussed too.

  18. Project Based Learning experiences in the space engineering education at Technical University of Madrid

    Science.gov (United States)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta

    2015-10-01

    This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.

  19. Sports Management for Sports Massification Planned and Executed by Social Organizations. Critics to Models, Experiences and Proposal Methodological Accompaniment

    Directory of Open Access Journals (Sweden)

    Lorenza Antonia Reyes de Duran

    2016-08-01

    Full Text Available The proposal analysis, interpretation, disassembly, self-criticism and guidance is born and comes from work experience planned mass sports and social organizations opposed-not in the conventional sense comparative-private business models and sport, state and management. The contribution made by the sports management experience from positions of power, either state or business are undeniable and its impact is difficult to express in numbers for its humanistic value, which is incalculable. However, it is urgent to emphasize the products and results achieved by some social organizations related to sport; as are the reference cases in Higuerón and the municipality Independence of Yaracuy state. From a dialectical analysis of reality, we try to understand the complex system that involves high-level sports management and performance, we introduce in the praxical notions of sporting activity and associated approach applied to social and community work. As opening and closing action research processes, we will make a proposal to accompany sports management concerning overcrowding by and from social organizations. This proposal is constructed from an innovative, flexible, open, inclusive and social, community and organizational curriculum relevance.

  20. Proposed development of novel diagnostics for intense, ultrafast laser-plasma experiments at JAEA-KPSI

    International Nuclear Information System (INIS)

    Bolton, Paul R.; Tatchyn, Roman; Fukuda, Yuji; Kando, Masaki; Daito, Izuru; Ma, Jinglong; Chen, Liming; Pirozhkov, Alexander; Tajima, Toshiki

    2007-01-01

    Development of new diagnostics is critical for future laser-plasma accelerators, laser-driven light sources and for x-ray FELs. Recent laser wakefield electron acceleration developments and novel beam-based light source schemes (such as free electron lasers) obviate the need for next generation ultrafast diagnostics, capable of temporal resolution of a few femtoseconds (and in some cases attoseconds) for laser pulses (high order harmonics), x-ray pulses and electron bunches. Single shot detection capability in noninvasive and parasitic modes is also important. Alterations of laser pulse spectra and the associated dynamics can be informative diagnostics. The portion of a high intensity laser pulse that is transmitted through a self-induced underdense plasma (such as in laser wakefield acceleration LWFA schemes) carries the effects of plasma processes it has experienced. A distinction between the self-modulated laser wakefield (SMLWF) acceleration regime and the forced laser wakefield (FLWF) acceleration regime is in the spectral signature of the transmitted ir laser pulse. The former regime generates sidebands from stimulated Raman forward scattering (SRS-F) and the latter exhibits general spectral broadening that evidences ir laser pulse compression. Transmitted spectral effects can diagnose these acceleration regimes. Existing noninvasive electro-optic (EO) schemes for detection of ultrashort electron bunches are limited by material properties to temporal resolution at the 50-100 femtosecond level. While timing jitter at conventional accelerators is of this order (or greater), single bunch longitudinal profile measurements can require improvement of at least an order of magnitude. A new FO technique is described here which monitors enhancement and associated dynamics of spectral components in a probe pulse. Three correlation schemes for detecting ultrashort x-ray pulses are described. Two-photon absorption in tailored ion targets is proposed for scanning auto

  1. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    Science.gov (United States)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  2. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    Science.gov (United States)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  3. Experience of Multisensory Environments in Public Space among People with Visual Impairment.

    Science.gov (United States)

    Jenkins, Gavin R; Yuen, Hon K; Vogtle, Laura K

    2015-07-23

    This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state's chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents' experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1) Population specific design, (2) Extreme sensory backgrounds, (3) Uneven ground surfaces and objects, and (4) Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one's vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  4. Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data

    Directory of Open Access Journals (Sweden)

    Silvia de Haan-Rietdijk

    2017-10-01

    Full Text Available The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1 and VAR(1 models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (VAR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.

  5. Experience of Multisensory Environments in Public Space among People with Visual Impairment

    Directory of Open Access Journals (Sweden)

    Gavin R. Jenkins

    2015-07-01

    Full Text Available This qualitative study explored the role of sensory characteristics embedded in the built environment and whether they support or hinder people with visual impairment in their use of public spaces. An online survey link was e-mailed to the presidents and committee members of each state’s chapters and associations of the National Federation of the Blind in the United States, resulting in 451 direct invitations to participate. Written responses of the survey questions from 48 respondents with visual impairment were analyzed. Three main themes: Barriers, Supporters, and Context-Dependence emerged from the respondents’ experience of multisensory characteristics within the built environment. The four subthemes subsumed in Barriers were: (1 Population specific design, (2 Extreme sensory backgrounds, (3 Uneven ground surfaces and objects, and (4 Inconsistent lighting. For Supporters, respondents provided specific examples of various sensory characteristics in built environments, including audible cues and echoes, smells, tactile quality of the ground surface, and temperature. Context-Dependence referred to the effects of sensory characteristics embedded in public spaces depending on one’s vision condition, the proximity to the sensory cues and the purpose of the activities one was performing at that moment. Findings provide occupational therapy practitioners an in-depth understanding of the transactional relationship between embedded sensory characteristics in the built environment, occupations, and people with visual impairment in order to make appropriate modifications or removal of barriers that affect occupational performance and engagement. Suggestions for occupational therapists as well as architects, designers, planners, policy makers/legislators related to functional sensory cues in the design of built environments were provided to increase accessibility in the use of public spaces by people with visual impairment.

  6. Gravity Probe B: final results of a space experiment to test general relativity.

    Science.gov (United States)

    Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S

    2011-06-03

    Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3  mas/yr and a frame-dragging drift rate of -37.2±7.2  mas/yr, to be compared with the GR predictions of -6606.1  mas/yr and -39.2  mas/yr, respectively ("mas" is milliarcsecond; 1  mas=4.848×10(-9)  rad).

  7. Simulating and assessing boson sampling experiments with phase-space representations

    Science.gov (United States)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  8. Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study

    International Nuclear Information System (INIS)

    Wefel, John P.

    1999-01-01

    ACCESS--Advanced Cosmic-ray Composition Experiment for Space Station--was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the ''knee'' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control, power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized

  9. Particle aggregation in microgravity: Informal experiments on the International Space Station

    Science.gov (United States)

    Love, Stanley G.; Pettit, Donald R.; Messenger, Scott R.

    2014-05-01

    We conducted experiments in space to investigate the aggregation of millimeter- and submillimeter-sized particles in microgravity, an important early step in planet formation. Particulate materials included salt (NaCl), sugar (sucrose), coffee, mica, ice, Bjurböle chondrules, ordinary and carbonaceous chondrite meteorite fragments, and acrylic and glass beads, all triply confined in clear plastic containers. Angular submillimeter particles rapidly and spontaneously formed clusters strong enough to survive turbulence in a protoplanetary nebula. Smaller particles generally aggregated more strongly and quickly than larger ones. We observed only a weak dependence of aggregation time on particle number density. We observed no strong dependence on composition. Round, smooth particles aggregated weakly or not at all. In a mixture of particle types, some phases aggregated more readily than others, creating selection effects that controlled the composition of the growing clumps. The physical process of aggregation appears to be electrostatic in nature.

  10. Quadrupole beam-transport experiment for heavy ions under extreme space charge conditions

    International Nuclear Information System (INIS)

    Chupp, W.; Faltens, A.; Hartwig, E.C.

    1983-03-01

    A Cs ion-beam-transport experiment is in progress to study beam behavior under extreme space-charge conditions. A five-lens section matches the beam into a periodic electrostatic quadrupole FODO channel and its behavior is found to agree with predictions. With the available parameters (less than or equal to 200 keV, less than or equal to 20 mA, πepsilon/sub n/ greater than or equal to 10 - 7 π rad-m, up to 41 periods) the transverse (betatron) occillation frequency (nu) can be depressed down to one-tenth of its zero current value (nu/sub 0/), where nu/sup 2/ = nu/sub 0//sup 2/ -#betta#/sub p/ 2 /2, and #betta#/sub p/ is the beam plasma frequency. The current can be controlled by adjustment of the gun and the emittance can be controlled independently by means of a set of charged grids

  11. A Small Nano-Kelvin Resolution Thermometer for Low Temperature Experiments in Space

    Science.gov (United States)

    Welander, Paul; Barmatz, M.; Hahn, Inseob

    2000-01-01

    A small high resolution paramagnetic susceptibility thermometer was developed using a GdCl3 paramagnetic salt. The device uses a SQUID magnetometer to determine the temperature dependent magnetization of the salt in a magnetic field. The required magnetic field is provided by a pair of small SmCo permanent magnet disks situated inside the thermometer housing. This eliminates the use of a heavy charging solenoid in a conventional SQUID based magnetic thermometer system using a flux tube. This thermometer can resolve approximately 10(exp -9)K near the liquid-gas critical point of The (approx. 3.31K). The drift in the thermometer is less than 2 x 10(exp -13) K/s. This light weighted thermometer (approx. 7 g) is a candidate for use in future International Space Station flight low temperature experiments.

  12. Experiments and Observations on Intense Alfven Waves in the Laboratory and in Space

    International Nuclear Information System (INIS)

    Gekelman, W.; VanZeeland, M.; Vincena, S.; Pribyl, P.

    2003-01-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma that can support Alfven waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfven wave propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. A new class of experiments which involve the expansion of a dense (initially, δn/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfven waves will be presented. Measurements are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, coupled to the initial electron current, which replace fast electrons escaping the initial blast

  13. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    Mapper, D.; Stephen, J.H.; Farren, J.; Stimpson, B.P.; Bolus, D.J.; Ellaway, A.M.

    1987-12-01

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  14. Spacelab 1 hematology experiment (INS103): Influence of space flight on erythrokinetics in man

    Science.gov (United States)

    Leach, C. S.; Chen, J. P.; Crosby, W.; Dunn, C. D. R.; Johnson, P. C.; Lange, R. D.; Larkin, E.; Tavassoli, M.

    1985-01-01

    An experiment conducted on the 10-day Spacelab 1 mission aboard the ninth Space Shuttle flight in November to December 1983 was designed to measure factors involved in the control of erythrocyte turnover that might be altered during weightlessness. Blood samples were collected before, during, and after the flight. Immediately after landing, red cell mass showed a mean decrease of 9.3 percent in the four astronauts. Neither hyperoxia nor an increase in blood phosphate was a cause of the decrease. Red cell survival time and iron incorporation postflight were not significantly different from their preflight levels. Serum haptoglobin did not decrease, indicating that intravascular hemolysis was not a major cause of red cell mass change. An increase in serum ferritin after the second day of flight may have been caused by red cell breakdown early in flight. Erythropoietin levels decreased during and after flight, but preflight levels were high and the decrease was not significant. The space flight-induced decrease in red cell mass may result from a failure of erythropoiesis to replace cells destroyed by the spleen soon after weightlessness is attained.

  15. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    Science.gov (United States)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  16. The Lichens experiment at Foton M-2 mission: Survival capacity in space

    Science.gov (United States)

    de La Torre, R.; Horneck, G.; Garcia-Sancho, L.

    Lichens are one of the most resistant organisms at Earth They live at very extreme environments in deserts Atacama desert high mountains Himalaya Antarctica Dry Valleys etc This is possible due to the symbiotic relationship between both constituents the algae and the fungui and to their poikilohidric nature characteristic that allows them to survive latent when environmental conditions are very extreme i e when UV radiation is very high temperatures are extreme and dryness exists If humidity returns and temperature tendencies turn near the optimum around 10 C dormant lichens starts to photosynthetice We have selected two epilithic lichen species for the LICHENS experiment which was included at the ESA Biopan-facility located at the outer shell of the satellite Foton M-2 launched into low Earth orbit the 31th of Mai 2005 from Baikonur Russia On of this species was Rhizocarpon geographicum a bipolar epilithic lichen which grows at high mountain regions e g Sierra de Gredos Central Spain with continental climate has been systematically studied in the natural environment Plataforma de Gredos at 2000 m altitude as well as under simulated space conditions at the space simulation facilities of the DLR The sensitivity of the photosynthetic system PSII to the different environmental conditions dryness including vacuum treatment high temperature fluctuations high UV intensity was fluorometrically measured with a MINI PAM Walz Germany The lichen Rhizocarpon geographicum was

  17. The foundations of reusability: Successful experience and important conclusions from planning and scheduling of space operations

    Science.gov (United States)

    Hornstein, Rhoda Shaller; Willoughby, J. K.

    1995-01-01

    NASA's Office of Space Communications is sponsoring a combined technical and management initiative to dramatically decrease the cost of preparing for and conducting space operations. The authors present their successful experience and important conclusions from producing generalized and readily reusable solutions and systems for planning and scheduling applications. While generality by itself should enable reuse, generality alone may not produce the desired cost savings. Generality achieved by accumulating numerous special cases within a software system often increases the complexity of the software to the extent that maintenance costs overtake development savings. Because of this phenomenon, the authors have insisted on simplicity, as well as generality, to achieve cost-effective operation reusability. Simplicity and generality can be accomplished simultaneously when the basic 'Building Blocks' for a problem domain, in this paper, planning and scheduling, are discovered and implemented with reuse in mind. The Building Blocks for planning and scheduling are described. The authors also present examples of how these Building Blocks have accommodated various scenarios that were previously treated as mission-peculiar. Two case histories are presented to demonstrate operational reusability and cost effectiveness.

  18. Hypervelocity impact microfoil perforations in the LEO space environment (LDEF, MAP AO-023 experiment)

    Science.gov (United States)

    Mcdonnell, J. A. M.; Stevenson, T. J.

    1992-01-01

    The Microabrasion Foil Experiment comprises arrays of frames, each supporting two layers of closely spaced metallic foils and a back-stop plate. The arrays, deploying aluminum and brass foil ranging from 1.5 to some 30 microns were exposed for 5.78 years on NASA's LDEF at a mean altitude of 458 km. They were deployed on the North, South, East, West, and Space pointing faces; results presented comprise the perforation rates for each location as a function of foil thickness. Initial results refer primarily to aluminum of 5 microns thickness or greater. This penetration distribution, comprising 2,342 perforations in total, shows significantly differing characteristics for each detector face. The anisotropy confirms, incorporating the dynamics of particulate orbital mechanics, the dominance of incorporating extraterrestrial particulates penetrating thicknesses greater than 20 microns in Al foil, yielding fluxes compatible with hyperbolic geocentric velocities. For thinner foils, a disproportionate increase in flux of particles on the East, North, and South faces shows the presence of orbital particulates which exceed the extraterrestrial component perforation rate at 5 micron foil thickness by a factor of approx. 4.

  19. 3D Printing in Zero-G Experiment, In Space Manufacturing (LPS, 4)

    Science.gov (United States)

    Bean, Quincy; Cooper, Ken; Werkheiser, Niki

    2015-01-01

    The 3D Printing in Zero-G Experiment has been an ongoing effort for several years. In June 2014 the technology demonstration 3D printer was launched to the International Space Station. In November 2014 the first 21 parts were manufactured in orbit marking the beginning of a paradigm shift that will allow astronauts to be more self-sufficient and pave the way to larger scale orbital manufacturing. Prior to launch the 21 parts were built on the ground with the flight unit with the same feedstock. These ground control samples are to be tested alongside the flight samples in order to determine if there is a measurable difference between parts built on the ground vs. parts built in space. As of this writing, testing has not yet commenced. Tests to be performed are structured light scanning for volume and geometric discrepancies, CT scanning for density measurement, destructive testing of mechanical samples, and SEM analysis for inter-laminar adhesion discrepancies. Additionally, an ABS material characterization was performed on mechanical samples built from the same CAD files as the flight and ground samples on different machine / feedstock combinations. The purpose of this testing was twofold: first to obtain mechanical data in order to have a baseline comparison for the flight and ground samples and second to ascertain if there is a measurable difference between machines and feedstock.

  20. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  1. Science Results from Colorado Student Space Weather Experiment (CSSWE): Energetic Particle Distribution in Near Earth Environment

    Science.gov (United States)

    Li, Xinlin

    2013-04-01

    The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, launched into a low-Earth, polar orbit on 13 September 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of trapped radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched 30 August 2012, that traverse the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3.3 MeV. The commissioning phase was completed and REPTile was activated on 4 October 2012. The data are very clean, far exceeding expectations! A number of engineering challenges had to be overcome to achieve such clean measurements under the mass and power limits of a CubeSat. The CSSWE is also an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.

  2. Time-course human urine proteomics in space-flight simulation experiments.

    Science.gov (United States)

    Binder, Hans; Wirth, Henry; Arakelyan, Arsen; Lembcke, Kathrin; Tiys, Evgeny S; Ivanisenko, Vladimir A; Kolchanov, Nikolay A; Kononikhin, Alexey; Popov, Igor; Nikolaev, Evgeny N; Pastushkova, Lyudmila; Larina, Irina M

    2014-01-01

    Long-term space travel simulation experiments enabled to discover different aspects of human metabolism such as the complexity of NaCl salt balance. Detailed proteomics data were collected during the Mars105 isolation experiment enabling a deeper insight into the molecular processes involved. We studied the abundance of about two thousand proteins extracted from urine samples of six volunteers collected weekly during a 105-day isolation experiment under controlled dietary conditions including progressive reduction of salt consumption. Machine learning using Self Organizing maps (SOM) in combination with different analysis tools was applied to describe the time trajectories of protein abundance in urine. The method enables a personalized and intuitive view on the physiological state of the volunteers. The abundance of more than one half of the proteins measured clearly changes in the course of the experiment. The trajectory splits roughly into three time ranges, an early (week 1-6), an intermediate (week 7-11) and a late one (week 12-15). Regulatory modes associated with distinct biological processes were identified using previous knowledge by applying enrichment and pathway flow analysis. Early protein activation modes can be related to immune response and inflammatory processes, activation at intermediate times to developmental and proliferative processes and late activations to stress and responses to chemicals. The protein abundance profiles support previous results about alternative mechanisms of salt storage in an osmotically inactive form. We hypothesize that reduced NaCl consumption of about 6 g/day presumably will reduce or even prevent the activation of inflammatory processes observed in the early time range of isolation. SOM machine learning in combination with analysis methods of class discovery and functional annotation enable the straightforward analysis of complex proteomics data sets generated by means of mass spectrometry.

  3. Experiments in microgravity: a comparison of crystals of a carbohydrate-binding fab grown on the ground, on space shuttle Discovery and on space station Mir.

    Science.gov (United States)

    Borisova, S N; Birnbaum, G I; Rose, D R; Evans, S V

    1996-03-01

    The Fab fragment of the hybridoma antibody (YsT9.1) specific to Brucella abortus has been crystallized on earth using both Linbro plates and ground-based models of the flight hardware, as well as in microgravity on board the space shuttle Discovery and the space station Mir. Large-scale experiments using Linbro plates gave two different crystal morphologies, pyramidal and rhomboid, depending on conditions. The pyramidal crystals proved to scatter X-rays to higher resolution, and conditions within the ground-based flight hardware for both Discovery and Mir were adjusted to produce crystals with this morphology. The experiment on Discovery produced large crystals in each of ten chambers. The experiment on Mir produced crystals in only one of the five assigned chambers, despite the fact that the simultaneous ground-based experiment produced large crystals in every corresponding chamber. Data collection was attempted for crystals from both space and ground-based experiments. Higher resolution data was obtained from crystals grown on Discovery than from either Mir or ground-based crystals, even though the crystals obtained from Discovery were smaller and forced to grow over a much shorter period of time because of the shorter length of the shuttle mission.

  4. An original approach to fill the gap in the earthquake disaster experience - a proposal for 'the archive of the quake experience' -

    Science.gov (United States)

    Tanaka, Y.; Hirayama, Y.; Kuroda, S.; Yoshida, M.

    2015-12-01

    People without severe disaster experience infallibly forget even the extraordinary one like 3.11 as time advances. Therefore, to improve the resilient society, an ingenious attempt to keep people's memory of disaster not to fade away is necessary. Since 2011, we have been caring out earthquake disaster drills for residents of high-rise apartments, for schoolchildren, for citizens of the coastal area, etc. Using a portable earthquake simulator (1), the drill consists of three parts, the first: a short lecture explaining characteristic quakes expected for Japanese people to have in the future, the second: reliving experience of major earthquakes hit Japan since 1995, and the third: a short lecture for preparation that can be done at home and/or in an office. For the quake experience, although it is two dimensional movement, the real earthquake observation record is used to control the simulator to provide people to relive an experience of different kinds of earthquake including the long period motion of skyscrapers. Feedback of the drill is always positive because participants understand that the reliving the quake experience with proper lectures is one of the best method to communicate the past disasters to their family and to inherit them to the next generation. There are several kinds of archive for disaster as inheritance such as pictures, movies, documents, interviews, and so on. In addition to them, here we propose to construct 'the archive of the quake experience' which compiles observed data ready to relive with the simulator. We would like to show some movies of our quake drill in the presentation. Reference: (1) Kuroda, S. et al. (2012), "Development of portable earthquake simulator for enlightenment of disaster preparedness", 15th World Conference on Earthquake Engineering 2012, Vol. 12, 9412-9420.

  5. Guidelines for information about therapy experiments: a proposal on best practice for recording experimental data on cancer therapy

    Directory of Open Access Journals (Sweden)

    González-Beltrán Alejandra N

    2012-01-01

    Full Text Available Abstract Background Biology, biomedicine and healthcare have become data-driven enterprises, where scientists and clinicians need to generate, access, validate, interpret and integrate different kinds of experimental and patient-related data. Thus, recording and reporting of data in a systematic and unambiguous fashion is crucial to allow aggregation and re-use of data. This paper reviews the benefits of existing biomedical data standards and focuses on key elements to record experiments for therapy development. Specifically, we describe the experiments performed in molecular, cellular, animal and clinical models. We also provide an example set of elements for a therapy tested in a phase I clinical trial. Findings We introduce the Guidelines for Information About Therapy Experiments (GIATE, a minimum information checklist creating a consistent framework to transparently report the purpose, methods and results of the therapeutic experiments. A discussion on the scope, design and structure of the guidelines is presented, together with a description of the intended audience. We also present complementary resources such as a classification scheme, and two alternative ways of creating GIATE information: an electronic lab notebook and a simple spreadsheet-based format. Finally, we use GIATE to record the details of the phase I clinical trial of CHT-25 for patients with refractory lymphomas. The benefits of using GIATE for this experiment are discussed. Conclusions While data standards are being developed to facilitate data sharing and integration in various aspects of experimental medicine, such as genomics and clinical data, no previous work focused on therapy development. We propose a checklist for therapy experiments and demonstrate its use in the 131Iodine labeled CHT-25 chimeric antibody cancer therapy. As future work, we will expand the set of GIATE tools to continue to encourage its use by cancer researchers, and we will engineer an ontology to

  6. An experiment to study the effects of space flight cells of mesenchymal origin in the new model 3D-graft in vitro

    Science.gov (United States)

    Volova, Larissa

    One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.

  7. Overview of the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Flittner, David; Pitts, Michael; Zawodny, Joe; Hill, Charles; Damadeo, Robert; Moore, Randy; Cisewski, Michael

    2012-07-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Avaiation and Space Agency (now known as Roskosmos) Meteor-3M (M3M) platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the International Space Station (ISS) in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observations in the second half of this decade. This exciting mission utilizes contributions from both the Science Mission Directorate and the Human Exploration and Operations Mission Directorate within the National Aeronautics and Space Administration and the European Space Agency to enable scientific measurements that will provide the basis for the analysis of five of the nine critical constituents identified in the U.S. National Plan for Stratospheric Monitoring. A related paper by Anderson et al. discusses the. Presented here is an overview of the mission architecture, its implementation and the data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water

  8. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  9. An expert system for fault management assistance on a space sleep experiment

    Science.gov (United States)

    Atamer, A.; Delaney, M.; Young, L. R.

    2002-01-01

    The expert system, Principal Investigator-in-a-box, or [PI], was designed to assist astronauts or other operators in performing experiments outside their expertise. Currently, the software helps astronauts calibrate instruments for a Sleep and Respiration Experiment without contact with the investigator on the ground. It flew on the Space Shuttle missions STS-90 and STS-95. [PI] displays electrophysiological signals in real time, alerts astronauts via the indicator lights when a poor signal quality is detected, and advises astronauts how to restore good signal quality. Thirty subjects received training on the sleep instrumentation and the [PI] interface. A beneficial effects of [PI] and training reduced troubleshooting time. [PI] benefited subjects on the most difficult scenarios, even though its lights were not 100% accurate. Further, questionnaires showed that most subjects preferred monitoring waveforms with [PI] assistance rather than monitoring waveforms alone. This study addresses problems of complex troubleshooting and the extended time between training and execution that is common to many human operator situations on earth such as in power plant operation, and marine exploration.

  10. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  11. Observing floods from space: Experience gained from COSMO-SkyMed observations

    Science.gov (United States)

    Pierdicca, N.; Pulvirenti, L.; Chini, M.; Guerriero, L.; Candela, L.

    2013-03-01

    The COSMO-SkyMed mission offers a unique opportunity to obtain all weather radar images characterized by short revisit time, thus being useful for flood evolution mapping. The COSMO-SkyMed system has been activated several times in the last few years in occasion of flood events all over the world in order to provide very high resolution X-band SAR images useful for flood detection purposes. This paper discusses the major outcomes of the experience gained, within the framework of the OPERA Pilot Project funded by the Italian Space Agency, from using COSMO-SkyMed data for the purpose of near real time generation of flood maps. A review of the mechanisms which determine the imprints of the inundation on the radar images and of the fundamental simulation tools able to predict these imprints and help image interpretation is provided. The approach developed to process the data and to generate the flood maps is also summarized. Then, the paper illustrates the experience gained with COSMO-SkyMed by describing and discussing a number of significant examples. These examples demonstrate the potential of the COSMO-SkyMed system and the suitability of the approach developed for generating the final products, but they also highlight some critical aspects that require further investigations to improve the reliability of the flood maps.

  12. Results from an 8 Joule RMF-FRC Plasma Translation Experiment for Space Propulsion

    Science.gov (United States)

    Hill, Carrie; Uchizono, Nolan; Holmes, Michael

    2017-10-01

    Field-Reversed Configuration (FRC) thrusters are attractive for advanced in-space propulsion technology as their projected performance, low specific mass, and propellant flexibility offer significant benefits over state-of-the art thrusters. A benchtop experiment to evaluate FRC thruster behavior using a Rotating Magnetic Field (RMF) formation method was constructed at the Air Force Research Laboratory. This experiment generated an RMF-FRC in a conical geometry and accelerated the plasma into a field-free drift region, using 8 J of input energy. Downstream plasma probes in a time-of-flight array measured the exhaust contents of the plasma plume. Results from this diagnostic demonstrated that the ejected mass and ion exit velocities fell short of the desired specific impulse and momentum. Two high-speed cameras were installed to diagnose the gross plasma behavior from two perspectives. Results from these images are presented here. These images show that the plasma generated in the formation region for several different operating conditions was highly non-uniform and did not form a stable closed-field topology that is expected from RMF-FRC plasmas.

  13. New approaches to evaluate sympathoadrenal system activity in experiments on Earth and in space

    Science.gov (United States)

    Kvetnansky, R.; Noskov, V. B.; Blazicek, P.; Macho, L.; Grigoriev, A. I.; Goldstein, D. S.; Kopin, I. J.

    In previous studies the activity of the sympathoadrenal system (SAS) in cosmonauts during space flights was evaluated by measuring plasma catecholamines (CA) levels and urinary CA and their metabolites concentrations. Plasma CA levels are accepted indicators of SAS activity, however, they are determined by the plasma clearances as well as the rates of CA release (spillover-SO) into the bloodstream. Nowadays methods are available which evaluate not only plasma levels of CA but also their release, spillover, uptake, reuptake, degradation and also CA synthesis in vivo measured by plasma levels of dihydroxyphenylalanine (DOPA). Plasma concentrations of DOPA, the CA noradrenaline (NE), adrenaline (ADR), and dopamine (DA), the deaminated catechol metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC), and the O-methylated metabolites methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured during immobilization stress (IMO) in conscious rats. Radiotracer methods were used to measure NE SO. IMO markedly increased arterial NE levels but NE SO was less elevated bacause the NE clearance was slightly reduced in IMO rats. Simultaneous measurements of plasma CA and their metabolites provide another means to obtain information about SAS function. For instance, dissociation between changes of plasma DHPG and NE levels can indicate changes in neuronal reuptake of NE. We found marked parallel increases in plasma NE and DHPG levels during acute IMO; however after repeated IMO, plasma NE levels were increased but DHPG responses were less pronounced suggesting a reduced NE reuptake. DOPA, the CA precursor, circulates in plasma at a concentration higher than NE. During stress, increased sympathoneural outflow stimulates DOPA synthesis and release into the circulation supporting the view that changes in plasma DOPA levels during stress reflect in vivo changes in the rate of CA synthesis. We propose to measure the new plasma indicators of SAS

  14. CVB: the Constrained Vapor Bubble Capillary Experiment on the International Space Station MARANGONI FLOW REGION

    Science.gov (United States)

    Wayner, Peter C., Jr.; Kundan, Akshay; Plawsky, Joel

    2014-01-01

    The Constrained Vapor Bubble (CVB) is a wickless, grooved heat pipe and we report on a full- scale fluids experiment flown on the International Space Station (ISS). The CVB system consists of a relatively simple setup a quartz cuvette with sharp corners partially filled with either pentane or an ideal mixture of pentane and isohexane as the working fluids. Along with temperature and pressure measurements, the two-dimensional thickness profile of the menisci formed at the corners of the quartz cuvette was determined using the Light Microscopy Module (LMM). Even with the large, millimeter dimensions of the CVB, interfacial forces dominate in these exceedingly small Bond Number systems. The experiments were carried out at various power inputs. Although conceptually simple, the transport processes were found to be very complex with many different regions. At the heated end of the CVB, due to a high temperature gradient, we observed Marangoni flow at some power inputs. This region from the heated end to the central drop region is defined as a Marangoni dominated region. We present a simple analysis based on interfacial phenomena using only measurements from the ISS experiments that lead to a predictive equation for the thickness of the film near the heated end of the CVB. The average pressure gradient for flow in the film is assumed due to the measured capillary pressure at the two ends of the liquid film and that the pressure stress gradient due to cohesion self adjusts to a constant value over a distance L. The boundary conditions are the no slip condition at the wall interface and an interfacial shear stress at the liquid- vapor interface due to the Marangoni stress, which is due to the high temperature gradient. Although the heated end is extremely complex, since it includes three- dimensional variations in radiation, conduction, evaporation, condensation, fluid flow and interfacial forces, we find that using the above simplifying assumptions, a simple successful

  15. A proposal to demonstrate production of salad crops in the Space Station Mockup Facility with particular attention to space, energy, and labor constraints

    Science.gov (United States)

    Brooks, Carolyn A.

    1992-01-01

    The Salad Machine Research has continued to be a two path effort with the research at Marshall Space Flight Center (MSFC) focusing on the design, construction, and operation of a semiautomated system (Salad Machine) for the production of salad vegetables within a standard rack. Boeing Corporation in cooperation with NASA MSFC constructed a four drawer Salad Machine which was occasionally placed within the Space Station Freedom Mockup facility for view by selected visitors. Final outfitting of the Salad Machine is awaiting the arrival of parts for the nutrient delivery system. Research at the Alabama A&M facilities focused on compatibility of radish and lettuce plants when grown on the same nutrient solution. Lettuce fresh weight shoot yield was significantly enhanced when lettuce plants were grown on nutrient solution which was shared with radish. Radish tuber production was not significantly affected although there was a trend for radish from shared solutions to be heavier than those grown on separate nutrient solutions. The effect of sharing nutrient solutions on carbohydrate partitioning reflected the effect of sharing solution on fresh weight yield. Lettuce shoot dry weight was significantly greater for plants from shared solutions than from separate. There was no significant effect on sharing nutrient solution on radish tuber dry weight. Partitioning of nitrogen, calcium, magnesium, and potassium was not affected by sharing, there was, however, a disproportionate amount of potassium in the tissues, suggesting luxury consumption of potassium in all plants and tissues. It is concluded that lettuce plants benefit from sharing nutrient solution with radish and that radish is not harmed.

  16. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  17. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    OpenAIRE

    Vasyl P. Oleksyuk

    2013-01-01

    The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and education...

  18. Displacement Damage Effects in Solar Cells: Mining Damage From the Microelectronics and Photonics Test Bed Space Experiment

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.

    2004-01-01

    The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.

  19. The German ISS experiment Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells

    Science.gov (United States)

    Baumstark-Khan, C.; Hellweg, C.; Arenz, A.

    2005-08-01

    The German experiment "Cellular Responses to Radiation in Space (CERASP)", to be performed on the International Space Station (ISS) will supply basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints under investigation will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using green fluorescent protein. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. Results obtained with X-rays and accelerated argon ions (95 MeV/u, LET 230 keV/μm) produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation.

  20. Control design challenges of large space systems and spacecraft control laboratory experiment (SCOLE)

    Science.gov (United States)

    Lin, Jiguan Gene

    1987-01-01

    The quick suppression of the structural vibrations excited by bang-bang (BB) type time-optional slew maneuvers via modal-dashpot design of velocity output feedback control was investigated. Simulation studies were conducted, and modal dashpots were designed for the SCOLE flexible body dynamics. A two-stage approach was proposed for rapid slewing and precision pointing/retargeting of large, flexible space systems: (1) slew the whole system like a rigid body in a minimum time under specified limits on the control moments and forces, and (2) damp out the excited structural vibrations afterwards. This approach was found promising. High-power modal/dashpots can suppress very large vibrations, and can add a desirable amount of active damping to modeled modes. Unmodeled modes can also receive some concomitant active damping, as a benefit of spillover. Results also show that not all BB type rapid pointing maneuvers will excite large structural vibrations. When properly selected small forces (e.g., vernier thrusters) are used to complete the specified slew maneuver in the shortest time, even BB-type maneuvers will excite only small vibrations (e.g., 0.3 ft peak deflection for a 130 ft beam).

  1. Probing free-space quantum channels with laboratory-based experiments

    Science.gov (United States)

    Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2017-06-01

    Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.

  2. Social spaces, casual interactions, meaningful exchanges: 'information ground' characteristics based on the college student experience.

    Directory of Open Access Journals (Sweden)

    K.E. Fisher

    2007-01-01

    Full Text Available Introduction. In the late 1990s Fisher (writing as Pettigrew proposed information grounds to describe social settings in which people share everyday information while attending to a focal activity. Method. This study was conducted at a major research university, home to 45,000 students. Data were collected by seventy-two Master of Library and Information Science (MLIS students as part of an information behaviour class. Trained in interviewing techniques, each MLIS student interviewed ten students in public places, including the campus and the university commercial district. The survey, comprising twenty-seven primarily open-ended questions, was conducted from October 14-21, 2004. Data were collected from 729 college students and entered, along with extensive field notes, into an in-house Web form. Analysis. Qualitative and quantitative analyses were supplemented by mini-reports prepared by the student researchers along with full-team debriefings. Results. Using a 'people, place, information-related trichotomy', characteristics are discussed in terms of how they can be manipulated to optimize information flow in social settings. Conclusion. . By understanding better the characteristics of information grounds and the interactions among these characteristics, we may be able to develop social spaces in support of information flow and human interaction. Our college student and other studies suggest that information grounds play an intrinsic role in facilitating communication among people and that by building an in-depth typology, beginning with basic categorical characteristics, we may develop new methods for facilitating information exchange.

  3. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  4. Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning

    Science.gov (United States)

    van Hecke, Kevin; de Croon, Guido C. H. E.; Hennes, Daniel; Setterfield, Timothy P.; Saenz-Otero, Alvar; Izzo, Dario

    2017-11-01

    Although machine learning holds an enormous promise for autonomous space robots, it is currently not employed because of the inherent uncertain outcome of learning processes. In this article we investigate a learning mechanism, Self-Supervised Learning (SSL), which is very reliable and hence an important candidate for real-world deployment even on safety-critical systems such as space robots. To demonstrate this reliability, we introduce a novel SSL setup that allows a stereo vision equipped robot to cope with the failure of one of its cameras. The setup learns to estimate average depth using a monocular image, by using the stereo vision depths from the past as trusted ground truth. We present preliminary results from an experiment on the International Space Station (ISS) performed with the MIT/NASA SPHERES VERTIGO satellite. The presented experiments were performed on October 8th, 2015 on board the ISS. The main goals were (1) data gathering, and (2) navigation based on stereo vision. First the astronaut Kimiya Yui moved the satellite around the Japanese Experiment Module to gather stereo vision data for learning. Subsequently, the satellite freely explored the space in the module based on its (trusted) stereo vision system and a pre-programmed exploration behavior, while simultaneously performing the self-supervised learning of monocular depth estimation on board. The two main goals were successfully achieved, representing the first online learning robotic experiments in space. These results lay the groundwork for a follow-up experiment in which the satellite will use the learned single-camera depth estimation for autonomous exploration in the ISS, and are an advancement towards future space robots that continuously improve their navigation capabilities over time, even in harsh and completely unknown space environments.

  5. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    Science.gov (United States)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development; Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science. Mouse livers and spleens were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection operations including storage at -80 C for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RIN(is) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNAlater) and liver (fast-freezing) at various time points post-euthanasia (from 5 min up to 105 min). The RNA recovered was of high quality (spleen, RIN (is) greater than 8; liver, RIN (is) greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at the latest time (105 min). Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The protocols developed for future flight

  6. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    Directory of Open Access Journals (Sweden)

    Vasyl P. Oleksyuk

    2013-06-01

    Full Text Available The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and educational space of the Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University.

  7. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  8. PROPOSING A LANGUAGE EXPERIENCE AND SELF-ASSESSMENT OF PROFICIENCY QUESTIONNAIRE FOR BILINGUAL BRAZILIAN SIGN LANGUAGE/PORTUGUESE HEARING TEACHERS

    Directory of Open Access Journals (Sweden)

    Ingrid FINGER

    2014-12-01

    Full Text Available This article presents a language experience and self-assessment of proficiency questionnaire for hearing teachers who use Brazilian Sign Language and Portuguese in their teaching practice. By focusing on hearing teachers who work in Deaf education contexts, this questionnaire is presented as a tool that may complement the assessment of linguistic skills of hearing teachers. This proposal takes into account important factors in bilingualism studies such as the importance of knowing the participant’s context with respect to family, professional and social background (KAUFMANN, 2010. This work uses as model the following questionnaires: LEAP-Q (MARIAN; BLUMENFELD; KAUSHANSKAYA, 2007, SLSCO – Sign Language Skills Classroom Observation (REEVES et al., 2000 and the Language Attitude Questionnaire (KAUFMANN, 2010, taking into consideration the different kinds of exposure to Brazilian Sign Language. The questionnaire is designed for bilingual bimodal hearing teachers who work in bilingual schools for the Deaf or who work in the specialized educational department who assistdeaf students.

  9. Conducting Science with a CubeSat: The Colorado Student Space Weather Experiment (CSSWE)

    Science.gov (United States)

    Palo, Scott; Li, Xinlin; Gerhardt, David; Blum, Lauren; Schiller, Quintin; Kohnert, Rick

    2014-06-01

    The Colorado Student Space Weather Experiment is a 3-unit (10cm x 10cm x 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with professors and professional engineers, CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 x 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of Nanosatellites (ELaNa) program.The first successful contact with CSSWE was made within a few hours of launch. CSSWE then completed a 20 day system commissioning phase which validated the performance of the communications, power, and attitude control systems. This was immediately followed by an accelerated 24 hour REPTile commissioning period in time for a geomagnetic storm. The high quality, low noise science data return from REPTile is complementary to the NASA Van Allen Probes mission, which launched two weeks prior to CSSWE. On January 5, 2013, CSSWE completed 90 days of on-orbit science operations, achieving the baseline goal for full mission success and has been operating since. An overview of the CSSWE system, on-orbit performance and lessons learned will be presented.

  10. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy's inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI)

  11. Environmental Assessment for the proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), (DOE/EA-1087) evaluating the proposed action to modify existing Building 51B at Lawrence Berkeley National Laboratory (LBNL) to install and conduct experiments on a new Induction Linear Accelerator System. LBNL is located in Berkeley, California and operated by the University of California (UC). The project consists of placing a pre-fabricated building inside Building 51B to house a new 10 MeV heavy ion linear accelerator. A control room and other support areas would be provided within and directly adjacent to Building 51B. The accelerator system would be used to conduct tests, at reduced scale and cost, many features of a heavy-ion accelerator driver for the Department of Energy`s inertial fusion energy program. Based upon information and analyses in the EA, the DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  12. Common benefit from a perspective of "Non-traditional Partners": A proposed agenda to address the status quo in Global Space Governance

    Science.gov (United States)

    Aganaba-Jeanty, Timiebi

    2015-12-01

    It is presupposed that there is a dominant position in interpreting the freedom of Outer Space which has not given much real significance to the idea of common benefit. The reason that this causes difficulty is that there is an ambiguity to common benefit. This dominant position however sees the issue of benefit sharing in the context of the perceived tension between established space faring nations and emerging and aspirant States and the idea that freedom could take on a different meaning depending on where one is on the scale of development. It fails to recognize that solutions to contemporary and historical governance challenges have been much less oriented towards the interests of less developed States or new entrants, making the accrual and sharing of benefits dependent on the free will of those States able to carry out a variety of space activities independently. As a result of this, the debate around common benefit is exploited to seek individual benefit derived for a State as opposed to what our effort to use space collectively can generate. In recent times, the issue has not received much attention. This is because it is believed to be partly resolved through normative frameworks such as Article 1 of the Outer Space Treaty and the Space Benefits Declaration. While an attempt to re-address historical contentious issues, asserted to be resolved, may appear illusory or futile; such analysis can be useful depending on the account that the reader believes should be given to the normative character of human nature. To this end, the writings of legal, political and social theorists and methodologies from Critical Legal Schools may prove insightful for a deeper contextualization of the historical debate, the current understanding of the freedoms of Outer Space as well as unearth future perspectives to aid in addressing the current pressing space related issue of our time: Sustainability of Space Activities. This article proposes three main issue areas to

  13. Putting ROSE to Work: A Proposed Application of a Request-Oriented Scheduling Engine for Space Station Operations

    Science.gov (United States)

    Jaap, John; Muery, Kim

    2000-01-01

    Scheduling engines are found at the core of software systems that plan and schedule activities and resources. A Request-Oriented Scheduling Engine (ROSE) is one that processes a single request (adding a task to a timeline) and then waits for another request. For the International Space Station, a robust ROSE-based system would support multiple, simultaneous users, each formulating requests (defining scheduling requirements), submitting these requests via the internet to a single scheduling engine operating on a single timeline, and immediately viewing the resulting timeline. ROSE is significantly different from the engine currently used to schedule Space Station operations. The current engine supports essentially one person at a time, with a pre-defined set of requirements from many payloads, working in either a "batch" scheduling mode or an interactive/manual scheduling mode. A planning and scheduling process that takes advantage of the features of ROSE could produce greater customer satisfaction at reduced cost and reduced flow time. This paper describes a possible ROSE-based scheduling process and identifies the additional software component required to support it. Resulting changes to the management and control of the process are also discussed.

  14. Module Equipped with a Life-Support System for Space Experiments with Mongolian Gerbils (Meriones Unguiculatus)

    Science.gov (United States)

    Ilyin, E. A.; Smirnov, I. A.; Soldatov, P. E.; Guryeva, T. S.; Mednikova, E. I.

    2008-06-01

    A successful experiment with 12 Mongolian gerbils was performed during the 12-day flight of Russian automatic spacecraft Foton-M3 (September 14-26, 2007). Foton-M3 was not equipped with an air supply system. Due to this, a self-contained "CONTOUR" module equipped with its own Life-Support System, was developed. The cage for animals was equipped with yellow LEDs. The day/night cycle was 12:12 hours. In addition, the module was equipped with a digital video recorder located on the outside surface in front of a transparent window. In space flight, the animals were provided with food bars made of natural products and contained about 20% of water. This moisture met gerbils requirements in water; therefore, the module was not equipped with a water supply system. In the module, the environmental parameters were as follows: p02 = 143-156 (mean 150) mm Hg, pC02 - not more than 0.76 (mean 0.64) mm Hg, temperature = 23-28 (mean 26.7) °C, and RH = 29% at the beginning and 57% at the end of flight (mean 39%). Throughout the entire flight video recording of the animals was performed continuously during the daytime.

  15. HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment

    Science.gov (United States)

    Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha

    2017-06-01

    With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.

  16. The Infrastructure of an Integrated Virtual Reality Environment for International Space Welding Experiment

    Science.gov (United States)

    Wang, Peter Hor-Ching

    1996-01-01

    This study is a continuation of the summer research of 1995 NASA/ASEE Summer Faculty Fellowship Program. This effort is to provide the infrastructure of an integrated Virtual Reality (VR) environment for the International Space Welding Experiment (ISWE) Analytical Tool and Trainer and the Microgravity Science Glovebox (MSG) Analytical Tool study. Due to the unavailability of the MSG CAD files and the 3D-CAD converter, little was done to the MSG study. However, the infrastructure of the integrated VR environment for ISWE is capable of performing the MSG study when the CAD files become available. Two primary goals are established for this research. First, the essential peripheral devices for an integrated VR environment will be studied and developed for the ISWE and MSG studies. Secondly, the training of the flight crew (astronaut) in general orientation, procedures, and location, orientation, and sequencing of the welding samples and tools are built into the VR system for studying the welding process and training the astronaut.

  17. The Stratospheric Aerosol and Gas Experiment III on the International Space Station

    Science.gov (United States)

    Thomason, L.; Pitts, M. C.; Damadeo, R. P.; Zawodny, J. M.

    2012-12-01

    The Stratospheric Aerosol and Gas Experiment (SAGE III) has recently been selected for a flight on the International Space Station (ISS) beginning in 2014. Since the instrument was constructed in the early 2000s, the instrument will require extensive testing and refurbishment prior to deliver to ISS. The project will also include the refurbishment of the ESA Hexapod which is a high-accuracy pointing system developed to support ISS external payloads particularly SAGE III. SAGE III refurbishment may also include the replacement of the neutral density filter that has been associated with some instrument response issues during the METEOR/3M mission. We are also exploring options for expanding the science targets to include additional gas species including IO, BrO, and other solar, lunar, and limb-scatter species. In this presentation, we will discuss our plans for SAGE III - ISS refurbishment including results from Sun-look testing, revisions to the science measurements, and discuss expected measurement accuracies in part by examining SAGE III - METEOR/3M measurement data quality. We will also discuss potential mission science goals enabled by the mid-inclination ISS orbit.

  18. Salt balance: From space experiments to revolutionizing new clinical concepts on earth - A historical review

    Science.gov (United States)

    Gerzer, Rupert

    2014-11-01

    For a long time, sodium balance appeared to be a ;done deal; and was thought to be well understood. However, experiments in preparation of space missions showed that the concept of osmotic sodium storage and close correlations of sodium with water balance are only part of the regulatory mechanisms of body salt. By now it has turned out that the human skin is an important storage place and regulator for sodium, that sodium storage involves macrophages which in turn salt-dependently co-regulate blood pressure, that body sodium also strongly influences bone and protein metabolism, and that immune functions are also strongly influenced by sodium. In addition, the aging process appears to lead to increased body sodium storage, which in turn might influence the aging process of the human body. The current review article summarizes the developments that have led to these revolutionizing new findings and concepts as well as consequences deriving from these findings. Therefore, it is not intended in this article to give a complete literature overview over the whole field but to focus on such key literature and considerations that led to the respective developments.

  19. Strata-1: An International Space Station Experiment into Fundamental Regolith Processes in Microgravity

    Science.gov (United States)

    Fries, M.; Abell, P.; Brisset, J.; Britt, D.; Colwell, J.; Durda, D.; Dove, A.; Graham, L.; Hartzell, C.; John, K.; hide

    2016-01-01

    The Strata-1 experiment will study the evolution of asteroidal regolith through long-duration exposure of simulant materials to the microgravity environment on the International Space Station (ISS). Many asteroids feature low bulk densities, which implies high values of porosity and a mechanical structure composed of loosely bound particles, (i.e. the "rubble pile" model), a prime example of a granular medium. Even the higher-density, mechanically coherent asteroids feature a significant surface layer of loose regolith. These bodies are subjected to a variety of forces and will evolve in response to very small perturbations such as micrometeoroid impacts, planetary flybys, and the YORP effect. Our understanding of this dynamical evolution and the inter-particle forces involved would benefit from long-term observations of granular materials exposed to small vibrations in microgravity. A detailed understanding of asteroid mechanical evolution is needed in order to predict the surface characteristics of as-of-yet unvisited bodies, to understand the larger context of samples collected by missions such as OSIRIS-REx and Hayabusa 1 and 2, and to mitigate risks for both manned and unmanned missions to asteroidal bodies. Understanding regolith dynamics will inform designs of how to land and set anchors, safely sample/move material on asteroidal surfaces, process large volumes of material for in situ resource utilization (ISRU) purposes, and, in general, predict behavior of large and small particles on disturbed asteroid surfaces.

  20. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    Science.gov (United States)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  1. The German ISS-experiment Cellular Responses to Radiation in Space (CERASP): The effects of single and combined space flight conditions on mammalian cells

    Science.gov (United States)

    Hellweg, C. E.; Thelen, M.; Arenz, A.; Baumstark-Khan, C.

    The combined action of ionizing radiation and microgravity will continue to influence future manned space missions, with special risks for astronauts on the Moon surface or for long duration missions to Mars. There is increasing evidence that basic cellular functions are sensitive not only to radiation but also to microgravity. Previous space flight experiments gave contradictory results: from inhibition of DNA repair by microgravity to enhancement, whereas others did not detect any influence of microgravity on repair. At the Radiation Biology Department of the German Aerospace Center (DLR), recombinant bacterial and mammalian cell systems were developed as reporters for cellular signal transduction modulation by genotoxic environmental conditions. The space experiment “Cellular Responses to Radiation in Space” (CERASP) to be performed at the International Space Station (ISS) will make use of such reporter cell lines thereby supplying basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP). A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized d2EGFP variant. The promoter element to be investigated reflects the activity of the nuclear factor kappa B (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumor genesis. Results obtained with X-rays and accelerated heavy ions produced at the French heavy ion accelerator GANIL imply that densely ionizing radiation has a stronger potential to activate NF-κB dependent gene expression than sparsely ionizing radiation. The correlation of NF-κB activation to negative regulation of apoptosis could favor

  2. Plant experiments with light-emitting diode module in Svet space greenhouse

    Science.gov (United States)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    2010-10-01

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity

  3. Space experiment "Rad Gene"-report 2; Detection of DNA damage and adaptive response activity of human cells exposed to space radiations

    Science.gov (United States)

    Ohnishi, Takeo; Takahashi, Akihisa; Su, Xiaoming; Suzuki, Masao; Tsuruoka, Chizuru; Suzuki, Hiromi; Shimazu, Toru; Seki, Masaya; Hashizume, Toko; Nagamatsu, Aiko; Omori, Katsunori; Ishioka, Noriaki

    To identify DNA damage induced by space radiations such as the high linear energy transfer (LET) particles, phospho-H2AX (γH2AX) foci formation was analyzed in human cells frozen in an International Space Station (ISS) freezer for 133 days. After recovering the frozen sample to the earth, the cells were cultured for 30 min, and then fixed. Here, we show a track of γH2AX positive foci in them by immuno-cytochemical methods. It is suggested that space radiations, especially high LET particles, induced DSBs as a track. From the formation of the tracks in nuclei, exposure dose rate was calculated to be 0.7 mSv per day as relatively high-energy space radiations of Fe-ions (500 MeV/u, 200 keV/µm). From the physical dosimetry with CR-39 and TLD, dose rate was 0.5 mSv per day. These values were similar between biological and physical dosimetries. In addition, the aim of this study was to clarify the effect of space radiations on the radio-adaptive response. After the frozen samples were returned to earth, the cells were cultured for 6 h, and then exposed to challenging X-irradiation doses of 1.2 Gy or 2 Gy. Cellular sensitivity, apoptosis, chromosome aberrations and mutation frequencies were scored. In the cells exposed to a space environment, all of radio-adaptive responses such as the induction of radio-resistance and the depression of radiation-induced apoptosis, chromosome aberrations and mutant frequencies investigated here were found in wtp53 cells, but not in the mp53 cells. These results confirmed that the cells exposed to a space environment were likely to the exposed cells to radiation by the specific low dose range (window; 20-100 mSv) which can lead to an adaptive response on ground-base experiments, and that the cells indicated the biological effects from the space-radiation exposure with such low doses in space.

  4. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  5. Bogotá experience in government: device and educational strategies to expressions, scenarios and breaks on a proposal for citizen culture

    Directory of Open Access Journals (Sweden)

    Gloria Clemencia VALENCIA GONZÁLEZ

    2012-05-01

    Full Text Available The Bogotá currently known, rebuilt from the ashes of 9 April got used for decades to live labors, fear and mistrust, but particularly in exclusion. With the arrival of Antanas Mockus to Mayor broke various paradigms: he and his cabinet not came from the traditional political caste, came from the Academy and claimed other relationships with citizenship. In addition, became the city learning space because their Government project drew on the political but evidenced in the pedagogical and found its deployment in the communicative. Six priorities proposed for government experience are articulated around one: civic culture. Culture that should be disseminated, learned and implementation from train in town, then so is generate sense of belonging, would facilitate urban coexistence and would lead to the respect of the common heritage and recognition of the rights and duties of citizens. In the Mayor Mockus’s «great classroom» citizenship would of apathy to the habitancia. Far pedagogy and communication, as not nominated devices, managed to go beyond the labelling and the indication and approached the civic culture to political socialization? This reflection article links to research «higher education and training citizen, case Bogotá» and consists of five sections.

  6. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    Czech Academy of Sciences Publication Activity Database

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurný, František; Yukihara, E.; Gaza, R.; McKeever, S.

    2006-01-01

    Roč. 120, 1- 4 (2006), s. 433-437 ISSN 0144-8420 R&D Projects: GA MŠk 1P05OC032 Institutional research plan: CEZ:AV0Z10480505 Keywords : bacterial experiments * space flight * etched track detectors * thermoluminescent detectors Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 0.446, year: 2006

  7. Autogenic feedback training experiment: A preventative method for space motion sickness

    Science.gov (United States)

    Cowings, Patricia S.

    1993-01-01

    Space motion sickness is a disorder which produces symptoms similar to those of motion sickness on Earth. This syndrome has affected approximately 50 percent of all astronauts and cosmonauts exposed to microgravity in space, but it differs from what is commonly known as motion sickness in a number of critical ways. There is currently no ground-based method for predicting susceptibility to motion sickness in space. Antimotion sickness drugs have had limited success in preventing or counteracting symptoms in space, and frequently caused debilitating side effects. The objectives were: (1) to evaluate the effectiveness of Autogenic-Feedback Training as a countermeasure for space motion sickness; (2) to compare physiological data and in-flight symptom reports to ground-based motion sickness data; and (3) to predict susceptibility to space motion sickness based on pre-flight data of each treatment group crew member.

  8. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  9. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-02-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  10. Development, Fabrication and Ground Test of an Inflatable Structure Space-Flight Experiment

    National Research Council Canada - National Science Library

    Philley, Thomas

    2003-01-01

    Inflatable, rigidizable structures provide a solution to reduce the costs associated with design, fabrication and launch of a space system while simultaneously increasing the deployment reliability...

  11. Bacillus subtilis spores PROTECT experiment Space-exposed and Mars-exposed vs. Earth-control

    Data.gov (United States)

    National Aeronautics and Space Administration — Because of their ubiquity and resistance to spacecraft decontamination bacterial spores are considered likely potential forward contaminants on robotic missions to...

  12. LIFE experiment: isolation of cryptoendolithic organisms from Antarctic colonized sandstone exposed to space and simulated Mars conditions on the international space station.

    Science.gov (United States)

    Scalzi, Giuliano; Selbmann, Laura; Zucconi, Laura; Rabbow, Elke; Horneck, Gerda; Albertano, Patrizia; Onofri, Silvano

    2012-06-01

    Desiccated Antarctic rocks colonized by cryptoendolithic communities were exposed on the International Space Station (ISS) to space and simulated Mars conditions (LiFE-Lichens and Fungi Experiment). After 1.5 years in space samples were retrieved, rehydrated and spread on different culture media. Colonies of a green alga and a pink-coloured fungus developed on Malt-Agar medium; they were isolated from a sample exposed to simulated Mars conditions beneath a 0.1 % T Suprasil neutral density filter and from a sample exposed to space vacuum without solar radiation exposure, respectively. None of the other flight samples showed any growth after incubation. The two organisms able to grow were identified at genus level by Small SubUnit (SSU) and Internal Transcribed Spacer (ITS) rDNA sequencing as Stichococcus sp. (green alga) and Acarospora sp. (lichenized fungal genus) respectively. The data in the present study provide experimental information on the possibility of eukaryotic life transfer from one planet to another by means of rocks and of survival in Mars environment.

  13. Three-dimensional growth of human endothelial cells in an automated cell culture experiment container during the SpaceX CRS-8 ISS space mission - The SPHEROIDS project.

    Science.gov (United States)

    Pietsch, Jessica; Gass, Samuel; Nebuloni, Stefano; Echegoyen, David; Riwaldt, Stefan; Baake, Christin; Bauer, Johann; Corydon, Thomas J; Egli, Marcel; Infanger, Manfred; Grimm, Daniela

    2017-04-01

    Human endothelial cells (ECs) were sent to the International Space Station (ISS) to determine the impact of microgravity on the formation of three-dimensional structures. For this project, an automatic experiment unit (EU) was designed allowing cell culture in space. In order to enable a safe cell culture, cell nourishment and fixation after a pre-programmed timeframe, the materials used for construction of the EUs were tested in regard to their biocompatibility. These tests revealed a high biocompatibility for all parts of the EUs, which were in contact with the cells or the medium used. Most importantly, we found polyether ether ketones for surrounding the incubation chamber, which kept cellular viability above 80% and allowed the cells to adhere as long as they were exposed to normal gravity. After assembling the EU the ECs were cultured therein, where they showed good cell viability at least for 14 days. In addition, the functionality of the automatic medium exchange, and fixation procedures were confirmed. Two days before launch, the ECs were cultured in the EUs, which were afterwards mounted on the SpaceX CRS-8 rocket. 5 and 12 days after launch the cells were fixed. Subsequent analyses revealed a scaffold-free formation of spheroids in space. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Multi scale Disaster Risk Reduction Systems Space and Community based Experiences over HKH Region

    Science.gov (United States)

    Gurung, D. R.; Shrestha, M.; Shrestha, N.; Debnath, B.; Jishi, G.; Bajracharya, R.; Dhonju, H. K.; Pradhan, S.

    2014-11-01

    An increasing trend in the recurrence of natural disasters and associated impacts due to Floods, Glacier Lake out bursts, landslides and forest fire is reported over Hindu Kush Himalyan (HKH) region. Climate change and anthropogenic coupled factors are identified as primary factors for such increased vulnerability. The large degree of poverty, lack of infrastructure, poor accessibility and uncertainties involved in understanding high altitude land surface and climate dynamics poses serious challenges in reducing disaster vulnerability and mitigating disaster impacts. In this context effective development of Disaster Risk Reduction (DRR) protocols and mechanisms have been realized as an urgent need. The paper presents the adoption and experiences of multi scale DRR systems across different Himalayan member countries ranging from community based indigenous early warning to space based emergency response and decision support systems. The Establishment of a Regional Flood Information System (HKH-HYCOS) over Ganges-Brahmaputra-Meghna (GBM) and Indus river basins promoted the timely exchange of flood data and information for the reduction of flood vulnerability within and among the participating countries. Satellite based forest fire alert systems evoked significant response among diverse stakeholders to optimize fire incidence and control. Satellite rainfall estimation products, satellite altimetry based flood early warning systems, flood inundation modelling and products, model derived hydrology flow products from different global data-sharing networks constitutes diverse information to support multi scale DRR systems. Community-based Flood Early Warning System (FEWS) enabled by wireless technology established over the Singara and Jiadhal rivers in Assam also stands as one of the promising examples of minimizing flood risk. Disaster database and information system and decision support tools in Nepal serves as potential tool to support diverse stakeholders.

  15. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  16. Expose-R experiment on effects of open space condition on survivorship in dormant stages of aquatic invertebrates

    Science.gov (United States)

    Alekseev, Victor; Novikova, Nataliya; Levinskikh, Margarita; Sychev, Vladimir; Yusoff, Fatimah; Azuraidi, Osman

    2012-07-01

    Dormancy protects animals and plants in harsh environmental conditions from months up to hundred years. This phenomenon is perspective for space researches especially for interplanetary missions. Direct experiments in open space BYORYSK supported in principle the fact of survivorship of bacteria, fungi spores, seed of plants and crustacean dormant cysts. Even though the rate of survivorship in long-term treatments was low but good enough to conclude that biological invasion even to Mars is a real danger. As soon as the BYORYSK lunch was made of metal the possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it an ESA and RSA equipment titled EXPOSE-R was applied. The EXPOSE-R facility was an external facility attached to the outside of the Zvezda Service Module in ISS in the end of November 2008. It had glace windows transparent for UV-radiation and possibility to measure temperature, space- and UV-radiation. Among a number of experiments requiring exposure to the open space environment it had a biological launch containing resting stages of terrestrial and aquatic organisms. These stages included dried ephippia of cladoceran Daphnia magna differentiated on size, dormant eggs of ostracode Eucypris ornate, cysts of fair-shrimp Streptocephalus torvicornis ( all from hemi desert Caspian area) and Artemis salina from salt lake Crimean populations. All dormant stages were kept in transparent to UV plastic bags placed in three layers. After about two years of exposing in open space dormant stages of 3 species A. salina, D. magna, S. torvicornis successfully survived at different scales but in second and third layers only . The highest level of survivorship was found in A. salina cysts. In preliminary land experiments that imitated land EXPOSE imitation of outside space station UV and vacuum conditions survivorship in resting eggs of D .magna, S. torvicornis and E. ornate was tested also. The total UV dose of

  17. A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment

    Science.gov (United States)

    Ciufolini, Ignazio; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger

    2017-12-01

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series.

  18. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipt. Ingegneria dell' Innovazione, Lecce (Italy); Centro Fermi, Rome (Italy); Matzner, Richard [University of Texas, Theory Group, Austin (United States); Gurzadyan, Vahe [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom)

    2017-12-15

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  19. Upper-atmospheric Space and Earth Weather eXperiment (USEWX)

    Science.gov (United States)

    Wiley, Scott Lee

    2014-01-01

    This presentation is an update from the 2011 and 2012 talks given to Teachers in Space. These slides include some recent space weather issues that are hot topics, including the adding our USEWX and USEWX partners, and information relevant to GSFC researchers.

  20. Genelab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments

    Science.gov (United States)

    Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.

    2016-01-01

    NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASA's premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong

  1. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  2. A blueprint for a simultaneous test of quantum mechanics and general relativity in a space-based quantum optics experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pallister, Sam [University of Bristol, School of Mathematics, Bristol (United Kingdom); Coop, Simon [The Barcelona Institute of Science and Technology, ICFO-Institut de Ciencies Fotoniques, Barcelona (Spain); Formichella, Valerio [Politecnico di Torino, Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRiM), Torino (Italy); Gampierakis, Nicolas [University of East Anglia, School of Natural Sciences, Norwich (United Kingdom); Notaro, Virginia [Sapienza University of Rome, Department of Mechanical and Aerospace Engineering, Rome (Italy); Knott, Paul [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom); Azevedo, Rui [Faculdade de Ciencias da Universidade do Porto, Porto (Portugal); Buchheim, Nikolaus [Max Planck Institute of Quantum Optics, Garching (Germany); De Carvalho, Silvio [University of Applied Sciences Wiener Neustadt, Aerospace Engineering Department, Wiener Neustadt (Austria); Jaervelae, Emilia [Aalto University Metsaehovi Radio Observatory, Kylmaelae (Finland); Aalto University Department of Radio Science and Engineering, Aalto (Finland); Laporte, Matthieu [Universite Paris Diderot, APC (AstroParticule et Cosmologie), Paris (France); Kaikkonen, Jukka-Pekka [Aalto University, Low Temperature Laboratory, Department of Applied Physics, Aalto (Finland); Meshksar, Neda [Leibniz University Hanover, Albert Einstein Institute, Hanover (Germany); Nikkanen, Timo [Aalto University Department of Radio Science and Engineering, Aalto (Finland); Finnish Meteorological Institute, Radar and Space Technology Research Group, Helsinki (Finland); Yttergren, Madeleine [Chalmers University of Technology, Physics and Astronomy, Goeteborg (Sweden)

    2017-12-15

    In this paper we propose an experiment designed to observe a general-relativistic effect on single photon interference. The experiment consists of a folded Mach-Zehnder interferometer, with the arms distributed between a single Earth orbiter and a ground station. By compensating for other degrees of freedom and the motion of the orbiter, this setup aims to detect the influence of general relativistic time dilation on a spatially superposed single photon. The proposal details a payload to measure the required effect, along with an extensive feasibility analysis given current technological capabilities. (orig.)

  3. Genotoxicity testing on the international space station: Preparatory work on the SOS-LUX test as part of the space experiment TRIPLE-LUX

    Science.gov (United States)

    Stojicic, Nevena; Walrafen, David; Baumstark-Khan, Christa; Rabbow, Elke; Rettberg, Petra; Weisshaar, Maria-Paz; Horneck, Gerda

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SOS-LUX test, which represents the radiobiological part of the German space experiment "Gene, immune and cellular responses to single and combined space flight conditions (TRIPLE-LUX)" which has been selected by the IDI/USRA Peer Review Panel for NASA/ESA to be performed on the International Space Station (ISS). It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). The luminescent/fluorescent bioassay SWITCH (SWITCH: Salmonella Weighting of Induced Toxicity Cyto/GenoTox for Human Health) as successor of the SOS-LUX test for rapid toxicity (genotoxicity and cytotoxicity) testing, makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-LUX test and the LAC- Fluoro test. The SWITCH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage-dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of β-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation

  4. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    Science.gov (United States)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  5. Experiments in Neural-Network Control of a Free-Flying Space Robot

    National Research Council Canada - National Science Library

    Wilson, Edward

    1995-01-01

    Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype...

  6. Designing Public Space for Mobility: Contestation, Negotiation and Experiment at Amsterdam Airport Schiphol

    DEFF Research Database (Denmark)

    Nikolaeva, Anna

    2012-01-01

    the complexity and interdependency of the interests at stake in the airport design, as well the value of an airport terminal as an urban design exercise. This is particularly relevant in the discussion of the transformation of spaces of mobility, such as airports or railway stations, into multifunctional public......The paper investigates airport design, using the example of Amsterdam Airport Schiphol, from the point of view of managers, architects and designers. It is argued that existing accounts of the airport as a space of transit as well as a place for shopping and entertainment have underrated...... spaces and may also be valid for urban spaces where mobilities are becoming increasingly important. The paper analyses the challenges and opportunities that arise in such design situations, tracing the recent transformations of Amsterdam Airport Schiphol from the perspective of professionals who have...

  7. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    Science.gov (United States)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  8. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  9. A multicomponent tracer field experiment to measure the flow volume, surface area, and rectilinear spacing of fractures away from the wellbore

    Science.gov (United States)

    Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.

    2017-12-01

    The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.

  10. Commentary on "Aesthetic Experience Explained by the Affect-Space Framework" by E. Schubert, A. C. North, & D. J. Hargreaves

    Directory of Open Access Journals (Sweden)

    Elvira Brattico

    2017-04-01

    Full Text Available This commentary discusses the paper by Schubert and colleagues in the context of the recent proposals in the field of empirical aesthetics and neuroaesthetics, emphasizing the need for inclusion of the time variable for accounting for the dynamic nature of a musical experience. At the same time, the efforts of the authors for systematizing the concepts in the field are praised.

  11. The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): data from the Space Experiment OSMO on EXPOSE-R

    Science.gov (United States)

    Mancinelli, R. L.

    2015-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nägeli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (λ > 110 nm or λ > 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested ~10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life beyond earth, the potential for interplanetary

  12. The Affect of the Space Environment on the Survival of Halorubrum Chaoviator and Synechococcus (Nageli): Data from the Space Experiment OSMO on EXPOSE-R

    Science.gov (United States)

    Mancinelli, R. L.

    2014-01-01

    We have shown using ESA's Biopan facility flown in Earth orbit that when exposed to the space environment for 2 weeks the survival rate of Synechococcus (Nageli), a halophilic cyanobacterium isolated from the evaporitic gypsum-halite crusts that form along the marine intertidal, and Halorubrum chaoviator a member of the Halobacteriaceae isolated from an evaporitic NaCl crystal obtained from a salt evaporation pond, were higher than all other test organisms except Bacillus spores. These results led to the EXPOSE-R mission to extend and refine these experiments as part of the experimental package for the external platform space exposure facility on the ISS. The experiment was flown in February 2009 and the organisms were exposed to low-Earth orbit for nearly 2 years. Samples were either exposed to solar ultraviolet (UV)-radiation (lambda is greater than 110 nm or lambda is greater than 200 nm, cosmic radiation (dosage range 225-320 mGy), or kept in darkness shielded from solar UV-radiation. Half of each of the UV-radiation exposed samples and dark samples were exposed to space vacuum and half kept at 105 pascals in argon. Duplicate samples were kept in the laboratory to serve as unexposed controls. Ground simulation control experiments were also performed. After retrieval, organism viability was tested using Molecular Probes Live-Dead Bac-Lite stain and by their reproduction capability. Samples kept in the dark, but exposed to space vacuum had a 90 +/- 5% survival rate compared to the ground controls. Samples exposed to full UV-radiation for over a year were bleached and although results from Molecular Probes Live-Dead stain suggested approximately 10% survival, the data indicate that no survival was detected using cell growth and division using the most probable number method. Those samples exposed to attenuated UV-radiation exhibited limited survival. Results from of this study are relevant to understanding adaptation and evolution of life, the future of life

  13. SAYSOY- Space Apparatus to Yield SOY sprouts: Growing sprouts in a growth support system for experiments on unmanned platforms in space

    Science.gov (United States)

    De Micco, Veronica; Aronne, Giovanna; Scala, Michele; Eduardo, Pasquale; Haladich, Marco; Castagnolo, Dario; Fortezza, Raimondo

    2005-08-01

    The aim of this study was to design and develop an automatic growth support system for sprouts production in Space addressing a main biological requirement: seedling development had to occur completely under microgravity conditions from seed imbibition until chemical fixation of seedlings. This research is placed within the scenario of producing sprouts of soy, and other species, on board of Space platforms to integrate astronauts' diet with fresh food.The project SAYSOY was submitted within the Education programmes of ESA and was selected for the flight onboard of FOTON M2 satellite. The experiment is based on previous tests conducted on ground in simulated low-gravity conditions where emphasis was addressed to the effect of altered gravity on biological processes that affect nutritional value (metabolism of phenolics) and taste satisfaction (hydration of tissues, vascular differentiation and lignification affecting turgidity and softness of sprouts). The hardware was developed according to the specifications of the FOTON capsule and biological requirements in the sight of the planned analyses of biometrical anatomy on the recovered seedlings. The experiment SAYSOY was successfully conducted flying from May 31st to June 16th, 2005.

  14. The DOSIS and DOSIS 3D Experiments onboard the International Space Station - Results from the Active DOSTEL Instruments

    Science.gov (United States)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes; Kortmann, Onno

    2012-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems experienced in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The DOSTELs measured during the lowest solar minimum conditions in the space age from July 18th 2009 to June 16th 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the DOSIS-3D experiment. The hardware will be launched with the Soyuz 30S flight to the ISS on May 15th 2012 and activated approximately ten days later. Data will be transferred from the DOSTEL units to ground via the EPM rack which is activated approximately every four weeks for this action. First Results for the active DOSIS-3D measurements such as count rate profiles

  15. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission and ground irradiation experiment

    Science.gov (United States)

    Lambreva, Maya; Rea, Giuseppina; Antonacci, Amina; Serafini, Agnese; Damasso, Mario; Margonelli, Andrea; Johanningmeier, Udo; Bertalan, Ivo; Pezzotti, Gianni; Giardi, Maria Teresa

    developed to measure the chlorophyll fluorescence and to provide a living conditions for 24 different algae strains. Twelve different C. reinhardtii strains were analytically selected and two replications for each strain were brought to space, among them, some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls. We analysed the hourly changes and the daily light/dark trend in the maximum quantum yield of PSII photochemistry as well as some physiological parameters that characterize the post-flight effect on algae viability and photosynthetic performance. The ground control experiments were performed following the same protocol for the sample preparation and the temperature recorded during the pre-flight, flight and post-flight phases. The space flight results in comparison to the ground simulations are discussed.

  16. Personal attitudes toward time: The relationship between temporal focus, space-time mappings and real life experiences.

    Science.gov (United States)

    Li, Heng; Cao, Yu

    2017-06-01

    What influences how people implicitly associate "past" and "future" with "front" and "back?" Whereas previous research has shown that cultural attitudes toward time play a role in modulating space-time mappings in people's mental models (de la Fuente, Santiago, Román, Dumitrache & Casasanto, 2014), we investigated real life experiences as potential additional influences on these implicit associations. Participants within the same single culture, who are engaged in different intermediate-term educational experiences (Study 1), long-term living experiences (Study 2), and short-term visiting experiences (Study 3), showed their distinct differences in temporal focus, thereby influencing their implicit spatializations of time. Results across samples suggest that personal attitudes toward time related to real life experiences may influence people's space-time mappings. The findings we report on shed further light on the high flexibility of human conceptualization system. While culture may exert an important influence on temporal focus, a person's conceptualization of time may be attributed to a culmination of factors. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  17. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    Science.gov (United States)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  18. "No Girls on the Internet": The Experience of Female Gamers in the Masculine Space of Violent Gaming

    OpenAIRE

    Carina Assunção

    2016-01-01

    The experience of female gamers in the masculine space of violent videogame playing was explored. Hypotheses concerned identity management strategies used online as well as offline. The study adopts a mixed methods approach. 291 women aged 18-48 were recruited via advertisements on social media. An online questionnaire addressed gaming habits, while a focus group with three women explored the pleasures they take from playing violent games. It was found that those who do play violent games, pl...

  19. Radiation dosimetry for microbial experiments in the International Space Station using different etched track and luminescent detectors

    International Nuclear Information System (INIS)

    Goossens, O.; Vanhavere, F.; Leys, N.; De Boever, P.; O'Sullivan, D.; Zhou, D.; Spurny, F.; Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.

    2006-01-01

    The laboratory of Microbiology at SCK.CEN, in collaboration with different universities, participates in several ESA programmes with bacterial experiments that are carried out in the International Space Station (ISS). The main objective of these programmes is to study the effects of space flight conditions such as microgravity and cosmic radiation on the general behaviour of model bacteria. To measure the radiation doses received by the bacteria, different detectors accompanied the microbiological experiments. The results obtained during two space flight missions are discussed. This dosimetry experiment was a collaboration between different institutes so that the doses could be estimated by different techniques. For measurement of the high linear energy transfer (LET) doses (>10 keV μm -1 ), two types of etched track detectors were used. The low LET part of the spectrum was measured by three types of thermoluminescent detectors ( 7 LiF:Mg,Ti; 7 LiF:Mg,Cu,P; Al 2 O 3 :C) and by the optically stimulated luminescence technique using Al 2 O 3 :C detectors. (authors)

  20. Student Pave Way for First Microgravity Experiments on International Space Station

    Science.gov (United States)

    1999-01-01

    Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  1. Low-cost space fission power systems utilizing US and former Soviet Union experience and technology

    International Nuclear Information System (INIS)

    Wetch, J.R.; Britt, E.J.; Koester, J.K.; Gunther, N.; Ponomarev-Stepnoi, N.N.; Nikolaev, Y.V.; Nikitin, V.

    1997-01-01

    This report summarizes the author close-quote s approach to space power total economics. In the past 40 years of U.S. government sponsored space nuclear power developments, total economics has received only token consideration. In the real world, nuclear power has had limited acceptance where it provided the enabling capability i.e. isotopes for low power, long life, deep space missions, or reactor power for underwater nuclear submarines. It was also accepted where it was perceived to be more economic. Examples are nuclear reactor powered aircraft carriers, escort vessels and central station power stations. In any case, real and perceived public and environmental safety must always be included into the economic equation. copyright 1997 American Institute of Physics

  2. Using new estimates of methane emissions over Europe to assess how proposed space-borne laser instruments will advance our scientific understanding of methane surface fluxes

    Science.gov (United States)

    Weaver, C. J.; Kiemle, C.; Riris, H.; Kawa, S. R.

    2012-12-01

    Laser instruments designed to measure methane from air- and space-borne platforms are being developed at DLR (MERLIN) and at NASA (GSFC Methane Sounder). Designing these instrument with sufficient accuracy to advance our understanding of emission source strengths and locations is crucial. Here we present a model simulation of methane used to test the potential of laser measurements to improve methane source/sink estimates. Our approach uses the FLEXPART lagrangian particle transport model, a global chemistry transport model, and hourly methane measurements from ground-based stations in Europe. We retrieve slowly varying (15 days) source strengths from European wetlands and anthropogenic emission regions from 2008-2011. A by-product of our model is tropospheric methane column amounts, which can be displayed in a movie format as methane weather. We will examine the seasonal horizontal spatial variability in the methane fields and compare with the current proposed accuracy and precision specifications of the laser instrument design

  3. Immersed in microclimate space: Microclimate experience and perception of spatial configurations in Dutch squares

    NARCIS (Netherlands)

    Lenzholzer, S.; Koh, J.

    2010-01-01

    Thermal comfort forms an important factor for the usability and attractiveness of outdoor places. Recent research on thermal comfort indicates that next to physical parameters psychological factors are equally important. Yet, new knowledge on perceptions of microclimate in outdoor space that can

  4. Bridging Spaces: Cross-Cultural Perspectives on Promoting Positive Online Learning Experiences

    Science.gov (United States)

    Luyt, Ilka

    2013-01-01

    The globalization of online courses has transformed online learning into cross-cultural learning spaces. Students from non-English backgrounds are enrolling in credit-bearing courses and must adjust their thinking and writing to adapt to online practices. Online courses have as their aim the construction of knowledge, but students' perceptions of…

  5. The Relative Benefits of Green Versus Lean Office Space : Three Field Experiments

    NARCIS (Netherlands)

    Nieuwenhuis, Marlon; Knight, Craig; Postmes, Tom; Haslam, S. Alexander

    Principles of lean office management increasingly call for space to be stripped of extraneous decorations so that it can flexibly accommodate changing numbers of people and different office functions within the same area. Yet this practice is at odds with evidence that office workers' quality of

  6. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  7. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  8. Survival of microorganisms in space protected by meteorite material: results of the experiment 'EXOBIOLOGIE' of the PERSEUS mission.

    Science.gov (United States)

    Rettberg, P; Eschweiler, U; Strauch, K; Reitz, G; Horneck, G; Wanke, H; Brack, A; Barbier, B

    2002-01-01

    During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  9. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    Science.gov (United States)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and

  10. Proposal of Michelson-Morley experiment via single photon interferometer: Interpretation of Michelson-Morley experimental results using de Broglie-Bohm picture

    OpenAIRE

    Sato, Masanori

    2004-01-01

    The Michelson-Morley experiment is considered via a single photon interferometer and we propose the interpretation of the Michelson-Morley experimental results using de Broglie-Bohm picture. We point out that the Michelson-Morley experiment revealed the interference of photons, however, it did not reveal the photons simultaneous arrival at the beam splitter. According to the de Broglie-Bohm picture, the quantum potential nonlocally determines the interference of photons. The interference of t...

  11. Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data

    Science.gov (United States)

    Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan

    1995-01-01

    The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.

  12. Performance Analysis of a Liquid Metal Heat Pipe Space Shuttle Experiment

    National Research Council Canada - National Science Library

    Dickinson, Timothy

    1996-01-01

    .... The objectives of the experiment were characterization of the frozen startup and restart transients, comparison of flight and ground test data to establish a performance baseline for analytical model...

  13. Confinement has no effect on visual space perception: The results of the Mars-500 experiment

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2014-01-01

    Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Projects: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y

  14. Langmuir Probes for Obstanovka Experiment Aboard the Russian Segment of the International Space Station

    Science.gov (United States)

    2010-08-04

    charged due to the operation of so many instruments, solar batteries, life supporting devices, etc. The present grant is for the elaboration and tests of...sensors (in RKK “ Energia ” – Moscow)  Updating of the technological instruments - a new power supply block (PSB) was elaborated, which made it possible to...depending on space weather, Year of Astronomy: Solar and Solar - Terrestrial Physics 2009, Proceedings of the All-Russian Yearly Conference on Solar

  15. Confinement has no effect on visual space perception: The results of the Mars-500 experiment

    Czech Academy of Sciences Publication Activity Database

    Šikl, Radovan; Šimeček, Michal

    2014-01-01

    Roč. 76, č. 2 (2014), s. 438-451 ISSN 1943-3921 R&D Project s: GA ČR(CZ) GAP407/12/2528 Institutional support: RVO:68081740 Keywords : visual space perception * perspective * Mars-500 * size judgment * size constancy * confinement Subject RIV: AN - Psychology Impact factor: 2.168, year: 2014 http://dx.doi.org/10.3758/s13414-013-0594-y

  16. Comparison of the light flash phenomena observed in space and in laboratory experiments

    International Nuclear Information System (INIS)

    McNulty, P.J.; Pease, V.P.; Bond, V.P.

    1976-01-01

    Astronauts on Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes were closed and adapted to darkness. These observations were studied under controlled conditions during a number of sessions on board Apollo and Skylab spacecraft and the data available to date on these so-called light flashes is in the form of descriptions of the phenomena and frequency of occurrence. Similar visual phenomena have been demonstrated in a number of laboratories by exposing the eyes of human subjects to beams of neutrons, alphas, pions, and protons. More than one physical mechanism is involved in the laboratory and space phenomena. No direct comparison of the laboratory and space observations has been made by observers who have experienced both. However, the range of visual phenomena observed in the laboratory is consistent with the Apollo and Skylab observations. Measured detection efficiencies can be used to estimate the frequencies with which various phenomena would be observed if the subject was exposed to cosmic rays in space

  17. Study of Einstein-Podolsky-Rosen state for space-time variables in a two photon interference experiment

    Science.gov (United States)

    Shih, Y. H.; Sergienko, A. V.; Rubin, M. H.

    1993-01-01

    A pair of correlated photons generated from parametric down conversion was sent to two independent Michelson interferometers. Second order interference was studied by means of a coincidence measurement between the outputs of two interferometers. The reported experiment and analysis studied this second order interference phenomena from the point of view of Einstein-Podolsky-Rosen paradox. The experiment was done in two steps. The first step of the experiment used 50 psec and 3 nsec coincidence time windows simultaneously. The 50 psec window was able to distinguish a 1.5 cm optical path difference in the interferometers. The interference visibility was measured to be 38 percent and 21 percent for the 50 psec time window and 22 percent and 7 percent for the 3 nsec time window, when the optical path difference of the interferometers were 2 cm and 4 cm, respectively. By comparing the visibilities between these two windows, the experiment showed the non-classical effect which resulted from an E.P.R. state. The second step of the experiment used a 20 psec coincidence time window, which was able to distinguish a 6 mm optical path difference in the interferometers. The interference visibilities were measured to be 59 percent for an optical path difference of 7 mm. This is the first observation of visibility greater than 50 percent for a two interferometer E.P.R. experiment which demonstrates nonclassical correlation of space-time variables.

  18. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    Energy Technology Data Exchange (ETDEWEB)

    Morfin, J.G.; /Fermilab; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  19. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    Science.gov (United States)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several

  20. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  1. Optimism Experiment and Development of Space-qualified Seismometers in France

    Science.gov (United States)

    Lognonne, P.; Karczewski, J. F.

    1993-01-01

    The OPTIMISM experiment will put two magnetometers and two seismometers on the Martian floor in 1995, within the framework of the Mars '94 mission. The seismometers are put within the two small surface stations. The seismometer sensitivity will be better than 10 exp -9 g at 1 Hz, 2 orders of magnitude higher than the Viking seismometer sensitivity. A priori waveform modeling for seismic signals on Mars shows that it will be sufficient to detect quakes with a seismic moment greater than 10 exp 15 Nm everywhere on Mars. Such events, according to the hypothesis of a thermoelastic cooling of the Martian lithosphere, are expected to occur at a rate close to one per week and may therefore be observed within the l-year lifetime of the experiment. Other aspects of the experiment are discussed.

  2. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  3. Space Weathering of airless bodies in the Solar System - Combining hypervelocity dust impacts with energetic irradiation experiments

    Science.gov (United States)

    Fiege, K.; Bennett, C.; Guglielmino, M.; Orlando, T. M.; Trieloff, M.; Srama, R.

    2015-12-01

    The chemical and mineralogical characterization of meteorites and their parent asteroids provides us with information about the processes and conditions during the formation of the inner Solar System. However, linking meteorites to their parent bodies is problematic. Astronomical observations aim to reconstruct the surface properties of these bodies primarily by visible and infrared spectra, but space weathering severely modifies the optical, compositional and physical properties of thin surface layers and thus precludes proper identification of chemistry and mineralogy. The effects of space weathering have been experimentally studied mainly with respect to ion bombardment and sputtering. Other studies aimed to simulate the influence of micrometeoroid bombardment by using laser ablation techniques. However, there is sufficient evidence that laser ablation does not realistically lead to the same effects as produced during real micrometeorite impacts. We performed micrometeorite bombardment using a 2MV dust accelerator at the Institute for Space Systems at University of Stuttgart, Germany, capable of generating impact speeds up to 100 km s-1. These results are combined with energetic irradiation experiments at the Electron and Photon Induced Chemistry on Surfaces (EPICS) laboratory at Georgia Institute of Technology, USA. By simulating highly realistic irradiation conditions, we are able to investigate the processes of particle and solar wind irradiation on solid planetary surfaces and study the formation of e.g., nanophase iron in minerals, the effects on hydrous minerals regarding their volatile budgets, or possible OH-formation in nominally anhydrous minerals and relate these to their optical properties. Using a variety of minerals, this work aims to contribute to a better understanding of the general alteration mechanisms in space environments in dependence of weathering agent and available material. We here present the results of initial comparison analysis and

  4. Electrodynamic Tethers and E-Sails as Active Experiment Testbeds and Technologies in Space

    Science.gov (United States)

    Gilchrist, B. E.; Wiegmann, B.; Johnson, L.; Bilen, S. G.; Habash Krause, L.; Miars, G.; Leon, O.

    2017-12-01

    The use of small-to-large flexible structures in space such as tethers continues to be studied for scientific and technology applications. Here we will consider tether electrodynamic and electrostatic interactions with magneto-plasmas in ionospheres, magnetospheres, and interplanetary space. These systems are enabling fundamental studies of basic plasma physics phenomena, allowing direct studies of the space environment, and generating technological applications beneficial for science missions. Electrodynamic tethers can drive current through the tether based on the Lorenz force adding or extracting energy from its orbit allowing for the study of charged bodies or plasma plumes moving through meso-sonic magnetoplasmas [1]. Technologically, this also generates propulsive forces requiring no propellant and little or no consumables in any planetary system with a magnetic field and ionosphere, e.g., Jupiter [2]. Further, so called electric sails (E-sails) are being studied to provide thrust through momentum exchange with the hypersonic solar wind. The E-sail uses multiple, very long (10s of km) charged, mostly bare rotating conducting tethers to deflect solar wind protons. It is estimated that a spacecraft could achieve a velocity over 100 km/s with time [3,4]. 1. Banks, P.M., "Review of electrodynamic tethers for space plasma science," J. Spacecraft and Rockets, vol. 26, no. 4, pp. 234-239, 1989. 2. Talley, C., J. Moore, D. Gallagher, and L. Johnson, "Propulsion and power from a rotating electrodynamic tether at Jupiter," 38th AIAA Aerospace Sciences Meeting and Exhibit, January 2000. 3. Janhunen, P., "The electric sail—A new propulsion method which may enable fast missions to the outer solar system," J. British Interpl. Soc., vol. 61, no. 8, pp. 322-325, 2008. 4. Wiegman, B., T. Scheider, A. Heaton, J. Vaughn, N. Stone, and K. Wright, "The Heliopause Electrostatic Rapid Transit System (HERTS)—Design, trades, and analyses performed in a two-year NASA investigation

  5. Ambient mass density effects on the International Space Station (ISS) microgravity experiments

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.; Smith, R. E.

    1996-01-01

    The Marshall engineering thermosphere model was specified by NASA to be used in the design, development and testing phases of the International Space Station (ISS). The mass density is the atmospheric parameter which most affects the ISS. Under simplifying assumptions, the critical ambient neutral density required to produce one micro-g on the ISS is estimated using an atmospheric drag acceleration equation. Examples are presented for the critical density versus altitude, and for the critical density that is exceeded at least once a month and once per orbit during periods of low and high solar activity. An analysis of the ISS orbital decay is presented.

  6. Time and motion, experiment M151. [human performance and space flight stress

    Science.gov (United States)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Mcbride, G. H.; Barnes, J. E.; Saxon, S. C.

    1973-01-01

    Astronaut work performance during the preparation and execution of experiments in simulated Skylab tests was analyzed according to time and motion in order to evaluate the efficiency and consistency of performance (adaptation function) for several different types of activity over the course of the mission; to evaluate the procedures to be used by the same experiment in Skylab; to generate characteristic adaptation functions for later comparison with Skylab data; and to examine astronaut performance for any behavioral stress due to the environment. The overall results indicate that the anticipated adaptation function was obtained both for individual and for averaged data.

  7. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    Science.gov (United States)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  8. SpaceScanner: COPASI wrapper for automated management of global stochastic optimization experiments.

    Science.gov (United States)

    Elsts, Atis; Pentjuss, Agris; Stalidzans, Egils

    2017-09-15

    Due to their universal applicability, global stochastic optimization methods are popular for designing improvements of biochemical networks. The drawbacks of global stochastic optimization methods are: (i) no guarantee of finding global optima, (ii) no clear optimization run termination criteria and (iii) no criteria to detect stagnation of an optimization run. The impact of these drawbacks can be partly compensated by manual work that becomes inefficient when the solution space is large due to combinatorial explosion of adjustable parameters or for other reasons. SpaceScanner uses parallel optimization runs for automatic termination of optimization tasks in case of consensus and consecutively applies a pre-defined set of global stochastic optimization methods in case of stagnation in the currently used method. Automatic scan of adjustable parameter combination subsets for best objective function values is possible with a summary file of ranked solutions. https://github.com/atiselsts/spacescanner . egils.stalidzans@lu.lv. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Space Exposed Experiment Developed for Students (SEEDS) (P0004-2)

    International Nuclear Information System (INIS)

    Grigsby, D.K.; Ehrlich, N.J.

    1992-01-01

    SEEDS, a cooperative endeavor of NASA Headquarters, the NASA Langley Research Center, and the George W. Park Seed Company, resulted in the distribution of approximately 132,000 SEEDS kits to 3.3 million students. Kits contained Rutger's tomato seeds that had flown on the Long Duration Exposure Facility (LDEF), as well as seeds that had been stored in a climate controlled warehouse for the same time period. Preliminary data indicates the germination rate for space exposed seeds was 73.8 percent while Earth based seeds germinated at a rate of 70.3 percent. Tests conducted within the first six months after retrieval indicated space exposed seeds germinated in an average of 8.0 days, while Earth based seeds' average germination time was 8.3 days. Some mutations (assumed to be radiation induced) include plants that added a leaf instead of the usual flower at the end of the flower frond. Also, fruit produced from a flower with a variegated calyx bore seeds producing albino plants, while fruit from a flower with a green calyx from the same plant bore seeds producing green plants

  10. New results from the
 AMS experiment on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The Alpha Magnetic Spectrometer, AMS, is a general purpose high energy particle phys- ics detector. It was installed on the International Space Station, ISS, on 19 May 2011 to conduct a unique long duration mission of fundamental physics research in space. Knowledge of the precise rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. Pre- cise measurements of the proton and of the helium flux in primary cosmic rays with rigidities (momentum/charge) up to the TV scale are presented and the detailed varia- tion with rigidity of the flux spectral indices will be discussed. A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays in the rigidity range from 1 to 450 GV is presented. This measurement increases the precision of the previous observations and significantly extends their rigidity range. It shows that the antiproton-to-proton ratio remains constant above ∼60 GV. In a...

  11. Art in Time and Space: Context Modulates the Relation between Art Experience and Viewing Time

    Science.gov (United States)

    Brieber, David; Nadal, Marcos; Leder, Helmut; Rosenberg, Raphael

    2014-01-01

    The experience of art emerges from the interaction of various cognitive and affective processes. The unfolding of these processes in time and their relation with viewing behavior, however, is still poorly understood. Here we examined the effect of context on the relation between the experience of art and viewing time, the most basic indicator of viewing behavior. Two groups of participants viewed an art exhibition in one of two contexts: one in the museum, the other in the laboratory. In both cases viewing time was recorded with a mobile eye tracking system. After freely viewing the exhibition, participants rated each artwork on liking, interest, understanding, and ambiguity scales. Our results show that participants in the museum context liked artworks more, found them more interesting, and viewed them longer than those in the laboratory. Analyses with mixed effects models revealed that aesthetic appreciation (compounding liking and interest), understanding, and ambiguity predicted viewing time for artworks and for their corresponding labels. The effect of aesthetic appreciation and ambiguity on viewing time was modulated by context: Whereas art appreciation tended to predict viewing time better in the laboratory than in museum context, the relation between ambiguity and viewing time was positive in the museum and negative in the laboratory context. Our results suggest that art museums foster an enduring and focused aesthetic experience and demonstrate that context modulates the relation between art experience and viewing behavior. PMID:24892829

  12. Art in time and space: context modulates the relation between art experience and viewing time.

    Science.gov (United States)

    Brieber, David; Nadal, Marcos; Leder, Helmut; Rosenberg, Raphael

    2014-01-01

    The experience of art emerges from the interaction of various cognitive and affective processes. The unfolding of these processes in time and their relation with viewing behavior, however, is still poorly understood. Here we examined the effect of context on the relation between the experience of art and viewing time, the most basic indicator of viewing behavior. Two groups of participants viewed an art exhibition in one of two contexts: one in the museum, the other in the laboratory. In both cases viewing time was recorded with a mobile eye tracking system. After freely viewing the exhibition, participants rated each artwork on liking, interest, understanding, and ambiguity scales. Our results show that participants in the museum context liked artworks more, found them more interesting, and viewed them longer than those in the laboratory. Analyses with mixed effects models revealed that aesthetic appreciation (compounding liking and interest), understanding, and ambiguity predicted viewing time for artworks and for their corresponding labels. The effect of aesthetic appreciation and ambiguity on viewing time was modulated by context: Whereas art appreciation tended to predict viewing time better in the laboratory than in museum context, the relation between ambiguity and viewing time was positive in the museum and negative in the laboratory context. Our results suggest that art museums foster an enduring and focused aesthetic experience and demonstrate that context modulates the relation between art experience and viewing behavior.

  13. New approaches to the study of tourist experiences in time and space

    NARCIS (Netherlands)

    Birenboim, A.M.

    2015-01-01

    Nowadays, a growing number of researchers are investigating subjective attitudes of people toward their environment with ever increasing spatial and temporal resolutions. It seems that researchers’ interest in daily experiences is not merely a passing research fad, but rather that individuals in

  14. Examining the Experiences of Undocumented College Students: Walking the Known and Unknown Lived Spaces

    Science.gov (United States)

    Jacobo, Rodolfo; Ochoa, Alberto M.

    2011-01-01

    This article examines the experiences of selected undocumented college-aged (UCA) students attending a community and four year college, and the trauma they live on a daily basis. A conceptual framework is provided for examining the tensions experienced by undocumented students. The framework is suggested as a tool to analyze the explicit and…

  15. Art in time and space: context modulates the relation between art experience and viewing time.

    Directory of Open Access Journals (Sweden)

    David Brieber

    Full Text Available The experience of art emerges from the interaction of various cognitive and affective processes. The unfolding of these processes in time and their relation with viewing behavior, however, is still poorly understood. Here we examined the effect of context on the relation between the experience of art and viewing time, the most basic indicator of viewing behavior. Two groups of participants viewed an art exhibition in one of two contexts: one in the museum, the other in the laboratory. In both cases viewing time was recorded with a mobile eye tracking system. After freely viewing the exhibition, participants rated each artwork on liking, interest, understanding, and ambiguity scales. Our results show that participants in the museum context liked artworks more, found them more interesting, and viewed them longer than those in the laboratory. Analyses with mixed effects models revealed that aesthetic appreciation (compounding liking and interest, understanding, and ambiguity predicted viewing time for artworks and for their corresponding labels. The effect of aesthetic appreciation and ambiguity on viewing time was modulated by context: Whereas art appreciation tended to predict viewing time better in the laboratory than in museum context, the relation between ambiguity and viewing time was positive in the museum and negative in the laboratory context. Our results suggest that art museums foster an enduring and focused aesthetic experience and demonstrate that context modulates the relation between art experience and viewing behavior.

  16. Storyline as a Space for Simulated Practice: A Teaching Experiment in Higher Education

    DEFF Research Database (Denmark)

    Jørgensen, Lone Tang; Lund, Birthe; Jensen, Henriette Gejel

    2016-01-01

    of profession competencies for the students. Storyline is applied as the didactic method and is being tested through an educational experiment in the bachelor of social science. The framework provided by the Storyline method, with its professionally relevant, familar key questions and events, invites...

  17. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  18. Flight Computer Processing Avionics for Space Station Microgravity Experiments: A Risk Assessment of Commercial Off-the-Shelf Utilization

    Science.gov (United States)

    Estes, Howard; Liggin, Karl; Crawford, Kevin; Humphries, Rick (Technical Monitor)

    2001-01-01

    NASA/Marshall Space Flight Center (MSFC) is continually looking for ways to reduce the costs and schedule and minimize the technical risks during the development of microgravity programs. One of the more prominent ways to minimize the cost and schedule is to use off-the-shelf hardware (OTS). However, the use of OTS often increases the risk. This paper addresses relevant factors considered during the selection and utilization of commercial off-the-shelf (COTS) flight computer processing equipment for the control of space station microgravity experiments. The paper will also discuss how to minimize the technical risks when using COTS processing hardware. Two microgravity experiments for which the COTS processing equipment is being evaluated for are the Equiaxed Dendritic Solidification Experiment (EDSE) and the Self-diffusion in Liquid Elements (SDLE) experiment. Since MSFC is the lead center for Microgravity research, EDSE and SDLE processor selection will be closely watched by other experiments that are being designed to meet payload carrier requirements. This includes the payload carriers planned for the International Space Station (ISS). The purpose of EDSE is to continue to investigate microstructural evolution of, and thermal interactions between multiple dendrites growing under diffusion controlled conditions. The purpose of SDLE is to determine accurate self-diffusivity data as a function of temperature for liquid elements selected as representative of class-like structures. In 1999 MSFC initiated a Center Director's Discretionary Fund (CDDF) effort to investigate and determine the optimal commercial data bus architecture that could lead to faster, better, and lower cost data acquisition systems for the control of microgravity experiments. As part of this effort various commercial data acquisition systems were acquired and evaluated. This included equipment with various form factors, (3U, 6U, others) and equipment that utilized various bus structures, (VME

  19. Potential GPS user architecture for the NASA Space Station based on Landsat 4/5 experience

    Science.gov (United States)

    Korenstein, David A.

    1987-01-01

    A Landsat 4/5 GPS system is described which uses an inertial reference attitude control system and precision real-time ephemeris generation to achieve precision earth pointing. The system has application to the validation of the use of GPS for the low earth orbit navigation of the Space Station. The present system consists of a receiver/processor assembly (R/PA), an L-band GPS antenna, a precision oscillator, and the Landsat computer. The R/PA is integrated with a GPS receiver which selects, acquires, tracks, times, and decodes navigation signals from GPS satellites in order to derive ephemerides. Ephemeris estimates were found to be accurate to better than 50 meters.

  20. Bodily Explorations in Space: Social Experience of a Multimodal Art Installation

    Science.gov (United States)

    Jacucci, Giulio; Spagnolli, Anna; Chalambalakis, Alessandro; Morrison, Ann; Liikkanen, Lassi; Roveda, Stefano; Bertoncini, Massimo

    We contribute with an extensive field study of a public interactive art installation that applies multimodal interface technologies. The installation is part of a Theater production on Galileo Galilei and includes: projected galaxies that are generated and move according to motion of visitors changing colour depending on their voices; projected stars that configure themselves around shadows of visitors. In the study we employ emotion scales (PANAS), qualitative analysis of questionnaire answers and video-recordings. PANAS rates indicate dominantly positive feelings, further described in the subjective verbalizations as gravitating around interest, ludic pleasure and transport. Through the video analysis, we identified three phases in the interaction with the artwork (circumspection, testing, play) and two pervasive features of these phases (experience sharing and imitation), which were also found in the verbalizations. Both video and verbalisations suggest that visitor’s experience and ludic pleasure are rooted in the embodied, performative interaction with the installation, and is negotiated with the other visitors.

  1. Start small, dream big: Experiences of physical activity in public spaces in Colombia.

    Science.gov (United States)

    Díaz Del Castillo, Adriana; González, Silvia Alejandra; Ríos, Ana Paola; Páez, Diana C; Torres, Andrea; Díaz, María Paula; Pratt, Michael; Sarmiento, Olga L

    2017-10-01

    Multi-sectoral strategies to promote active recreation and physical activity in public spaces are crucial to building a "culture of health". However, studies on the sustainability and scalability of these strategies are limited. This paper identifies the factors related to the sustainability and scaling up of two community-based programs offering physical activity classes in public spaces in Colombia: Bogotá's Recreovía and Colombia's "Healthy Habits and Lifestyles Program-HEVS". Both programs have been sustained for more than 10years, and have benefited 1455 communities. We used a mixed-methods approach including semi-structured interviews, document review and an analysis of data regarding the programs' history, characteristics, funding, capacity building and challenges. Interviews were conducted between May-October 2015. Based on the sustainability frameworks of Shediac-Rizkallah and Bone and Scheirer, we developed categories to independently code each interview. All information was independently analyzed by four of the authors and cross-compared between programs. Findings showed that these programs underwent adaptation processes to address the challenges that threatened their continuation and growth. The primary strategies included flexibility/adaptability, investing in the working conditions and training of instructors, allocating public funds and requesting accountability, diversifying resources, having community support and champions at different levels and positions, and carrying out continuous advocacy to include physical activity in public policies. Recreovía and HEVS illustrate sustainability as an incremental, multi-level process at different levels. Lessons learned for similar initiatives include the importance of individual actions and small events, a willingness to start small while dreaming big, being flexible, and prioritizing the human factor. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The experiences of a female, adolescent learner from an assisted-living space regarding classroom support

    OpenAIRE

    Collins, Kerry-Lee

    2015-01-01

    M.Ed. (Educational Psychology) Self-worth develops optimally within a nurturing family context. The growing numbers of vulnerable children in care facilities are a concern both in South Africa and internationally. Children who are removed from their families often experience feelings of rejection and low self-worth. In an educational domain this can have a negative effect on learning and academic achievement. From a systemic perspective the mediating role of teachers in the self-worth deve...

  3. Mineral balance, experiment M071. [space flight effects on human mineral metabolism

    Science.gov (United States)

    Whedon, G. D.; Rambaut, P. C.; Smith, M. C., Jr.

    1973-01-01

    Concern for the long term metabolic consequences of weightless flight was the basis for the conception of the Skylab medical experiment to measure mineral balance. Proper interpretation of obtained data that diminished atmospheric pressure has no appreciable effect, or at least no protective effect, on calcium metabolism. The absence of changes in calcium metabolism indicates that a stable baseline observation has been made for Skylab as far as the effects of atmosphere or calcium metabolism are concerned.

  4. First haemorheological experiment on NASA space shuttle 'Discovery' STS 51-C: aggregation of red cells.

    Science.gov (United States)

    Dintenfass, L; Osman, P D; Jedrzejczyk, H

    1985-01-01

    The 'secret' D.O.D. Mission on flight STS 51-C also carried nearly 100 kg of automated instrumentation of the Australian experiment on aggregation of red cells ("ARC"). The automated Slit-Capillary Photo Viscometer contained blood samples from subjects with history of coronary heart disease, cancer of the colon, insulin-dependent diabetes, etc., as well as normals. The experiment ran for nine hours, according to the program of its microcomputers. When shuttle landed and instrumentation recovered and opened in the presence of NASA quality control officers, it was obvious that experiment was a success. Tentative and preliminary results can be summarized as follows: red cells did not change shape under zero gravity; red cells do aggregate under zero gravity, although the size of aggregates is smaller than on the ground; the morphology of aggregates of red cells appears to be of rouleaux type under zero gravity, notwithstanding the fact that pathological blood was used. These results will have to be confirmed in the future flights. The background and history of development of the project are described, and put into context of our general haemorheological studies.

  5. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.

    Science.gov (United States)

    Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob

    2014-02-01

    Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Influence factors and prediction of stormwater runoff of urban green space in Tianjin, China: laboratory experiment and quantitative theory model.

    Science.gov (United States)

    Yang, Xu; You, Xue-Yi; Ji, Min; Nima, Ciren

    2013-01-01

    The effects of limiting factors such as rainfall intensity, rainfall duration, grass type and vegetation coverage on the stormwater runoff of urban green space was investigated in Tianjin. The prediction equation of stormwater runoff was established by the quantitative theory with the lab experimental data of soil columns. It was validated by three field experiments and the relative errors between predicted and measured stormwater runoff are 1.41, 1.52 and 7.35%, respectively. The results implied that the prediction equation could be used to forecast the stormwater runoff of urban green space. The results of range and variance analysis indicated the sequence order of limiting factors is rainfall intensity > grass type > rainfall duration > vegetation coverage. The least runoff of green land in the present study is the combination of rainfall intensity 60.0 mm/h, duration 60.0 min, grass Festuca arundinacea and vegetation coverage 90.0%. When the intensity and duration of rainfall are 60.0 mm/h and 90.0 min, the predicted volumetric runoff coefficient is 0.23 with Festuca arundinacea of 90.0% vegetation coverage. The present approach indicated that green space is an effective method to reduce stormwater runoff and the conclusions are mainly applicable to Tianjin and the semi-arid areas with main summer precipitation and long-time interval rainfalls.

  7. Accreditation of Prior Experiential Learning as a Catalyst for Lifelong Learning: Analysis and Proposals Based on French Experiments

    Science.gov (United States)

    Sanseau, Pierre-Yves; Ansart, Sandrine

    2013-01-01

    In this paper, the researchers analyse how lifelong learning can be enriched and develop a different perspective based on the experiment involving the accreditation of prior experiential learning (APEL) conducted in France at the university level. The French system for the accreditation of prior experiential learning, called Validation des Acquis…

  8. A Proposal to Field Test a Supervised Occupational Experience Manual [and] Program Manual. Research Series No. 16.

    Science.gov (United States)

    Roemmich, Dale L.

    A program manual for supervised occupational experience programs in vocational agribusiness and natural resources was prepared to set down guidelines and policy for the program at Dickinson Area Vocational High School, North Dakota. Because of the new concept initiated by the policy statement, it was decided to field test the manual in six other…

  9. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  10. First results of registering ionospheric disturbances obtained with SibNet network of GNSS receivers in active space experiments

    Science.gov (United States)

    Ishin, Artem; Perevalova, Natalia; Voeykov, Sergey; Khakhinov, Vitaliy

    2017-12-01

    Global and regional networks of GNSS receivers have been successfully used for geophysical research for many years; the number of continuous GNSS stations in the world is steadily growing. The article presents the first results of the use of a new regional network of GNSS stations (SibNet) in active space experiments. The Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) has established this network in the South Baikal region. We describe in detail SibNet, characteristics of receivers in use, parameters of antennas and methods of their installation. We also present the general structure of observation site and the plot of coverage of the receiver operating zone at 50-55° latitudes by radio paths. It is shown that the selected location of receivers allows us to detect ionospheric irregularities of various scales. The purpose of the active space experiments was to reveal and record parameters of the ionospheric irregu larities caused by effects from jet streams of Progress cargo spacecraft. The mapping technique enabled us to identify weak, vertically localized ionospheric irregularities and associate them with the Progress spacecraft engine impact. Thus, it has been shown that SibNet deployed in the Southern Baikal region is an effective instrument for monitoring ionospheric conditions.

  11. NanoRocks: Design and performance of an experiment studying planet formation on the International Space Station.

    Science.gov (United States)

    Brisset, Julie; Colwell, Joshua; Dove, Adrienne; Maukonen, Doug

    2017-07-01

    In an effort to better understand the early stages of planet formation, we have developed a 1.5U payload that flew on the International Space Station (ISS) in the NanoRacks NanoLab facility between September 2014 and March 2016. This payload, named NanoRocks, ran a particle collision experiment under long-term microgravity conditions. The objectives of the experiment were (a) to observe collisions between mm-sized particles at relative velocities of experiment camera. During the 18 months the payload stayed on ISS, we obtained 158 videos, thus recording a great number of collisions. The average particle velocities in the sample cells after each shaking event were around 1 cm/s. After shaking stopped, the inter-particle collisions damped the particle kinetic energy in less than 20 s, reducing the average particle velocity to below 1 mm/s, and eventually slowing them to below our detection threshold. As the particle velocity decreased, we observed the transition from bouncing to sticking collisions. We recorded the formation of particle clusters at the end of each experiment run. This paper describes the design and performance of the NanoRocks ISS payload.

  12. Evaluation of the neutron radiation environment inside the International Space Station based on the Bonner Ball Neutron Detector experiment

    International Nuclear Information System (INIS)

    Koshiishi, H.; Matsumoto, H.; Chishiki, A.; Goka, T.; Omodaka, T.

    2007-01-01

    The Bonner Ball Neutron Detector (BBND) experiment was conducted onboard the US Laboratory Module of the International Space Station (ISS) as part of the Human Research Facility project of NASA in order to evaluate the neutron radiation environment in the energy range from thermal up to 15 MeV inside the ISS. The BBND experiment was carried out over an eight-month period from 23 March through 14 November 2001, corresponding to the maximum period of solar-activity variation. The neutron differential-energy spectra are compared with the model neutron spectrum predicted for the inside of the ISS, and are found to be in good agreement for E>10keV. In contrast, the ISS model spectrum has lower flux for E<10keV, which is likely due to the difference in the shielding environment. The neutron dose equivalent rates are 69 and 88μSv/day for the two locations inside the US Laboratory Module, representing a 30% increase due to the difference in the localized shielding environment inside the same pressurized module. The influence of the ISS altitude variation is estimated for the neutron dose equivalent rate to increase by a factor of 2 over the ISS altitude variation of 300-500 km. The increase in the cumulative neutron dose equivalent due to the most significant solar event during the BBND experiment is 0.15 mSv, which contributes less than 1% to the annual neutron dose equivalent estimated from the BBND experiment

  13. Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"

    Science.gov (United States)

    Ling, Jerri S.; Doherty, Michael P.

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for

  14. Metabolic activity, experiment M171. [space flight effects on human metabolism

    Science.gov (United States)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  15. Validation of GNSS Multipath Model for Space Proximity Operations Using the Hubble Servicing Mission 4 Experiment

    Science.gov (United States)

    Ashman, Ben; Veldman, Jeanette; Axelrad, Penina; Garrison, James; Winternitz, Luke

    2016-01-01

    In the rendezvous and docking of spacecraft, GNSS signals can reflect off the target vehicle and cause prohibitively large errors in the chaser vehicle receiver at ranges below 200 meters. It has been proposed that the additional ray paths, or multipath, be used as a source of information about the state of the target relative to the receiver. With Hubble Servicing Mission 4 as a case study, electromagnetic ray tracing has been used to construct a model of reflected signals from known geometry. Oscillations in the prompt correlator power due to multipath, known as multipath fading, are studied as a means of model validation. Agreement between the measured and simulated multipath fading serves to confirm the presence of signals reflected off the target spacecraft that might be used for relative navigation.

  16. The Influences of Landscape Features on Visitation of Hospital Green Spaces-A Choice Experiment Approach.

    Science.gov (United States)

    Chang, Kaowen Grace; Chien, Hungju

    2017-07-05

    Studies have suggested that visiting and viewing landscaping at hospitals accelerates patient's recovery from surgery and help staff's recovery from mental fatigue. To plan and construct such landscapes, we need to unravel landscape features desirable to different groups so that the space can benefit a wide range of hospital users. Using discrete choice modeling, we developed experimental choice sets to investigate how landscape features influence the visitations of different users in a large regional hospital in Taiwan. The empirical survey provides quantitative estimates of the influence of each landscape feature on four user groups, including patients, caregivers, staff, and neighborhood residents. Our findings suggest that different types of features promote visits from specific user groups. Landscape features facilitating physical activities effectively encourage visits across user groups especially for caregivers and staff. Patients in this study specify a strong need for contact with nature. The nearby community favors the features designed for children's play and family activities. People across user groups value the features that provide a mitigated microclimate of comfort, such as a shelter. Study implications and limitations are also discussed. Our study provides information essential for creating a better healing environment in a hospital setting.

  17. Constraining the supersymmetric parameter space with early data from the Compact Muon Solenoid experiment.

    CERN Document Server

    Whyntie, Tom

    2011-01-01

    The year 2010 saw the Large Hadron Collider (LHC) collect 35.1 pb−1 of 7 TeV proton-proton collision data. This thesis reports on the work carried out by the candidate as part of the calculation of the first constraints placed upon the supersymmetric parameter space using measurements made with this data. In particular, the development and application of the kinematic techniques used to ensure that the search was robust to detector mismeasurements, inherent in any early phase of data-taking, are discussed. The Constrained Minimally Supersymmetric Standard Model (CMSSM) model is introduced to demonstrate how a supersymmetric model may extend the Standard Model of particle physics, and is used as the benchmark signal to examine how supersymmetry may manifest in 7 TeV proton-proton collisions. The role of kinematics in early searches for such signals is then discussed; given the final state topology of interest (particle jets and large missing transverse momentum), it is useful to explore how the event kinemat...

  18. L. VAN BEETHOVEN IN SPACE OF CINEMATOGRAPH: THE EXPERIENCE OF RE-INTERPRETATION

    Directory of Open Access Journals (Sweden)

    Volkova Polina S.

    2015-01-01

    Full Text Available The sense of a musical work, actualized by film director, may either coincide with its established meaning (interpretation or not necessarily (re-interpretation. The paper presents the experience of re-interpretation of Beethoven’s Ninth Symphony sounding in the films directed by Kubrick (A Clockwork Orange and Tarkovsky (Nostalghia. This refers to the total rethinking of the classical art sample carried out within a cultural context due to the "past life" of a musical work. Consideration of filmmusic performed in reliance on the rhetorical canon as the trinity of Ethos, Logos, and Pathos. In the terminology of Bakhtin, Logos and Ethos are identified at the level of cognitive and ethical aspects of content. As a result, their co-existence creates Pathos like a unit, which "produced and perceived via art". Giving aware of the fact that in "perception a musical work, the intense deepening of ethical moment is permissible" [Bakhtin], author connects filmmusic specific feature with the experience of re-expression of musical language into pictorial speech.

  19. Traditional food and tourism: French tourist experience and food heritage in rural spaces.

    Science.gov (United States)

    Bessiere, Jacinthe; Tibere, Laurence

    2013-11-01

    Tourist interest in different food cultures is a factor for local development in the fields of agro-food and crafts, whilst also contributing to the enhancement of food culture and heritage. As part of the tourist experience, eating local cuisine is a way of breaking with standardised, everyday routine by taking the tourist off into unknown culinary realms. This distancing from daily life is already possible in the home country through eating exotic food at home, or in so-called 'ethnic' restaurants. It takes on another dimension when travelling. This paper therefore aims to examine the role of food and eating in the tourist experience. To be more precise, we shall first attempt to assess its importance in visitors' representations, notably as a motive for travel, or in the images deployed regarding eating and drinking during their stay, as they relate to perceptions of the place visited. As well as studying tourist food perceptions, we shall also examine tourist behaviour as regards food purchase and consumption, together with behaviour relating to food souvenirs. © 2013 Society of Chemical Industry.

  20. Lander Radioscience LaRa, a Space Geodesy Experiment to Mars within the ExoMars 2020 mission.

    Science.gov (United States)

    Dehant, V. M. A.; Le Maistre, S.; Yseboodt, M.; Peters, M. J.; Karatekin, O.; Van Hove, B.; Rivoldini, A.; Baland, R. M.; Van Hoolst, T.

    2017-12-01

    The LaRa (Lander Radioscience) experiment is designed to obtain coherent two-way Doppler measurements from the radio link between the 2020 ExoMars lander and Earth over at least one Martian year. The LaRa instrument consists of a coherent transponder with up- and downlinks at X-band radio frequencies. The signal received from Earth is a pure carrier at 7.178 GHz; it is transponded back to Earth at a frequency of 8.434 GHz. The transponder is designed to maintain its lock and coherency over its planed one-hour observation sessions. The transponder mass is at the one-kg level. There are one uplink antenna and two downlink antennas. They are small patch antennas covered by a radome of 130gr for the downlink ones and of 200gr for the uplink. The signals will be generated and received by Earth-based radio antennas belonging to the NASA deep space network (DSN), the ESA tracking station network, or the Russian ground stations network. The instrument lifetime is more than twice the nominal mission duration of one Earth year. The Doppler measurements will be used to observe the orientation and rotation of Mars in space (precession, nutations, and length-of-day variations), as well as polar motion. The ultimate objective is to obtain information/constraints on the Martian interior, and on the sublimation/condensation cycle of atmospheric CO2. Orientation and rotational variations will allow us to constrain the moment of inertia of the entire planet, the moment of inertia of the core, and seasonal mass transfer between the atmosphere and the ice caps. The LaRa experiment will be combined with other previous radio science experiments such as the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) RISE experiment (Rotation and Interior Structure Experiment) with radio science data of the NASA Viking landers, Mars Pathfinder and Mars Exploration Rovers. In addition, other ExoMars2020 and TGO (Trace Gas Orbiter) experiments providing