WorldWideScience

Sample records for space program include

  1. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  2. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  3. HAL/SM language specification. [programming languages and computer programming for space shuttles

    Science.gov (United States)

    Williams, G. P. W., Jr.; Ross, C.

    1975-01-01

    A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.

  4. Benchmarking processes for managing large international space programs

    Science.gov (United States)

    Mandell, Humboldt C., Jr.; Duke, Michael B.

    1993-01-01

    The relationship between management style and program costs is analyzed to determine the feasibility of financing large international space missions. The incorporation of management systems is considered to be essential to realizing low cost spacecraft and planetary surface systems. Several companies ranging from large Lockheed 'Skunk Works' to small companies including Space Industries, Inc., Rocket Research Corp., and Orbital Sciences Corp. were studied. It is concluded that to lower the prices, the ways in which spacecraft and hardware are developed must be changed. Benchmarking of successful low cost space programs has revealed a number of prescriptive rules for low cost managements, including major changes in the relationships between the public and private sectors.

  5. SPACE 365: Upgraded App for Aviation and Space-Related Information and Program Planning

    Science.gov (United States)

    Williams, S.; Maples, J. E.; Castle, C. E.

    2014-12-01

    Foreknowledge of upcoming events and anniversary dates can be extraordinarily valuable in the planning and preparation of a variety of aviation and Space-related educational programming. Alignment of programming with items "newsworthy" enough to attract media attention on their own can result in effective program promotion at low/no cost. Similarly, awareness and avoidance of dates upon which media and public attention will likely be elsewhere can keep programs from being lost in the noise.NASA has created a useful and entertaining app called "SPACE 365" to help supply that foreknowledge. The app contains an extensive database of historical aviation and Space exploration-related events, along with other events and birthdays to provide socio-historical context, as well as an extensive file of present and future space missions, complete with images and videos. The user can search by entry topic category, date, and key words. Upcoming Events allows the user to plan, participate, and engage in significant "don't miss" happenings.The historical database was originally developed for use at the National Air and Space Museum, then expanded significantly to include more NASA-related information. The CIMA team at NASA MSFC, sponsored by the Planetary Science Division, added NASA current events and NASA educational programming information, and are continually adding new information and improving the functionality and features of the app. Features of SPACE 365 now include: NASA Image of the Day, Upcoming NASA Events, Event Save, Do Not Miss, and Ask Dr. Steve functions, and the CIMA team recently added a new start page and added improved search and navigation capabilities. App users can now socialize the Images of the Day via Twitter, Pinterest, Facebook, and other social media outlets.SPACE 365 is available at no cost from both the Apple appstore and GooglePlay, and has helped NASA, NASM, and other educators plan and schedule programming events. It could help you, too!

  6. HAL/S programmer's guide. [for space shuttle program

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.

  7. Armstrong Laboratory Space Visual Function Tester Program

    Science.gov (United States)

    Oneal, Melvin R.; Task, H. Lee; Gleason, Gerald A.

    1992-01-01

    Viewgraphs on space visual function tester program are presented. Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth. Duntley space vision experiment, USSR space vision experiments, and visual function testers are described.

  8. Space program management methods and tools

    CERN Document Server

    Spagnulo, Marcello; Balduccini, Mauro; Nasini, Federico

    2013-01-01

    Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.

  9. Responsive Space Program Brief

    Energy Technology Data Exchange (ETDEWEB)

    Dors, Eric E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-11

    The goal of the Responsive Space program is to make significant, integrated science and technology contributions to the end-to-end missions of the U.S. Government that protect against global emerging and nuclear threats, from the earliest adversary planning through resilient event response report describes the LANL space program, mission, and other activities. The report describes some of their activities.

  10. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  11. Space Discovery: Teaching with Space. Evaluation: Summer, Fall 1998 Programs

    Science.gov (United States)

    Ewell, Bob

    1998-01-01

    This is the final report of the 1998 NASA-sponsored evaluation of the effectiveness of the United States Space Foundation's five-day Space Discovery Standard Graduate Course (Living and Working in Space), the five-day Space Discovery Advanced Graduate Course (Advanced Technology and Biomedical Research), the five-day introductory course Aviation and Space Basics all conducted during the summer of 1998, and the Teaching with Space two-day Inservice program. The purpose of the program is to motivate and equip K- 12 teachers to use proven student-attracting space and technology concepts to support standard curriculum. These programs support the America 2000 National Educational Goals, encouraging more students to stay in school, increase in competence, and have a better opportunity to be attracted to math and science. The 1998 research program continues the comprehensive evaluation begun in 1992, this year studying five summer five-day sessions and five Inservice programs offered during the Fall of 1998 in California, Colorado, New York, and Virginia. A comprehensive research design by Dr. Robert Ewell of Creative Solutions and Dr. Darwyn Linder of Arizona State University evaluated the effectiveness of various areas of the program and its applicability on diverse groups. Preliminary research methodology was a set of survey instruments administered after the courses, and another to be sent in April-4-5 months following the last inservice involved in this study. This year, we have departed from this evaluation design in two ways. First, the five-day programs used NASA's new EDCATS on-line system and associated survey rather than the Linder/Ewell instruments. The Inservice programs were evaluated using the previously developed survey adapted for Inservice programs. Second, we did not do a follow-on survey of the teachers after they had been in the field as we have done in the past. Therefore, this evaluation captures only the reactions of the teachers to the programs

  12. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  13. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  14. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Science.gov (United States)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management

  15. National Space Weather Program Releases Strategy for the New Decade

    Science.gov (United States)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2010-12-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency program established by the Office of the Federal Coordinator for Meteorology (OFCM) in 1995 to coordinate, collaborate, and leverage capabilities across stakeholder agencies, including space weather researchers, service providers, users, policy makers, and funding agencies, to improve the performance of the space weather enterprise for the United States and its international partners. Two important documents released in recent months have established a framework and the vision, goals, and strategy to move the enterprise forward in the next decade. The U.S. federal agency members of the NSWP include the departments of Commerce, Defense, Energy, Interior, State, and Transportation, plus NASA, the National Science Foundation, and observers from the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB). The OFCM is also working with the Department of Homeland Security's Federal Emergency Management Agency to formally join the program.

  16. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  17. The Canadian space program from Black Brant to the International Space Station

    CERN Document Server

    Godefroy, Andrew B

    2017-01-01

    Canada’s space efforts from its origins towards the end of the Second World War through to its participation in the ISS today are revealed in full in this complete and carefully researched history. Employing recently declassified archives and many never previously used sources, author Andrew B. Godefroy explains the history of the program through its policy and many fascinating projects. He assesses its effectiveness as a major partner in both US and international space programs, examines its current national priorities and capabilities, and outlines the country’s plans for the future. Despite being the third nation to launch a satellite into space after the Soviet Union and the United States; being a major partner in the US space shuttle program with the iconic Canadarm; being an international leader in the development of space robotics; and acting as one of the five major partners in the ISS, the Canadian Space Program remains one of the least well-known national efforts of the space age. This book atte...

  18. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  19. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  20. Survey of the US materials processing and manufacturing in space program

    Science.gov (United States)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  1. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  2. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  3. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  4. CSSP implementation plan for space plasma physics programs

    International Nuclear Information System (INIS)

    Baker, D.N.; Williams, D.J.; Johns Hopkins Univ., Laurel, MD)

    1985-01-01

    The Committee on Solar and Space Physics (CSSP) has provided NASA with guidance in the areas of solar, heliospheric, magnetospheric, and upper atmospheric research. The budgetary sitation confronted by NASA has called for a prioritized plane for the implementation of solar and space plasma physics programs. CSSP has developed the following recommendations: (1) continue implementation of both the Upper Atmosphere Research Satellite and Solar Optical Telescope programs; (2) initiate the International Solar Terrestrial Physics program; (3) plan for later major free-flying missions and carry out the technology development they require; (4) launch an average of one solar and space physics Explorer per yr beginning in 1990; (5) enhance current Shuttle/Spacelab programs; (6) develop facility-class instrumentation; (7) augment the solar terrestrial theory program by FY 1990; (8) support a compute modeling program; (9) strengthen the research and analysis program; and (10) maintain a stable suborbital program for flexible science objectives in upper atmosphere and space plasma physics

  5. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  6. Alternating phase focussing including space charge

    International Nuclear Information System (INIS)

    Cheng, W.H.; Gluckstern, R.L.

    1992-01-01

    Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs

  7. Taiwan Space Programs

    Science.gov (United States)

    Liu, Jann-Yenq

    Taiwan space programs consist of FORMOSAT-1, -2, and -3, sounding rockets, and international cooperation. FORMOSAT-1, a low-earth-orbit (LEO) scientific experimental satellite, was launched on January 26, 1999. It circulates with an altitude of 600 km and 35 degree inclination around the Earth every 97 minutes, transmitting collected data to Taiwan's receiving stations approximately six times a day. The major mission of FORMOSAT-1 includes three scientific experiments for measuring the effects of ionospheric plasma and electrodynamics, taking the ocean color image and conducting Ka-band communication experiment. The FORMOSAT- 1 mission was ended by June 15, 2004. FORMOSAT-2, launched on May 21, 2004 onto the Sun-synchronous orbit located at 891 km above ground. The main mission of FORMOSAT-2 is to conduct remote sensing imaging over Taiwan and on terrestrial and oceanic regions of the entire earth. The images captured by FORMOSAT-2 during daytime can be used for land distribution, natural resources research, environmental protection, disaster prevention and rescue work etc. When the satellite travels to the eclipsed zone, it observes natural phenomena of lighting in the upper atmosphere. FORMOSAT-3 is an international collaboration project between Taiwan and the US to develop advanced technology for the real-time monitoring of the global climate. This project is also named Constellation Observing System for Meteorology, Ionosphere and Climate, or FORMOSAT-3/COSMIC for short. Six micro-satellites were launched on 15 April 2007 and eventually placed into six different orbits at 700 800 kilometer above the earth ground. These satellites orbit around the earth to form a LEO constellation that receives signals transmitted by the 24 US GPS satellites. The satellite observation covers the entire global atmosphere and ionosphere, providing over 2,500 global sounding data per day. These data distribute uniformly over the earth's atmosphere. The global climate information

  8. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  9. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  10. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    Science.gov (United States)

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of

  11. Cost-estimating relationships for space programs

    Science.gov (United States)

    Mandell, Humboldt C., Jr.

    1992-01-01

    Cost-estimating relationships (CERs) are defined and discussed as they relate to the estimation of theoretical costs for space programs. The paper primarily addresses CERs based on analogous relationships between physical and performance parameters to estimate future costs. Analytical estimation principles are reviewed examining the sources of errors in cost models, and the use of CERs is shown to be affected by organizational culture. Two paradigms for cost estimation are set forth: (1) the Rand paradigm for single-culture single-system methods; and (2) the Price paradigms that incorporate a set of cultural variables. For space programs that are potentially subject to even small cultural changes, the Price paradigms are argued to be more effective. The derivation and use of accurate CERs is important for developing effective cost models to analyze the potential of a given space program.

  12. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  13. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  14. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  15. Implications of Public Opinion for Space Program Planning, 1980 - 2000

    Science.gov (United States)

    Overholt, W.; Wiener, A. J.; Yokelson, D.

    1975-01-01

    The effect of public opinion on future space programs is discussed in terms of direct support, apathy, or opposition, and concern about the tax burden, budgetary pressures, and national priorities. Factors considered include: the salience and visibility of NASA as compared with other issues, the sources of general pressure on the federal budget which could affect NASA, the public's opinions regarding the size and priority of NASA'S budget, the degree to which the executive can exercise leverage over NASA's budget through influencing or disregarding public opinion, the effects of linkages to other issues on space programs, and the public's general attitudes toward the progress of science.

  16. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  17. Emerging Space Powers The New Space Programs of Asia, the Middle East, and South America

    CERN Document Server

    Harvey, Brian; Pirard, Théo

    2010-01-01

    This work introduces the important emerging space powers of the world. Brian Harvey describes the origins of the Japanese space program, from rocket designs based on WW II German U-boats to tiny solid fuel 'pencil' rockets, which led to the launch of the first Japanese satellite in 1970. The next two chapters relate how Japan expanded its space program, developing small satellites into astronomical observatories and sending missions to the Moon, Mars, comet Halley, and asteroids. Chapter 4 describes how India's Vikram Sarabhai developed a sounding rocket program in the 1960s. The following chapter describes the expansion of the Indian space program. Chapter 6 relates how the Indian space program is looking ahead to the success of the moon probe Chandrayan, due to launch in 2008, and its first manned launching in 2014. Chapters 7, 8, and 9 demonstrate how, in Iran, communications and remote sensing drive space technology. Chapter 10 outlines Brazil's road to space, begun in the mid-1960's with the launch of th...

  18. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  19. Gemini Space Program emblem

    Science.gov (United States)

    1965-01-01

    The insignia of the Gemini space program is a disc of dark blue as a background for a gold Zodiac Gemini symbol. A white star on each of the two vertical curves of the Gemini symbol represent the Gemini twins, Pollux and Castor.

  20. Fifteen-foot diameter modular space station Kennedy Space Center launch site support definition (space station program Phase B extension definition)

    Science.gov (United States)

    Bjorn, L. C.; Martin, M. L.; Murphy, C. W.; Niebla, J. F., V

    1971-01-01

    This document defines the facilities, equipment, and operational plans required to support the MSS Program at KSC. Included is an analysis of KSC operations, a definition of flow plans, facility utilization and modifications, test plans and concepts, activation, and tradeoff studies. Existing GSE and facilities that have a potential utilization are identified, and new items are defined where possible. The study concludes that the existing facilities are suitable for use in the space station program without major modification from the Saturn-Apollo configuration.

  1. National Space Weather Program Advances on Several Fronts

    Science.gov (United States)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  2. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  3. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  4. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    Science.gov (United States)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  5. The Evolution of the Rendezvous Profile During the Space Shuttle Program

    Science.gov (United States)

    Summa, William R.

    2010-01-01

    The rendezvous and proximity operations approach design techniques for space shuttle missions has changed significantly during the life of the program in response to new requirements that were not part of the original mission design. The flexibility of the shuttle onboard systems design and the mission planning process has allowed the program to meet these requirements. The design of the space shuttle and the shift from docking to grappling with a robotic ann prevented use of legacy Apollo rendezvous techniques. Over the life of the shuttle program the rendezvous profile has evolved due to several factors, including lowering propellant consumption and increasing flexibility in mission planning. Many of the spacecraft that the shuttle rendezvoused with had unique requirements that drove the creation of mission-unique proximity operations. The dockings to the Russian Mir space station and International Space Station (ISS) required further evolution of rendezvous and proximity operations techniques and additional sensors to enhance crew situational awareness. After the Columbia accident, a Rendezvous Pitch Maneuver (RPM) was added to allow tile photography from ISS. Lessons learned from these rendezvous design changes are applicable to future vehicle designs and operations concepts.

  6. Space programs in Taiwan

    Science.gov (United States)

    Lee, Lou-Chuang; Chang, Guey-Shin; Ting, Nan-Hong

    2013-10-01

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, &3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload "Imager of Sprites and Upper Atmospheric Lightning (ISUAL)". ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research.

  7. Status of NASA's Stirling Space Power Converter Program

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Program. This work is being conducted under NASA's Civil Space Technology Initiative. The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss Stirling experience in Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. This paper provides an update of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space

  8. Space Program Annual Report, For Approval

    International Nuclear Information System (INIS)

    TM Schaefer

    2004-01-01

    Knolls Atomic Power Laboratory (KAPL) (lead) has been requested by the Reference to create an unclassified report on the Prometheus Program's Jupiter Icy Moons Orbiter (JIMO) mission. This report is expected to be issued annually and be similar in level of content and scope to the NR Program's annual report ''The United States Naval Nuclear Propulsion Program'' (referred to as the Grey Book). The attachment to this letter provides a draft of the Prometheus Program report for NR review and approval. As stated in the Reference, a March 2005 issuance is planned following a coordinated NR Headquarter's review. The information contained in the attached report was obtained from open literature sources, NASA documents and Naval Reactors Program literature. The photographs contained in the report are drafts and their quality will be improved in the final version of the report. This report has been reviewed by the KAPL and Bettis Space Power Plant Staff and has been concurred with by the Manager of Space Power Plant (MJ Wollman) and the Manager of Bettis Reactor Engineering (C Eshelman)

  9. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  10. Space programs in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Lou-Chuang [Academia Sinica, Institute of Earth Sciences, 128, Sec. 2, Academia Road, Nangang, Taipei 115, Taiwan (China); Institute of Space Science, National Central University, 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (China); Chang, Guey-Shin, E-mail: gschang@nspo.narl.org.tw [National Space Organization, 8F, 9 Prosperity 1st Rd., Hsinchu Science Park, Hsinchu 30078, Taiwan (China); Ting, Nan-Hong [National Applied Research Laboratories, 3F, 106, Sec. 2, Hepin East Rd., Taipei 10622, Taiwan (China)

    2013-10-15

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, and 3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload “Imager of Sprites and Upper Atmospheric Lightning (ISUAL)”. ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research.

  11. Space programs in Taiwan

    International Nuclear Information System (INIS)

    Lee, Lou-Chuang; Chang, Guey-Shin; Ting, Nan-Hong

    2013-01-01

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, and 3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload “Imager of Sprites and Upper Atmospheric Lightning (ISUAL)”. ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research

  12. An urban area minority outreach program for K-6 children in space science

    Science.gov (United States)

    Morris, P.; Garza, O.; Lindstrom, M.; Allen, J.; Wooten, J.; Sumners, C.; Obot, V.

    The Houston area has minority populations with significant school dropout rates. This is similar to other major cities in the United States and elsewhere in the world where there are significant minority populations from rural areas. The student dropout rates are associated in many instances with the absence of educational support opportuni- ties either from the school and/or from the family. This is exacerbated if the student has poor English language skills. To address this issue, a NASA minority university initiative enabled us to develop a broad-based outreach program that includes younger children and their parents at a primarily Hispanic inner city charter school. The pro- gram at the charter school was initiated by teaching computer skills to the older chil- dren, who in turn taught parents. The older children were subsequently asked to help teach a computer literacy class for mothers with 4-5 year old children. The computers initially intimidated the mothers as most had limited educational backgrounds and En- glish language skills. To practice their newly acquired computer skills and learn about space science, the mothers and their children were asked to pick a space project and investigate it using their computer skills. The mothers and their children decided to learn about black holes. The project included designing space suits for their children so that they could travel through space and observe black holes from a closer proxim- ity. The children and their mothers learned about computers and how to use them for educational purposes. In addition, they learned about black holes and the importance of space suits in protecting astronauts as they investigated space. The parents are proud of their children and their achievements. By including the parents in the program, they have a greater understanding of the importance of their children staying in school and the opportunities for careers in space science and technology. For more information on our overall

  13. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    Energy Technology Data Exchange (ETDEWEB)

    Demmel, James [Univ. of California, Berkeley, CA (United States)

    2018-02-23

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.

  14. The chinese space program as the image instrument of the great China

    Directory of Open Access Journals (Sweden)

    Daniel Lemus Delgado

    2012-10-01

    Full Text Available This article analyzes the Chinese space program and how the bureaucratic elite acts to convert China as a leading nation in international arena. This article assumes that, beyond the scientific advances that space exploration has in multiple fields of knowledge, the support to the space program depicts a way to project a positive image of China. This image is a China rising in the international community. The author discusses how space missions and the discourse around the space program strengthen national pride. Thus, China’s space program projects the image of a Greater China. The article concludes that the space program shows that China is modernizing rapidly and is able to be a world power.

  15. Advanced theoretical and experimental studies in automatic control and information systems. [including mathematical programming and game theory

    Science.gov (United States)

    Desoer, C. A.; Polak, E.; Zadeh, L. A.

    1974-01-01

    A series of research projects is briefly summarized which includes investigations in the following areas: (1) mathematical programming problems for large system and infinite-dimensional spaces, (2) bounded-input bounded-output stability, (3) non-parametric approximations, and (4) differential games. A list of reports and papers which were published over the ten year period of research is included.

  16. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  17. 41 CFR 105-8.152 - Program accessibility: Assignment of space.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Program accessibility: Assignment of space. 105-8.152 Section 105-8.152 Public Contracts and Property Management Federal Property...-8.152 Program accessibility: Assignment of space. (a) When GSA assigns or reassigns space to an...

  18. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  19. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  20. Air Force electrochemical power research and technology program for space applications

    Science.gov (United States)

    Allen, Douglas

    1987-01-01

    An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.

  1. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  2. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  3. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  4. SP-100 Program: space reactor system and subsystem investigations

    International Nuclear Information System (INIS)

    Harty, R.B.

    1983-01-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs

  5. Interkosmos the Eastern bloc's early space program

    CERN Document Server

    Burgess, Colin

    2016-01-01

    This book focuses on the Interkosmos program, which was formed in 1967, marking a fundamentally new era of cooperation by socialist countries, led by the Soviet Union, in the study and exploration of space. The chapters shed light on the space program that was at that time a prime outlet for the Soviet Union's aims at becoming a world power. Interkosmos was a highly publicized Russian space program that rapidly became a significant propaganda tool for the Soviet Union in the waning years of communism. Billed as an international “research-cosmonaut” imperative, it was also a high-profile means of displaying solidarity with the nine participating Eastern bloc countries. Those countries contributed pilots who were trained in Moscow for week-long “guest” missions on orbiting Salyut stations. They did a little subsidiary science and were permitted only the most basic mechanical maneuvers. In this enthralling new book, and following extensive international research, the authors fully explore ...

  6. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  7. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Maddumage, Prasad [Research Computing Center, Department of Scientific Computing, Florida State University, Tallahassee, FL 32306 (United States); Kantowski, Ronald; Dai, Xinyu; Baron, Eddie, E-mail: bchen3@fsu.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  8. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  9. Kennedy Space Center environmental health program

    International Nuclear Information System (INIS)

    Marmaro, G.M.; Cardinale, M.A.; Summerfield, B.R.; Tipton, D.A.

    1992-01-01

    The Kennedy Space Center's environmental health organization is responsible for programs which assure its employees a healthful workplace under diverse and varied working conditions. These programs encompass the disciplines of industrial hygiene, radiation protection (health physics), and environmental sanitation/pollution control. Activities range from the routine, such as normal office work, to the highly specialized, such as the processing of highly toxic and hazardous materials

  10. A Status of the Advanced Space Transportation Program from Planning to Action

    Science.gov (United States)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and

  11. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  12. Curricular Space Allocated for Dance Content in Physical Education Teacher Education Programs: A Literature Review

    Science.gov (United States)

    Marquis, Jenée Marie; Metzler, Mike

    2017-01-01

    This literature review examines curricular space allocated to activity based/movement content courses in Physical Education Teacher Education (PETE) pre-service programs, specifically focusing on how dance content knowledge and pedagogical content knowledge are addressed within those programs. This review includes original empirical research…

  13. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  14. Concept of Draft International Standard for a Unified Approach to Space Program Quality Assurance

    Science.gov (United States)

    Stryzhak, Y.; Vasilina, V.; Kurbatov, V.

    2002-01-01

    For want of the unified approach to guaranteed space project and product quality assurance, implementation of many international space programs has become a challenge. Globalization of aerospace industry and participation of various international ventures with diverse quality assurance requirements in big international space programs requires for urgent generation of unified international standards related to this field. To ensure successful fulfillment of space missions, aerospace companies should design and process reliable and safe products with properties complying or bettering User's (or Customer's) requirements. Quality of the products designed or processed by subcontractors (or other suppliers) should also be in compliance with the main user (customer)'s requirements. Implementation of this involved set of unified requirements will be made possible by creating and approving a system (series) of international standards under a generic title Space Product Quality Assurance based on a system consensus principle. Conceptual features of the baseline standard in this system (series) should comprise: - Procedures for ISO 9000, CEN and ECSS requirements adaptation and introduction into space product creation, design, manufacture, testing and operation; - Procedures for quality assurance at initial (design) phases of space programs, with a decision on the end product made based on the principle of independence; - Procedures to arrange incoming inspection of products delivered by subcontractors (including testing, audit of supplier's procedures, review of supplier's documentation), and space product certification; - Procedures to identify materials and primary products applied; - Procedures for quality system audit at the component part, primary product and materials supplier facilities; - Unified procedures to form a list of basic performances to be under configuration management; - Unified procedures to form a list of critical space product components, and unified

  15. Space for Ambitions: The Dutch Space Program in Changing European and Transatlantic Contexts

    NARCIS (Netherlands)

    Baneke, D.M.

    2014-01-01

    Why would a small country like the Netherlands become active in space? The field was monopolized by large countries with large military establishments, especially in the early years of spaceflight. Nevertheless, the Netherlands established a space program in the late 1960s. In this paper I will

  16. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  17. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    Science.gov (United States)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  18. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  19. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  20. The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science

    Science.gov (United States)

    McPhee, J. C.

    2017-12-01

    How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.

  1. Recursion Of Binary Space As A Foundation Of Repeatable Programs

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2006-10-01

    Full Text Available Every computation, including recursion, is based on natural philosophy. Our world may be expressed in terms of a binary logical space that contains functions that act simultaneously as objects and processes (operands and operators. This paper presents an outline of the results of research about that space and suggests routes for further inquiry. Binary logical space is generated sequentially from an origin in a standard coordinate system. At least one method exists to show that each of the resulting 16 functions repeats itself by repeatedly forward-feeding outputs of a function operating over two others as new operands of the original function until the original function appears as an output, thus behaving as an apparent homeostatic automaton. As any space of any dimension is composed of one or more of these functions, so the space is recursive, as well. Semantics gives meaning to recursive structures, computer programs and fundamental constituents of our universe being two examples. Such thoughts open inquiry into larger philosophical issues as free will and determinism.

  2. The ASSURE Summer REU Program: Introducing research to first-generation and underserved undergraduates through space sciences and engineering projects

    Science.gov (United States)

    Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab

    2018-01-01

    The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.

  3. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1991-01-01

    This paper presents a retrospective summary and bibliography of the National Aeronautics and Space Administration research program on fusion energy for space power and propulsion systems conducted at the Lewis Research Center. This effort extended over a 20-yr period ending in 1978, involved several hundred person-years of effort, and included theory, experiment, technology development, and mission analysis. This program was initiated in 1958 and was carried out within the Electromagnetic Propulsion Division. Within this division, mission analysis and basic research on high-temperature plasma physics were carried out in the Advanced Concepts Branch. Three pioneering high-field superconducting magnetic confinement facilities were developed with the support of the Magnetics and Cryophysics Branch. The results of this program serve as a basis for subsequent discussions of the space applications of fusion energy, contribute to the understanding of high-temperature plasmas and how to produce them, and advance the state of the art of superconducting magnet technology used in fusion research

  4. The Necessity of Functional Analysis for Space Exploration Programs

    Science.gov (United States)

    Morris, A. Terry; Breidenthal, Julian C.

    2011-01-01

    As NASA moves toward expanded commercial spaceflight within its human exploration capability, there is increased emphasis on how to allocate responsibilities between government and commercial organizations to achieve coordinated program objectives. The practice of program-level functional analysis offers an opportunity for improved understanding of collaborative functions among heterogeneous partners. Functional analysis is contrasted with the physical analysis more commonly done at the program level, and is shown to provide theoretical performance, risk, and safety advantages beneficial to a government-commercial partnership. Performance advantages include faster convergence to acceptable system solutions; discovery of superior solutions with higher commonality, greater simplicity and greater parallelism by substituting functional for physical redundancy to achieve robustness and safety goals; and greater organizational cohesion around program objectives. Risk advantages include avoidance of rework by revelation of some kinds of architectural and contractual mismatches before systems are specified, designed, constructed, or integrated; avoidance of cost and schedule growth by more complete and precise specifications of cost and schedule estimates; and higher likelihood of successful integration on the first try. Safety advantages include effective delineation of must-work and must-not-work functions for integrated hazard analysis, the ability to formally demonstrate completeness of safety analyses, and provably correct logic for certification of flight readiness. The key mechanism for realizing these benefits is the development of an inter-functional architecture at the program level, which reveals relationships between top-level system requirements that would otherwise be invisible using only a physical architecture. This paper describes the advantages and pitfalls of functional analysis as a means of coordinating the actions of large heterogeneous organizations

  5. Automation and robotics for the National Space Program

    Science.gov (United States)

    1985-01-01

    The emphasis on automation and robotics in the augmentation of the human centered systems as it concerns the space station is discussed. How automation and robotics can amplify the capabilities of humans is detailed. A detailed developmental program for the space station is outlined.

  6. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Science.gov (United States)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  7. State Space Reduction for Model Checking Agent Programs

    NARCIS (Netherlands)

    S.-S.T.Q. Jongmans (Sung-Shik); K.V. Hindriks; M.B. van Riemsdijk; L. Dennis; O. Boissier; R.H. Bordini (Rafael)

    2012-01-01

    htmlabstractState space reduction techniques have been developed to increase the efficiency of model checking in the context of imperative programming languages. Unfortunately, these techniques cannot straightforwardly be applied to agents: the nature of states in the two programming paradigms

  8. (abstract) Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  9. 15 CFR 9.3 - Appliances and equipment included in program.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Appliances and equipment included in... VOLUNTARY LABELING PROGRAM FOR HOUSEHOLD APPLIANCES AND EQUIPMENT TO EFFECT ENERGY CONSERVATION § 9.3 Appliances and equipment included in program. The appliances and equipment included in this program are room...

  10. Status of the CNES-CEA joint program on space nuclear Brayton systems

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Chaudourne, S.; Keirle, P.; Tilliette, Z.; Vrillon, B.

    1989-01-01

    A cooperative program between the French Centre National d'Etudes Spatiales (CNES) and the Commissariat a l'Energie Atomique (CEA) was initiated in 1983, to investigate the possible development of 20 to 200 kWe space nuclear power systems to be launched by the next version of the European launcher, Ariane V. After completion in 1986 of preliminary conceptual studies of a reference 200 kWe turbo-electric power system, an additional 3 year study phase was decided, with the double objective of assessing the potential advantage of nuclear power systems versus solar photovoltaic or dynamic systems in the 20 kWe power range, and comparing various reactor candidate technologies and system options for 20 kWe space nuclear power systems, likely to meet the projected energy needs of future European space missions. A comprehensive program including conceptual design studies, operating transient analyses and technology base assessment, is currently applied to a few reference concepts of 20 kWe nuclear Brayton and thermoelectric systems, in order to establish sound technical and economical bases for selecting the design options and the development strategy of a first space nuclear power system in Europe

  11. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    Science.gov (United States)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  12. Space operation system for Chang'E program and its capability ...

    Indian Academy of Sciences (India)

    investment. Due to the constraint in program cost, space operation for China's first lunar exploration program will be provided by the aerospace TT&C network designed for China's manned space pro- gram. The TT&C network consists of a ... foreign spacecrafts and for five spaceships in flight experiments of China's manned ...

  13. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  14. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology

  15. The bounds of feasible space on constrained nonconvex quadratic programming

    Science.gov (United States)

    Zhu, Jinghao

    2008-03-01

    This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

  16. ASI's space automation and robotics programs: The second step

    Science.gov (United States)

    Dipippo, Simonetta

    1994-01-01

    The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.

  17. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  18. Comparison of Soviet and US space food and nutrition programs

    Science.gov (United States)

    Ahmed, Selina

    1989-01-01

    The Soviet Space Food and Nutrition programs are compared with those of the U.S. The Soviets established the first Space Food programs in 1961, when one of the Soviet Cosmonauts experienced eating in zero gravity. This study indicates that some major differences exist between the two space food and nutrition programs regarding dietary habits. The major differences are in recommended nutrient intake and dietary patterns between the cosmonauts and astronauts. The intake of protein, carbohydrates and fats are significantly higher in cosmonaut diets compared to astronauts. Certain mineral elements such as phosphorus, sodium and iron are also significantly higher in the cosmonauts' diets. Cosmonauts also experience intake of certain unconventional food and plant extracts to resist stress and increase stamina.

  19. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    Science.gov (United States)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  20. Apollo experience report: Development flight instrumentation. [telemetry equipment for space flight test program

    Science.gov (United States)

    Farmer, N. B.

    1974-01-01

    Development flight instrumentation was delivered for 25 Apollo vehicles as Government-furnished equipment. The problems and philosophies of an activity that was concerned with supplying telemetry equipment to a space-flight test program are discussed. Equipment delivery dates, system-design details, and flight-performance information for each mission also are included.

  1. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  2. Space Station Program threat and vulnerability analysis

    Science.gov (United States)

    Van Meter, Steven D.; Veatch, John D.

    1987-01-01

    An examination has been made of the physical security of the Space Station Program at the Kennedy Space Center in a peacetime environment, in order to furnish facility personnel with threat/vulnerability information. A risk-management approach is used to prioritize threat-target combinations that are characterized in terms of 'insiders' and 'outsiders'. Potential targets were identified and analyzed with a view to their attractiveness to an adversary, as well as to the consequentiality of the resulting damage.

  3. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  4. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    Science.gov (United States)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  5. Opinion polls and the U.S. civil space program

    Science.gov (United States)

    Kraemer, Sylvia K.

    1993-11-01

    The conclusions that can be drawn from public opinion polls depend a great deal on what usually does not appear on the newspaper page or television screen. Subtle biases can result from the population interviewed, the time of day individuals were called, how a particular question was asked, or how the answer was interpreted. Examples are the 1961 Gallop Poll, the survey done for Rockwell International by the firm of Yankelovich, Skelly and White/Clancy Shulman, and the one done by Jon D. Miller of the International Center for the Advancement of Scientific Literacy. There is more to learn from opinion polls than that a good proportion of adult Americans support the space program. We can learn that social and economic security are not competing goals with space, but interdependent goals. If we want to increase public support for space, we must increase the number of Americans who have the economic freedom to take an interest in something besides getting by, day after day. We can also learn that the majority of those who support the space program can distinguish between the bread and circuses of space travel. They are content to experience extraordinary adventures in the movie theaters; for their tax dollars they want real return in expended scientific knowledge and understanding. Finally, we can learn that we need to increase that return, not just for scientific careers, but for the ordinary people who pay our bills and for their children, our children. Ultimately, the space program is for them, as all investments in the future must be.

  6. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  7. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    Science.gov (United States)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  8. Space cannot be cut-why self-identity naturally includes neighbourhood.

    Science.gov (United States)

    Rayner, Alan David

    2011-06-01

    Psychology is not alone in its struggle with conceptualizing the dynamic relationship between space and individual or collective identity. This general epistemological issue haunts biology where it has a specific focus in evolutionary arguments. It arises because of the incompatibility between definitive logical systems of 'contradiction or unity', which can only apply to inert material systems, and natural evolutionary processes of cumulative energetic transformation. This incompatibility makes any attempt to apply definitive logic to evolutionary change unrealistic and paradoxical. It is important to recognise, because discrete perceptions of self and group, based on the supposition that any distinguishable identity can be completely cut free, as an 'independent singleness', from the space it inescapably includes and is included in, are a profound but unnecessary source of psychological, social and environmental conflict. These perceptions underlie Darwin's definition of 'natural selection' as 'the preservation of favoured races in the struggle for life'. They result in precedence being given to striving for homogeneous supremacy, through the competitive suppression of others, instead of seeking sustainable, co-creative evolutionary relationship in spatially and temporally heterogeneous communities. Here, I show how 'natural inclusion', a new, post-dialectic understanding of evolutionary process, becomes possible through recognising space as a limitless, indivisible, receptive (non-resistive) 'intangible presence' vital for movement and communication, not as empty distance between one tangible thing and another. The fluid boundary logic of natural inclusion as the co-creative, fluid dynamic transformation of all through all in receptive spatial context, allows all form to be understood as flow-form, distinctive but dynamically continuous, not singularly discrete. This simple move from regarding space and boundaries as sources of discontinuity and discrete

  9. Geometric differential evolution for combinatorial and programs spaces.

    Science.gov (United States)

    Moraglio, A; Togelius, J; Silva, S

    2013-01-01

    Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind the GDE algorithm, then, we use this framework to formally derive specific GDE for search spaces associated with binary strings, permutations, vectors of permutations and genetic programs. The resulting algorithms are representation-specific differential evolution algorithms searching the target spaces by acting directly on their underlying representations. We present experimental results for each of the new algorithms on a number of well-known problems comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and vectors of permutations. We also present results for the regression, artificial ant, parity, and multiplexer problems within the genetic programming domain. Experiments show that overall the new DE algorithms are competitive with well-tuned standard search algorithms.

  10. Problem Space Matters: Evaluation of a German Enrichment Program for Gifted Children.

    Science.gov (United States)

    Welter, Marisete M; Jaarsveld, Saskia; Lachmann, Thomas

    2018-01-01

    We studied the development of cognitive abilities related to intelligence and creativity ( N = 48, 6-10 years old), using a longitudinal design (over one school year), in order to evaluate an Enrichment Program for gifted primary school children initiated by the government of the German federal state of Rhineland-Palatinate ( Entdeckertag Rheinland Pfalz , Germany; ET; Day of Discoverers). A group of German primary school children ( N = 24), identified earlier as intellectually gifted and selected to join the ET program was compared to a gender-, class- and IQ- matched group of control children that did not participate in this program. All participants performed the Standard Progressive Matrices (SPM) test, which measures intelligence in well-defined problem space; the Creative Reasoning Task (CRT), which measures intelligence in ill-defined problem space; and the test of creative thinking-drawing production (TCT-DP), which measures creativity, also in ill-defined problem space. Results revealed that problem space matters: the ET program is effective only for the improvement of intelligence operating in well-defined problem space. An effect was found for intelligence as measured by SPM only, but neither for intelligence operating in ill-defined problem space (CRT) nor for creativity (TCT-DP). This suggests that, depending on the type of problem spaces presented, different cognitive abilities are elicited in the same child. Therefore, enrichment programs for gifted, but also for children attending traditional schools, should provide opportunities to develop cognitive abilities related to intelligence, operating in both well- and ill-defined problem spaces, and to creativity in a parallel, using an interactive approach.

  11. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  12. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  13. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  14. A Proposal for the Common Safety Approach of Space Programs

    Science.gov (United States)

    Grimard, Max

    2002-01-01

    For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.

  15. Astronomy Education Programs at the Smithsonian National Air and Space Museum

    Science.gov (United States)

    Nagy, Katie; de Messieres, G.; Edson, S.

    2014-01-01

    Astronomy educators present the range of astronomy education programming available at the National Air and Space Museum, including the following. In the Phoebe Waterman Haas Public Observatory, visitors use telescopes and other scientific equipment to observe and discuss the Sun, Venus, and other celestial sights in an unstructured, inquiry-based environment. At Discovery Stations throughout the Museum, staff and volunteers engage visitors in hands-on exploration of a wide range of artifacts and teaching materials. Astronomy-related Discovery Stations include Cosmic Survey, an exploration of gravitational lensing using a rubber sheet, spectroscopy using discharge tubes, and several others. Astronomy lectures in the planetarium or IMAX theater, featuring researchers as the speakers, include a full evening of activities: a custom pre-lecture Discovery Station, a handout to help visitors explore the topic in more depth, and evening stargazing at the Public Observatory. Astronomy educators present planetarium shows, including star tours and explorations of recent science news. During Astronomy Chat, an astronomy researcher engages visitors in an informal conversation about science. The goal is to make the public feel welcome in the environment of professional research and to give busy scientists a convenient outreach opportunity. Astronomy educators also recruit, train, and coordinate a corps of volunteers who contribute their efforts to the programming above. The volunteer program has grown significantly since the Public Observatory was built in 2009.

  16. Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this paper into nine, fairly independent sections for ease of reading: I. "Michael Jordan or Mia Hamm" - Introduction and Background II. "Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe III. "From Cosmic Noise to the Big Bang" - The

  17. MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero

    Science.gov (United States)

    Bogner, Christian

    2016-06-01

    We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.

  18. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  19. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  20. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  1. Transverse emittance and phase space program developed for use at the Fermilab A0 Photoinjector

    International Nuclear Information System (INIS)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Ruan, J.

    2011-01-01

    The Fermilab A0 Photoinjector is a 16 MeV high intensity, high brightness electron linac developed for advanced accelerator R and D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties. An integral part of accelerator research is a measurement of the beam phase space. Measurements of the transverse phase space can be accomplished by a variety of methods including multiple screens separated by drift spaces, or by sampling phase space via pepper pots or slits. In any case, the measurement of the phase space parameters, in particular the emittance, can be drastically simplified and sped up by automating the measurement in an intuitive fashion utilizing a graphical interface. At the A0 Photoinjector (A0PI), the control system is DOOCS, which originated at DESY. In addition, there is a library for interfacing to MATLAB, a graphically capable numerical analysis package sold by The Mathworks. It is this graphical package which was chosen as the basis for a graphical phase space measurement system due to its combination of analysis and display capabilities.

  2. Young engineers and scientists - a mentorship program emphasizing space education

    Science.gov (United States)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  3. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  4. Space Transportation Engine Program (STEP), phase B

    Science.gov (United States)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  5. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  6. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    Science.gov (United States)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  7. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  8. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  9. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  10. Return and profitability of space programs. Information - the main product of flights in space

    Science.gov (United States)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  11. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  12. Big Bang! An Evaluation of NASA's Space School Musical Program for Elementary and Middle School Learners

    Science.gov (United States)

    Haden, C.; Styers, M.; Asplund, S.

    2015-12-01

    Music and the performing arts can be a powerful way to engage students in learning about science. Research suggests that content-rich songs enhance student understanding of science concepts by helping students develop content-based vocabulary, by providing examples and explanations of concepts, and connecting to personal and situational interest in a topic. Building on the role of music in engaging students in learning, and on best practices in out-of-school time learning, the NASA Discovery and New Frontiers program in association with Jet Propulsion Laboratory, Marshall Space Flight Center, and KidTribe developed Space School Musical. Space School Musical consists of a set of nine songs and 36 educational activities to teach elementary and middle school learners about the solar system and space science through an engaging storyline and the opportunity for active learning. In 2014, NASA's Jet Propulsion Laboratory contracted with Magnolia Consulting, LLC to conduct an evaluation of Space School Musical. Evaluators used a mixed methods approach to address evaluation questions related to educator professional development experiences, program implementation and perceptions, and impacts on participating students. Measures included a professional development feedback survey, facilitator follow-up survey, facilitator interviews, and a student survey. Evaluation results showed that educators were able to use the program in a variety of contexts and in different ways to best meet their instructional needs. They noted that the program worked well for diverse learners and helped to build excitement for science through engaging all learners in the musical. Students and educators reported positive personal and academic benefits to participating students. We present findings from the evaluation and lessons learned about integration of the arts into STEM education.

  13. SpaceTech—Postgraduate space education

    Science.gov (United States)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  14. A Prototype for Education Programs using Planetari and Space Centres as Key Tools

    Science.gov (United States)

    Thompson, L; Brumfitt, A.; Honan, P.

    Few hands on space experiments designed for school education allow the students and teachers to participate in the discovery of new science. One particularly experiment which flew on STS107 Columbia was designed specifically to do just this. A key feature of the project was to use a Zoo and a University as key tools in providing through life development and support. The project, "Spiders in Space" ran over a four year period resulted in the student and scientist team publishing over twenty refereed papers on their research findings. Throughout the project teacher and student performance, satisfaction, knowledge, abilities and competency were monitored and critically evaluated. The progressive gathering and feedback was used to improve the program and adapt the learning experience to the student needs and abilities. Based on the experience gained with the Spider Experiment on STS-107, the originating team of scientists and teachers have formulated a structure on which to facilitate the design of similar space education cross discipline projects. The project architecture presented uses as key tools Planetaria, Space science education centres, zoos and Universities in the successful delivery of the programs.The engagement of these key tools facilitates a cost effective and educationally sound support network for thousands of schools to have some ownership of their space program. These key tools provide both continuing professional development for teachers wishing to enter the program and field laboratory support for the student classes engaged in it. The resulting programs are designed to foster collaboration between space research and education on an international scale. The sample new program is presented which demonstrates the application of scientific principles by making students and teachers an integral part of current space research. Issues such as environment, climate control and biological diversity are investigated with a view to providing research outcomes

  15. International Living With a Star (ILWS), a new collaborative space program in Solar, Heliospheric and Solar-Terrestrial Physics

    Science.gov (United States)

    Opgenoorth, H. J.; Guhathakurta, M.; Liu, W.; Kosugi, T.; Zelenyi, L.

    2003-04-01

    International cooperation has long been a vital element in the scientific investigation of solar variability and its impact on Earth and its space environment. Recently a new international cooeperative program in solar terrestrial physics has been established by the major space agencies of the world, called the International Living With a Star (ILWS) program. ILWS is a follow on to the highly successful International Solar Terrestrial Physics (ISTP) program which involved international parterners. ISTP, with its steady flow of discoveries and new knowledge in solar Terrestrial physics, has laid the foundation for the coordinated study of the Sun-Earth sytem as a connected stellar-planetary system, system which is humanity's home. The first step in establishing ILWS was taken in the fall of 2000 when funding was approved for the NASA's Living With a Star (LWS) program whose goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. The scientific goals of ILWS are defined in a broader sense, aiming to include future solar, heliospheric and solar terrestrial missions of both applied and fundamental scientific focus. The ultimate goal of ILWS wil be to increase our understanding of how solar variability affects the terrestrial and other planetary environments both in the short and long term, and in particular how man and society may be affected by solar variability and its consequences. The mission charter of ILWS is 'to stimulate, strengthen and coordinate space research in order to understand the governing processes of the connected Sun-Earth System as an integrated entity'. More detailed ILWS Objectives are to stimulate and facilitate: - The study of the Sun Earth connected system and the effects which influence life and society - Collaboration among all potential partners in solar-terrestrial space missions - Synergistic coordination of international

  16. The National Space Science and Technology Center's Education and Public Outreach Program

    Science.gov (United States)

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  17. Hilbert spaces contractively included in the Hardy space of the bidisk

    NARCIS (Netherlands)

    Alpay, D.; Bolotnikov, V.; Dijksma, A.; Sadosky, C.

    We study the reproducing kernel Hilbert spaces h(D-2,S) with kernels of the form I-S(z(1),z(2)>)S(w(1),w(2))*/(1-z(1)w(1)*) (1-z(2)w(2)*) where S(z(1),z(2)) is a Schur function of two variables z(1),z(2)is an element of D. They are analogs of the spaces h(D,S) with reproducing kernel

  18. From LDEF to a national Space Environment and Effects (SEE) program: A natural progression

    Science.gov (United States)

    Bowles, David E.; Calloway, Robert L.; Funk, Joan G.; Kinard, William H.; Levine, Arlene S.

    1995-02-01

    As the LDEF program draws to a close, it leaves in place the fundamental building blocks for a Space Environment and Effects (SEE) program. Results from LDEF data analyses and investigations now form a substantial core of knowledge on the long term effects of the space environment on materials, system and structures. In addition, these investigations form the basic structure of a critically-needed SEE archive and database system. An agency-wide effort is required to capture all elements of a SEE program to provide a more comprehensive and focused approach to understanding the space environment, determining the best techniques for both flight and ground-based experimentation, updating the models which predict both the environments and those effects on subsystems and spacecraft, and, finally, ensuring that this multitudinous information is properly maintained, and inserted into spacecraft design programs. Many parts and pieces of a SEE program already exist at various locations to fulfill specific needs. The primary purpose of this program, under the direction of the Office of Advanced Concepts and Technology (OACT) in NASA Headquarters, is to take advantage of these parts; apply synergisms where possible; identify and when possible fill-in gaps; coordinate and advocate a comprehensive SEE program. The SEE program must coordinate and support the efforts of well-established technical communities wherein the bulk of the work will continue to be done. The SEE program will consist of a NASA-led SEE Steering Committee, consisting of government and industry users, with the responsibility for coordination between technology developers and NASA customers; and Technical Working Groups with primary responsibility for program technical content in response to user needs. The Technical Working Groups are as follows: Materials and Processes; Plasma and Fields; Ionizing Radiation; Meteoroids and Orbital Debris; Neutral External Contamination; Thermosphere, Thermal, and Solar

  19. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  20. Powering the Space Exploration Initiative

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  1. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  2. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  3. 77 FR 8801 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-02-15

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service, USDA. ACTION: Request for applications. SUMMARY: The..., requests applications for the Community Forest and Open Space Conservation Program (Community Forest...

  4. Keeping the dream alive: Managing the Space Station Program, 1982 to 1986

    Science.gov (United States)

    Lewin, Thomas J.; Narayanan, V. K.

    1990-01-01

    The management is described and analyzed of the formative years of the NASA Space Station Program (1982 to 1986), beginning with the successful initiative for program approval by Administrator James M. Beggs through to the decision to bring program management to Reston, Virginia. Emphasis is on internal management issues related to the implementation of the various phases of the program. Themes examined are the problem of bringing programmatic and institutional interests together and focusing them to forward the program; centralized versus decentralized control of the program; how the history of NASA and of the individual installations affected the decisions made; and the pressure from those outside NASA. The four sections are: (1) the decision to build the space station, (2) the design of the management experiment, (3) the experiment comes to life, and (4) the decision reversal.

  5. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  6. Waves in Space Plasmas Program

    Science.gov (United States)

    Fredricks, R. W.; Taylor, W. W. L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.

  7. Waves in Space Plasmas Program

    International Nuclear Information System (INIS)

    Fredricks, R.W.; Taylor, W.W.L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions, ELF/VLF propagation, traveling ionospheric disturbances and gravity wave coupling, equatorial plasma bubble phenomena, plasma wave physics such as mode-coupling, dispersion, and instabilities, and plasma physics of the antenna-plasma interactions

  8. The immune system in space, including Earth-based benefits of space-based research.

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  9. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  10. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  11. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  12. The principle of commonality and its application to the Space Station Freedom Program

    Science.gov (United States)

    Hopson, George D.; Thomas, L. Dale; Daniel, Charles C.

    1989-01-01

    The principle of commonality has achieved wide application in the communication, automotive, and aircraft industries. By the use of commonality, component development costs are minimized, logistics are simplified, and the investment costs of spares inventory are reduced. With space systems, which must be maintained and repaired in orbit, the advantages of commonality are compounded. Transportation of spares is expensive, on-board storage volume for spares is limited, and crew training and special tools needed for maintenance and repair are significant considerations. This paper addresses the techniques being formulated to realize the benefits of commonality in the design of the systems and elements of the Space Station Freedom Program, and include the criteria for determining the extent of commonality to be implemented.

  13. Space reactors, a prospective for the future

    International Nuclear Information System (INIS)

    Wahlquist, E.; Voss, S.S.

    1989-01-01

    The power requirements for future space missions are increasing and alternate power systems will be required to meet these needs. Therefore, in the early 1980's a tri-agency space reactor program, the SP-100, was initiated that is capable of meeting the higher power requirements. To understand the current space reactor program, it is important to review it in the context of past space nuclear programs - including radioisotopes, nuclear rockets and reactors. Initial effort on these programs began in the mid-1950's. Radioisotope generators have been flown on a variety of missions and are continuing to be used. The space reactor and nuclear rocket programs were technically successful but were both terminated in 1973. The current SP-100 program builds on those earlier programs

  14. Applying the system engineering approach to devise a master’s degree program in space technology in developing countries

    Science.gov (United States)

    Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa

    2010-11-01

    Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group

  15. Our Place in Space: Exploring the Earth-Moon System and Beyond with NASA's CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M. R.

    2010-12-01

    Where does space begin? How far is the Moon? How far is Mars? How does our dynamic star, the Sun, affect its family of planets? All of these questions relate to exploration of our Solar System, and are also part of the Education/Public Outreach (E/PO) Program for NASA’s CINDI project, a space weather mission of opportunity. The Coupled Ion Neutral Dynamics Investigation has been flying aboard the US Air Force Communication/Navigation Outage Forecast System (C/NOFS) satellite in the upper atmosphere of the Earth since April 2008. The Earth’s ionosphere, the part of the atmosphere CINDI studies, is also in space. The CINDI E/PO program uses this fact in lessons designed to help students in middle schools and introductory astronomy classes develop a sense of their place in space. In the activity "How High is Space?" students’ start by building an 8-page scale model of the Earth’s atmosphere with 100 km/page. The peak of Mount Everest, commercial airplanes, and the tops of thunderheads all appear at the bottom of the first page of the model, with astronaut altitude -where space begins- at the top of the same sheet of paper. In "Where Would CINDI Be?" the idea of scale is further developed by modeling the Earth-Moon system to scale first in size, then in distance, using half of standard containers of play dough. With a lowest altitude of about 400 km, similar to that of the International Space Station and orbiting Space Shuttle, CINDI is close to the Earth when compared with the nearly thousand times greater distance to the Moon. Comparing and combining the atmosphere and Earth-Moon system models help reinforce ideas of scale and build student understanding of how far away the Moon actually is. These scale models have also been adapted for use in Family Science Nights, and to include the planet Mars. In this presentation, we will show how we use CINDI’s scale modeling activities and others from our broader space sciences E/PO program in formal and informal

  16. An overview of DARPA's advanced space technology program

    Science.gov (United States)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  17. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  18. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  19. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    Science.gov (United States)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  20. The new Space Shuttle Transportation System (STS) - Problem, performance, supportability, and programmatic trending program

    Science.gov (United States)

    Crawford, J. L.; Rodney, G. A.

    1989-01-01

    This paper describes the NASA Space Shuttle Trend Analysis program. The four main areas of the program - problem/reliability, performance, supportability, and programmatic trending - are defined, along with motivation for these areas, the statistical methods used, and illustrative Space Shuttle applications. Also described is the NASA Safety, Reliability, Maintainability and Quality Assurance (SRM&QA) Management Information Center, used to focus management attention on key near-term launch concerns and long-range mission trend issues. Finally, the computer data bases used to support the program and future program enhancements are discussed.

  1. Involvement of scientists in the NASA Office of Space Science education and public outreach program

    International Nuclear Information System (INIS)

    Beck-Winchatz, Bernhard

    2005-01-01

    Since the mid-1990's NASA's Office of Space Science (OSS) has embarked on an astronomy and space science education and public outreach (E/PO) program. Its goals are to share the excitement of space science discoveries with the public, and to enhance the quality of science, mathematics and technology education, particularly at the precollege level. A key feature of the OSS program is the direct involvement of space scientists. The majority of the funding for E/PO is allocated to flight missions, which spend 1%-2% of their total budget on E/PO, and to individual research grants. This paper presents an overview of the program's goals, objectives, philosophy, and infrastructure

  2. The human role in space. Volume 3: Generalizations on human roles in space

    Science.gov (United States)

    1984-01-01

    The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions, was investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, ecnomics, and benefits of the human presence in space were examined. Factors which affect crew productivity include: internal architecture; crew support; crew activities; LVA systems; IVA/EVA interfaces; and remote systems management. The accomplished work is reported and the data and analyses from which the study results are derived are included. The results provide information and guidelines to enable NASA program managers and decision makers to establish, early in the design process, the most cost effective design approach for future space programs, through the optimal application of unique human skills and capabilities in space.

  3. Tool for evaluating the evolution Space Weather Regional Warning Centers under the innovation point of view: the Case Study of the Embrace Space Weather Program Early Stages

    Science.gov (United States)

    Denardini, Clezio Marcos

    2016-07-01

    We have developed a tool for measuring the evolutional stage of the space weather regional warning centers using the approach of the innovative evolution starting from the perspective presented by Figueiredo (2009, Innovation Management: Concepts, metrics and experiences of companies in Brazil. Publisher LTC, Rio de Janeiro - RJ). It is based on measuring the stock of technological skills needed to perform a certain task that is (or should) be part of the scope of a space weather center. It also addresses the technological capacity for innovation considering the accumulation of technological and learning capabilities, instead of the usual international indices like number of registered patents. Based on this definition, we have developed a model for measuring the capabilities of the Brazilian Study and Monitoring Program Space Weather (Embrace), a program of the National Institute for Space Research (INPE), which has gone through three national stages of development and an international validation step. This program was created in 2007 encompassing competence from five divisions of INPE in order to carry out the data collection and maintenance of the observing system in space weather; to model processes of the Sun-Earth system; to provide real-time information and to forecast space weather; and provide diagnostic their effects on different technological systems. In the present work, we considered the issues related to the innovation of micro-processes inherent to the nature of the Embrace program, not the macro-economic processes, despite recognizing the importance of these. During the development phase, the model was submitted to five scientists/managers from five different countries member of the International Space Environment Service (ISES) who presented their evaluations, concerns and suggestions. It was applied to the Embrace program through an interview form developed to be answered by professional members of regional warning centers. Based on the returning

  4. A scientific program for infrared, submillimeter and radio astronomy from space: A report by the Management Operations Working Group

    Science.gov (United States)

    1989-01-01

    Important and fundamental scientific progress can be attained through space observations in the wavelengths longward of 1 micron. The formation of galaxies, stars, and planets, the origin of quasars and the nature of active galactic nuclei, the large scale structure of the Universe, and the problem of the missing mass, are among the major scientific issues that can be addressed by these observations. Significant advances in many areas of astrophysics can be made over the next 20 years by implementing the outlined program. This program combines large observatories with smaller projects to create an overall scheme that emphasized complementarity and synergy, advanced technology, community support and development, and the training of the next generation of scientists. Key aspects of the program include: the Space Infrared Telescope Facility; the Stratospheric Observatory for Infrared Astronomy; a robust program of small missions; and the creation of the technology base for future major observatories.

  5. UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model

    Science.gov (United States)

    Thorsen, D.

    2017-12-01

    Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.

  6. The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, E. N.; Nash, R. L.

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe. These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this lengthy paper into nine, fairly independent sections for ease of reading:1."Michael Jordan or Mia Hamm" - Introduction and Background2."Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe3."From Cosmic Noise to the Big Bang" - The First Nobel

  7. Handbook of space security policies, applications and programs

    CERN Document Server

    Hays, Peter; Robinson, Jana; Moura, Denis; Giannopapa, Christina

    2015-01-01

    Space Security involves the use of space (in particular communication, navigation, earth observation, and electronic intelligence satellites) for military and security purposes on earth and also the maintenance of space (in particular the earth orbits) as safe and secure areas for conducting peaceful activities. The two aspects can be summarized as "space for security on earth" and “the safeguarding of space for peaceful endeavors.” The Handbook will provide a sophisticated, cutting-edge resource on the space security policy portfolio and the associated assets, assisting fellow members of the global space community and other interested policy-making and academic audiences in keeping abreast of the current and future directions of this vital dimension of international space policy. The debate on coordinated space security measures, including relevant 'Transparency and Confidence-Building Measures,' remains at a relatively early stage of development. The book offers a comprehensive description of the variou...

  8. Space power subsystem sizing

    International Nuclear Information System (INIS)

    Geis, J.W.

    1992-01-01

    This paper discusses a Space Power Subsystem Sizing program which has been developed by the Aerospace Power Division of Wright Laboratory, Wright-Patterson Air Force Base, Ohio. The Space Power Subsystem program (SPSS) contains the necessary equations and algorithms to calculate photovoltaic array power performance, including end-of-life (EOL) and beginning-of-life (BOL) specific power (W/kg) and areal power density (W/m 2 ). Additional equations and algorithms are included in the spreadsheet for determining maximum eclipse time as a function of orbital altitude, and inclination. The Space Power Subsystem Sizing program (SPSS) has been used to determine the performance of several candidate power subsystems for both Air Force and SDIO potential applications. Trade-offs have been made between subsystem weight and areal power density (W/m 2 ) as influenced by orbital high energy particle flux and time in orbit

  9. CM Process Improvement and the International Space Station Program (ISSP)

    Science.gov (United States)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  10. Space orbits of collaboration. [international cooperation and the U.S.S.R. space program

    Science.gov (United States)

    Petrov, B.

    1978-01-01

    The U.S.S.R. cooperative space efforts with other Socialist countries dating back to 1957 are reviewed. The Interkosmos program, which is divided into three series of satellites (solar, ionospheric and magnetospheric), is discussed as well as the Prognoz, Kosmos, Soyuz, and Molniya spacecraft. Collaboration with France, India, Sweden, and the United States is mentioned.

  11. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  12. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  13. SPACE: Enhancing Life on Earth. Proceedings Report

    Science.gov (United States)

    Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)

    1996-01-01

    The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.

  14. 41 CFR 301-73.1 - What does the Federal travel management program include?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What does the Federal travel management program include? 301-73.1 Section 301-73.1 Public Contracts and Property Management... PROGRAMS General Rules § 301-73.1 What does the Federal travel management program include? The Federal...

  15. Managing NASA's International Space Station Logistics and Maintenance program

    Science.gov (United States)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  16. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    Science.gov (United States)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  17. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  18. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    Science.gov (United States)

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  19. Space Power Program Semiannual Progress Report for period ending June 30, 1963

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1963-10-11

    This is a report of progress on the Oak Ridge National Laboratory's research and development program on nuclear power plants for electrical power production in space vehicles. The work is carried out under AEG Reactor Experiments, Fuels, and Materials, and Reactor Component programs. Research and development work is under way on the stainless steel boiling-potassium reactor and the Medium Power Reactor Experiment, boiling alkali metal heat transfer, high-temperature and refractory alloys, fuel material, and space reactor shielding, particularly in connection with SNAP 2, 8, 10, and 50. Many of these OREL efforts are directed toward the development of a specific type of power plant, but they also furnish a significant contribution of scientific and engineering information needed in other programs on advanced SNAP systems. Progress on research and development directly related to the Medium Power Reactor Experiment (MPRE) is presented mostly in Part I of this report. Progress on the MPRE will, in the future, be reported on a quarterly basis. The form of the reporting will alternate from MPRE Quarterly Progress Reports to Space Power Semiannual Progress Reports.

  20. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  1. The Space-Time Asymmetry Research (STAR) program

    Science.gov (United States)

    Buchman, Sasha

    Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment

  2. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  3. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  4. Cold War Space Sleuths The Untold Secrets of the Soviet Space Program

    CERN Document Server

    2013-01-01

    Cold War Space Sleuths reads like a Cold War espionage novel, but the reality of the story about the dedicated amateur observers bent on finding out about Soviet spaceflight during the Cold War is just as exciting and absorbing. Told in the sleuth's own words, each chapter unfolds a piece of the hidden history of what was happening behind the Iron Curtain. Coming from all over the world, including Russia itself, the amateur spies give first-hand accounts of often-forgotten aspects of the Cold War space race. Amongst others, their stories include: - the history of the Kettering Group; - looking inside the Russian archives; - unsolved mysteries, such as why cosmonauts were airbrushed out of the official archives; - reading between the lines of the Soviet media; - the impact of Gorbachev's glasnost on sleuthing; - new research, including chapters by James Oberg, Asif Siddiqi, and Bart Hendrickx.

  5. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  6. Managing the space sciences

    Science.gov (United States)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  7. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  8. Status and plans of NASA's Materials Science and Manufacturing in Space (MS/MS) program

    Science.gov (United States)

    Armstrong, W. O.; Bredt, J. H.

    1972-01-01

    A description is given of a research and development program on the space shuttle mission designed to prepare the way for possible commercial manufacturing operations on permanently orbiting space stations.

  9. Space and energy. [space systems for energy generation, distribution and control

    Science.gov (United States)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  10. Third Space Strategists: International Students Negotiating the Transition from Pathway Program to Postgraduate Coursework Degree

    Science.gov (United States)

    Benzie, Helen

    2015-01-01

    Pathway programs exist to prepare students for progression into university degrees but the transition experience for many students may not be as smooth as is suggested by the notion of the pathway. While attending a pathway program and at the beginning of their university degree, students may be in a third space, a liminal space where they engage…

  11. The History of the Animal Care Program at NASA Johnson Space Center

    Science.gov (United States)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    This slide presentation reviews the work of the Animal Care Program (ACP). Animals have been used early in space exploration to ascertain if it were possible to launch a manned spacecraft. The program is currently involved in many studies that assist in enhancing the scientific knowledge of the effect of space travel. The responsibilities of the ACP are: (1) Organize and supervise animal care operations & activities (research, testing & demonstration). (2) Maintain full accreditation by the International Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) (3) Ensure protocol compliance with IACUC recommendations (4) Training astronauts for in-flight animal experiments (5) Maintain accurate & timely records for all animal research testing approved by JSC IACUC (6) Organize IACUC meetings and assist IACUC members (7) Coordinate IACUC review of the Institutional Program for Humane Care and Use of Animals (every 6 mos)

  12. Proposal of a Methodology of Stakeholder Analysis for the Brazilian Satellite Space Program

    Directory of Open Access Journals (Sweden)

    Mônica Elizabeth Rocha de Oliveira

    2012-03-01

    Full Text Available To ensure the continuity and growth of space activities in Brazil, it is fundamental to persuade the Brazilian society and its representatives in Government about the importance of investments in space activities. Also, it is important to convince talented professionals to place space activities as an object of their interest; the best schools should also be convinced to offer courses related to the space sector; finally, innovative companies should be convinced to take part in space sector activities, looking to returns, mainly in terms of market differentiation and qualification, as a path to take part in high-technology and high-complexity projects. On the one hand, this process of convincing or, more importantly, committing these actors to space activities, implies a thorough understanding of their expectations and needs, in order to plan how the system/organization can meet them. On the other hand, if stakeholders understand how much they can benefit from this relationship, their consequent commitment will very much strengthen the action of the system/organization. With this framework in perspective, this paper proposes a methodology of stakeholder analysis for the Brazilian satellite space program. In the exercise developed in the article, stakeholders have been identified from a study of the legal framework of the Brazilian space program. Subsequently, the proposed methodology has been applied to the planning of actions by a public organization.

  13. Amateur Radio on the International Space Station (ARISS) - the First Educational Outreach Program on ISS

    Science.gov (United States)

    Conley, C. L.; Bauer, F. H.; Brown, D.; White, R.

    2002-01-01

    ) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. By June 2002 over 65 schools have been selected from 10 countries for scheduled contacts with the orbiting ISS crews. Ten or more students at each school ask the astronauts questions. The nature of these contacts embodies the primary goal of the ARISS program -- to excite students' interest in science, technology and amateur radio. This paper will discuss the educational outreach capabilities of ARISS, some of the challenges that the ARISS-international team of volunteers overcame to bring this first educational activity on ISS into operation, and its plans for the future. It will also summarize the networking opportunities which expand each school contact, including local school media events, WorldCom support, MSNBC coverage, and internet access. In addition, educational outreach is extended through joint projects with IMAX-3D, Space Center Houston teacher training, and NASA internet activities.

  14. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    Science.gov (United States)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  15. Structures that Include a Semi-Outdoor Space

    DEFF Research Database (Denmark)

    Papachristou, C.; Foteinaki, Kyriaki; Kazanci, Ongun Berk

    2016-01-01

    The thermal environment of buildings with a second "skin" and semi-outdoor space is examined in the present study. A literature review was conducted on similar structures and only a few studies were found focusing on the thermal environment. Two different building case studies were chosen with di...

  16. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    Directory of Open Access Journals (Sweden)

    Ayse T. Daloglu

    2018-01-01

    Full Text Available Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS and teaching-learning-based optimization (TLBO algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped bracing types are considered in the study. Optimum solutions of examples are carried out by a computer program coded in MATLAB interacting with SAP2000-OAPI for two-way data exchange. The stress constraints according to AISC-ASD (American Institute of Steel Construction-Allowable Stress Design, maximum lateral displacement constraints, interstorey drift constraints, and beam-to-column connection constraints are taken into consideration in the optimum design process. The parameters of the foundation model are calculated depending on soil surface displacements by using an iterative approach. The results obtained in the study show that bracing types and soil-structure interaction play very important roles in the optimum design of steel space frames. Finally, the techniques used in the optimum design seem to be quite suitable for practical applications.

  17. A Fortran Program for Deep Space Sensor Analysis.

    Science.gov (United States)

    1984-12-14

    used to help p maintain currency to the deep space satellite catelog? Research Question Can a Fortran program be designed to evaluate the effectiveness ...Range ( AFETR ) Range p Measurements Laboratory (RML) is located in Malibar, .- Florida. Like GEODSS, Malibar uses a 48 inch telescope with a...phased out. This mode will evaluate the effect of the loss of the 3 Baker-Nunn sites to mode 3 Mode 5 through Mode 8 Modes 5 through 8 are identical to

  18. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  19. Managing NASA's International Space Station Logistics and Maintenance Program

    Science.gov (United States)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  20. Novel Approaches to Cellular Transplantation from the US Space Program

    Science.gov (United States)

    Pellis, Neal R.; Homick, Jerry L. (Technical Monitor)

    1999-01-01

    Research in the treatment of type I diabetes is entering a new era that takes advantage of our knowledge in an ever increasing variety of scientific disciplines. Some may originate from very diverse sources, one of which is the Space Program at National Aeronautics and Space Administration (NASA). The Space Program contributes to diabetes-related research in several treatment modalities. As an ongoing effort for medical monitoring of personnel involved in space exploration activities NASA and the extramural scientific community investigate strategies for noninvasive estimation of blood glucose levels. Part of the effort in the space protein crystal growth program is high-resolution structural analysis insulin as a means to better understand the interaction with its receptor and with host immune components and as a basis for rational design of a "better" insulin molecule. The Space Program is also developing laser technology for potential early cataract detection as well as a noninvasive analyses for addressing preclinical diabetic retinopathy. Finally, NASA developed an exciting cell culture system that affords some unique advantages in the propagation and maintenance of mammalian cells in vitro. The cell culture system was originally designed to maintain cell suspensions with a minimum of hydrodynamic and mechanical sheer while awaiting launch into microgravity. Currently the commercially available NASA bioreactor (Synthecon, Inc., Houston, TX) is used as a research tool in basic and applied cell biology. In recent years there is continued strong interest in cellular transplantation as treatment for type I diabetes. The advantages are the potential for successful long-term amelioration and a minimum risk for morbidity in the event of rejection of the transplanted cells. The pathway to successful application of this strategy is accompanied by several substantial hurdles: (1) isolation and propagation of a suitable uniform donor cell population; (2) management of

  1. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  2. VNI 3.1 MC-simulation program to study high-energy particle collisions in QCD by space-time evolution of parton-cascades and parton-hadron conversion

    Science.gov (United States)

    Geiger, Klaus

    1997-08-01

    VNI is a general-purpose Monte Carlo event generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. On the basis of renormalization-group improved parton description and quantum-kinetic theory, it uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme that is governed by the dynamics itself. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position space, momentum space and color space. The parton evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi) hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. This article gives a brief review of the physics underlying VNI, which is followed by a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including a simple example), annotates input and control parameters, and discusses output data provided by it.

  3. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    Science.gov (United States)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  4. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  5. Application of space benefits to education

    Science.gov (United States)

    Dannenberg, K. K.; Ordway, F. I., III

    1972-01-01

    Information on the conducting of a teacher workshop is presented. This educational pilot project updated instruction material, used improved teaching techniques, and increased student motivation. The NASA/MSFC industrial facilities, and the displays at the Alabama Space and Rocket Center (ASRC) were key elements of the program, including a permanent exhibit, at the latter, on selected benefits accruing from the space program.

  6. High-Performance, Space-Storable, Bi-Propellant Program Status

    Science.gov (United States)

    Schneider, Steven J.

    2002-01-01

    Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.

  7. Spain: Success story in space

    Science.gov (United States)

    Longdon, Norman

    From the early 1960's, European governments were aware that they had to take part in the exploration, and potential exploitation, of space, or be left behind in a field of high-technology that had far-reaching possibilities. It was also realized that financial and manpower constraints would limit the extent to which individual nations could carry out their own national programs. They, therefor, joined forces in two organizations: the European Space Research Organization (ESRO) and the European Launcher Development Organization (ELDO). By 1975, when the potential of space development had been more fully appreciated, the two organizations were merged into the Europeans Space Agency (ESA) of which Spain was a founding member. ESA looks after the interest of 13 member states, one associated member state (Finland), and one cooperating state (Canada) in the peaceful uses of space. Its programs center around a mandatory core of technological research and space science to which member states contribute on the basis of their Gross National Product. Spain in 1992 contributes 6.46% to this mandatory program budget. The member states then have the chance to join optional programs that include telecommunications, observation of the earth and its environment, space transportation systems, microgravity research, and participation in the European contribution to the International Space Station Freedom. Each government decides whether it is in its interest to join a particular optional program, and the percentage that it wishes to contribute to the budget. Although in the early days of ESA, Spain participated in only a few optional programs, today Spain makes a significant contribution to nearly all of ESA's optional programs. This document presents Spain's contributions to particular ESA Programs and discusses Spain's future involvement in ESA.

  8. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  9. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    Science.gov (United States)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  10. Space astronomy and astrophysics program by CSA

    Science.gov (United States)

    Laurin, Denis; Ouellet, Alain; Dupuis, Jean; Chicoine, Ruth-Ann

    2014-07-01

    and in other areas, by initiating concept and pre-mission studies and enabling technology developments. These reflect the following scientific priorities identified: dark energy and the accelerating universe, addressed by large survey missions; high-energy astrophysics, which includes UV and X-ray missions; and the understanding of star formation and proto-planetary systems and to begin characterizing exoplanets, mainly by infra-red space observatories.

  11. Accelerated testing of space batteries

    Science.gov (United States)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  12. Panel discussion: Roles of space program in the Asia Pacific region

    Science.gov (United States)

    Nomura, Tamiya

    1992-03-01

    A panel discussion on the subject 'Roles played by space development in Asia Pacific region' was held chaired by Space Activities Commission member and attended by the representatives of the participating countries, special attendance and observers. Opinions were expressed by each representative on three subjects, that is, social effects and benefits obtained by remote sensing data, observation data desired to augment the effect, and expectation for developed countries in space development. President of NASDA (National Space Development Agency of Japan) expressed his intension to promote international cooperation for the Japanese Earth Resources Satellite-1 (JERS-1) verification program, utilization augmentation of Japanese earth observing satellites and human resource training and education. Deputy Director-General for Science and Technology Agency (STA) outlined ASCA (Association for Science Cooperation in Asia) seminar and STA fellowship in relation to human resource development. Chairman of the Japan International Space Year (ISY) Association cited the necessity of closer and extensive communication networks free from the existing commercial communication. Deputy-Minister for Posts and Telecommunications outlined the PARTNERS project (Post-operational utilization of the Engineering Test Satellite-5 (ETS-5)) for international cooperation in space activities in Asia Pacific region. President of the Institute of Space and Astronautical Science (ISAS) outlined Japan's present status of and international cooperation in space science.

  13. An Astrosocial Observation: The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca L.

    2007-01-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the 'First Nobel Prize for Space Exploration.' Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, 'The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science.' NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark.

  14. Biomedical program at Space Biospheres Ventures

    Science.gov (United States)

    Walford, Roy

    1990-01-01

    There are many similarities and some important differences between potential health problems of Biosphere 2 and those of which might be anticipated for a space station or a major outpost on Mars. The demands of time, expense, and equipment would not readily allow medical evacuation from deep space for a serious illness or major trauma, whereas personnel can easily be evacuated from Biosphere 2 if necessary. Treatment facilities can be somewhat less inclusive, since distance would not compel the undertaking of heroic measures or highly complicated surgical procedures on site, and with personnel not fully trained for these procedures. The similarities are given between medical requirements of Biosphere 2 and the complex closed ecological systems of biospheres in space or on Mars. The major problems common to all these would seem to be trauma, infection, and toxicity. It is planned that minor and moderate degrees of trauma, including debridement and suturing of wounds, x ray study of fractures, will be done within Biosphere 2. Bacteriologic and fungal infections, and possibly allergies to pollen or spores are expected to be the commonest medical problem within Biosphere 2.

  15. Space commercialization: Launch vehicles and programs; Symposium on Space Commercialization: Roles of Developing Countries, Nashville, TN, Mar. 5-10, 1989, Technical Papers

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Greenberg, J.S.; Al-saud, Turki.

    1990-01-01

    The present volume on progress in astronautics and aeronautics discusses the advent of commercial space, broad-based space education as a prerequisite for space commercialization, and obstacles to space commercialization in the developing world. Attention is given to NASA directions in space propulsion for the year 2000 and beyond, possible uses of the external tank in orbit, power from the space shuttle and from space for use on earth, Long-March Launch Vehicles in the 1990s, the establishment of a center for advanced space propulsion, Pegasus as a key to low-cost space applications, legal problems of developing countries' access to space launch vehicles, and international law of responsibility for remote sensing. Also discussed are low-cost satellites and satellite launch vehicles, satellite launch systems of China; Raumkurier, the German recovery program; and the Ariane transfer vehicle as logistic support to Space Station Freedom

  16. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management

    International Nuclear Information System (INIS)

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management

  17. 12 CFR 361.6 - What outreach efforts are included in this program?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false What outreach efforts are included in this program? 361.6 Section 361.6 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION REGULATIONS AND STATEMENTS OF GENERAL POLICY MINORITY AND WOMEN OUTREACH PROGRAM CONTRACTING § 361.6 What outreach efforts...

  18. Benchmarks of programming languages for special purposes in the space station

    Science.gov (United States)

    Knoebel, Arthur

    1986-01-01

    Although Ada is likely to be chosen as the principal programming language for the Space Station, certain needs, such as expert systems and robotics, may be better developed in special languages. The languages, LISP and Prolog, are studied and some benchmarks derived. The mathematical foundations for these languages are reviewed. Likely areas of the space station are sought out where automation and robotics might be applicable. Benchmarks are designed which are functional, mathematical, relational, and expert in nature. The coding will depend on the particular versions of the languages which become available for testing.

  19. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Science.gov (United States)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  20. European Space Agency lidar development programs for remote sensing of the atmosphere

    Science.gov (United States)

    Armandillo, Errico

    1992-12-01

    Active laser remote sensing from space is considered an important step forward in the understanding of the processes which regulate weather and climate changes. The planned launching into polar orbit in the late 1990s of a series of dedicated Earth observation satellites offer new possibilities for flying lidar in space. Among the various lidar candidates, ESA has recognized in the backscattering lidar and Doppler wind lidar the instruments which can most contribute to the Earth observation program. To meet the schedule of the on-coming flight opportunities, ESA has been engaged over the past years in a preparatory program aimed to define the instruments and ensure timely availability of the critical components. This paper reviews the status of the ongoing developments and highlights the critical issues addressed.

  1. Programming iSpaces - A Tale of Two Paradigms

    Science.gov (United States)

    Callaghan, V.; Colley, M.; Hagras, H.; Chin, J.; Doctor, F.; Clarke, G.

    'iSpace, the final frontier' - this parody of Star Trek encapsulates many of our aspirations for this area as, in the longer term, iSpaces are likely to be the key to mankind's successful exploration of deep space. In outer space, or hostile planetary habitats, it is inevitable that people will survive in wholly technologically supported artificial environments [1]. Such environments will contain numerous communicating computers embedded into a myriad of devices, sensing, acting, delivering media, processing data, and providing services that enhance the life-style and effectiveness of the occupant and, in outer space, preserving human life. Such environments will also include robots [2]. In today's iSpaces, while human life will not normally be at stake, the underlying principles and technology are much the same. Today our homes are rapidly being filled with diverse types of products ranging from simple lighting systems to sophisticated entertainment systems, all adding to the functionality and convenience available to the home user. The iSpace approach envisages that, one day soon, most artefacts will contain embedded computers and network connections, opening up the possibility for hundreds of communicating devices, co-operating in communities serving the occupant(s). The seeds of this revolution have already been sown in that pervasive technologies such as the Internet and mobile telephones already boast over 200 and 680 million users, respectively [3].

  2. Rocket ranch the nuts and bolts of the Apollo Moon program at Kennedy Space Center

    CERN Document Server

    Ward, Jonathan H

    2015-01-01

    Jonathan Ward takes the reader deep into the facilities at Kennedy Space Center to describe NASA’s first computer systems used for spacecraft and rocket checkout and explain how tests and launches proceeded. Descriptions of early operations include a harrowing account of the heroic efforts of pad workers during the Apollo 1 fire. A companion to the author’s book Countdown to a Moon Launch: Preparing Apollo for Its Historic Journey, this explores every facet of the facilities that served as the base for the Apollo/Saturn missions. Hundreds of illustrations complement the firsthand accounts of more than 70 Apollo program managers and engineers. The era of the Apollo/Saturn missions was perhaps the most exciting period in American space exploration history. Cape Canaveral and Kennedy Space Center were buzzing with activity. Thousands of workers came to town to build the facilities and launch the missions needed to put an American on the Moon before the end of the decade. Work at KSC involved much more than j...

  3. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  4. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  5. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    Science.gov (United States)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  6. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  7. Just in Time in Space or Space Based JIT

    Science.gov (United States)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  8. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  9. Human Research Program Space Radiation Standing Review Panel (SRP)

    Science.gov (United States)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  10. Space Weather Outreach: Connection to STEM Standards

    Science.gov (United States)

    Dusenbery, P. B.

    2008-12-01

    Many scientists are studying the Sun-Earth system and attempting to provide timely, accurate, and reliable space environment observations and forecasts. Research programs and missions serve as an ideal focal point for creating educational content, making this an ideal time to inform the public about the importance and value of space weather research. In order to take advantage of this opportunity, the Space Science Institute (SSI) is developing a comprehensive Space Weather Outreach program to reach students, educators, and other members of the public, and share with them the exciting discoveries from this important scientific discipline. The Space Weather Outreach program has the following five components: (1) the Space Weather Center Website that includes online educational games; (2) Small Exhibits for Libraries, Shopping Malls, and Science Centers; (3) After-School Programs; (4) Professional Development Workshops for Educators, and (5) an innovative Evaluation and Education Research project. Its overarching goal is to inspire, engage, and educate a broad spectrum of the public and make strategic and innovative connections between informal and K-12 education communities. An important factor in the success of this program will be its alignment with STEM standards especially those related to science and mathematics. This presentation will describe the Space Weather Outreach program and how standards are being used in the development of each of its components.

  11. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  12. Atoms for space

    International Nuclear Information System (INIS)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig

  13. The National Space Biomedical Research Institute's education and public outreach program: Working toward a global 21st century space exploration society

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.; Moreno, Nancy P.

    2011-05-01

    Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships. A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that "a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action". [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships. This paper describes select EPOP projects and makes the case for using innovative, emerging information

  14. Space life sciences: A status report

    Science.gov (United States)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  15. Processes and Procedures of the Higher Education Programs at Marshall Space Flight Center

    Science.gov (United States)

    Heard, Pamala D.

    2002-01-01

    The purpose of my research was to investigate the policies, processes, procedures and timelines for the higher education programs at Marshall Space Flight Center. The three higher education programs that comprised this research included: the Graduate Student Researchers Program (GSRP), the National Research Council/Resident Research Associateships Program (NRC/RRA) and the Summer Faculty Fellowship Program (SFFP). The GSRP award fellowships each year to promising U.S. graduate students whose research interest coincides with NASA's mission. Fellowships are awarded for one year and are renewable for up to three years to competitively selected students. Each year, the award provides students the opportunity to spend a period in residence at a NASA center using that installation's unique facilities. This program is renewable for three years, students must reapply. The National Research Council conducts the Resident Research Associateships Program (NRC/RRA), a national competition to identify outstanding recent postdoctoral scientists and engineers and experience senior scientists and engineers, for tenure as guest researchers at NASA centers. The Resident Research Associateship Program provides an opportunity for recipients of doctoral degrees to concentrate their research in association with NASA personnel, often as a culmination to formal career preparation. The program also affords established scientists and engineers an opportunity for research without any interruptions and distracting assignments generated from permanent career positions. All opportunities for research at NASA Centers are open to citizens of the U.S. and to legal permanent residents. The Summer Faculty Fellowship Program (SFFP) is conducted each summer. NASA awards research fellowships to university faculty through the NASA/American Society for Engineering Education. The program is designed to promote an exchange of ideas between university faculties, NASA scientists and engineers. Selected

  16. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  17. Space Environmental Effects Knowledgebase

    Science.gov (United States)

    Wood, B. E.

    2007-01-01

    This report describes the results of an NRA funded program entitled Space Environmental Effects Knowledgebase that received funding through a NASA NRA (NRA8-31) and was monitored by personnel in the NASA Space Environmental Effects (SEE) Program. The NASA Project number was 02029. The Satellite Contamination and Materials Outgassing Knowledgebase (SCMOK) was created as a part of the earlier NRA8-20. One of the previous tasks and part of the previously developed Knowledgebase was to accumulate data from facilities using QCMs to measure the outgassing data for satellite materials. The main object of this current program was to increase the number of material outgassing datasets from 250 up to approximately 500. As a part of this effort, a round-robin series of materials outgassing measurements program was also executed that allowed comparison of the results for the same materials tested in 10 different test facilities. Other programs tasks included obtaining datasets or information packages for 1) optical effects of contaminants on optical surfaces, thermal radiators, and sensor systems and 2) space environmental effects data and incorporating these data into the already existing NASA/SEE Knowledgebase.

  18. Ada Linear-Algebra Program

    Science.gov (United States)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  19. PAREMD: A parallel program for the evaluation of momentum space properties of atoms and molecules

    Science.gov (United States)

    Meena, Deep Raj; Gadre, Shridhar R.; Balanarayan, P.

    2018-03-01

    The present work describes a code for evaluating the electron momentum density (EMD), its moments and the associated Shannon information entropy for a multi-electron molecular system. The code works specifically for electronic wave functions obtained from traditional electronic structure packages such as GAMESS and GAUSSIAN. For the momentum space orbitals, the general expression for Gaussian basis sets in position space is analytically Fourier transformed to momentum space Gaussian basis functions. The molecular orbital coefficients of the wave function are taken as an input from the output file of the electronic structure calculation. The analytic expressions of EMD are evaluated over a fine grid and the accuracy of the code is verified by a normalization check and a numerical kinetic energy evaluation which is compared with the analytic kinetic energy given by the electronic structure package. Apart from electron momentum density, electron density in position space has also been integrated into this package. The program is written in C++ and is executed through a Shell script. It is also tuned for multicore machines with shared memory through OpenMP. The program has been tested for a variety of molecules and correlated methods such as CISD, Møller-Plesset second order (MP2) theory and density functional methods. For correlated methods, the PAREMD program uses natural spin orbitals as an input. The program has been benchmarked for a variety of Gaussian basis sets for different molecules showing a linear speedup on a parallel architecture.

  20. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    Science.gov (United States)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  1. Hubble space telescope: The GO and GTO observing programs, version 3.0

    Science.gov (United States)

    Downes, Ron

    1992-01-01

    A portion of the observing time with the Hubble Space Telescope (HST) was awarded by NASA to scientists involved in the development of the HST and its instruments. These scientists are the Guaranteed Time Observers (GTO's). Observing time was also awarded to General Observers (GO's) on the basis of the proposal reviews in 1989 and 1991. The majority of the 1989 programs have been completed during 'Cycle 1', while the 1991 programs will be completed during 'Cycle 2', nominally a 12-month period beginning July 1992. This document presents abstracts of these GO and GTO programs, and detailed listings of the specific targets and exposures contained in them. These programs and exposures are protected by NASA policy, as detailed in the HST Call for Proposals (CP), and are not to be duplicated by new programs.

  2. Accommodation of practical constraints by a linear programming jet select. [for Space Shuttle

    Science.gov (United States)

    Bergmann, E.; Weiler, P.

    1983-01-01

    An experimental spacecraft control system will be incorporated into the Space Shuttle flight software and exercised during a forthcoming mission to evaluate its performance and handling qualities. The control system incorporates a 'phase space' control law to generate rate change requests and a linear programming jet select to compute jet firings. Posed as a linear programming problem, jet selection must represent the rate change request as a linear combination of jet acceleration vectors where the coefficients are the jet firing times, while minimizing the fuel expended in satisfying that request. This problem is solved in real time using a revised Simplex algorithm. In order to implement the jet selection algorithm in the Shuttle flight control computer, it was modified to accommodate certain practical features of the Shuttle such as limited computer throughput, lengthy firing times, and a large number of control jets. To the authors' knowledge, this is the first such application of linear programming. It was made possible by careful consideration of the jet selection problem in terms of the properties of linear programming and the Simplex algorithm. These modifications to the jet select algorithm may by useful for the design of reaction controlled spacecraft.

  3. Capacity Building in Space Weather in the context of the ISWI program

    Science.gov (United States)

    Vilmer, Nicole; Amory, Christine

    2012-07-01

    In the context of the International Space Weather Initiative program, we organized a school on solar-terrestrial physics for French- speaking professors and PhD students from African countries. The school was organized in Rabat (Morocco) in December 2011. We shall present here the goals of the school, our program and our funding. We shall also comment on the feedback of the school and on the potential organization of a similar school in Algeria in 2013.

  4. A Korean Space Situational Awareness Program : OWL Network

    Science.gov (United States)

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Im, H.; Park, J.

    2012-09-01

    We are going to present a brief introduction to the OWL (Optical Wide-field patroL) network, one of Korean space situational awareness facilities. Primary objectives of the OWL network are 1) to obtain orbital information of Korean domestic LEOs using optical method, 2) to monitor GEO-belt over territory of Korea, and 3) to alleviate collisional risks posed to Korean satellites from space debris. For these purposes, we are planning to build a global network of telescopes which consists of five small wide-field telescopes and one 2m class telescope. The network of small telescopes will be dedicated mainly to the observation of domestic LEOs, but many slots will be open to other scientific programs such as GRB follow-up observations. Main targets of 2m telescope not only include artificial objects such as GEO debris and LEO debris with low inclination and high eccentricity, but also natural objects such as near Earth asteroids. We expect to monitor space objects down to 10cm in size in GEO using the 2m telescope system. Main research topics include size distribution and evolution of space debris. We also expect to utilize this facility for physical characterization and population study of near Earth asteroids. The aperture size of the small telescope system is 0.5m with Rechey-Cretian configuration and its field of view is 1.75 deg x 1.75 deg. It is equipped with 4K CCD with 9um pixel size, and its plate scale is 1.3 arcsec/pixel. A chopper wheel is employed to maximize astrometric solutions in a single CCD frame, and a de-rotator is used to compensate field rotation of the alt-az type mount. We have designed a compact end unit in which three rotating parts (chopper wheel, filter wheel, de-rotator) and a CCD camera are integrated, and dedicated telescope/site control boards for the OWL network. The design of 2m class telescope is still under discussion yet is expected to be fixed in the first half of 2013 at the latest. The OWL network will be operated in a fully

  5. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  6. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    Science.gov (United States)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  7. 12 CFR 906.12 - What outreach efforts are included in this program?

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false What outreach efforts are included in this program? 906.12 Section 906.12 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOUSING FINANCE... Minorities, Women, or Individuals With Disabilities § 906.12 What outreach efforts are included in this...

  8. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    Science.gov (United States)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  9. Studying Planarian Regeneration Aboard the International Space Station Within the Student Space Flight Experimental Program

    Directory of Open Access Journals (Sweden)

    Vista SSEP Mission 11 Team

    2018-05-01

    Full Text Available The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  10. Strategies and Policies for Space - Indian Perspective

    Science.gov (United States)

    Kasturirangan, K.; Sridhara Murthy, K. R.; Sundararmiah, V.; Rao, Mukund

    2002-01-01

    Indian Space Program, which was established as government effort about three decades ago has become a major force in providing vital services for social and economic sectors in India in the fields of satellite telecommunications, television broadcasting, meteorological services and remote sensing of natural resources. Capabilities have been developed over the years, following a step-by-step process to develop and operate space infrastructure in India, including state-of-the-art satellites and satellite launch vehicles. In carrying out these developments, Indian Space Research Organisation, which is the national agency responsible for space activities under Government of India, develop policies and programs, which promoted industrial participation in variety of space activities including manufacture of space hardware, conduct of value added activities and provision of services involving space systems. Policy initiatives have also been taken recently to promote private sector participation in the establishment of Indian Satellite Systems for telecommunications. Strategic alliances have also been developed with international space industries for marketing of services such as remote sensing data. The paper traces evaluation of the policies towards development of industrial participation in space and future transition into commercial space enterprise. Policy issues concerning the national requirements vis-à-vis the international environment will also be discussed to analyze the strategies for international cooperation.

  11. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. Each Meteorite Disk contains two ordinary chondrites, one carbonaceous chondrite, one iron, one stony iron, and one achondrite. These samples will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks and the accompanying education materials through the Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program will take NASA exploration to more people. Getting Space Rocks out to the public and inspiring the public about new space exploration is the focus of the NASA disk loan program.

  12. NASA commercial programs

    Science.gov (United States)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  13. Stirling Space Engine Program. Volume 1; Final Report

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  14. Computer-Aided Corrosion Program Management

    Science.gov (United States)

    MacDowell, Louis

    2010-01-01

    This viewgraph presentation reviews Computer-Aided Corrosion Program Management at John F. Kennedy Space Center. The contents include: 1) Corrosion at the Kennedy Space Center (KSC); 2) Requirements and Objectives; 3) Program Description, Background and History; 4) Approach and Implementation; 5) Challenges; 6) Lessons Learned; 7) Successes and Benefits; and 8) Summary and Conclusions.

  15. Space Product Development: Bringing the Benefits of Space Down to Earth

    Science.gov (United States)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  16. Our leadership in science and technology as provided by the national space program

    Science.gov (United States)

    Kock, W. E.

    1972-01-01

    The contributions of science and technology to the success of the United States as a world leader are discussed. Specific instances of the manner in which science advances and new technologies resulting from space research have contributed to a higher standard of living are presented. It is concluded that the benefits of the space program are not reflected only in the material advancements, but that intangible results have also been achieved in greater incentives to improve the present culture.

  17. Simulation of the space-time evolution of color-flux tubes (guidelines to the TERMITE program)

    International Nuclear Information System (INIS)

    Dyrek, A.

    1990-08-01

    We give the description of the computer program which simulates boost-invariant evolution of color-flux tubes in high-energy processes. The program provides a graphic demonstration of space-time trajectories of created particles and can also be used as Monte-Carlo generator of events. (author)

  18. 24 CFR 982.622 - Manufactured home space rental: Rent to owner.

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT SECTION 8 TENANT BASED ASSISTANCE: HOUSING CHOICE VOUCHER PROGRAM Special Housing Types Manufactured Home Space Rental § 982.622 Manufactured home space rental: Rent to owner. (a) What is included. (1) Rent to owner for rental of a manufactured home space includes payment...

  19. Space Science at Los Alamos National Laboratory

    Science.gov (United States)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  20. Space Missions for Automation and Robotics Technologies (SMART) Program

    Science.gov (United States)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  1. Program to determine space vehicle response to wind turbulence

    Science.gov (United States)

    Wilkening, H. D.

    1972-01-01

    Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.

  2. Space qualification of an experimental two-phase flow thermal management system

    International Nuclear Information System (INIS)

    Koonmen, J.P.; Carswell, L.C.; Kvansnak, M.A.

    1991-01-01

    The Weapons Laboratory will launch a space experiment in March 1991 to investigate the effects of extended microgravity on two-phase (liquid/vapor) flow. The qualification process for the experimental flight system hardware differs significantly from the process used for complex, high cost, long life space systems. Some development, qualification, and acceptance tests normally included in the test program of an operational space system were omitted because of the low program cost and low consequence of experiment failure. Key environment and functional qualification tests were performed, however, in an effort to reduce the risk of failure inherent in any space mission. The environmental qualification program included short duration vacuum chamber tests, reduced gravity missions onboard a National Aeronautics and Space Administration (NASA) test aircraft, and a complete series of shock and vibration tests. The functional qualification program centered on thermal-hydraulic system performance tests and a complete check-out of the unique telemetry system used to retrieve the experimental data from the payload. The test program also contains a number of acceptance and prelaunch validation tests to be performed as final verification of payloads readiness for spaceflight

  3. Cultural factors and the International Space Station.

    Science.gov (United States)

    Ritsher, Jennifer Boyd

    2005-06-01

    The American and Russian/Soviet space programs independently uncovered psychosocial risks inherent in long-duration space missions. Now that these two countries are working together on the International Space Station (ISS), American-Russian cultural differences pose an additional set of risk factors. These may echo cultural differences that have been observed in the general population of the two countries and in space analogue settings, but little is known about how relevant these are to the select population of space program personnel. The evidence for the existence of mission-relevant cultural differences is reviewed and includes cultural values, emotional expressivity, personal space norms, and personality characteristics. The review is focused primarily on Russia and the United States, but also includes other ISS partner countries. Cultural differences among space program personnel may have a wide range of effects. Moreover, culture-related strains may increase the probability of distress and impairment. Such factors could affect the individual and interpersonal functioning of both crewmembers and mission control personnel, whose performance is also critical for mission safety and success. Examples from the anecdotal and empirical literature are given to illustrate these points. The use of existing assessment strategies runs the risk of overlooking important early warning signs of behavioral health difficulties. By paying more attention to cultural differences and how they might be manifested, we are more likely to detect problems early while they are still mild and resolvable.

  4. A Concept of Constructing a Common Information Space for High Tech Programs Using Information Analytical Systems

    Science.gov (United States)

    Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.

    2016-04-01

    The paper deals with the issues in program management used for engineering innovative products. The existing project management tools were analyzed. The aim is to develop a decision support system that takes into account the features of program management used for high-tech products: research intensity, a high level of technical risks, unpredictable results due to the impact of various external factors, availability of several implementing agencies. The need for involving experts and using intelligent techniques for information processing is demonstrated. A conceptual model of common information space to support communication between members of the collaboration on high-tech programs has been developed. The structure and objectives of the information analysis system “Geokhod” were formulated with the purpose to implement the conceptual model of common information space in the program “Development and production of new class mining equipment - “Geokhod”.

  5. Soviet Space Program Handbook.

    Science.gov (United States)

    1988-04-01

    in advance and some events were even broadcast live. Immediately following the first success- ful launch of their new Energia space launch vehicle in...early 1988. Just as a handbook written a couple of years ago would need updating with Mir, Energia , and the SL-16, this handbook will one day need up...1986. Johnson, Nicholas L. The Soviet Year in Space 1983. Colorado Springs, CO: Teledyne Brown Engineering, 1984. Lawton, A. " Energia - Soviet Super

  6. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  7. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  8. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards

  9. Augmenting Space Technology Program Management with Secure Cloud & Mobile Services

    Science.gov (United States)

    Hodson, Robert F.; Munk, Christopher; Helble, Adelle; Press, Martin T.; George, Cory; Johnson, David

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Game Changing Development (GCD) program manages technology projects across all NASA centers and reports to NASA headquarters regularly on progress. Program stakeholders expect an up-to-date, accurate status and often have questions about the program's portfolio that requires a timely response. Historically, reporting, data collection, and analysis were done with manual processes that were inefficient and prone to error. To address these issues, GCD set out to develop a new business automation solution. In doing this, the program wanted to leverage the latest information technology platforms and decided to utilize traditional systems along with new cloud-based web services and gaming technology for a novel and interactive user environment. The team also set out to develop a mobile solution for anytime information access. This paper discusses a solution to these challenging goals and how the GCD team succeeded in developing and deploying such a system. The architecture and approach taken has proven to be effective and robust and can serve as a model for others looking to develop secure interactive mobile business solutions for government or enterprise business automation.

  10. The Space Place: Multifarious Merchandise for Omnifarious Folks

    Science.gov (United States)

    Leon, N. J.; Fisher, D. K.

    2002-12-01

    "The Space Place" is a coordinated NASA educational outreach program that seeks to reach a diverse and under-served audience, including minorities, girls, inner city children, and those living in rural areas. This audience also includes the more than 27 million Americans who, according to the 2000 census, speak Spanish as their first language. The Space Place began in 1998 with a child-oriented Web site (http://spaceplace.nasa.gov) presenting simple "make and do" activities and fun facts related to the technology validation space missions of NASA's New Millennium Program. The Web site is now sponsored by over 30 space science and Earth observing missions. And it is now also available in Spanish. Having materials available on the internet, however, does not guarantee that everyone in the target audience will have access to them. So, The Space Place went on to create a suite of products and a network of partnerships that would allow more direct and diverse ways to communicate. Thus was invented Club Space Place. Club Space Place works through two different types of partnerships: national and local. The products provided: quarterly guides for original Club Space Place group activities, plus NASA space and Earth science and technology bulletin board display materials. The first of the national organizations participating in Club Space Place was Boys and Girls Clubs of America. With 3100 chapters and 3.3 million members ages 6-18, 67% of whom are minorities, BGCA has been able to distribute the quarterly Space Place activity guides electronically via its Web sites to all chapters that have internet access and by hardcopy to those that don't. Other national organizations that receive the activity guides include YWCA, 21st Century Learning Centers, and Civil Air Patrol. Local community partners include about 240 museums, libraries, planetariums, zoos, and aquariums, largely in small cities, towns, and rural areas, with a combined annual visitorship of 26 million. These

  11. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  12. Evolution of International Space Station Program Safety Review Processes and Tools

    Science.gov (United States)

    Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.

    2013-01-01

    The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on

  13. Computer program to fit a hyperellipse to a set of phase-space points in as many as six dimensions

    International Nuclear Information System (INIS)

    Wadlinger, E.A.

    1980-03-01

    A computer program that will fit a hyperellipse to a set of phase-space points in as many as 6 dimensions was written and tested. The weight assigned to the phase-space points can be varied as a function of their distance from the centroid of the distribution. Varying the weight enables determination of whether there is a difference in ellipse orientation between inner and outer particles. This program should be useful in studying the effects of longitudinal and transverse phase-space couplings

  14. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  15. Nuclear Reactors for Space Power, Understanding the Atom Series.

    Science.gov (United States)

    Corliss, William R.

    The historical development of rocketry and nuclear technology includes a specific description of Systems for Nuclear Auxiliary Power (SNAP) programs. Solar cells and fuel cells are considered as alternative power supplies for space use. Construction and operation of space power plants must include considerations of the transfer of heat energy to…

  16. Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  17. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  18. STS-61 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-02-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  19. Systems autonomy technology: Executive summary and program plan

    Science.gov (United States)

    Bull, John S (Editor)

    1987-01-01

    The National Space Strategy approved by the President and Congress in 1984 sets for NASA a major goal of conducting effective and productive space applications and technology programs which contribute materially toward United States leadership and security. To contribute to this goal, OAST supports the Nation's civil and defense space programs and overall economic growth. OAST objectives are to ensure timely provision of new concepts and advanced technologies, to support both the development of NASA missions in space and the space activities of industry and other organizations, to utilize the strengths of universities in conducting the NASA space research and technology program, and to maintain the NASA centers in positions of strength in critical space technology areas. In line with these objectives, NASA has established a new program in space automation and robotics that will result in the development and transfer and automation technology to increase the capabilities, productivity, and safety of NASA space programs including the Space Station, automated space platforms, lunar bases, Mars missions, and other deep space ventures. The NASA/OAST Automation and Robotics program is divided into two parts. Ames Research Center has the lead role in developing and demonstrating System Autonomy capabilities for space systems that need to make their own decisions and do their own planning. The Jet Propulsion Laboratory has the lead role for Telerobotics (that portion of the program that has a strong human operator component in the control loop and some remote handling requirement in space). This program is intended to be a working document for NASA Headquarters, Program Offices, and implementing Project Management.

  20. Status of the CNES-CEA joint program on space nuclear Brayton systems

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Chaudourne, S.; Keirle, P.; Tilliette, Z.; Vrillon, B.

    1989-01-01

    A Cooperative program between the French Centre National d'Etudes Spatiales (CNES) and the Commissariat a l'Engergie Atomique (CEA) was initiated in 1983, to investigate the possible development of 20 to 200 kWe space nuclear power systems to be launched by the next version of the European launcher, Ariane V. After completion in 1986 of preliminary conceptual studies of a reference 200 kWe turboelectric power system, an additional 3 year study phase was decided, with the double objective of assessing the potential advantage of nuclear power systems versus solar photovoltaic or dynamic systems in the 20 kWe power range, and comparing various reactor candidate technologies and systems options for 20 kWe space nuclear power systems, likely to meet the projected energy needs of future European space missions. The results of this study are discussed by the authors

  1. The International Space University

    Science.gov (United States)

    Davidian, Kenneth J.

    1990-01-01

    The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.

  2. Making Breakthroughs in the Turbulent Decade: China's Space Technology During the Cultural Revolution.

    Science.gov (United States)

    Li, Chengzhi; Zhang, Dehui; Hu, Danian

    2017-09-01

    This article discusses why Chinese space programs were able to develop to the extent they did during the turbulent decade of the Cultural Revolution (1966-1976). It first introduces briefly what China had accomplished in rocket and missile technology before the Cultural Revolution, including the establishment of a system for research and manufacturing, breakthroughs in rocket technology, and programs for future development. It then analyzes the harmful impacts of the Cultural Revolution on Chinese space programs by examining activities of contemporary mass factions in the Seventh Ministry of Machinery Industry. In the third section, this article presents the important developments of Chinese space programs during the Cultural Revolution and explores briefly the significance of these developments for the future and overall progress in space technology. Finally, it discusses the reasons for the series of developments of Chinese space technology during the Cultural Revolution. This article concludes that, although the Cultural Revolution generated certain harmful impacts on the development of Chinese space technology, the Chinese essentially accomplished their scheduled objectives in their space program, both because of the great support of top Chinese leaders, including the officially disgraced Lin Biao and the Gang of Four, and due to the implementation of many effective special measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  4. The NASA CSTI High Capacity Power Program

    International Nuclear Information System (INIS)

    Winter, J.M.

    1991-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil applications. During 1986 and 1987, the NASA Advanced Technology Program was responsible for maintaining the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In 1988, the NASA Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA advanced technology project, and provides a bridge to the NASA exploration technology programs. The elements of CSTI high capacity power development include conversion systems: Stirling and thermoelectric, thermal management, power management, system diagnostics, and environmental interactions. Technology advancement in all areas, including materials, is required to provide the growth capability, high reliability, and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems while minimizing the impact of day/night operations as well as attitudes and distance from the Sun. Significant accomplishments in all of the program elements will be discussed, along with revised goals and project timelines recently developed

  5. Revitalization of Space-Related Human Factors, Environmental and Habitability Data

    Science.gov (United States)

    Russo, Dane; Pickett, Lynn K.; Tillman, Barry; Foley, Tico

    2007-01-01

    The NASA Chief Health and Medical Officer (CHMO) recently directed that the agency establish crew health standards to aid in the development of requirements for future vehicles and habitats. Response to this direction includes development of a new NASA habitability and human factors standard and an accompanying design handbook. The new standard contains high-level, over-arching principles to assure its applicability and usability across all NASA development programs. The handbook will provide detailed design requirements and suggestions that will meet the standards. The information contained in NASA-STD-3000 will be updated and included in the new design handbook. In this approach, each new program will derive detailed program-specific requirements from the new standard using the handbook as a design guide and resource. With the completion of the standard, the focus of this year s effort is the development of the new handbook: Human Integration Design Handbook (HIDH). This is an opportunity for the space flight human factors and habitability community to consolidate up-to-date data for use by NASA programs and designers as well as outside researchers and policy makers looking for the next research focus. The goal of the handbook is to help NASA design and build human space flight systems which accommodate the capabilities and limitations of the crew so as to provide an environment where the crew can live and work effectively, safely, and comfortably. Handbook contents will address that primary goal, addressing unique aspects of space flight and habitation, including reduced gravity conditions, time lags, EVA systems and day/night cycles, not addressed in other standards or handbooks. The handbook will be divided into topics similar to NASA-STD-3000 (anthropometrics, architecture, workstations, etc.) and each topic area will contain elements for designers, human factors practitioners, program managers, operators, and researchers. The handbook will include the

  6. Voltage profile program for the Kennedy Space Center electric power distribution system

    Science.gov (United States)

    1976-01-01

    The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

  7. Designing monitoring programs for chemicals of emerging concern in potable reuse--what to include and what not to include?

    Science.gov (United States)

    Drewes, J E; Anderson, P; Denslow, N; Olivieri, A; Schlenk, D; Snyder, S A; Maruya, K A

    2013-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound.

  8. Aurorasaurus: Citizen Scientists Experiencing Extremes of Space Weather

    Science.gov (United States)

    MacDonald, E.; Hall, M.; Tapia, A.

    2013-12-01

    Aurorasaurus is a new citizen science mapping platform to nowcast the visibility of the Northern Lights for the public in the current solar maximum, the first with social media. As a recently funded NSF INSPIRE program, we have joint goals among three research disciplines: space weather forecasting, the study of human-computer interactions, and informal science education. We will highlight results from the prototype www.aurorasaurus.org and outline future efforts to motivate online participants and crowdsource viable data. Our citizen science effort is unique among space programs as it includes both reporting observations and data analysis activities to engage the broadest participant network possible. In addition, our efforts to improve space weather nowcasting by including real-time mapping of ground truth observers for rare, sporadic events are a first in the field.

  9. The NASA Sounding Rocket Program and space sciences

    Science.gov (United States)

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  10. Space Station Freedom Environmental Health Care Program

    Science.gov (United States)

    Richard, Elizabeth E.; Russo, Dane M.

    1992-01-01

    The paper discusses the environmental planning and monitoring aspects of the Space Station Freedom (SSF) Environmental Health Care Program, which encompasses all phases of the SSF assembly and operation from the first element entry at MB-6 through the Permanent Manned Capability and beyond. Environmental planning involves the definition of acceptability limits and monitoring requirements for the radiation dose barothermal parameters and potential contaminants in the SSF air and water and on internal surfaces. Inflight monitoring will be implemented through the Environmental Health System, which consists of five subsystems: Microbiology, Toxicology, Water Quality, Radiation, and Barothermal Physiology. In addition to the environmental data interpretation and analysis conducted after each mission, the new data will be compared to archived data for statistical and long-term trend analysis and determination of risk exposures. Results of these analyses will be used to modify the acceptability limits and monitoring requirements for the future.

  11. Pspace: a program that assesses protein space

    Directory of Open Access Journals (Sweden)

    Zhou Ming-Ming

    2007-10-01

    Full Text Available Abstract Background We describe a computer program named Pspace designed to a obtain a reliable basis for the description of three-dimensional structures of a given protein family using homology modeling through selection of an optimal subset of the protein family whose structure would be determined experimentally; and b aid in the search of orthologs by matching two sets of sequences in three different ways. Methods The prioritization is established dynamically as new sequences and new structures are becoming available through ranking proteins by their value in providing structural information about the rest of the family set. The matching can give a list of potential orthologs or it can deduce an overall optimal matching of two sets of sequences. Results The various covering strategies and ortholog searches are tested on the bromodomain family. Conclusion The possibility of extending this approach to the space of all proteins is discussed.

  12. Celebrating a history of excellence : the Federal Aviation Administration and Space Education Outreach Program.

    Science.gov (United States)

    2011-01-01

    Building on 75 years of experience, the FAAs : aviation and space education outreach : program is earning an A+ for encouraging elementary, : secondary, and even college students to study math, : science, technology, engineering, and a host of : o...

  13. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  14. Discussion on the Criterion for the Safety Certification Basis Compilation - Brazilian Space Program Case

    Science.gov (United States)

    Niwa, M.; Alves, N. C.; Caetano, A. O.; Andrade, N. S. O.

    2012-01-01

    The recent advent of the commercial launch and re- entry activities, for promoting the expansion of human access to space for tourism and hypersonic travel, in the already complex ambience of the global space activities, brought additional difficulties over the development of a harmonized framework of international safety rules. In the present work, with the purpose of providing some complementary elements for global safety rule development, the certification-related activities conducted in the Brazilian space program are depicted and discussed, focusing mainly on the criterion for certification basis compilation. The results suggest that the composition of a certification basis with the preferential use of internationally-recognized standards, as is the case of ISO standards, can be a first step toward the development of an international safety regulation for commercial space activities.

  15. 12 CFR 303.46 - Financial education programs that include the provision of bank products and services.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Financial education programs that include the provision of bank products and services. 303.46 Section 303.46 Banks and Banking FEDERAL DEPOSIT INSURANCE... Branches and Offices § 303.46 Financial education programs that include the provision of bank products and...

  16. Comprehensive adolescent health programs that include sexual and reproductive health services: a systematic review.

    Science.gov (United States)

    Kågesten, Anna; Parekh, Jenita; Tunçalp, Ozge; Turke, Shani; Blum, Robert William

    2014-12-01

    We systematically reviewed peer-reviewed and gray literature on comprehensive adolescent health (CAH) programs (1998-2013), including sexual and reproductive health services. We screened 36 119 records and extracted articles using predefined criteria. We synthesized data into descriptive characteristics and assessed quality by evidence level. We extracted data on 46 programs, of which 19 were defined as comprehensive. Ten met all inclusion criteria. Most were US based; others were implemented in Egypt, Ethiopia, and Mexico. Three programs displayed rigorous evidence; 5 had strong and 2 had modest evidence. Those with rigorous or strong evidence directly or indirectly influenced adolescent sexual and reproductive health. The long-term impact of many CAH programs cannot be proven because of insufficient evaluations. Evaluation approaches that take into account the complex operating conditions of many programs are needed to better understand mechanisms behind program effects.

  17. Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit

    Science.gov (United States)

    Bauman, WIlliam, H., III; Crawford, Winifred

    2009-01-01

    The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products

  18. Advisory Committee on the Redesign of the Space Station

    Science.gov (United States)

    1993-06-01

    The Space Station Program was initiated in 1984 to provide for permanent human presence in an orbiting laboratory. This program evolved into Space Station Freedom, later identified as a component to facilitate a return of astronauts to the Moon, followed by the exploration of Mars. In March 1993 the Clinton Administration directed NASA to undertake an intense effort to redesign the space station at a substantial cost savings relative to Space Station Freedom. The Advisory Committee on the Redesign of the Space Station was established in March 1993 to provide independent assessment of the advantages and disadvantages of the redesign options. The results of the Committee's work is described. Discussion describes the mission that the Administration has articulated for the Space Station Program and the scientific and technical characteristics that a redesigned station must possess to fulfill those objectives. A description of recommended management, operations, and acquisition strategies for the redesigned program is provided. The Committee's assessment of the redesign options against five criteria are presented. The five criteria are technical capabilities, research capabilities, schedule, cost, and risk. A discussion of general mission risk is included.

  19. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    Science.gov (United States)

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    , including the International Space Station as well as LauncherOne, Virgin Galactic's dedicated launch vehicle for small (~500 lbs. / ~225 kg) satellites. Flights on SpaceShipTwo can be booked directly through Virgin Galactic. Various funding sources may be available for the research, including through NASA programs such as the Flight Opportunities Program, Game Changing Development Program, or Research Opportunities in Space and Earth Science (ROSES). More information about the SpaceShipTwo research platform, including a detailed Payload User's Guide, can be found at our website: http://www.virgingalactic.com/research.

  20. 77 FR 13261 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-03-06

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service. ACTION: Notice; Correction. SUMMARY: The Department..., published a document in the Federal Register of February 15, 2011, concerning requests for applications for...

  1. IGUN-A program for the simulation of positive ion extraction including magnetic fields

    International Nuclear Information System (INIS)

    Becker, R.; Herrmannsfeldt, W.B.

    1992-01-01

    IGUN is a program for the simulation of positive ion extraction from plasmas. It is based on the well known program EGUN for the calculation of electron and ion trajectories in electron guns and lenses. The mathematical treatment of the plasma sheath is based on a simple analytical model, which provides a numerically stable calculation of the sheath potentials. In contrast to other ion extraction programs, IGUN is able to determine the extracted ion current in succeeding cycles of iteration by itself. However, it is also possible to set values of current, plasma density, or ion current density. Either axisymmetric or rectangular coordinates can be used, including axisymmetric or transverse magnetic fields

  2. igun - A program for the simulation of positive ion extraction including magnetic fields

    Science.gov (United States)

    Becker, R.; Herrmannsfeldt, W. B.

    1992-04-01

    igun is a program for the simulation of positive ion extraction from plasmas. It is based on the well known program egun for the calculation of electron and ion trajectories in electron guns and lenses. The mathematical treatment of the plasma sheath is based on a simple analytical model, which provides a numerically stable calculation of the sheath potentials. In contrast to other ion extraction programs, igun is able to determine the extracted ion current in succeeding cycles of iteration by itself. However, it is also possible to set values of current, plasma density, or ion current density. Either axisymmetric or rectangular coordinates can be used, including axisymmetric or transverse magnetic fields.

  3. Space Experiment Module (SEM)

    Science.gov (United States)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    Science.gov (United States)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  7. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  8. Summary of Recent Results from NASA's Space Solar Power (SSP) Programs and the Current Capabilities of Microwave WPT Technology

    Science.gov (United States)

    McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.

  9. Space Weather opportunities from the Swarm mission including near real time applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Floberghagen, Rune; Luehr, Hermann

    2013-01-01

    Sophisticated space weather monitoring aims at nowcasting and predicting solar-terrestrial interactions because their effects on the ionosphere and upper atmosphere may seriously impact advanced technology. Operating alert infrastructures rely heavily on ground-based measurements and satellite...... these products in timely manner will add significant value in monitoring present space weather and helping to predict the evolution of several magnetic and ionospheric events. Swarm will be a demonstrator mission for the valuable application of LEO satellite observations for space weather monitoring tools....

  10. U.S. Department of Energy Space and Defense Power Systems Program Ten-Year Strategic Plan, Volume 1 and Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, Carla

    2013-06-01

    The Department of Energy's Space and Defense Power Systems program provides a unique capability for supplying power systems that function in remote or hostile environments. This capability has been functioning since the early 1960s and counts the National Aeronautics and Space Administration as one of its most prominent customers. This enabling technology has assisted the exploration of our solar system including the planets Jupiter, Saturn, Mars, Neptune, and soon Pluto. This capability is one-of-kind in the world in terms of its experience (over five decades), breadth of power systems flown (over two dozen to date) and range of power levels (watts to hundreds of watts). This document describes the various components of that infrastructure, work scope, funding needs, and its strategic plans going forward.

  11. Recommended Resources for Planning to Evaluate Program Improvement Efforts (Including the SSIP)

    Science.gov (United States)

    National Center for Systemic Improvement at WestEd, 2015

    2015-01-01

    This document provides a list of recommended existing resources for state Part C and Part B 619 staff and technical assistance (TA) providers to utilize to support evaluation planning for program improvement efforts (including the State Systemic Improvement Plan, SSIP). There are many resources available related to evaluation and evaluation…

  12. Hands-On Educational Programs and Projects at SICSA

    Science.gov (United States)

    Bell, L.

    2002-01-01

    The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve the design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Some of these projects are supported by corporate sponsors, such as a space tourism research, planning and design study conducted for the owner of national U.S. hotel chain. Some have been undertaken in support of programs sponsored by the State Government of Texas, including current commercial spaceport development planning for the Texas Aerospace Commission and three counties that represent candidate spaceport sites. Other projects have been supported by NASA and the Texas Aerospace Consortium, including the design and development of SICSA's "Space Habitation Laboratory", a space station module sized environmental simulator facility which has been featured in the "NASA Select" television broadcast series. This presentation will highlight representative projects. SICSA is internationally recognized for its leadership in the field of space architecture. Many program graduates have embarked upon productive and rewarding careers with aerospace organizations throughout the world. NASA has awarded certificates of appreciation to SICSA for significant achievements contributing to its advanced design initiatives. SICSA and its work have been featured in numerous popular magazines, professional publications, and public media broadcasts in many countries. SICSA applies a very comprehensive scope of activities to the practice of space architecture. Important roles include mission planning conceptualization of orbital and planetary structures and assembly processes, and design of habitats to optimize human safety, adaptation and productivity. SICSA sponsors educational programs for upper division undergraduate students and graduate students with interests in space and experimental architecture. Many fourth year participants continue in the SICSA program throughout

  13. 76 FR 35474 - UAW-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Including On...

    Science.gov (United States)

    2011-06-17

    ...-Chrysler Technical Training Center, Technology Training Joint Programs Staff, Including On-Site Leased Workers From Cranks, O/E Learning, DBSI, IDEA, and Tonic/MVP, Detroit, MI; UAW-Chrysler Technical Training... workers and former workers of UAW-Chrysler Technical Training Center, Technology Training Joint Programs...

  14. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  15. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  16. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  17. Hybrid Aerogel-MLI Insulation System for Cryogenic Storage in Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of the NASA space program includes longer and more invasive missions into space, with a goal to return to the moon's surface by the year 2015. Long...

  18. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Karr, G.

    2017-01-01

    The research projects conducted by the 2016 Faculty Fellows at NASA Marshall Space Flight Center included propulsion studies on propellant issues, and materials investigations involving plasma effects and friction stir welding. Spacecraft Systems research was conducted on wireless systems and 3D printing of avionics. Vehicle Systems studies were performed on controllers and spacecraft instruments. The Science and Technology group investigated additive construction applied to Mars and Lunar regolith, medical uses of 3D printing, and unique instrumentation, while the Test Laboratory measured pressure vessel leakage and crack growth rates.

  19. Final Report from The University of Texas at Austin for DEGAS: Dynamic Global Address Space programming environments

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Mattan

    2018-02-21

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. Our approach is to provide an efficient and scalable programming model that can be adapted to application needs through the use of dynamic runtime features and domain-specific languages for computational kernels. We address the following technical challenges: Programmability: Rich set of programming constructs based on a Hierarchical Partitioned Global Address Space (HPGAS) model, demonstrated in UPC++. Scalability: Hierarchical locality control, lightweight communication (extended GASNet), and ef- ficient synchronization mechanisms (Phasers). Performance Portability: Just-in-time specialization (SEJITS) for generating hardware-specific code and scheduling libraries for domain-specific adaptive runtimes (Habanero). Energy Efficiency: Communication-optimal code generation to optimize energy efficiency by re- ducing data movement. Resilience: Containment Domains for flexible, domain-specific resilience, using state capture mechanisms and lightweight, asynchronous recovery mechanisms. Interoperability: Runtime and language interoperability with MPI and OpenMP to encourage broad adoption.

  20. Development of a training program to support health care professionals to deliver the SPACE for COPD self-management program

    Directory of Open Access Journals (Sweden)

    Blackmore C

    2017-06-01

    Full Text Available Claire Blackmore,1 Vicki L Johnson-Warrington,2 Johanna EA Williams,2 Lindsay D Apps,2 Hannah ML Young,2 Claire LA Bourne,2 Sally J Singh2 1Kettering General Hospital National Health Service (NHS Trust, Kettering, Northamptonshire, 2Centre for Exercise and Rehabilitation Science, Leicester Respiratory Biomedical Research Unit, University Hospitals of Leicester NHS Trust, Leicester, UK Background: With the growing burden of COPD and associated morbidity and mortality, a need for self-management has been identified. The Self-management Programme of ­Activity, Coping and Education for Chronic Obstructive Pulmonary Disease (SPACE for COPD manual was developed to support self-management in COPD patients. Currently, there is no literature available regarding health care professionals’ training needs when supporting patients with COPD on self-management.Aim: This study sought to identify these needs to inform, design and develop a training program for health care professionals being trained to deliver a self-management program in COPD.Methods: Fourteen health care professionals from both primary and secondary care COPD services participated in face-to-face semistructured interviews. Thematic analysis was used to produce a framework and identify training needs and views on delivery of the SPACE for COPD self-management program. Components of training were web-based knowledge training, with pre- and posttraining knowledge questionnaires, and a 1-day program to introduce the self-management manual. Feedback was given after training to guide the development of the training program.Results: Health care professionals were able to identify areas where they required increased knowledge to support patients. This was overwhelming in aspects of COPD seen to be outside of their current clinical role. Skills in goal setting and behavioral change were not elicited as a training need, suggesting a lack of understanding of components of supporting self

  1. 20 CFR 627.220 - Coordination with programs under title IV of the Higher Education Act including the Pell grant...

    Science.gov (United States)

    2010-04-01

    ... the Higher Education Act including the Pell grant program. 627.220 Section 627.220 Employees' Benefits... of the Higher Education Act including the Pell grant program. (a) Coordination. Financial assistance programs under title IV of the Higher Education Act of 1965, as amended (HEA) (the Pell Grant program, the...

  2. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  3. Designing monitoring programs for chemicals of emerging concern in potable reuse ⋯ What to include and what not to include?

    KAUST Repository

    Drewes, Jorg; Anderson, Paul D.; Denslow, Nancy D.; Olivieri, Adam W.; Schlenk, Daniel K.; Snyder, Shane A.; Maruya, Keith

    2012-01-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than '1' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound. © IWA Publishing 2013.

  4. Designing monitoring programs for chemicals of emerging concern in potable reuse ⋯ What to include and what not to include?

    KAUST Repository

    Drewes, Jorg

    2012-11-01

    This study discussed a proposed process to prioritize chemicals for reclaimed water monitoring programs, selection of analytical methods required for their quantification, toxicological relevance of chemicals of emerging concern regarding human health, and related issues. Given that thousands of chemicals are potentially present in reclaimed water and that information about those chemicals is rapidly evolving, a transparent, science-based framework was developed to guide prioritization of which compounds of emerging concern (CECs) should be included in reclaimed water monitoring programs. The recommended framework includes four steps: (1) compile environmental concentrations (e.g., measured environmental concentration or MEC) of CECs in the source water for reuse projects; (2) develop a monitoring trigger level (MTL) for each of these compounds (or groups thereof) based on toxicological relevance; (3) compare the environmental concentration (e.g., MEC) to the MTL; CECs with a MEC/MTL ratio greater than 1 should be prioritized for monitoring, compounds with a ratio less than \\'1\\' should only be considered if they represent viable treatment process performance indicators; and (4) screen the priority list to ensure that a commercially available robust analytical method is available for that compound. © IWA Publishing 2013.

  5. 14 CFR 1273.25 - Program income.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Program income. 1273.25 Section 1273.25... Administration § 1273.25 Program income. (a) General. Grantees are encouraged to earn income to defray program costs. Program income includes income from fees for services performed, from the use or rental of real...

  6. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  7. Electrostatic Discharge Issues in International Space Station Program EVAs

    Science.gov (United States)

    Bacon, John B.

    2009-01-01

    EVA activity in the ISS program encounters several dangerous ESD conditions. The ISS program has been aggressive for many years to find ways to mitigate or to eliminate the associated risks. Investments have included: (1) Major mods to EVA tools, suit connectors & analytical tools (2) Floating Potential Measurement Unit (3) Plasma Contactor Units (4) Certification of new ISS flight attitudes (5) Teraflops of computation (6) Thousands of hours of work by scores of specialists (7) Monthly management attention at the highest program levels. The risks are now mitigated to a level that is orders of magnitude safer than prior operations

  8. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    Science.gov (United States)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  9. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  10. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  11. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  12. Graphical Programming: A systems approach for telerobotic servicing of space assets

    International Nuclear Information System (INIS)

    Pinkerton, J.T.; Patten, R.

    1993-01-01

    Satellite servicing is in many ways analogous to subsea robotic servicing in the late 1970's. A cost effective, reliable, telerobotic capability had to be demonstrated before the oil companies invested money in deep water robot serviceable production facilities. In the same sense, aeronautic engineers will not design satellites for telerobotic servicing until such a quantifiable capability has been demonstrated. New space servicing systems will be markedly different than existing space robot systems. Past space manipulator systems, including the Space Shuttle's robot arm, have used master/slave technologies with poor fidelity, slow operating speeds and most importantly, in-orbit human operators. In contrast, new systems will be capable of precision operations, conducted at higher rates of speed, and be commanded via ground-control communication links. Challenges presented by this environment include achieving a mandated level of robustness and dependability, radiation hardening, minimum weight and power consumption, and a system which accommodates the inherent communication delay between the ground station and the satellite. There is also a need for a user interface which is easy to use, ensures collision free motions, and is capable of adjusting to an unknown workcell (for repair operations the condition of the satellite may not be known in advance). This paper describes the novel technologies required to deliver such a capability

  13. Electron trajectory program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide

  14. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  17. 25 CFR 170.623 - How are IRR Program projects and activities included in a self-governance agreement?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How are IRR Program projects and activities included in a self-governance agreement? 170.623 Section 170.623 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE... self-governance agreement? To include an IRR Program project or activity in a self-governance agreement...

  18. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  19. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  20. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  1. International Space Education Outreach: Taking Exploration to the Global Classroom

    Science.gov (United States)

    Dreschel, T. W.; Lichtenberger, L. A.; Chetirkin, P. V.; Garner, L. C.; Barfus, J. R.; Nazarenko, V. I.

    2005-01-01

    With the development of the International Space Station and the need for international collaboration for returning to the moon and developing a mission to Mars, NASA has embarked on developing international educational programs related to space exploration. In addition, with the explosion of educational technology, linking students on a global basis is more easily accomplished. This technology is bringing national and international issues into the classroom, including global environmental issues, the global marketplace, and global collaboration in space. We present the successes and lessons learned concerning international educational and public outreach programs that we have been involved in for NASA as well as the importance of sustaining these international peer collaborative programs for the future generations. These programs will undoubtedly be critical in enhancing the classroom environment and will affect the achievements in and attitudes towards science, technology, engineering and mathematics.

  2. Development of an Electromechanical Ground Support System for NASA's Payload Transfer Operations: A Case Study of Multidisciplinary Work in the Space Shuttle Program

    Directory of Open Access Journals (Sweden)

    Felix A. Soto Toro

    2013-04-01

    Full Text Available Space shuttle Atlantis was launched from Kennedy Space Center on July 8, 2011 and landed on July 21, 2011, the final flight of the 30-year Shuttle Program. The development and support of the Space Transportation System (STS had required intensive coordination by scientists and engineers from multiple program disciplines. This paper presents a case study of a typical multidisciplinary effort that was proposed in the late 1990

  3. Space Architecture: The Role, Work and Aptitude

    Science.gov (United States)

    Griffin, Brand

    2014-01-01

    Space architecture has been an emerging discipline for at least 40 years. Has it arrived? Is space architecture a legitimate vocation or an avocation? If it leads to a job, what do employers want? In 2002, NASA Headquarters created a management position for a space architect whose job was to "lead the development of strategic architectures and identify high level requirements for systems that will accomplish the Nation's space exploration vision." This is a good job description with responsibility at the right level in NASA, but unfortunately, the office was discontinued two years later. Even though there is no accredited academic program or professional licensing for space architecture, there is a community of practitioners. They are civil servants, contractors and academicians supporting International Space Station and space exploration programs. In various ways, space architects currently contribute to human spaceflight, but there is a way for the discipline to be more effective in developing solutions to large scale complex problems. This paper organizes contributions from engineers, architects and psychologists into recommendations on the role of space architects in the organization, the process of creating and selecting options, and intrinsic personality traits including why they must have a high tolerance for ambiguity.

  4. Space Sustainment: A New Approach for America in Space

    Science.gov (United States)

    2014-12-01

    international community toward promoting market incentives in international space law. This would open up the competitive space for new entrants ...announces- new -space-situational-awareness-satellite-program.aspx. 29. Gruss, “U.S. Space Assets Face Growing Threat .” 30. McDougall, Heavens and the...November–December 2014 Air & Space Power Journal | 117 SCHRIEVER ESSAY WINNER SECOND PLACE Space Sustainment A New Approach for America in Space Lt

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  6. Operations analysis (study 2.1). Program SEPSIM (solar electric propulsion stage simulation). [in FORTRAN: space tug

    Science.gov (United States)

    Lang, T. J.

    1974-01-01

    Program SEPSIM is a FORTRAN program which performs deployment, servicing, and retrieval missions to synchronous equatorial orbit using a space tug with a continuous low thrust upper stage known as a solar electric propulsion stage (SEPS). The SEPS ferries payloads back and forth between an intermediate orbit and synchronous orbit, and performs the necessary servicing maneuvers in synchronous orbit. The tug carries payloads between the orbiter and the intermediate orbit, deploys fully fueled SEPS vehicles, and retrieves exhausted SEPS vehicles when, and if, required. The program is presently contained in subroutine form in the Logistical On-orbit VEhicle Servicing (LOVES) Program, but can also be run independently with the addition of a simple driver program.

  7. Telerobotic technology for nuclear and space applications

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1987-03-01

    Telerobotic development efforts at Oak Ridge National Laboratory are extensive and relatively diverse. Current efforts include development of a prototype space telerobot system for the NASA Langley Research Center and development and large-scale demonstration of nuclear fuel cycle teleoperators in the Consolidated Fuel Reprocessing Program. This paper presents an overview of the efforts in these major programs. 10 refs., 8 figs

  8. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  9. The Canadian Space Agency, Space Station, Strategic Technologies for Automation and Robotics Program technology development activity in protection of materials from the low Earth orbit space environment

    Science.gov (United States)

    Francoeur, J. R.

    1992-01-01

    The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.

  10. Assessment of the NASA Space Shuttle Program's Problem Reporting and Corrective Action System

    Science.gov (United States)

    Korsmeryer, D. J.; Schreiner, J. A.; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper documents the general findings and recommendations of the Design for Safety Programs Study of the Space Shuttle Programs (SSP) Problem Reporting and Corrective Action (PRACA) System. The goals of this Study were: to evaluate and quantify the technical aspects of the SSP's PRACA systems, and to recommend enhancements addressing specific deficiencies in preparation for future system upgrades. The Study determined that the extant SSP PRACA systems accomplished a project level support capability through the use of a large pool of domain experts and a variety of distributed formal and informal database systems. This operational model is vulnerable to staff turnover and loss of the vast corporate knowledge that is not currently being captured by the PRACA system. A need for a Program-level PRACA system providing improved insight, unification, knowledge capture, and collaborative tools was defined in this study.

  11. OpportunitiesandPerceptionofSpaceProgramsintheDevelopingCountries

    Science.gov (United States)

    Abubakar, B.

    2007-05-01

    Although the space program as a whole is a true reflection of the level of achievement in human history in the field of Science and Technology, but it is also important to note that there are numbers of communities and societies on this earth that are ignorant about this great achievement, hence leading to the continuous diverting of Potential Astronomers, Aerospace Engineers and Astrologist to other disciplines, thereby undermining the development of the space program over time. It was in view of the above that this research was conducted and came up with the under listed Suggestions/Recommendations:- (1) The European Space Agency (ESA), National Aeronautic Space Agency (NASA) and the Russian Space Agency, should be organising and sponsoring public enlightenment conferences, seminars and workshops towards creating awareness and attracting Potential Astronomers and other Space Scientist mostly in the developing countries into the space program. (2) Esteemed organisations in space programs like NASA, ESA and others should be awarding scholarships to potential space scientist that lacks the financial capability to pursue studies in the field of space science from the developing countries. (3) The European Space Agency, National Aeronautic Space Agency and the Russian Space Agency, should open their offices for the development of the space program in the third world countries. I believe that if the above suggestions/recommendations are adopted and implemented it will lead to the development of the space program in general, otherwise the rate at which potential Astronomers, Aerospace Engineers and Astrologists will be diverting into other disciplines will ever remain on the increase. Thanks for listening.

  12. The role of the International Space University in building capacity in emerging space nations.

    Science.gov (United States)

    Richards, Robert

    The International Space University provides graduate-level training to the future leaders of the emerging global space community at its Central Campus in Strasbourg, France, and at locations around the world. In its two-month Summer Session and one-year Masters program, ISU offers its students a unique Core Curriculum covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. Both programs also involve an intense student research Team Project providing international graduate students and young space professionals the opportunity to solve complex problems by working together in an intercultural environment. Since its founding in 1987, ISU has graduated more than 2500 students from 96 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation.

  13. Electron trajectory program

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B.

    1979-11-01

    The SLAC Electron Trajectory Program is described and instructions and examples for users are given. The program is specifically written to compute trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes. Either rectangular or cylindrically symmetric geometry may be used. Magntic fields may be specified using arbitrary configurations of coils, or the output of a magnet program such as Poisson or by an externally calculated array of the axial fields. The program is available in IBM FORTRAN but can be easily converted for use on other brands of hardware. The program is intended to be used with a plotter whose interface the user must provide.

  14. Full Space Vectors Modulation for Nine-Switch Converters Including CF & DF Modes

    DEFF Research Database (Denmark)

    Dehghan Dehnavi, Seyed Mohammad; Mohamadian, Mustafa; Andersen, Michael A. E.

    2010-01-01

    converter. As a space vector modulation for DF mode has already been proposed by authors. This paper proposes a full space vector modulation (SVM) for both CF and DF modes. Also practical methods are presented for SVM proposed. In addition a special SVM is proposed that offers minimum total harmonic...... distortion (THD) in DF mode. The performance of the proposed SVM is verified by simulation results....

  15. Approaching the new reality. [changes in NASA space programs due to US economy

    Science.gov (United States)

    Diaz, Al V.

    1993-01-01

    The focus on more frequent access to space through smaller, less costly missions, and on NASA's role as a source of technological advance within the U.S. economy is discussed. The Pluto fast flyby mission is examined as an illustration of this approach. Testbeds are to be developed to survive individual programs, becoming permanent facilities, to allow for technological upgrades on an ongoing basis.

  16. Power system requirements and selection for the space exploration initiative

    International Nuclear Information System (INIS)

    Biringer, K.L.; Bartine, D.E.; Buden, D.; Foreman, J.; Harrison, S.

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  17. 76 FR 65121 - Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2011-10-20

    ..., environmental benefits including clean air, water, and wildlife habitat; benefits from forest-based educational... Program will be removed as deauthorized by the Farm Security and Rural Investment Act of 2002, and this... benefits, including wildlife habitat, stewardship demonstration sites for forest landowners, and...

  18. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  19. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  20. The Impact of Apollo-Era Microbiology on Human Space Flight

    Science.gov (United States)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of

  1. NASA's Space Launch System Development Status

    Science.gov (United States)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  2. China in space the great leap forward

    CERN Document Server

    Harvey, Brian

    2013-01-01

    The 21st century has seen the emergence, after the Soviet Union and the United States, of the third great space superpower: China. Here, in China in Space - The Great Leap Forward, Brian Harvey takes a contemporary look at the new Chinese space program. China has already launched its first space station, Tiangong; has sent its first spacecraft to the Moon, the Chang e; and has plans to send spaceships to Mars and further afield. China's annual launch rate has already overtaken those of both Europe and the United States. Huge new production plants and launch centers are under construction, to build and launch the new family of Long March 5, 6, and 7 rockets. In Roadmap 2050, the Academy of Sciences indicates that China intends to be the leading spacefaring nation by mid-century, with bases on the Moon and Mars. This book gives an informed, fully up-to-date commentary on all aspects of the Chinese space program, including its history, development, technology, missions, and the personalities involved. It lists a...

  3. The USGS Geomagnetism Program and its role in Space-Weather Monitoring

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.

  4. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  5. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with

  6. Including oral health training in a health system strengthening program in Rwanda

    Directory of Open Access Journals (Sweden)

    Brittany Seymour

    2013-03-01

    Full Text Available Objective: Rwanda's Ministry of Health, with the Clinton Health Access Initiative, implemented the Human Resources for Health (HRH Program. The purpose of the program is to train and retain high-quality health care professionals to improve and sustain health in Rwanda. Design: In May 2011, an oral health team from Rwanda and the United States proposed that oral health be included in the HRH Program, due to its important links to health, in a recommendation to the Rwandan Ministry of Health. The proposal outlined a diagonal approach to curriculum design that supports the principles of global health through interconnected training for both treatment and collaborative prevention, rather than discipline-based fragmented training focused on isolated risk factors. It combined ‘vertical’ direct patient care training with ‘horizontal’ interdisciplinary training to address common underlying risk factors and associations for disease through primary care, program retention, and sustainability. Results: The proposal was accepted by the Ministry of Health and was approved for funding by the US Government and The Global Fund. Rwanda's first Bachelor of Dental Surgery program, which is in the planning phase, is being developed. Conclusions: Competencies, the training curriculum, insurance and payment schemes, licensure, and other challenges are currently being addressed. With the Ministry of Health supporting the dental HRH efforts and fully appreciating the importance of oral health, all are hopeful that these developments will ultimately lead to more robust oral health data collection, a well-trained and well-retained dental profession, and vastly improved oral health and overall health for the people of Rwanda in the decades to come.

  7. Including oral health training in a health system strengthening program in Rwanda

    Science.gov (United States)

    Seymour, Brittany; Muhumuza, Ibra; Mumena, Chris; Isyagi, Moses; Barrow, Jane; Meeks, Valli

    2013-01-01

    Objective Rwanda's Ministry of Health, with the Clinton Health Access Initiative, implemented the Human Resources for Health (HRH) Program. The purpose of the program is to train and retain high-quality health care professionals to improve and sustain health in Rwanda. Design In May 2011, an oral health team from Rwanda and the United States proposed that oral health be included in the HRH Program, due to its important links to health, in a recommendation to the Rwandan Ministry of Health. The proposal outlined a diagonal approach to curriculum design that supports the principles of global health through interconnected training for both treatment and collaborative prevention, rather than discipline-based fragmented training focused on isolated risk factors. It combined ‘vertical’ direct patient care training with ‘horizontal’ interdisciplinary training to address common underlying risk factors and associations for disease through primary care, program retention, and sustainability. Results The proposal was accepted by the Ministry of Health and was approved for funding by the US Government and The Global Fund. Rwanda's first Bachelor of Dental Surgery program, which is in the planning phase, is being developed. Conclusions Competencies, the training curriculum, insurance and payment schemes, licensure, and other challenges are currently being addressed. With the Ministry of Health supporting the dental HRH efforts and fully appreciating the importance of oral health, all are hopeful that these developments will ultimately lead to more robust oral health data collection, a well-trained and well-retained dental profession, and vastly improved oral health and overall health for the people of Rwanda in the decades to come. PMID:23473054

  8. Creating an inclusive leisure space: strategies used to engage children with and without disabilities in the arts-mediated program Spiral Garden.

    Science.gov (United States)

    Smart, Eric; Edwards, Brydne; Kingsnorth, Shauna; Sheffe, Sarah; Curran, C J; Pinto, Madhu; Crossman, Shannon; King, Gillian

    2018-01-01

    This article describes how service providers use a set of practical strategies to create an inclusive leisure space in Spiral Garden, an arts-mediated outdoor summer day program for children with and without disabilities. This study was guided by an interpretive qualitative approach. Fourteen Spiral Garden service providers participated in semi-structured interviews. Nine had extensive experience with the program and had been present during key phases of program development spanning over a 26-year period and five were service providers during the summer of 2013. Transcript data were analyzed using inductive thematic analysis. The analysis produced eight strategies organized under three larger categories that service providers perceived to be essential in creating an inclusive leisure space: (1) engaging children in collective experiences; (2) encouraging peer interactions and friendships; and (3) facilitating collaborative child-directed experiences. Service providers working across different inclusive settings can use findings from this study to contribute to program design and implementation. Presented strategies enable children to experience opportunities for spontaneous free play, individualized structured support, and meaningful social participation. Overall, service providers are encouraged to enhance supportive child and service provider relationships and reciprocal child and environment relationships in group-based programs. Implications for Rehabilitation Exploring and facilitating reciprocal relationships between children and their environment is essential to creating inclusive leisure spaces. Transforming program intentions of meaningful social participation into practice requires learning about and affecting change in children's individual social contexts. Service providers can engage themselves as full participants in inclusive leisure spaces through playful negotiations, internal reflections, and artistic expressions.

  9. Next Generation Launch Technology Program Lessons Learned

    Science.gov (United States)

    Cook, Stephen; Tyson, Richard

    2005-01-01

    In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.

  10. National Aeronautics and Space Administration FY 2001 Accountability Report

    Science.gov (United States)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  11. Foundations of Supply Chain Management for Space Application

    Science.gov (United States)

    Galluzzi, Michael; Zapata, Edgar; Steele, Martin; De Weck, Olivier

    2006-01-01

    Supply Chain Management (SCM) is a key piece of the framework for America's space technology investment as the National Aeronautics and Space Administration (NASA), the aerospace industry, and international partners embark on a bold new vision of human and robotic space exploration beyond Low-Earth-Orbit (LEO). This type of investment is driven by the Agency's need for cost efficient operational support associated with, processing and operating space vehicles and address many of the biggest operational challenge including extremely tight funding profiles, seamless program-to-program transition activities and the reduction of the time gap with human spaceflight capabilities in the post-Shuttle era. An investment of this magnitude is a multiyear task and must include new patterns of thought within the engineering community to respect the importance of SCM and the integration of the material and information flow. Experience within the Department of Defense and commercial sectors which has shown that support cost reductions and or avoidances of upwards to 35% over business as usual are achievable. It is SCM that will ultimately bring the solar system within the economic sphere of our society.

  12. Fifth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  13. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    Science.gov (United States)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  14. Plasma contactor development for Space Station

    Science.gov (United States)

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  15. SPLET - A program for calculating the space-lethargy distribution of epithermal neutrons in a reactor lattice cell

    International Nuclear Information System (INIS)

    Matausek, M.V.; Zmijatevic, I.

    1981-01-01

    A procedure to solve the space-single-lethargy dependent transport equation for epithermal neutrons in a cylindricised multi-region reactor lattice cell has been developed and proposed in the earlier papers. Here, the computational algorithm is comprised and the computing program SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, as well as the related integral quantities as reaction rates and resonance integrals, is described. (author)

  16. Some thoughts on the management of large, complex international space ventures

    Science.gov (United States)

    Lee, T. J.; Kutzer, Ants; Schneider, W. C.

    1992-01-01

    Management issues relevant to the development and deployment of large international space ventures are discussed with particular attention given to previous experience. Management approaches utilized in the past are labeled as either simple or complex, and signs of efficient management are examined. Simple approaches include those in which experiments and subsystems are developed for integration into spacecraft, and the Apollo-Soyuz Test Project is given as an example of a simple multinational approach. Complex approaches include those for ESA's Spacelab Project and the Space Station Freedom in which functional interfaces cross agency and political boundaries. It is concluded that individual elements of space programs should be managed by individual participating agencies, and overall configuration control is coordinated by level with a program director acting to manage overall objectives and project interfaces.

  17. Space Shuttle - A personal view

    Science.gov (United States)

    Mark, H.

    1977-01-01

    A typical flight profile for the Space Shuttle is reviewed, and the operation of the Spacelab, as well as deployment of a satellite from the Shuttle, is considered. Selection of crews for a Space Shuttle mission, which may include as many as four payload specialists, is also discussed. Since medical requirements and flight training standards need not be as high for payload specialists as for the three members of the flight crew, the Shuttle may provide an opportunity for many scientists to perform experiments in space. Investigations of the critical opalescence of fluids and laser holography are proposed for Shuttle missions; X-ray astronomy is another likely candidate for inclusion in the program.

  18. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  19. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    Carey, D.C.

    1999-01-01

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  20. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  1. Astronautics Degrees for Space Industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  2. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    Science.gov (United States)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive

  3. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  4. 15 CFR 744.3 - Restrictions on Certain Rocket Systems (including ballistic missile systems and space launch...

    Science.gov (United States)

    2010-01-01

    ... Vehicles (including cruise missile systems, target drones and reconnaissance drones) End-Uses. 744.3... missile systems, target drones and reconnaissance drones) End-Uses. (a) General prohibition. In addition..., anywhere in the world except by governmental programs for nuclear weapons delivery of NPT Nuclear Weapons...

  5. The Space Nuclear Thermal Propulsion Program: Propulsion for the twenty first century

    International Nuclear Information System (INIS)

    Bleeker, G.; Moody, J.; Kesaree, M.

    1993-01-01

    As mission requirements approach the limits of the chemical propulsion systems, new engines must be investigated that can meet the advanced mission requirements of higher payload fractions, higher velocities, and consequently higher specific Impulses (Isp). The propulsion system that can meet these high demands is a nuclear thermal rocket engine. This engine generates the thrust by expanding/existing the hydrogen, heated from the energy derived from the fission process in a reactor, through a nozzle. The Department of Defense (DoD), however, initiated a new nuclear rocket development program in 1987 for ballistic missile defense application. The Space Nuclear Thermal Propulsion (SNTP) Program that seeks to improve on the technology of ROVER/NERVA grew out of this beginning and has been managed by the Air Force, with the involvement of DoE and NASA. The goal of the SNTP Program is to develop an engine to meet potential Air Force requirements for upper stage engine, bimodal propulsion/power applications, and orbital transfer vehicles, as well as the NASA requirements for possible missions to the Moon and Mars. During the entire life of the program, the DoD has considered safety to be of paramount importance, and is following all national environmental policies

  6. Leadership in Space: Selected Speeches of NASA Administrator Michael Griffin, May 2005 - October 2008

    Science.gov (United States)

    Griffin, Michael

    2008-01-01

    Speech topics include: Leadership in Space; Space Exploration: Real and Acceptable Reasons; Why Explore Space?; Space Exploration: Filling up the Canvas; Continuing the Voyage: The Spirit of Endeavour; Incorporating Space into Our Economic Sphere of Influence; The Role of Space Exploration in the Global Economy; Partnership in Space Activities; International Space Cooperation; National Strategy and the Civil Space Program; What the Hubble Space Telescope Teaches Us about Ourselves; The Rocket Team; NASA's Direction; Science and NASA; Science Priorities and Program Management; NASA and the Commercial Space Industry; NASA and the Business of Space; American Competitiveness: NASA's Role & Everyone's Responsibility; Space Exploration: A Frontier for American Collaboration; The Next Generation of Engineers; System Engineering and the "Two Cultures" of Engineering; Generalship of Engineering; NASA and Engineering Integrity; The Constellation Architecture; Then and Now: Fifty Years in Space; The Reality of Tomorrow; and Human Space Exploration: The Next 50 Years.

  7. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  8. Module Architecture for in Situ Space Laboratories

    Science.gov (United States)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  9. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  10. The Lunar Scout Program: An international program to survey the Moon from orbit for geochemistry, mineralogy, imagery, geodesy, and gravity

    Science.gov (United States)

    Morrison, Donald A. (Editor)

    1994-01-01

    The Lunar Scout Program was one of a series of attempts by NASA to develop and fly an orbiting mission to the moon to collect geochemical, geological, and gravity data. Predecessors included the Lunar Observer, the Lunar Geochemical Orbiter, and the Lunar Polar Orbiter - missions studied under the auspices of the Office of Space Science. The Lunar Scout Program, however, was an initiative of the Office of Exploration. It was begun in late 1991 and was transferred to the Office of Space Science after the Office of Exploration was disbanded in 1993. Most of the work was done by a small group of civil servants at the Johnson Space Center; other groups also responsible for mission planning included personnel from the Charles Stark Draper Laboratories, the Lawrence Livermore National Laboratory, Boeing, and Martin Marietta. The Lunar Scout Program failed to achieve new start funding in FY 93 and FY 94 as a result of budget downturns, the de-emphasis of the Space Exploration Initiative, and the fact that lunar science did not rate as high a priority as other planned planetary missions, and was cancelled. The work done on the Lunar Scout Program and other lunar orbiter studies, however, represents assets that will be useful in developing new approaches to lunar orbit science.

  11. Replicated x-ray optics for space applications

    Science.gov (United States)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  12. Expanding Free School-based Human Papilloma Virus (HPV Vaccination Programs to Include School-aged Males in Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Hannah Krater-Melamed

    2017-06-01

    Full Text Available Bill 70 (HPV Vaccine Act was presented to the Nova Scotia House of Assembly with the aim of expanding the current Nova Scotia school-based HPV vaccination program to include males. In recent years, increased awareness of HPV and HPV-caused cancers has led to the implementation of school-based female HPV vaccination programs across Canada. Changing guidelines, based on recent evidence, suggest that males should also be included in these programs. Program expansion to include males aims to reduce the prevalence of HPV-causing cancers and their ensuing costs, to promote equal access to healthcare services, and to make Nova Scotia a leader in HPV prevention. Support from the Canadian public and high profile political actors along with pressure from other provinces and interest groups, including the Society of Obstetricians and Gynaecologists of Canada, influenced the passing of the HPV Vaccine Act. In order to implement this reform, the provincial financial commitment to the previous HPV program was expanded to cover the cost of male vaccination.

  13. Research in space science and technology. Semiannual progress report

    International Nuclear Information System (INIS)

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  14. Integrating National Space Visions

    Science.gov (United States)

    Sherwood, Brent

    2006-01-01

    This paper examines value proposition assumptions for various models nations may use to justify, shape, and guide their space programs. Nations organize major societal investments like space programs to actualize national visions represented by leaders as investments in the public good. The paper defines nine 'vision drivers' that circumscribe the motivations evidently underpinning national space programs. It then describes 19 fundamental space activity objectives (eight extant and eleven prospective) that nations already do or could in the future use to actualize the visions they select. Finally the paper presents four contrasting models of engagement among nations, and compares these models to assess realistic pounds on the pace of human progress in space over the coming decades. The conclusion is that orthogonal engagement, albeit unlikely because it is unprecedented, would yield the most robust and rapid global progress.

  15. Space Station Habitability Research

    Science.gov (United States)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  16. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  17. Space civil engineering - A new discipline

    Science.gov (United States)

    Sadeh, Willy Z.; Criswell, Marvin E.

    1991-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding the Civil Engineering know-how and practice to the development and maintenance of infrastructure on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University under a recently established NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts of the curriculum in the Space Civil Engineering Option at both undergraduate and graduate levels are presented. The role of Space Civil Engineering in the Space Program is discussed.

  18. Power supplies for space systems quality assurance by Sandia Laboratories

    International Nuclear Information System (INIS)

    Hannigan, R.L.; Harnar, R.R.

    1976-07-01

    The Sandia Laboratories' participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used in space systems over the past 10 years is summarized. Basic elements of this QA program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are presented, including SNAP 19 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo), Transit, Multi-Hundred Watt (LES 8/9 and MJS), and a new program, High-Performance Generator Mod 3. The outlook for Sandia participation in RTG programs for the next several years is noted

  19. Nuclear safety as applied to space power reactor systems

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1987-01-01

    Current space nuclear power reactor safety issues are discussed with respect to the unique characteristics of these reactors. An approach to achieving adequate safety and a perception of safety is outlined. This approach calls for a carefully conceived safety program which makes uses of lessons learned from previous terrestrial power reactor development programs. This approach includes use of risk analyses, passive safety design features, and analyses/experiments to understand and control off-design conditions. The point is made that some recent accidents concerning terrestrial power reactors do not imply that space power reactors cannot be operated safety

  20. Research and Technology at the John F. Kennedy Space Center 1993

    Science.gov (United States)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  1. Reproduction in the space environment: Part II. Concerns for human reproduction

    Science.gov (United States)

    Jennings, R. T.; Santy, P. A.

    1990-01-01

    Long-duration space flight and eventual colonization of our solar system will require successful control of reproductive function and a thorough understanding of factors unique to space flight and their impact on gynecologic and obstetric parameters. Part II of this paper examines the specific environmental factors associated with space flight and the implications for human reproduction. Space environmental hazards discussed include radiation, alteration in atmospheric pressure and breathing gas partial pressures, prolonged toxicological exposure, and microgravity. The effects of countermeasures necessary to reduce cardiovascular deconditioning, calcium loss, muscle wasting, and neurovestibular problems are also considered. In addition, the impact of microgravity on male fertility and gamete quality is explored. Due to current constraints, human pregnancy is now contraindicated for space flight. However, a program to explore effective countermeasures to current constraints and develop the required health care delivery capability for extended-duration space flight is suggested. A program of Earth- and space-based research to provide further answers to reproductive questions is suggested.

  2. The human factor: Biomedicine in the manned space program to 1980

    Science.gov (United States)

    Pitts, J. A.

    1985-01-01

    The purpose of this publication is to provide NASA personnel, NASA managers, and the biomedical and historical research communities a well-documented, historical summary of the content and organization of NASA's biomedical programs from Project Mercury up to the Shuttle program. The publication includes not only a major narrative portion, but appendixes and reference notes.

  3. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    Science.gov (United States)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  4. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  5. Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research

    Science.gov (United States)

    Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.

    2011-01-01

    The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e

  6. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Vision 2040: Evolving the Successful International Space University

    Science.gov (United States)

    Martin, Gary; Marti, Izan Peris; Tlustos, Reinhard; Lorente, Arnau Pons; Panerati, Jocopo; Mensink, Wendy; Sorkhabi, Elbruz; Garcia, Oriol Gasquez; Musilova, Michaela; Pearson, Thomas

    2015-01-01

    Space exploration has always been full of inspiration, innovation, and creativity, with the promise of expanding human civilization beyond Earth. The space sector is currently experiencing rapid change as disruptive technologies, grassroots programs, and new commercial initiatives have reshaped long-standing methods of operation. Throughout the last 28 years, the International Space University (ISU) has been a leading institution for space education, forming international partnerships, and encouraging entrepreneurship in its over 4,000 alumni. In this report, our Vision 2040 team projected the next 25 years of space exploration and analyzed how ISU could remain a leading institution in the rapidly changing industry. Vision 2040 considered five important future scenarios for the space sector: real-time Earth applications, orbital stations, lunar bases, lunar and asteroid mining, and a human presence on Mars. We identified the signals of disruptive change within these scenarios, including underlying driving forces and potential challenges, and derived a set of skills that will be required in the future space industry. Using these skills as a starting point, we proposed strategies in five areas of focus for ISU: the future of the Space Studies Program (SSP), analog missions, outreach, alumni, and startups. We concluded that ISU could become not just an increasingly innovative educational institution, but one that acts as an international organization that drives space commercialization, exploration, innovation, and cooperation.

  8. CASH 2021: Commercial access and space habitation

    Science.gov (United States)

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Ferretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frédéric; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J. Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-07-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.

  9. The NASA/National Space Science Data Center trapped radiation environment model program, 1964 - 1991

    International Nuclear Information System (INIS)

    Vette, J.I.

    1991-11-01

    The major effort that NASA, initially with the help of the United States Air Force (USAF), carried out for 27 years to synthesize the experimental and theoretical results of space research related to energetic charged particles into a quantitative description of the terrestrial trapped radiation environment in the form of model environments is detailed. The effort is called the Trapped Radiation Environment Modeling Program (TREMP). In chapter 2 the historical background leading to the establishment of this program is given. Also, the purpose of this modeling program as established by the founders of the program is discussed. This is followed in chapter 3 by the philosophy and approach that was applied in this program throughout its lifetime. As will be seen, this philosophy led to the continuation of the program long after it would have expired. The highlights of the accomplishments are presented in chapter 4. A view to future possible efforts in this arena is given in chapter 5, mainly to pass on to future workers the differences that are perceived from these many years of experience. Chapter 6 is an appendix that details the chronology of the development of TREMP. Finally, the references, which document the work accomplished over these years, are presented in chapter 7

  10. New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.

    2001-06-14

    An assessment of the potential energy savings associated with the use of multi-layer light polarizing panels in an office space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual working office area provided the capability of evaluating the technology's effectiveness in the real world.

  11. Negotiating and Designing Public Space. Experiences with a new M.Sc. in Urban Design Program in Hong Kong

    Directory of Open Access Journals (Sweden)

    Hendrik Tieben

    2013-05-01

    Full Text Available This contribution reflects on first experiences made with a newly launched Master of Science in Urban Design program at the Chinese University of Hong Kong. As an important part of this program, students have to develop their design proposal in response to feedback of different stakeholders and community members. Thus the program responds to the growing aspiration of Hong Kong’s citizens to shape the urban development of their city and a lack of a meaningful participation process in the region. With its high density, protected country parks, efficient public transport and large scale housing program, generally, Hong Kong offers important lessons for contemporary urbanism. However, since the end of the British colonial rule and in face of increasing property prices, pollution and the disappearance of local heritage, intensive debates started about the regions future. Another central point of the recent discussion in Hong Kong – and key theme of the new urban design program - is the demand for the rights and qualities of public space. The paper presents the set-up of the design studio, which was closely linked to a course on “urban processes”. During the semester, students had to organize community forums and street exhibitions in a specific district, invite stakeholders and residents and discuss with them their ideas. Their projects, then, had to respond on the various feedbacks and integrate them in their design and policy proposals. The text reflects on the student projects and the lessons learned in the process. It addresses general questions such as the challenges in communicating with a diverse community (e.g. language barriers and culturally different ideas of public space. It addresses the question of the intended and unintended effects of a participatory design studio in the community, and possible follow-ups. And it reflects on the general role of design and designers in shaping community spaces.

  12. The politics and perils of space exploration who will compete, who will dominate?

    CERN Document Server

    Dawson, Linda

    2017-01-01

    Written by a former Aerodynamics Officer on the space shuttle program, this book provides a complete overview of the “new” U. S. space program, which has changed considerably over the past 50 years.The future of space exploration has become increasingly dependent on other countries and private enterprise. Can private enterprise can fill the shoes of NASA and provide the same expertise and safety measures and lessons learned from NASA? In order to tell this story, it is important to understand the politics of space as well as the dangers, why it is so difficult to explore and utilize the resources of space. Some past and recent triumphs and failures will be discussed, pointing the way to a successful space policy that includes taking risks but also learning how to mitigate them.

  13. 20 Plus Years of Chimera Grid Development for the Space Shuttle. STS-107, Return to Flight, End of the Program

    Science.gov (United States)

    Gomez, Reynaldo J., III

    2010-01-01

    This slide presentation reviews the progress in grid development for the space shuttle, with particular focus on the development from the los of STS-107 and the return to flight, to the end of the program. Included are views from the current Space Shuttle Launch Vehicle (SSLV) grid system, containing 1.8 million surface points, and 95+ million volume points. Charts showing wind tunnel tests comparisons, and Computational fluid dynamics (CFD) vs 1A613B wing pressures, wind tunnel test comparison with CFD of the proposed ice/frost ramp configuration are shown. The use of pressure sensitive paint and particle imaging velocimetry was used to support debris transport tools, The actual creation of the grids and the use of overset CFD to assess the external tank redesign was also reviewed. It also asks was the use of the overset tool the right choice. The presentation ends with a review of the work to be done still.

  14. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  15. Psycho-social training for man in space

    Science.gov (United States)

    Kass, R.; Kass, J. R.

    1999-11-01

    In preparation for the international manned space station various international and national space agencies are already participating with the Russian MIR programme with short, medium, and long term presence on the MIR station. Although selection criteria for all crew include careful psychological screening, with some effort also regarding team build-up, this has proved insufficient; moreover, little or no effort is expended in the area of psycho-social- or team training. This paper propounds the authors' thesis that, in addition to the steps already being taken, psycho-social training is essential for long-duration flight. A concrete proposal is made for such a training program, with an overview of how such a program will look like; examples of past applications are given.

  16. Research reports: 1990 NASA/ASEE Summer faculty fellowship program

    International Nuclear Information System (INIS)

    Freeman, L.M.; Chappell, C.R.; Six, F.; Karr, G.R.

    1990-10-01

    Reports on the research projects performed under the NASA/ASEE Summer faculty fellowship program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing

  17. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    Science.gov (United States)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  18. Southeast Asian Space Programs: Motives, Cooperation, and Competition

    Science.gov (United States)

    2014-09-01

    specific use” after being launched into equatorial orbit on a SpaceX Falcon rocket in 2009; Malaysia sought to fill a niche for equatorial countries...with human users as part of a system,28 the “technique” by which rockets , satellites, and other accoutrements of space access are integrated into...independence and an archipelagic geography that incentivizes use of space as a big tent under which to strengthen national unity, Indonesia’s space

  19. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  20. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data.

    Directory of Open Access Journals (Sweden)

    J Rasmus Nielsen

    Full Text Available Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua and whiting (Merlangius merlangus, a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size. The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year.

  1. 29 CFR 1472.215 - What must I include in my drug-free awareness program?

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false What must I include in my drug-free awareness program? 1472.215 Section 1472.215 Labor Regulations Relating to Labor (Continued) FEDERAL MEDIATION AND CONCILIATION SERVICE GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Requirements for Recipients Other Than Individuals § 1472.215...

  2. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    Science.gov (United States)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  3. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  4. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  5. Role of the Space Station in Private Development of Space

    Science.gov (United States)

    Uhran, M. L.

    2002-01-01

    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  6. War-gaming application for future space systems acquisition

    Science.gov (United States)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  7. NASA Pathways Co-op Tour Johnson Space Center Fall 2013

    Science.gov (United States)

    Masood, Amir; Osborne-Lee, Irwin W.

    2013-01-01

    This report outlines the tasks and objectives completed during a co-operative education tour with National Aeronautics and Space Association (NASA) at the Johnson Space Center in Houston, Texas. I worked for the Attitude & Pointing group of the Flight Dynamics Division within the Mission Operations Directorate at Johnson Space Center. NASA's primary mission is to support and expand the various ongoing space exploration programs and any research and development activities associated with it. My primary project required me to develop and a SharePoint web application for my group. My secondary objective was to become familiar with the role of my group which was primarily to provide spacecraft attitude and line of sight determination, including Tracking and Data Relay Satellite (TDRS) communications coverage for various NASA, International, and commercial partner spacecraft. My projects required me to become acquainted with different software systems, fundamentals of aerospace engineering, project management, and develop essential interpersonal communication skills. Overall, I accomplished multiple goals which included laying the foundations for an updated SharePoint which will allow for an organized platform to communicate and share data for group members and external partners. I also successfully learned about the operations of the Attitude & Pointing Group and how it contributes to the Missions Operations Directorate and NASA's Space Program as a whole

  8. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    Science.gov (United States)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  9. An Assessment of China’s Anti-Satellite and Space Warfare Programs, Policies and Doctrines

    Science.gov (United States)

    2008-01-19

    Zhu Rinzhong, “The Theory of GPS and Methods of Countering It,” Junshi xueshu, May 1999, pp. 5859, in Dean Cheng, “The Chinese Space Program: A 21st...Haijun Xueshu Yanjiu 海军学术研究 Military Economics Research Junshi Jingji Yanjiu 军事经济研究 Modern Military Branches Xiandai Bingzhong 现代兵种 Air Force Logistics

  10. LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces

    Science.gov (United States)

    Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina

    2016-11-01

    The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.

  11. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  12. Simulated selection responses for breeding programs including resistance and resilience to parasites in Creole goats.

    Science.gov (United States)

    Gunia, M; Phocas, F; Gourdine, J-L; Bijma, P; Mandonnet, N

    2013-02-01

    The Creole goat is a local breed used for meat production in Guadeloupe (French West Indies). As in other tropical countries, improvement of parasite resistance is needed. In this study, we compared predicted selection responses for alternative breeding programs with or without parasite resistance and resilience traits. The overall breeding goal included traits for production, reproduction, and parasite resilience and resistance to ensure a balanced selection outcome. The production traits were BW and dressing percentage (DP). The reproduction trait was fertility (FER), which was the number of doe kiddings per mating. The resistance trait was worm fecal egg count (FEC), which is a measurement of the number of gastro-intestinal parasite eggs found in the feces. The resilience trait was the packed cell volume (PCV), which is a measurement of the volume of red blood cells in the blood. Dressing percentage, BW, and FEC were measured at 11 mo of age, which is the mating or selling age. Fertility and PCV were measured on females at each kidding period. The breeding program accounting for the overall breeding goal and a selection index including all traits gave annual selection responses of 800 g for BW, 3.75% for FER, 0.08% for DP, -0.005 ln(eggs/g) for FEC, and 0.28% for PCV. The expected selection responses for BW and DP in this breeding program were reduced by 2% and 6%, respectively, compared with a breeding program not accounting for FEC and PCV. The overall breeding program, proposed for the Creole breed, offers the best breeding strategy in terms of expected selection responses, making it possible to improve all traits together. It offers a good balance between production and adaptation traits and may present some interest for the selection of other goat breeds in the tropics.

  13. Center Innovation Fund: JSC CIF (also includes JSC IRAD) Program

    Data.gov (United States)

    National Aeronautics and Space Administration — JSC provides and applies its preeminent capabilities in science and technology to develop, operate, and integrate human exploration missions.  The Center...

  14. Discrete Optimization in Chemical Space Reference Manual

    Science.gov (United States)

    2012-10-01

    includes instructions on setting up constrained optimizations of substitutional frameworks and the full application programming interface ( API ) necessary...space size • bool space size computed • ulong bits • bool bits computed • string Nam 4.26.1 Detailed Description This class provides the API that...1, 0) 1102 (O, 0, 1.4, -3, 120, -2, 180) 1103 (C, 1, 1.5, 0, 120, -3, -30(150)) 1104 (H, 2, 1.1, 1, 109.47, 0,180) 1105 (H, 2, 1.1, 1, 109.47, 3, 120

  15. 43 CFR 43.215 - What must I include in my drug-free awareness program?

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What must I include in my drug-free awareness program? 43.215 Section 43.215 Public Lands: Interior Office of the Secretary of the Interior GOVERNMENTWIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (FINANCIAL ASSISTANCE) Requirements for Recipients Other Than Individuals § 43.215 What must I...

  16. Fourth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  17. Using the Internet to investigate consumer choice spaces.

    Science.gov (United States)

    Crow, Janis J; Shanteau, James; Casey, John D

    2003-05-01

    Traditional investigations of consumer choice processes include a matrix of alternatives described by attributes. The researcher-created matrix presents a product option space for the participant. In this article, we propose an alternative methodological approach to consumer choice processes. Specifically, we investigate choice processes when a participant creates his/her own product space. We describe a Web-based program and methodology used to collect data for three customizable products. Empirical results indicate that consumers are willing and able to make choices from their own product space. This research provides a new avenue for exploring choice processes.

  18. Space and the American imagination

    Science.gov (United States)

    Mccurdy, Howard E.

    1994-01-01

    The introduction will set out the principal theme of the book: that the rise of the U.S. space program was due to a concerted effort by science writers, engineers, industrialists, and civic and political leaders to create a popular culture of space exploration based on important elements of American social life (such as frontier mythology, fears about the cold war, and the rise of the consumer culture). Much of the disillusionment with the NASA space program which set in during the third decade of space flight can be traced to a widening gap between popular expectations and the reality of space exploration.

  19. General-purpose heat source project and space nuclear safety and fuels program. Progress report

    International Nuclear Information System (INIS)

    Maraman, W.J.

    1979-12-01

    This formal monthly report covers the studies related to the use of 238 PuO 2 in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed hear are of a continuing nature. Results and conclusions described may change as the work continues

  20. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    Science.gov (United States)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  1. The twenty-first century in space

    CERN Document Server

    Evans, Ben

    2015-01-01

    This final entry in the History of Human Space Exploration mini-series by Ben Evans continues with an in-depth look at the latter part of the 20th century and the start of the new millennium. Picking up where Partnership in Space left off, the story commemorating the evolution of manned space exploration unfolds in further detail. More than fifty years after Yuri Gagarin’s pioneering journey into space, Evans extends his overview of how that momentous voyage continued through the decades which followed. The Twenty-first Century in Space, the sixth book in the series, explores how the fledgling partnership between the United States and Russia in the 1990s gradually bore fruit and laid the groundwork for today’s International Space Station. The narrative follows the convergence of the Shuttle and Mir programs, together with standalone missions, including servicing the Hubble Space Telescope, many of whose technical and human lessons enabled the first efforts to build the ISS in orbit. The book also looks to...

  2. Space Solar Patrol data and changes in weather and climate, including global warming

    International Nuclear Information System (INIS)

    Avakyan, S V; Leonov, N B; Voronin, N A; Baranova, L A; Savinov, E P

    2010-01-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8–115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996–2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878)

  3. Architecting the Human Space Flight Program with Systems Modeling Language (SysML)

    Science.gov (United States)

    Jackson, Maddalena M.; Fernandez, Michela Munoz; McVittie, Thomas I.; Sindiy, Oleg V.

    2012-01-01

    The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).

  4. Aerial view of the Kennedy Space Center Visitor Center

    Science.gov (United States)

    1998-01-01

    The Kennedy Space Center Visitor Center, shown in this aerial view looking south, sprawls across 70 acres on Florida's Space Coast , and is located off State Road 405, NASA Parkway, six miles inside the Space Center entrance. SR 405 can be seen at the bottom of the photo. Just above the roadway, from left can be seen the Shuttle/Gantry mockup; the Post Show Dome; the Astronaut Memorial; and to the far right, the Center for Space Education. Behind the Memorial are a cluster of buildings that include the Theater Complex, Cafeteria, Space Flight Exhibit Building, Souvenir Sales Building, Spaceport Central, and Ticket Pavilion. At the upper right are various rockets that have played a significant role in the growth of the space program.

  5. Space-Based Remote Sensing of the Earth: A Report to the Congress

    Science.gov (United States)

    1987-01-01

    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.

  6. Astronautics degrees for the space industry

    Science.gov (United States)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  7. National Aeronautics and Space Administration Biological Specimen Repository

    Science.gov (United States)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  8. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  9. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  10. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  11. 77 FR 61012 - Expansion of Importer Self-Assessment Program To Include Qualified Importers of Focused...

    Science.gov (United States)

    2012-10-05

    ... of International Trade, has determined that the company represents an acceptable risk to CBP, if the... Executive Director, Trade Policy and Programs, Office of International Trade, at [email protected] benefits: Entitled to receive entry summary trade data, including analysis support, from CBP. Consultation...

  12. 41 CFR 105-74.215 - What must I include in my drug-free awareness program?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What must I include in my drug-free awareness program? 105-74.215 Section 105-74.215 Public Contracts and Property Management Federal Property Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION...

  13. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    Science.gov (United States)

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  14. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  15. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  16. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  17. A customer-friendly Space Station

    Science.gov (United States)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  18. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    Science.gov (United States)

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  19. Things That Squeak and Make You Feel Bad: Building Scalable User Experience Programs for Space Assessment

    Directory of Open Access Journals (Sweden)

    Rebecca Kuglitsch

    2018-04-01

    Full Text Available This article suggests a process for creating a user experience (UX assessment of space program that requires limited resources and minimal prior UX experience. By beginning with small scale methods, like comment boxes and easel prompts, librarians can overturn false assumptions about user behaviors, ground deeper investigations such as focus groups, and generate momentum. At the same time, these methods should feed into larger efforts to build trust and interest with peers and administration, laying the groundwork for more in-depth space UX assessment and more significant changes. The process and approach we suggest can be scaled for use in both large and small library systems. Developing a user experience space assessment program can seem overwhelming, especially without a dedicated user experience librarian or department, but does not have to be. In this piece, we explore how to scale and sequence small UX projects, communicate UX practices and results to stakeholders, and build support in order to develop an intentional but still manageable space assessment program. Our approach takes advantage of our institutional context—a large academic library system with several branch locations, allowing us to pilot projects at different scales. We were able to coordinate across a complex multi-site system, as well as in branch libraries with a staffing model analogous to libraries at smaller institutions. This gives us confidence that our methods can be applied at libraries of different sizes. As subject librarians who served as co-coordinators of a UX team on a voluntary basis, we also confronted the question of how we could attend to user needs while staying on top of our regular workload. Haphazard experimentation is unsatisfying and wasteful, particularly when there is limited time, so we sought to develop a process we could implement that applied approachable, purposeful UX space assessments while building trust and buy-in with colleagues

  20. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  1. Atomic Power in Space: A History

    Science.gov (United States)

    1987-03-01

    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  2. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  3. Atomic power in space: A history

    International Nuclear Information System (INIS)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs

  4. Space information systems in the Space Station era; Proceedings of the AIAA/NASA International Symposium on Space Information Systems, Washington, DC and Greenbelt, MD, June 22, 23, 1987

    Science.gov (United States)

    Gerard, Mireille (Editor); Edwards, Pamela W. (Editor)

    1988-01-01

    Technological and planning issues for data management, processing, and communication on Space Station Freedom are discussed in reviews and reports by U.S., European, and Japanese experts. The space-information-system strategies of NASA, ESA, and NASDA are discussed; customer needs are analyzed; and particular attention is given to communication and data systems, standards and protocols, integrated system architectures, software and automation, and plans and approaches being developed on the basis of experience from past programs. Also included are the reports from workshop sessions on design to meet customer needs, the accommodation of growth and new technologies, and system interoperability.

  5. CRITIC2: A program for real-space analysis of quantum chemical interactions in solids

    Science.gov (United States)

    Otero-de-la-Roza, A.; Johnson, Erin R.; Luaña, Víctor

    2014-03-01

    We present CRITIC2, a program for the analysis of quantum-mechanical atomic and molecular interactions in periodic solids. This code, a greatly improved version of the previous CRITIC program (Otero-de-la Roza et al., 2009), can: (i) find critical points of the electron density and related scalar fields such as the electron localization function (ELF), Laplacian, … (ii) integrate atomic properties in the framework of Bader’s Atoms-in-Molecules theory (QTAIM), (iii) visualize non-covalent interactions in crystals using the non-covalent interactions (NCI) index, (iv) generate relevant graphical representations including lines, planes, gradient paths, contour plots, atomic basins, … and (v) perform transformations between file formats describing scalar fields and crystal structures. CRITIC2 can interface with the output produced by a variety of electronic structure programs including WIEN2k, elk, PI, abinit, Quantum ESPRESSO, VASP, Gaussian, and, in general, any other code capable of writing the scalar field under study to a three-dimensional grid. CRITIC2 is parallelized, completely documented (including illustrative test cases) and publicly available under the GNU General Public License. Catalogue identifier: AECB_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECB_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 11686949 No. of bytes in distributed program, including test data, etc.: 337020731 Distribution format: tar.gz Programming language: Fortran 77 and 90. Computer: Workstations. Operating system: Unix, GNU/Linux. Has the code been vectorized or parallelized?: Shared-memory parallelization can be used for most tasks. Classification: 7.3. Catalogue identifier of previous version: AECB_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 157 Nature of problem: Analysis of quantum

  6. Kent in space: Cosmic dust to space debris

    Science.gov (United States)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  7. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  8. [Productivity of doctoral programs in Psychology with Quality Mention in journal articles included in Journal Citation Reports].

    Science.gov (United States)

    Musi-Lechuga, Bertha; Olivas-Ávila, José; Castro, Angel

    2011-08-01

    The main objective of the present study was to classify doctoral programs with Quality Mention in Psychology based on their scientific productivity. For this purpose, articles in the Web of Science published by professors teaching in these doctoral programs were analyzed. In addition, we analyzed scientific journals in which these professors tend to publish more papers and the evolution in the number of papers published until 2009. Results showed that the most productive doctoral program was the Neurosciences program at the University of Oviedo. This program showed a ratio of 40 articles--published in journals included in Journal Citation Reports--by each professor. In contrast, other programs did not reach a ratio of 10 articles per professor. Regarding journals, results showed that 9 out of the 20 most popular journals are Hispanic and a gradual increase in the number of published papers was also observed. Lastly, results and implications for quality assessment are discussed.

  9. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  10. The advanced thermionics initiative...program update

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1993-01-01

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs

  11. Transatlantic Cooperation in Space: Eu-Canada Free Trade Agreement

    Directory of Open Access Journals (Sweden)

    Luise Weber-Steinhaus

    2014-12-01

    Full Text Available National governments are keenly aware of the need for investment in space. Canada, as a formal cooperating state in the European Space Agency (ESA, and Germany, as a leading member state of ESA, are interlinked in Europe’s space endeavours. Beyond ESA, Germany and Canada additionally have a strong history of bilateral cooperation on a range of space projects. This paper discusses the novel interdependencies between clear national and now supranational space policies, using the examples of the Canada-European Union (EU Comprehensive Economic and Trade Agreement (CETA. The agreement covers most aspects of the EU-Canada bilateral economic relationship and includes space. The paper focuses on international space policies, strategic bilateral co-operation, and technical accomplishments. It takes a closer look at German-Canadian collaboration in space programs and offers some reflection on the effect of both the EU and ESA’S transatlantic involvement in space.

  12. Technical and management information system: The tool for professional productivity on the space station program

    Science.gov (United States)

    Montoya, G.; Boldon, P.

    1985-01-01

    The Space Station Program is highly complex not only in its technological goals and requirements but also in its organizational structure. Eight Contractor teams supporting four NASA centers plus Headquarters must depend on effective exchange of information--the lifeblood of the program. The Technical and Management Information System (TMIS) is the means by which this exchange can take place. Value of the TMIS in increasing productivity comes primarily from its ability to make the right information available to whomever needs it when it is needed. Productivity of the aerospace professional and how it can be enhanced by the use of specifically recommended techniques and procedures for information management using the TMIS are discussed.

  13. Solving Component Structural Dynamic Failures Due to Extremely High Frequency Structural Response on the Space Shuttle Program

    Science.gov (United States)

    Frady, Greg; Nesman, Thomas; Zoladz, Thomas; Szabo, Roland

    2010-01-01

    For many years, the capabilities to determine the root-cause failure of component failures have been limited to the analytical tools and the state of the art data acquisition systems. With this limited capability, many anomalies have been resolved by adding material to the design to increase robustness without the ability to determine if the design solution was satisfactory until after a series of expensive test programs were complete. The risk of failure and multiple design, test, and redesign cycles were high. During the Space Shuttle Program, many crack investigations in high energy density turbomachines, like the SSME turbopumps and high energy flows in the main propulsion system, have led to the discovery of numerous root-cause failures and anomalies due to the coexistences of acoustic forcing functions, structural natural modes, and a high energy excitation, such as an edge tone or shedding flow, leading the technical community to understand many of the primary contributors to extremely high frequency high cycle fatique fluid-structure interaction anomalies. These contributors have been identified using advanced analysis tools and verified using component and system tests during component ground tests, systems tests, and flight. The structural dynamics and fluid dynamics communities have developed a special sensitivity to the fluid-structure interaction problems and have been able to adjust and solve these problems in a time effective manner to meet budget and schedule deadlines of operational vehicle programs, such as the Space Shuttle Program over the years.

  14. HI-STAR. Health Improvements through Space Technologies and Resources: Executive Summary

    Science.gov (United States)

    Finarelli, Margaret G.

    2002-01-01

    Our mission is to develop and promote a global strategy to help combat malaria using space technology. Like the tiny yet powerful mosquito, HI-STAR (Health Improvements Through Space Technologies and Resources) is a small program that aspires to make a difference. Timely detection of malaria danger zones is essential to help health authorities and policy makers make decisions about how to manage limited resources for combating malaria. In 2001, the technical support network for prevention and control of malaria epidemics published a study. HI-STAR focuses on malaria because it is the most common and deadly of the vector-borne diseases. Malaria also shares many commonalities with other diseases, which means the global strategy developed here may also be applicable to other parasitic diseases. HI-STAR would like to contribute to the many malaria groups already making great strides in the fight against malaria. Some examples include: Roll Back Malaria, The Special Program for Research and Training in Tropical Diseases (TDR) and the Multilateral Initiative on Malaria (MIM). Other important groups that are among the first to include space technologies in their model include: The Center for Health Application of Aerospace Related Technologies (CHAART) and Mapping Malaria Risk in Africa (MARA). Malaria is a complex and multi-faceted disease. Combating it must therefore be equally versatile. HI-STAR incorporates an interdisciplinary, international, intercultural approach.called 'Malaria Early Warning Systems; Concepts, Indicators and Partners.' This study, funded by Roll Back Malaria, a World Health Organization initiative, offers a framework for a monitoring and early warning system. HI-STAR seeks to build on this proposal and enhance the space elements of the suggested framework. It is the work of fifty-three professionals and students from the International Space University's 2002 Summer Session Program held in California, USA.

  15. Commercial Application of In-Space Assembly

    Science.gov (United States)

    Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.; hide

    2016-01-01

    In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection

  16. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  17. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    Science.gov (United States)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  18. Space Station Freedom electrical power system hardware commonality with the United States Polar Platform

    Science.gov (United States)

    Rieker, Lorra L.; Haraburda, Francis M.

    1989-01-01

    Information is presented on how the concept of commonality is being implemented with respect to electric power system hardware for the Space Station Freedom and the U.S. Polar Platform. Included is a historical account of the candidate common items which have the potential to serve the same power system functions on both Freedom and the Polar Platform. The Space Station program and objectives are described, focusing on the test and development responsibilities. The program definition and preliminary design phase and the design and development phase are discussed. The goal of this work is to reduce the program cost.

  19. Environmental Development Plan (EDP): space applications

    International Nuclear Information System (INIS)

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  20. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  1. Atomic power in space: A history

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  2. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  3. 42 CFR 137.275 - May Self-Governance Tribes include IHS construction programs in a construction project agreement...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false May Self-Governance Tribes include IHS construction... OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Construction Purpose and Scope § 137.275 May Self-Governance Tribes include IHS construction programs in a construction project agreement or in a funding...

  4. Military Space Programs: Issues Concerning DOD's SBIRS and STSS Programs

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2005-01-01

    .... The Space Tracking and Surveillance System (STSS, formerly SBIRS-Low), managed by the Missile Defense Agency, would perform missile tracking and target discrimination for missile defense objectives...

  5. Military Space Programs: Issues Concerning DOD's SBIRS and STSS Programs

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2006-01-01

    .... The Space Tracking and Surveillance System (STSS, formerly SBIRS-Low), managed by the Missile Defense Agency, would perform missile tracking and target discrimination for missile defense objectives...

  6. Military Space Programs: Issues Concerning DOD's SBIRS and STSS Programs

    National Research Council Canada - National Science Library

    Smith, Marcia S

    2003-01-01

    .... The Space Tracking and Surveillance System (STSS, formerly SBIRS-Low), managed by the Missile Defense Agency, would perform missile tracking and target discrimination for missile defense objectives...

  7. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  8. Space Station Freedom operations planning

    Science.gov (United States)

    Accola, Anne L.; Keith, Bryant

    1989-01-01

    The Space Station Freedom program is developing an operations planning structure which assigns responsibility for planning activities to three tiers of management. The strategic level develops the policy, goals and requirements for the program over a five-year horizon. Planning at the tactical level emphasizes program integration and planning for a two-year horizon. The tactical planning process, architecture, and products have been documented and discussed with the international partners. Tactical planning includes the assignment of user and system hardware as well as significant operational events to a time increment (the period of time from the arrival of one Shuttle to the manned base to the arrival of the next). Execution-level planning emphasizes implementation, and each organization produces detailed plans, by increment, that are specific to its function.

  9. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  10. CICT Computing, Information, and Communications Technology Program

    Science.gov (United States)

    Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)

    2002-01-01

    The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.

  11. NASA program planning on nuclear electric propulsion

    International Nuclear Information System (INIS)

    Bennett, G.L.; Miller, T.J.

    1992-03-01

    As part of the focused technology planning for future NASA space science and exploration missions, NASA has initiated a focused technology program to develop the technologies for nuclear electric propulsion and nuclear thermal propulsion. Beginning in 1990, NASA began a series of interagency planning workshops and meetings to identify key technologies and program priorities for nuclear propulsion. The high-priority, near-term technologies that must be developed to make NEP operational for space exploration include scaling thrusters to higher power, developing high-temperature power processing units, and developing high power, low-mass, long-lived nuclear reactors. 28 refs

  12. Growing and Supporting the Student and Early Career Pipeline in Earth and Space Sciences - A Spotlight on New AGU Initiatives

    Science.gov (United States)

    Hankin, E. R.; Williams, B. M.; Asher, P. M.; Furukawa, H.; Holm Adamec, B.; Lee, M.; Cooper, P.

    2015-12-01

    The American Geophysical Union (AGU) is home to more than 60,000 scientists from 139 countries. Included in this membership are approximately 20,000 (34%) student and early career members. Many well-established programs within AGU provide a dynamic forum for Earth and Space scientists to advance research, collaborate across disciplines, and communicate the importance and impact of science to society regardless of career stage—programs such as AGU publications, scientific meetings and conferences, honors and recognition, and other educational and scientific forums. Additionally, many AGU program initiatives focusing specifically on supporting student and early career scientists and the global talent pool pipeline ones are actively underway. These include both new and long-standing programs. This presentation will describe (1) the overall demographics and needs in Earth and Space sciences, and (2) AGU's coordinated series of programs designed to help attract, retain and support student and early career scientists—with an emphasis on new programmatic activities and initiatives targeting improved diversity. Included in this presentation are a description of the AGU BrightSTaRS Program, the AGU Berkner Program for international students, a newly established AGU Student & Early Career Conference, the AGU Virtual Poster Showcase initiative, the AGU Meeting Mentor program, and GeoLEAD—an umbrella program being jointly built by a coalition of societies to help address Earth and space sciences talent pool needs.

  13. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  14. Classical mechanics including an introduction to the theory of elasticity

    CERN Document Server

    Hentschke, Reinhard

    2017-01-01

    This textbook teaches classical mechanics as one of the foundations of physics. It describes the mechanical stability and motion in physical systems ranging from the molecular to the galactic scale. Aside from the standard topics of mechanics in the physics curriculum, this book includes an introduction to the theory of elasticity and its use in selected modern engineering applications, e.g. dynamic mechanical analysis of viscoelastic materials. The text also covers many aspects of numerical mechanics, ranging from the solution of ordinary differential equations, including molecular dynamics simulation of many particle systems, to the finite element method. Attendant Mathematica programs or parts thereof are provided in conjunction with selected examples. Numerous links allow the reader to connect to related subjects and research topics. Among others this includes statistical mechanics (separate chapter), quantum mechanics, space flight, galactic dynamics, friction, and vibration spectroscopy. An introductory...

  15. STMD Laser Lifetest Program Space Gradiometer

    Data.gov (United States)

    National Aeronautics and Space Administration — Design and initiate lifetest activities on laser transmitter for the Cold Atom Gravity Gradiometer (CAGG) with funding from NASA STMD.This proposed task is to...

  16. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  17. Charting a Path Toward a Sustainable ROK Space Program

    Science.gov (United States)

    2016-12-01

    technological competitiveness in niche markets.  While the ROK has invested in certain, independent military space capabilities, it will be best served-in...through rich research in space like Israel has put in space activities, the ROK cannot reach its targeted point. Moreover, these efforts cannot achieve...human capital promotion. But the ROK still has opportunities in space development due to the strength of its technological competitiveness in niche

  18. Exploring Inquiry in the Third Space: Case Studies of a Year in an Urban Teacher-Residency Program

    Science.gov (United States)

    Klein, Emily J.; Taylor, Monica; Onore, Cynthia; Strom, Kathryn; Abrams, Linda

    2016-01-01

    Using case studies, we describe what happens from novice to apprentice when preservice teachers learn to teach in an urban teacher-residency (UTR) program with a focus on inquiry. Our UTR operates within a "third space" in teacher education, seeking to realign traditional power relationships and to create an alternate arena where the…

  19. A Foothold in Space

    Institute of Scientific and Technical Information of China (English)

    YAO BIN

    2011-01-01

    With the successful launch of Tiangong-I (Heavenly Palace -I)unmanned module on September 29,China took a significant step forward in realizing its ambitions in space.China's manned space program consists of three steps.The first step,to send an astronaut into space,was achieved in 2003.The second step,to realize multi-person space flight for extended periods of time,has been fulfilled twice.During China's third manned space flight in 2008,Chinese astronauts walked in space.

  20. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    Science.gov (United States)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.