WorldWideScience

Sample records for space physics rims

  1. Using the DP-190 glue for adhesive attachment of a large space mirror and its rim

    Science.gov (United States)

    Vlasenko, Oleg; Zverev, Alexey; Sachkov, Mikhail

    2014-07-01

    The glue DP-190 is widely used for adhesive attachment of astrositall (zerodur) lightweight large-size space astronomical mirrors (diameter of 1.7 m and more) with elements of their frames of invar. Peculiarities of physicalmechanical behavior of the glue DP-190 when exposed to the environment during the ground operation and in orbit cause instability of the reflective surface quality of mirrors. In this report we show that even a small (around 1%-5%) volumetric deformation of a cylindrical adhesive layer with a thickness of 0.8 mm between the mirror and the rim element causes significant mirrors deformation. We propose to use adhesive layer of special form that allows to reduce volumetric deformations of the glue DP-190 up to three times. Here we present results based on primary mirror tests of the WSO-UV project.

  2. Logic for physical space

    DEFF Research Database (Denmark)

    Aiello, Marco; Bezhanishvili, Guram; Bloch, Isabelle

    2012-01-01

    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora...

  3. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  4. Learning physical space

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2002-01-01

    The article argues that cultural learning is a useful concept in analysing how neophytes learn from reactions and other forms of social designation. Through the newcomers learning process a concrete physical place takes on new cultural meaning. The specific example deals with first year students...... who have to learn that certain physical places, acts and objects are imbued with a cultural significance as the act of sitting on a chair or wearing a short dress takes on a new symbolic meaning in a cultural context where inclusion and exclusion are a constant concern. By following and analysing what...... is involved in the process of becoming ? in this case the becoming of physicist students ? the moral cultural logic behind in- and exclusion from physical places are established....

  5. Physics of the Space Environment

    Science.gov (United States)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  6. Cosmic perspectives in space physics

    CERN Document Server

    Biswas, Sukumar

    2000-01-01

    In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra-~errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non­ solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth a...

  7. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  8. Physics of Space Plasma Activity

    International Nuclear Information System (INIS)

    Cramer, N F

    2007-01-01

    This book provides a timely review of our present understanding of plasma phenomena in magnetized terrestrial and solar space plasmas. The author's emphasis is on the fluid and particle modeling and interpretation of observed active processes in space plasmas, i.e. 'the physical background of large plasma eruptions in space'. It is somewhat alarming for a plasma physicist to read that an emphasis on processes in spatially inhomogeneous plasmas means that the work '... excludes a considerable fraction of the available methods in space plasma physics, such as the theory of waves, instabilities and wave particle interactions on a homogeneous background', particularly in light of the fact that much of our knowledge of these plasmas is derived from observations of such waves. However, it is clear on reading the book that such a restriction is not a disadvantage, but allows the author to concentrate on the main theme of the book, namely the use of fluid and particle pictures to model the equilibrium and active states of space plasmas. There are many other books which cover the wave aspects of space plasmas, and would complement this book. The book's coverage is based on the extensive and profound research of the author and his colleagues in the area of fluid and particle modeling of space plasma structures. After an introduction to the physical setting of active plasmas, and a necessarily concise, but effective, discussion of the fluid and particle models to be used, the steady states of the magnetized plasmas of interest are treated, including the magnetosphere, solar plasmas and current sheets. Next the dynamics of unstable states is covered, including MHD and tearing instabilities, and nonlinear aspects, with a detailed discussion of magnetic reconnection. Finally, the models are applied to magnetospheric and solar observations. The book is attractively written and produced, and this reviewer managed to find a minimum number of errors. A particularly attractive

  9. Ongoing Space Physics - Astrophysics Connections

    OpenAIRE

    Eichler, David

    2005-01-01

    I review several ongoing connections between space physics and astrophysics: a) Measurements of energetic particle spectra have confirmed theoretical prediction of the highest energy to which shocks can accelerate particles, and this has direct bearing on the origin of the highest energy cosmic rays. b) Mass ejection in solar flares may help us understand photon ejection in the giant flares of magnetar outbursts. c) Measurements of electron heat fluxes in the solar wind can help us understand...

  10. Formation Timescales of Amosphous Rims on Lunar Grains Derived from ARTEMIS Observations

    Science.gov (United States)

    Poppe, A. R.; Farrell, W. M.; Halekas, Jasper S.

    2018-01-01

    The weathering of airless bodies exposed to space is a fundamental process in the formation and evolution of planetary surfaces. At the Moon, space weathering induces a variety of physical, chemical, and optical changes including the formation of nanometer-sized amorphous rims on individual lunar grains. These rims are formed by vapor redeposition from micrometeoroid impacts and ion irradiation-induced amorphization of the crystalline matrix. For ion irradiation-induced rims, however, laboratory experiments of the depth and formation timescales of these rims stand in stark disagreement with observations of lunar soil grains. We use observations by the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) spacecraft in orbit around the Moon to compute the mean ion flux to the lunar surface between 10 eV and 5 MeV and convolve this flux with ion irradiation-induced vacancy production rates as a function of depth calculated using the Stopping Range of Ions in Matter model. By combining these results with laboratory measurements of the critical fluence for charged-particle amorphization in olivine, we can predict the formation timescale of amorphous rims as a function of depth in olivinic grains. This analysis resolves two outstanding issues: (1) the provenance of >100 nm amorphous rims on lunar grains and (2) the nature of the depth-age relationship for amorphous rims on lunar grains.

  11. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  12. Book Review: Physics of the Space Environment

    Science.gov (United States)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  13. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  14. Flat space physics from holography

    International Nuclear Information System (INIS)

    Bousso, Raphael

    2004-01-01

    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational back reaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle. (author)

  15. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  16. Physical Fock space of tensionless strings

    CERN Document Server

    Antoniadis, Ignatios; Antoniadis, Ignatios; Savvidy, George

    2004-01-01

    We study the physical Fock space of the tensionless string theory with perimeter action which has pure massless spectrum. The states are classified by the Wigner's little group for massless particles. The ground state contains infinite many massless fields of fixed helicity, the excitation levels realize CSR representations. We demonstrate that the first and the second excitation levels are physical null states.

  17. RIMS Program Description.

    Science.gov (United States)

    Kraepelien, Hans

    Computer routines for the translation of teacher-prepared mark sense forms to magnetic tape are described. The program, Receiving IMS (RIMS), is part of the Southwest Regional Laboratory's (SWRL) Instructional Management System (IMS). It accepts mark sense sheets from remotely located Xerox 660 scanner copiers and/or IMS update information from…

  18. Philosophy of physics space and time

    CERN Document Server

    Maudlin, Tim

    2012-01-01

    This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than coordinate systems or reference frames. He gives readers enough detail about special relativity to solve concrete physical problems while presenting general relativity in a more qualitative way, with an informative discussion of the geometrization of gravity, the bending of light, and black holes. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed...

  19. Physical Origins of Space Weather Impacts: Open Physics Questions

    Science.gov (United States)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  20. Space Matters: Physical-Digital and Physical-Virtual Codesign in inSpace

    DEFF Research Database (Denmark)

    Reilly, D.; Voida, S.; McKeon, M.

    2010-01-01

    The physical and social cues on which we rely during collaboration can vanish in the digital realm. inSpace focuses on physical-digital codesign, leveraging an approach grounded in social behavior patterns.......The physical and social cues on which we rely during collaboration can vanish in the digital realm. inSpace focuses on physical-digital codesign, leveraging an approach grounded in social behavior patterns....

  1. Dual Vector Spaces and Physical Singularities

    Science.gov (United States)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  2. On the structure of physical space

    CERN Document Server

    Wisnivesky, D

    2001-01-01

    In this paper we develop a theory based on the postulate that the environment where physical phenomena take place is the space of four complex parameters of the linear group of transformations. Using these parameters as fundamental building blocks we construct ordinary space-time and the internal space. Lorentz invariance is built in the definition of external space, while the symmetry of the internal space, S(1)*SU(2) results as a consequence of the identification of the external coordinates. Thus, special relativity and the electroweak interaction symmetry ensue from the properties of the basic building blocks of physical space. Since internal and external space are derived from a common structure, there is no need to bring into the theory any additional hypothesis to account for the microscopic nature of the internal space, nor to introduce symmetry breaking mechanisms that would normally be required to force a splitting of the internal and external symmetries. As an outcome of the existence of a basic str...

  3. RIMS: Resource Information Management System

    Science.gov (United States)

    Symes, J.

    1983-01-01

    An overview is given of the capabilities and functions of the resource management system (RIMS). It is a simple interactive DMS tool which allows users to build, modify, and maintain data management applications. The RIMS minimizes programmer support required to develop/maintain small data base applications. The RIMS also assists in bringing the United Information Services (UIS) budget system work inhouse. Information is also given on the relationship between the RIMS and the user community.

  4. Particle physics software aids space and medicine

    CERN Document Server

    Pia, M G

    2002-01-01

    Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science. Geant4 was first used for space applications by ESA in 1999, when ESA and NASA each launched an X-ray telescope. Geant4's extended set of physics models, which handle both electromagnetic and hadronic interactions, can be used to address a range of medical applications from conventional photon-beam radiotherapy to brachytherapy (using radioactive sources), hadron therapy and boron neutron capture therapy. The tools for describing geometries, materials and electromagnetic fields can precisely model diverse real-life configurations.

  5. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  6. Preface [11. Pacific Rim conference on stellar astrophysics: Physics and chemistry of the late stages of stellar evolution, Hong Kong (China), 14-17 December 2015

    International Nuclear Information System (INIS)

    Kwok, Sun; Leung, Kam Ching

    2016-01-01

    Stellar mass loss is now widely recognized to have a significant impact on stellar evolution. Mass loss on the asymptotic giant branch (AGB) allows stars with initial masses under 8 solar masses to avoid the fate of going supernovae. Over 95% of stars in our Galaxy will evolve through the planetary nebulae phase to end up as white dwarfs instead of neutron stars or black holes. Massive stars undergo mass loss both in the blue and red phases of evolution and create new classes of stars such as Wolf-Rayet stars and luminous blue variables. The circumstellar matter ejected by these mass loss processes becomes new laboratories to study the physical and chemical processes of interstellar matter. The interaction between different phases of mass loss (with variable mass loss rates, ejection speeds, and directions) leads to spectacular morphological transformation of the circumstellar nebulae. The circumstellar nebulae are also sites of molecular and solid-state synthesis. Close to 100 molecular species and a variety of solids, including minerals and complex organics, have been detected in circumstellar envelopes. Since the dynamical time scale of the ejection puts an upper limit on the chemical time scale, we are witnessing a rapid synthesis of chemical species in an extremely low-density environment, creating new challenges to our understanding of chemical reactions. Effects of mass loss are not limited to single stars. Mass loss by one component of a binary system allows mass transfer to occur at separations beyond the Roche Lobe limit. Accreted wind materials on the surface of a degenerate star can lead to periodic outbursts through H-shell burning. When both components are losing mass, we have interesting dynamical systems such as symbiotic novae. The theme of this conference is “Physics and Chemistry of the Late Stages of Stellar Evolution”. We try to bring together experts in different fields to exchange ideas in the hope of solving the many unsolved problems in

  7. Is physical space unique or optional

    International Nuclear Information System (INIS)

    Ekstein, H.; Centre National de la Recherche Scientifique, 13 - Marseille

    1975-02-01

    There are two concepts of the physical space-time. One, S(F), is that of a fixed arena in which events take place. The other S(D), is that of a space-time shaped by events. The second depends on the state (initial conditions) or on the external field, the first does not. The main assertions of the present paper are: 1) the fixed space-time S(F) is neither incompatibles with nor made superfluous, by Einstein's theory. S(F) is experimentally explorable, unique, and probably identical with Minkowski space M. 2) The dynamical space S(D) is largely optional. It can be chosen to be M, but the natural choice is Einstein's pseudo-Riemanian manifold [fr

  8. Aligning Pedagogy with Physical Learning Spaces

    Science.gov (United States)

    van Merriënboer, Jeroen J. G.; McKenney, Susan; Cullinan, Dominic; Heuer, Jos

    2017-01-01

    The quality of education suffers when pedagogies are not aligned with physical learning spaces. For example, the architecture of the triple-decker Victorian schools across England fits the information transmission model that was dominant in the industrial age, but makes it more difficult to implement student-centred pedagogies that better fit a…

  9. Physical models on discrete space and time

    International Nuclear Information System (INIS)

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  10. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  11. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  12. Space Drive Physics: Introduction and Next Steps

    Science.gov (United States)

    Millis, M. G.

    Research toward the visionary goal of propellantless ``space drives'' is introduced, covering key physics issues and a listing of roughly 2-dozen approaches. The targeted advantage of a space drive is to circumvent the propellant constraints of rockets and the maneuvering limits of light sails by using the interactions between the spacecraft and its surrounding space for propulsion. At present, the scientific foundations from which to engineer a space drive have not been discovered and, objectively, might be impossible. Although no propulsion breakthroughs appear imminent, the subject has matured to where the relevant questions have been broached and are beginning to be answered. The critical make-break issues include; conservation of momentum, uncertain sources of reaction mass, and the net-external thrusting requirement. Note: space drives are not necessarily faster- than-light devices. Speed limits are a separate, unanswered issue. Relevant unsolved physics includes; the sources and mechanisms of inertial frames, coupling of gravitation and electromagnetism, and the nature of the quantum vacuum. The propulsion approaches span mostly stages 1 through 3 of the scientific method (defining the problem, collecting data, and articulating hypotheses), while some have matured to stage 4 (testing hypotheses). Nonviable approaches include `stiction drives,' `gyroscopic antigravity,' and `lifters.' No attempt is made to gauge the prospects of the remaining approaches. Instead, a list of next-step research questions is derived from the examination of these goals, unknowns, and concepts.

  13. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  14. High-Latitude Space Plasma Physics

    International Nuclear Information System (INIS)

    Hultqvist, B.; Hagfors, T.

    1983-01-01

    This book constitutes the proceedings of the Nobel Symposium No. 54 on High Latitude Magnetospheric/Ionospheric Plasma Physics. The main purpose of the symposium was to prepare for the European research effort in space plasma physics in the mid-1980's, in which two major constituents are the European Incoherent Scatter Association (EISCAT) facilities and the Swedish satellite Viking. The physics of the high-latitude ionosphere and how this part of near space is affected by the properties of the solar wind and the interplanetary magnetic field are explored. A detailed discussion is provided on high-latitude magnetospheric physics at altitudes of 1-2 earth radii, the main focus of the Viking project. Specific topics considered include the role of the auroral ionosphere in magnetospheric substorms, the low altitude cleft, ionospheric modification and stimulated emissions, plasma physics on auroral field lines, solar wind-magnetosphere energy coupling, cold plasma distribution above a few thousand kilometers at high latitudes, hot electrons in and above the auroral ionosphere, the correlation of auroral kilometric radiation with visual auroras and with Birkeland currents, electrostatic waves in the topside ionosphere, solitary waves and double layers, and an Alfven wave model of auroral arcs

  15. Towards testing quantum physics in deep space

    Science.gov (United States)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  16. Space instrumentation: physics and astronomy in harmony?

    International Nuclear Information System (INIS)

    Aderin, M

    2008-01-01

    Surrey Satellite Technology Limited was formed as a company in 1985 and has been involved in 23 small satellite missions, making it the most successful and experienced small satellite supplier in the world. The challenge of getting a satellite into space takes a dedicated multidisciplinary team of physicists and engineers working together to achieve a common goal. In this paper the author will look at the breakdown of the teams for a number of space projects including NigeriaSAT1; one of the satellites that make up the Disaster Monitoring Constellation (DMC), which produces high quality commercial images for monitoring agriculture and the environment as well as dedicating a proportion of it's time to disaster monitoring. Commercial projects like this will be contrasted to instruments such as the Integral Field Unit (IFU) for the NIRSpec instrument on the James Webb Space Telescope (JWST is the replacement for the Hubble Space telescope). Although both projects have been running through commercial contracts at SSTL, how does the final goal of the instrument influence the synergy between the physics and the engineering needed to make it, and what, if any, economic differences are seen?

  17. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  18. Physics of untied rotating space elevators

    Science.gov (United States)

    Knudsen, Steven; Golubović, Leonardo

    2015-12-01

    We explore fundamental aspects of the physics of a novel class of dynamical systems, Rotating Space Elevators (RSE) (L. Golubović, S. Knudsen, Europhys. Lett. 86, 34001 (2009) and S. Knudsen, L. Golubović, Eur. Phys. J. Plus 129, 242 (2014)). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a double rotating motion due to which the objects sliding along the RSE string (climbers) can be transported far away from the Earth's surface without using internal engines or propulsion. By extensive numerical simulations and analytic calculations, this study addresses an interesting and provocative question at the very heart of the RSE physics: What will happen if one unties the rotating space elevator from the Earth? We find that the untied RSE exhibits rich nonlinear dynamics. In particular, strikingly, we find that the untied RSE may still behave as if it were tied to the planet. Such a quasi-tied yet untied RSE remains close to the Earth and exhibits persistent shape and enduring double rotating motion. Moreover, the climbers sliding along such a quasi-tied RSE move in much the same way as they do along a tied RSE. Under some conditions however we find that the untied RSE may undergo an instability leading it to a dynamical state in which the RSE hops well above the Earth surface. By changing the untied RSE parameters, the maximum height reached during hopping may be made to diverge. Such an untied RSE unbinds from the Earth to infinity, i.e., to interplanetary space.

  19. Space Physics Data Facility Web Services

    Science.gov (United States)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  20. Space research and cosmic plasma physics

    International Nuclear Information System (INIS)

    Alfven, H.

    1983-08-01

    Scientific progress depends on the development of new instruments. The change from Ptolemaic to Copernican cosmology was to a large extent caused by the introduction of telescopes. Similarly, space research has changed our possibilities to explore our large scale environment so drastically that a thorough revision of cosmic physics is now taking place. A list is given of a large number of fields in which this revision is in progress or is just starting. The new view are based on in situ measurements in the magnetospheres. By extrapolating these measurments to more distant regions, also plasma astrophysics in general has to be reconsidered. In certain important fields the basic approach has to be changed. This applies to cosmogony (origin and evolution of the solar system) and to cosmology. New results from laboratory and magnetospheric measurements extrapolated to cosmogonic conditions give an increased reliability to our treatment of the origin and evolution of the Solar system. Especially the Voyager observations of the saturnian rings give us the hope that we may transfer cosmogony from a playground for more or less crazy ideas into a respectable science. (author)

  1. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine

    2016-01-01

    BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess....

  2. How to upload a physical quantum state into correlation space

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki

    2011-01-01

    In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.

  3. Hearts, Minds, and the Library's Physical Space

    Science.gov (United States)

    Huwe, Terence K.

    2010-01-01

    The digital era has revolutionized society's perception of space. Even so, against this backdrop, the struggle to preserve and enhance library space is a battle for the hearts and minds of the communities. It is ongoing, and it will never end. In this article, the author explores two characteristics of successful drives to revitalize physical…

  4. Green space definition affects associations of green space with overweight and physical activity

    NARCIS (Netherlands)

    Klompmaker, Jochem O.; Hoek, Gerard; Bloemsma, Lizan D.; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H.; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A.H.

    Introduction In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data

  5. Trade in the Pacific Rim.

    Science.gov (United States)

    Dollar, David

    1988-01-01

    States that international trade is a prime factor linking the Pacific Rim nations. Discusses the differences in each nation's productive factors (land, labor, capital) and examines the emerging technological competition. Concludes that if U.S. firms cannot meet the challenge of foreign competition, then protectionism might limit further economic…

  6. CERN and ESA examine future fundamental physics research in space

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    A special workshop on Fundamental Physics in Space and related topics will be held at CERN in Geneva from 5 to 7 April 2000. Remarkable advances in technology and progress made in reliability and cost effectiveness of European space missions in recent years have opened up exciting new directions for such research. The workshop provides a forum for sharing expertise gained in high energy physics research with colleagues working in research in space.

  7. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    Science.gov (United States)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  8. CSSP implementation plan for space plasma physics programs

    International Nuclear Information System (INIS)

    Baker, D.N.; Williams, D.J.; Johns Hopkins Univ., Laurel, MD)

    1985-01-01

    The Committee on Solar and Space Physics (CSSP) has provided NASA with guidance in the areas of solar, heliospheric, magnetospheric, and upper atmospheric research. The budgetary sitation confronted by NASA has called for a prioritized plane for the implementation of solar and space plasma physics programs. CSSP has developed the following recommendations: (1) continue implementation of both the Upper Atmosphere Research Satellite and Solar Optical Telescope programs; (2) initiate the International Solar Terrestrial Physics program; (3) plan for later major free-flying missions and carry out the technology development they require; (4) launch an average of one solar and space physics Explorer per yr beginning in 1990; (5) enhance current Shuttle/Spacelab programs; (6) develop facility-class instrumentation; (7) augment the solar terrestrial theory program by FY 1990; (8) support a compute modeling program; (9) strengthen the research and analysis program; and (10) maintain a stable suborbital program for flexible science objectives in upper atmosphere and space plasma physics

  9. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    Science.gov (United States)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  10. The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim.

    Science.gov (United States)

    McPhee, M V; Whited, D C; Kuzishchin, K V; Stanford, J A

    2014-07-01

    This study explored the relationship between riverine physical complexity, as determined from remotely sensed metrics, and anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss. The proportion of anadromy (estimated fraction of individuals within a drainage that are anadromous) was correlated with riverine complexity, but this correlation appeared to be driven largely by a confounding negative relationship between drainage area and the proportion of anadromy. Genetic diversity decreased with latitude, was lower in rivers with only non-anadromous individuals and also decreased with an increasing ratio of floodplain area to total drainage area. Anadromy may be less frequent in larger drainages due to the higher cost of migration associated with reaches farther from the ocean, and the negative relationship between genetic diversity and floodplain area may be due to lower effective population size resulting from greater population fluctuations associated with higher rates of habitat turnover. Ultimately, the relationships between riverine physical complexity and migratory life history or genetic diversity probably depend on the spatial scale of analysis. © 2014 The Fisheries Society of the British Isles.

  11. Space- and ground-based particle physics meet at CERN

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  12. Playful Interactions Stimulating Physical Activity in Public Spaces

    DEFF Research Database (Denmark)

    Sturm, Janienke; Bekker, Tilde; Vanden Abeele, Vero

    In this position paper we describe our vision on designing playful interactions to persuade people to be physically active in public spaces. Social embeddedness and playful interaction are the core elements of this vision. We illustrate how our design vision is incorporated into innovative concepts...... to motivate each other to be physically active by creating challenges for each other. Designing playful solutions for public spaces asks for low-threshold solutions that support easy stepping in and stepping out solutions....

  13. Fish Creek Rim Research Natural Area: guidebook supplement 50

    Science.gov (United States)

    Reid Schuller; Ian Grinter

    2016-01-01

    This guidebook describes major biological and physical attributes of the 3531-ha (8,725-ac) Fish Creek Rim Research Natural Area located within the Northern Basin and Range ecoregion and managed by the Bureau of Land Management, Lakeview District (USDI BLM 2003).

  14. Ad Hoc Physical Hilbert Spaces in Quantum Mechanics

    Czech Academy of Sciences Publication Activity Database

    Fernandez, F. M.; Garcia, J.; Semorádová, Iveta; Znojil, Miloslav

    2015-01-01

    Roč. 54, č. 12 (2015), s. 4187-4203 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * physical Hilbert spaces * ad hoc inner product * singular potentials regularized * low lying energies Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015

  15. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  16. Physical collaborative play in public spaces

    DEFF Research Database (Denmark)

    Mosleh, Sara Said; Schmidt, Nele; Teisanu, Tudor

    2015-01-01

    As technology is developing rather quickly and taking up permanent roles in the everyday lives of people, it has led to a decreased social interaction between people, away from the physical worlds. Through ethnographical and design anthropological approaches, this paper seeks to present how people...... can be motivated to socially interact in environments that otherwise are antisocial. The main findings in this research show how people need a very clear reason for interaction and hold back despite the wish to interact due to unwritten cultural constraints. The outcome of the research is though...... limited to Danish socio-cultural environments and has potential to support similar studies in further western societies. When designing for the public it is crucial to consider the existing behaviour in the specific context in order to design means that do not vary too significantly from what is socially...

  17. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    Science.gov (United States)

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  18. Time and space: undergraduate Mexican physics in motion

    Science.gov (United States)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular

  19. Green space definition affects associations of green space with overweight and physical activity.

    Science.gov (United States)

    Klompmaker, Jochem O; Hoek, Gerard; Bloemsma, Lizan D; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A H

    2018-01-01

    In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness. Copyright © 2017 The Authors. Published by

  20. On the physics of electron beams in space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.

    2002-01-01

    This paper discusses the main physical processes related to the injection, the propagation and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the physical linear and nonlinear mechanisms involved in the generation, the stabilization and the saturation of the electromagnetic waves excited by the beams in wide frequency ranges. and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the

  1. Reduced Pseudoneglect for Physical Space, but Not Mental Representations of Space, for Adults with Autistic Traits

    Science.gov (United States)

    English, Michael C.; Maybery, Murray T.; Visser, Troy A.

    2017-01-01

    Neurotypical individuals display a leftward attentional bias, called pseudoneglect, for physical space (e.g. landmark task) and mental representations of space (e.g. mental number line bisection). However, leftward bias is reduced in autistic individuals viewing faces, and neurotypical individuals with autistic traits viewing "greyscale"…

  2. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  3. Semantic e-Science in Space Physics - A Case Study

    Science.gov (United States)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  4. Space-time structure and the origin of physical law

    International Nuclear Information System (INIS)

    Green, M.A.

    1980-01-01

    In the first part of this theses the author adopts a traditional world view, with space-time a topologically simple geometrical manifold, matter being represented by smooth classical fields, and space a Riemannian submanifold of space-time. It is shown how to characterize the space-time geometry in terms of fields defined on three-dimensional space. Accepting a finite number of the fields induced on space as independent initial data, a procedure is given for constructing dynamical and constraint equations which will propagate these fields forward in time. When the initial data are restricted to include only the hypersurface metric and the extrinsic curvature, the resulting equations combine to form the Einstein gravitational field equations with the cosmological term. The synthesis of gravitational and quantum physics is approached by proposing that the objective world underlying the perceived world is a four-dimensional topological manifold w, with no physically significant field structure and an unconstrianed and complex global topology. Conventional space-time is then a topologically simple replacement manifold for w. A preliminary outline of the correspondence is presented, based on a similarity between a natural graphical representation of 2 and the Feynman graphs of quantum field theory

  5. A journey from particle physics to outer space

    CERN Document Server

    2006-01-01

    Particle physics can take you a long way - even into space! Astronaut Christer Fuglesang recently jetted into orbit on his first space mission, 14 years after he left CERN to join the European Space Agency. Christer Fuglesang near the launch pad area at NASA's Kennedy Space Center, Florida, in preparation for the STS-116 mission. (photo: ESA, S.Corvaja)Christer Fuglesang in space (photo: NASA). In CERN's years of efforts to explore the fundamentals of the Universe, it has not yet sent anyone beyond planet Earth. On 10 December 2006, Christer Fuglesang boldly went where no CERN scientist had ever gone before. The 49-year-old ex-CERN physicist-turned-astronaut embarked on his first mission on board space shuttle Discovery. Originally from Stockholm, he also had the honour of being the first Swedish national in space. Christer Fuglesang is an astronaut with the European Space Agency (ESA), a partner of the International Space Station (ISS) - a research facility that is being assembled in orbit around the Earth...

  6. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  7. Space, Time, Matter, and Form Essays on Aristotle's Physics

    CERN Document Server

    Bostock, David

    2006-01-01

    Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time

  8. Renormalization group in statistical physics - momentum and real spaces

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1988-01-01

    Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs

  9. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    Science.gov (United States)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  10. Asymptotic analysis of the dewetting rim

    NARCIS (Netherlands)

    Snoeijer, Jacco H.; Eggers, Jens

    2010-01-01

    Consider a film of viscous liquid covering a solid surface, which it does not wet. If there is an initial hole in the film, the film will retract further, forming a rim of fluid at the receding front. We calculate the shape of the rim as well as the speed of the front using lubrication theory. We

  11. Pacific Rim log trade: determinants and trends.

    Science.gov (United States)

    Donald F. Flora; Andrea L. Anderson; Wendy J. McGinnls

    1991-01-01

    Pacific Rim trade in softwood logs amounts to about $3 billion annually, of which the U.S. share is about $2 billion. Log exporting is a significant part of the forest economy in the Pacific Northwest. The 10 major Pacific Rim log-trading client and competitor countries differ widely in their roles in trade and in their policies affecting the industry.

  12. CO observations of a molecular cloud complex associated with the bright rim near VY Canis Majoris

    International Nuclear Information System (INIS)

    Lada, C.J.; Reid, M.J.

    1978-01-01

    Extensive CO observations of a large molecular cloud complex (approx. 15 pc) associated with a bright rim near the peculiar star VY CMa are presented. CO emission peaks in a region along and adjacent to the bright rim which forms the western border of the cloud complex. This emission abruptly decreases across the bright rim, and this decrease suggests a physical association of the rim with the cloud. The molecular complex is found to consist of two clouds which have different radial velocities and physical properties. The possibility that these two clouds may be in near-collision is discussed. The physical association of the bright rim with the cloud complex indicates that the clouds are at the same distance, 1.5 kpc, as the stars which excite the rim. Since VY CMa appears to be located at the tip of the bright rim and has a velocity similar to that of the molecular cloud complex and the stars of the cluster NGC 2362, it is concluded that VY CMa is also at the same distance. The resulting luminosity of VY CMa (5 x 10 5 L sub solar) indicates that the star is very massive, and places constraints on interpretation of its evolutionary state. 5 figures, 2 tables

  13. RIMS [Records Inventory Management System] Handbook

    International Nuclear Information System (INIS)

    1989-03-01

    The Records Inventory Management System (RIMS) is a computer library of abstracted documents relating to low-level radioactive waste. The documents are of interest to state governments, regional compacts, and the Department of Energy, especially as they relate to the Low-Level Radioactive Waste Policy Act requiring states or compacts of states to establish and operate waste disposal facilities. RIMS documents are primarily regulatory, policy, or technical documents, published by the various states and compacts of the United States; however, RIMS contains key international publications as well. The system has two sections: a document retrieval section and a document update section. The RIMS mainframe can be accessed through a PC or modem. Also, each state and compact may request a PC version of RIMS, which allows a user to enter documents off line and then upload the documents to the mainframe data base

  14. The physics origin of the hierarchy of bodies in space

    Science.gov (United States)

    Bejan, A.; Wagstaff, R. W.

    2016-03-01

    Here we show that bodies of the same size suspended uniformly in space constitute a system (a "suspension") in a state of uniform volumetric tension because of mass-to-mass forces of attraction. The system "snaps" hierarchically, and evolves faster to a state of reduced tension when the bodies coalesce spontaneously nonuniformly, i.e., hierarchically, into few large and many small bodies suspended in the same space. Hierarchy, not uniformity, is the design that emerges, and it is in accord with the constructal law. The implications of this principle of physics in natural organization and evolution are discussed.

  15. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  16. Thermoviscous Coating and Rimming Flow

    KAUST Repository

    Leslie, G. A.; Wilson, S. K.; DUFFY, B. R.

    2012-01-01

    A comprehensive description is obtained of steady thermoviscous (that is, with temperature-dependent viscosity) coating and rimming flow of a thin film of fluid on a uniformly rotating horizontal cylinder that is uniformly hotter or colder than the surrounding atmosphere. It is found that, as in the corresponding isothermal problem, there is a critical solution with a corresponding critical load (which depends, in general, on both the Biot number B and the thermoviscosity number V) above which no 'full-film' solutions corresponding to a continuous film of fluid covering the entire outside or inside of the cylinder exist. The effect of thermoviscosity on both the critical solution and the full-film solution with a prescribed load is described. In particular, there are no full-film solutions with a prescribed load M for any value of B when for positive V and when M ≥ f-1/2 Mc0 for negative V, where is a monotonically decreasing function of V and M c0 ≃ 4.44272 is the critical load in the constant-viscosity case. It is also found that, for the exponential viscosity model, when the prescribed load satisfies M < 1.50315 there is a narrow region of the B-V parameter plane in which backflow occurs. © 2012 The Author. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Thermoviscous Coating and Rimming Flow

    KAUST Repository

    Leslie, G. A.

    2012-10-22

    A comprehensive description is obtained of steady thermoviscous (that is, with temperature-dependent viscosity) coating and rimming flow of a thin film of fluid on a uniformly rotating horizontal cylinder that is uniformly hotter or colder than the surrounding atmosphere. It is found that, as in the corresponding isothermal problem, there is a critical solution with a corresponding critical load (which depends, in general, on both the Biot number B and the thermoviscosity number V) above which no \\'full-film\\' solutions corresponding to a continuous film of fluid covering the entire outside or inside of the cylinder exist. The effect of thermoviscosity on both the critical solution and the full-film solution with a prescribed load is described. In particular, there are no full-film solutions with a prescribed load M for any value of B when for positive V and when M ≥ f-1/2 Mc0 for negative V, where is a monotonically decreasing function of V and M c0 ≃ 4.44272 is the critical load in the constant-viscosity case. It is also found that, for the exponential viscosity model, when the prescribed load satisfies M < 1.50315 there is a narrow region of the B-V parameter plane in which backflow occurs. © 2012 The Author. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    Science.gov (United States)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  19. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  20. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  1. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  2. Swedish Institute of Space Physics. Annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main task of the institute is to conduct research and perform observatory measurements in the field of space physics. It shall also provide postgraduate education in space physics. IRF consists of four divisions. The largest division as well as the main office is situated in Kiruna. The other divisions are the Laboratory of Mechanical Waves in Soerfors, the Umeaa Division and the Uppsala Division. Lycksele Ionospheric Observatory belongs to the Kiruna Division. The different divisions have independent research programmes and separate research grants. The field of study taking up most resources at IRF in Kiruna today is the in situ hot plasma investigations. We develop and build various types of plasma spectrometers for the energy range from 1 eV to several hundred keV. To date instruments constructed in Kiruna have been flown on eight satellites and more than 40 sounding rockets. We have also developed ground support equipment for a plasma experiment on board the Giotto spacecraft. (authors) The laboratory of Mechanical Waves concentrates on applied and basic research concerning infrasound and low frequency vibration; Development of methods for detection and signal processing of mechanical waves, and Investigation of the middle atmosphere through measurements of the propagation of infra-acoustic waves. The Umeaa and Uppsala divisions have their main interests in the areas of space plasma physics, e.g. wave-particle interactions and high latitude ionospheric phenomena. (L.E.)

  3. Structural optimization of the Halbach array PM rim thrust motor

    Science.gov (United States)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.

  4. An Absolute Phase Space for the Physicality of Matter

    International Nuclear Information System (INIS)

    Valentine, John S.

    2010-01-01

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  5. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  6. Universal Rim Thickness in Unsteady Sheet Fragmentation

    Science.gov (United States)

    Wang, Y.; Dandekar, R.; Bustos, N.; Poulain, S.; Bourouiba, L.

    2018-05-01

    Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.

  7. Girls InSpace project: A new space physics outreach initiative.

    Science.gov (United States)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space

  8. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  9. PREFACE: International Symposium on Physical Sciences in Space

    Science.gov (United States)

    Meyer, Andreas; Egry, Ivan

    2011-12-01

    ISPS is the major international scientific forum for researchers in physics utilizing the space environment, in particular microgravity. It is intended to inspire and encourage cross-cutting discussions between different scientific communities working in the same environment. Contributions discussing results of experiments carried out on drop towers, parabolic aircraft flights, sounding rockets, unmanned recoverable capsules and, last but not least, the International Space Station ISS, are the backbone of this conference series, complemented by preparatory ground-based work, both experimentally and theoretically. The first International Symposium on Physical Sciences in Space (ISPS) sponsored by the International Microgravity Strategic Planning Group (IMSPG) took place in 2000 in Sorrento, Italy. IMSPG seeks to coordinate the planning of space for research in physical sciences by space agencies worldwide. AEB (Brazil), ASI (Italy), CNES (France), CSA (Canada), DLR (Germany), ESA (Europe), JAXA (Japan), NASA (USA), NSAU (Ukraine) and RSA (Russia) are members, and CNSA (China) and ISRO (India) are also invited to join IMSPG meetings. ISPS-4 was the fourth symposium in that series, following ISPS-2 organized by CSA in 2004 in Toronto, Canada, and ISPS-3 organized in 2007 by JAXA in Nara, Japan. ISPS-4 was jointly organized by ESA and DLR on behalf of the IMSPG and was held in Bonn from 11-15 July 2011. 230 participants from 17 different countries attended ISPS-4. Recent microgravity experiments were presented, analysed, and set in context to results from Earth bound experiments in 16 plenary and 68 topical talks. Lively discussions continued during two dedicated poster sessions and at the exhibition booths of space industry and research centers with new flight hardware on display. The oral presentations at ISPS4 were selected exclusively on the basis of scientific merit, as evidenced through the submitted abstracts. The selection was performed by the International

  10. Space, Time, and Spacetime Physical and Philosophical Implications of Minkowski's Unification of Space and Time

    CERN Document Server

    Petkov, Vesselin

    2010-01-01

    This volume is dedicated to the centennial anniversary of Minkowski's discovery of spacetime. It contains selected papers by physicists and philosophers on the Nature and Ontology of Spacetime. The first six papers, comprising Part I of the book, provide examples of the impact of Minkowski's spacetime representation of special relativity on the twentieth century physics. Part II also contains six papers which deal with implications of Minkowski's ideas for the philosophy of space and time. The last part is represented by two papers which explore the influence of Minkowski's ideas beyond the philosophy of space and time.

  11. Towards augmented reality: The dialectics of physical and virtual space

    Directory of Open Access Journals (Sweden)

    Guga Jelena

    2015-01-01

    Full Text Available Spaces generated by new media technologies, no matter how abstract they may be, represent a qualitatively new form of the media environment. Moreover, they are integrated into everyday life in a way that they have become the constituents of social reality. Based on dualistic Cartesian understanding of real and virtual space, virtuality still carries a connotation of 'other' world, which is ontologically and phenomenologically different from 'reality'. However, virtuality as a characteristic of new media technologies should neither be equated with illusion, deception or fiction nor set in opposition to reality, given that it embodies real interactions. Instead, we could say that there are different types or levels of reality and that the virtual exists as reality qualitatively different from that of physical reality. Today, when every place on the planet, as well as social, political, and cultural activities, have their digital manifestations, can we still talk about virtual space as an isolated phenomenon? The ubiquitous use of new media technologies such as smartphones or wearables has profoundly transformed the experience of modern man. It is more and more determined by technologically mediated reality, i.e. augmented reality. In this regard, the key issues that will be addressed in this article are the ways technologically mediated spaces redefine not only the social relationships, but also the notions of identity, embodiment, and the self.

  12. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  13. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  14. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  15. Appreciation of the 2015 JGR Space Physics Peer Reviewers

    Science.gov (United States)

    Liemohn, Michael W.; Balikhin, Michael; Kepko, Larry; Rodger, Alan; Wang, Yuming

    2016-01-01

    The Editors of the Journal of Geophysical Research Space Physics are deeply indebted to the many people among the research community that serve this journal through peer review. The journal could not exist without the time and effort invested by the community through this voluntary activity, providing expert evaluations and thoughtful assessments of the work of others. In 2015, the journal had 1506 scientists contribute to the process with at least one peer review, for a total of 3575 reviews completed, including additional reviews of resubmitted manuscripts. There were 277 reviewers that contributed four or more reports in 2015. The average number of reviews per referee in 2015 was, therefore, 2.4. Note that the total number of manuscript final decisions (i.e., accept or reject) for Journal of Geophysical Research (JGR) Space Physics was 1147 in 2015. Of this, 774 were accepted and 373 were declined, for an acceptance rate of 67% last year. If the 1334 "revision" decisions are included in the tally, then the total number of decisions made in 2015 was 2481. Working out the arithmetic, it means that on average, a manuscript gets about 1.2 revision decisions before a final accept-or-reject decision. This explains the 3.1 average number of reviews per manuscript throughout each paper's lifetime in the submission-revision editorial process. We are pleased and happy that the research community is willing and able to devote their resources toward this service endeavor. We appreciate each and every one of you that helped maintain the high quality of papers in JGR Space Physics last year. We look forward to another excellent year working with all of you through the year ahead.

  16. The role of physical space in labour–management cooperation

    DEFF Research Database (Denmark)

    Ilsøe, Anna; Felbo-Kolding, Jonas

    2018-01-01

    Many studies on labour–management relations have focused on formal cooperation in manufacturing. This calls for further research and theory development on labour–management interactions in private service companies, where cooperation practices appear to be less formal. In this article, a typology...... of cooperation between managers and employees is developed, based on a microsociological study conducted in the Danish retail trade in 2013. Drawing on six indepth case studies, the article identifies four different physical spaces of labour–management cooperation: open collective, closed collective, open...

  17. InfoGallery: Informative Arts Services for Physical Library Spaces

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Rohde, Anne; Sundararajah, Balasuthas

    2006-01-01

    Much focus in digital libraries research has been devoted to new online services rather than services for the visitors in the physical library. This paper describes InfoGallery, which is a web-based infrastructure for enriching the physical library space with informative art "exhibitions......" of digital library material and other relevant information, such as RSS news streams, event announcements etc. InfoGallery presents information in an aesthetically attractive manner on a variety of surfaces in the library, including cylindrical displays and floors. The infrastructure consists of a server...... structure, an editor application and a variety of display clients. The paper discusses the design of the infrastructure and its utilization of RSS, podcasts and manually edited news. Applications in the library domain are described and the experiences are discussed....

  18. Data management, archiving, visualization and analysis of space physics data

    Science.gov (United States)

    Russell, C. T.

    1995-01-01

    A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.

  19. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  20. The extensions of space-time. Physics in the 8-dimensional homogeneous space D = SU(2,2)/K

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-07-01

    The Minkowski space-time is only a boundary of a bigger homogeneous space of the conformal group. The conformal group is the symmetry group of our most fundamental massless wave equations. These extended groups and spaces have many remarkable properties and physical implications. (author). 36 refs

  1. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  2. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  3. Unitary quantum physics with time-space non-commutativity

    International Nuclear Information System (INIS)

    Balachandran, A P; Govindarajan, T R; Martins, A G; Molina, C; Teotonio-Sobrinho, P

    2005-01-01

    In these lectures 4 quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schroedinger equation is studied. The theory is further extended to certain noncommutative versions of the cylinder, R 3 and R x S 3 . In all these models, only discrete time translations are possible. One striking consequence of quantised time translations is that even though a time independent Hamiltonian is an observable, in scattering processes, it is conserved only modulo 2π/θ, where θ is the noncommutative parameter. Scattering theory is formulated and an approach to quantumfield theory is outlined

  4. Fast Magnetic Reconnection: Bridging Laboratory and Space Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Amitava [University New Hampshire- Durham

    2012-02-16

    Recent developments in experimental and theoretical studies of magnetic reconnection hold promise for providing solutions to outstanding problems in laboratory and space plasma physics. Examples include sawtooth crashes in tokamaks, substorms in the Earth’s Magnetosphere, eruptive solar flares, and more recently, fast reconnection in laser-produced high energy density plasmas. In each of these examples, a common and long-standing challenge has been to explain why fast reconnection proceeds rapidly from a relatively quiescent state. In this talk, we demonstrate the advantages of viewing these problems and their solutions from a common perspective. We focus on some recent, surprising discoveries regarding the role of secondary plasmoid instabilities of thin current sheets. Nonlinearly, these instabilities lead to fast reconnection rates that are very weakly dependent on the Lundquist number of the plasma.

  5. Hamiltonian and physical Hilbert space in polymer quantum mechanics

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A

    2007-01-01

    In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so-called polymer representation of the Heisenberg-Weyl (HW) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed

  6. Relativity Based on Physical Processes Rather Than Space-Time

    Science.gov (United States)

    Giese, Albrecht

    2013-09-01

    Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.

  7. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  8. SPASE: The Connection Among Solar and Space Physics Data Centers

    Science.gov (United States)

    Thieman, James R.; King, Todd A.; Roberts, D. Aaron

    2011-01-01

    The Space Physics Archive Search and Extract (SPASE) project is an international collaboration among Heliophysics (solar and space physics) groups concerned with data acquisition and archiving. Within this community there are a variety of old and new data centers, resident archives, "virtual observatories", etc. acquiring, holding, and distributing data. A researcher interested in finding data of value for his or her study faces a complex data environment. The SPASE group has simplified the search for data through the development of the SPASE Data Model as a common method to describe data sets in the various archives. The data model is an XML-based schema and is now in operational use. There are both positives and negatives to this approach. The advantage is the common metadata language enabling wide-ranging searches across the archives, but it is difficult to inspire the data holders to spend the time necessary to describe their data using the Model. Software tools have helped, but the main motivational factor is wide-ranging use of the standard by the community. The use is expanding, but there are still other groups who could benefit from adopting SPASE. The SPASE Data Model is also being expanded in the sense of providing the means for more detailed description of data sets with the aim of enabling more automated ingestion and use of the data through detailed format descriptions. We will discuss the present state of SPASE usage and how we foresee development in the future. The evolution is based on a number of lessons learned - some unique to Heliophysics, but many common to the various data disciplines.

  9. Introduction to Plasma Physics: With Space and Laboratory Applications

    International Nuclear Information System (INIS)

    Browning, P K

    2005-01-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, 'with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfven wave theory, observations of Alfven waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects - a large subject! - are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  10. Histologia e ultraestrutura do rim e rim cefálico do pacu

    Directory of Open Access Journals (Sweden)

    Gerlane M. Costa

    2012-05-01

    Full Text Available O pacu, Piaractus mesopotamicus, é um teleósteo da Família Characidae, intensivamente cultivado no Brasil devido sua rusticidade, crescimento rápido e fácil adaptação. O conhecimento morfológico dos sistemas corpóreos, incluído órgãos linfóide, se faz necessário, para uma melhor produção no cultivo de peixes, fornecendo subsídios na manutenção dos estoques. O objetivo deste estudo foi descrever morfologicamente o rim e rim cefálico de Piaractus mesopotamicus, analisando os perfis celulares de cada órgão com o uso de microscopia de luz e microscopia eletrônica de transmissão. O resultado da análise macroscópica mostrou que a localização do rim e rim cefálico são as mesmas encontradas na maioria dos teleósteos. O rim apresentou uma forma em "H", onde a região média se expandia sobre a bexiga natatória. O rim cefálico se apresentou como uma dilatação na região cranial do rim, mostrando-se bem visível. Na microscopia eletrônica de transmissão também foram observadas similaridades ultraestruturais com outros teleósteos. Observando nossos resultados concluímos que histologicamente e ultraestruturalmente, os órgãos linfóides rim e rim cefálico de Piaractus mesopotamicus são similares aos de outros teleósteos.

  11. Low Cost Balloon programme of Indian Centre for Space Physics

    Science.gov (United States)

    Chakrabarti, Sandip Kumar

    2016-07-01

    Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.

  12. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  13. Online space physics data services at SINP MSU

    Science.gov (United States)

    Kalegaev, V.; Bobrovnikov, S.; Alexeev, I.

    A WWW-based online space physics data services are developed at Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU). These services provide fast access to data, images and information on the Earth's environment collected at SINP MSU. Data available on the Internet using anonymous ftp (dbserv.sinp.msu.ru) and WWW (http://alpha.sinp.msu.ru/datasets.html is the data archive, and http://alpha.sinp.msu.ru/dataintr.html is data retrieval forms). All the data have been loaded into the Oracle database. They were carefully organized for the fastest access and search capabilities. WWW interface is based on the Apache Webserver software and PHP scripting language. PHP-based scripts have the direct access to the tables of data in the Oracle database. HTML-based self-explanatory forms provide a simple mechanism of data selection for an appropriate period of time. They enable unified access to all datasets independent on the structure of the data. Using available tools user can browse and download data.

  14. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  15. The physical space as a barrier to school inclusion

    Directory of Open Access Journals (Sweden)

    Kênnea Martins Almeida

    2015-03-01

    Full Text Available The architecture and organization of school buildings can be facilitators or barriers in implementing the process of school inclusion, and the assessment for their suitability composes an important part of the role that the rehabilitation team plays in this process. The aim of the present study was to assess the physical accessibility of public schools in a municipality of Minas Gerais state, Brazil. We conducted a descriptive, cross-sectional study with evaluation of the physical spaces of 14 schools, especially the areas of access, circulation, furniture, restrooms and parking, according to the criteria described in the Brazilian Standard 9050/2004. The results were presented in the form of descriptive statistics. Of the 493 items evaluated, 85.6% were considered inadequate. In the sector of access, circulation and furniture, 81.4% of the items were inadequate. In the health sector, 94.6% of the items were inadequate, and no restrooms contemplating all accessibility standards were found. In the parking sector, 83.4% of the items were inadequate. It was possible to identify that none of the state schools assessed in the municipality studied is prepared to make the inclusion of children with special needs with regard to accessibility.

  16. Echogenic rim of hepatic hemangioma on abdominal ultrasound

    International Nuclear Information System (INIS)

    Park, Sang Woo; Kang, Chang Ho; Kim, Jin Hyoung; Kim, Chul Joong; Cheong, In Joo; Kim, Baek Hyun; Cha, Sang Hoon; Park, Cheol Min; Chung, Kyu Byung

    2000-01-01

    To investigate the association between the size of the hepatic hemangioma and the shape and thickness of the echogenic rim of hepatic hemangioma on abdominal ultrasound. We examined 47 cases (M:F=24:23, mean age 47.1) of hepatic hemangiomas with echogenic rim on abdominal ultrasound during the past 2 years. Radiologic findings were retrospectively reviewed in terms of completeness and thickness of echogenic rim. If echogenic rim showed even thickness, it was measured. But if not, the maximum and minimum thickness of the rim was measured. The association between the size of hemangioma and the completeness and thickness of the echogenic rim were analyzed statistically. Of the 47 cases, complete echogenic rim and incomplete echogenic rim were obtained in 29 (62%) and 18 (38%) cases, respectively. Twenty-two cases of hemangioma were less than 2 cm in diameter, and their distribution according to echogenic rim were as follows: complete echogenic rim (17/20, 91% mean thickness 2.2 cm) and uneven thickness with complete echogenic rim (3/20, 15%, range:2.0-6.1 mm). Twenty-five hemangiomas were larger than 2 cm in diameter and their distribution according to echogenic rim were as follows: complete echogenic rim (n=9, 34%), incomplete echogenic rim (n=16, 64%0,even thickness with complete echogenic rim (3/9, 33%, mean thickness 2.2 mm) and uneven thickness with complete echogenic rim (6/9,67%, range: 2.0-7.6 mm). In statistical analysis, hemangiomas more than 2 cm in diameter were more likely to have incomplete echogenic rim (p<0.05) than those of less than 2 cm; hemangiomas more than with more than 2 cm in diameter and complete echogenic rim showed uneven thickness of echogenic rim (p<0.05), more often than those of less than 2 cm diameter. Hemangiomas with more than 2 cm in diameter showed more frequent incomplete echogenic rim than those of less than 2 cm in diameter, which had more frequent complete echogenic rim. Hemangiomas with complete echogenic rim and even rim

  17. Reaction kinetics of dolomite rim growth

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Abart, R.; Morales, L. F. G.; Rhede, D.; Jeřábek, P.; Dresen, G.

    2014-04-01

    Reaction rims of dolomite (CaMg[CO3]2) were produced by solid-state reactions at the contacts of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals at 400 MPa pressure, 750-850 °C temperature, and 3-146 h annealing time to determine the reaction kinetics. The dolomite reaction rims show two different microstructural domains. Elongated palisades of dolomite grew perpendicular into the MgCO3 interface with length ranging from about 6 to 41 µm. At the same time, a 5-71 µm wide rim of equiaxed granular dolomite grew at the contact with CaCO3. Platinum markers showed that the original interface is located at the boundary between the granular and palisade-forming dolomite. In addition to dolomite, a 12-80 µm thick magnesio-calcite layer formed between the dolomite reaction rims and the calcite single crystals. All reaction products show at least an axiotactic crystallographic relationship with respect to calcite reactant, while full topotaxy to calcite prevails within the granular dolomite and magnesio-calcite. Dolomite grains frequently exhibit growth twins characterized by a rotation of 180° around one of the equivalent axis. From mass balance considerations, it is inferred that the reaction rim of dolomite grew by counter diffusion of MgO and CaO. Assuming an Arrhenius-type temperature dependence, activation energies for diffusion of CaO and MgO are E a (CaO) = 192 ± 54 kJ/mol and E a (MgO) = 198 ± 44 kJ/mol, respectively.

  18. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  19. Teaching solar physics in an informal educational space

    Science.gov (United States)

    Aroca, S. C.

    2009-02-01

    Observatories and planetariums offer the possibility of developing contextualized astronomy teaching by fostering educational activities that provide access to a more authentic school science. Thus, this research consisted in developing, applying and evaluating courses about the Sun for middle, junior high school students and solar physics for high school students in an informal educational space, the CDCC/USP Astronomical Observatory. Topics of chemical composition, temperature and stellar evolution were taught in a room totally dedicated to the study of the Sun, a Solar Room, designed with simple and inexpensive equipment. The course strongly emphasized practical, observational and inquirybased activities, such as estimation of the solar surface temperature, observation of the visible solar spectrum, identication of solar absorption lines, understanding how they are produced, and what kind of information can be extracted from the observed spectral lines. Some of the course goals were to foster the comprehension of the key role played by spectroscopy in astrophysics, to contextualize contents with practical activities, and to allow interdisciplinary approaches including modern physics and chemistry in physics teaching. The research methodology consisted of a qualitative approach by fillming the whole course and performing written questionnaires and semi-structured interviews. Before the courses were applied most students conceived the Sun as a hot sphere composed of fire, sunspots as holes in the Sun and solar prominences as magma expelled by volcanoes. After the courses students presented ideas about the Sun and solar physics more closely related to the ones accepted by contemporary science. This research was not restricted to students' cognitive gains after concluding the courses, since it considered the interaction of different contexts responsible for learning in science museums. This was possible due to the theoretical framework adopted: The Contextual Model

  20. The Evaluation of Physical Space Quality in Education Buildings in Regard to User Satisfaction

    Directory of Open Access Journals (Sweden)

    Filiz ŞENKAL SEZER

    2016-08-01

    Full Text Available In this study, physical space quality of two different engineering department buildings in Uludag University Gorukle Campus, Bursa, Turkey are analyzed in regard to user evaluations about the physical space quality. In the analysis of these evaluations, criteria about physical space quality are predetermined by the authors. In the method of the study, the below phases are implemented. In first, the literature review about the physical space quality is done and then a questionnaire is prepared with regard to the key themes in literature review in order to evaluate the user satisfaction. The  key themes in user satisfaction questionnaire is accessibility, ergonomics, thermal comfort, audible comfort, visual comfort, inner space air quality, service spaces, socialization. The aim of this study is first to understand which criteria are important for the students and then to improve the physical space quality in regard to the dissatisfaction.

  1. The Spark of Disruptive Innovation for Space Physics and Aeronomy

    Science.gov (United States)

    MacDonald, E.

    2017-12-01

    What is disruptive innovation and why does it matter for Space Physics and Aeronomy (SPA)? This presentation will define disruptive innovation and present several examples relevant to SPA. These examples range from Cubesats to Citizen Science. Disruptive innovation requires not just an idea but also execution. Why do we need disruptive innovation? Simply put, we need to break out of our comfortable rut to solve bigger problems and evolve as a field for the future. These opportunities are exciting and they are difficult. SPA is well-suited to these types of interdisciplinary applications, due to its dual fundamental and applied nature that dovetails with many other fields. Challenges are that we do not incentivize disruptive innovation, we do not recognize it, and we typically do not fund it. As a result we are risk averse and we suffer from the "Matthew effect" of accumulated advantage. We do not allow ourselves to learn from new and uncomfortable angles and recognize the innovation that comes from there. The strength of having a more diverse and inclusive field is that a range of more diverse ideas and perspectives will be promoted. The next big innovations for SPA may come from the outside, and the best way to capture such ideas may be to promote diversity and inclusion at all levels.

  2. Augmentation of Virtual Space Physics Observatory Services to Expand Data Access Capabilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquilent, Inc. proposes to support the effort of Virtual Space Physics Observatory (VSPO) by developing services to expand the VSPO search capabilities, developing...

  3. Grafting the alar rim: application as anatomical graft.

    Science.gov (United States)

    Gruber, Ronald P; Fox, Paige; Peled, Anne; Belek, Kyle A

    2014-12-01

    Alar rim contour and alar rim grafts have become essential components of rhinoplasty. Ideally, grafts of the nose should be anatomical in shape. So doing might make grafts of the alar rim more robust. The authors considered doing that by applying the graft as a continuous extension of the lateral crus. Twelve patients (two men and 10 women) constituted the study group (seven primary and five secondary cases). Of those, there were five concave rims, two concave rims with rim retraction, two boxy tips, and three cephalically oriented lateral crura. Surgical technique included the following: (1) an open approach was used; (2) a marginal incision that ignored the caudal margin of the lateral crus (the incision went straight posteriorly to a point 5 to 6 mm from the rim margin) was used; (3) a triangular graft was made to cover the exposed vestibular skin; (4) it was secured end to end to the caudal border of the lateral crus; and (5) the poster end was allowed to sit in a small subcutaneous pocket. Follow-up was 11 to 19 months. All 12 patients exhibited good rims as judged by a blinded panel. Rim retraction was not fully corrected in one patient, but no further treatment was required. One patient did require a secondary small rim graft for residual rim concavity. The concept of grafting the alar rim is strongly supported by the authors' results. The modifications the authors applied by designing the graft to be anatomical in shape has been a technical help.

  4. Rim instability of bursting thin smectic films

    Science.gov (United States)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  5. Distance to green space and physical activity: a danish national representative survey

    DEFF Research Database (Denmark)

    Toftager, Mette; Ekholm, Ola; Schipperijn, Jasper

    2011-01-01

    This study examines the relationship between distance to green space and the level of physical activity among the population of Denmark. In addition, the relationship between distance to green space and obesity is investigated.......This study examines the relationship between distance to green space and the level of physical activity among the population of Denmark. In addition, the relationship between distance to green space and obesity is investigated....

  6. Managing oil logistics around the Baltic Rim

    International Nuclear Information System (INIS)

    Kilander, H.

    1997-01-01

    Finland's Neste Group is a major player in the oil business in the Baltic area. Neste tankers and petroleum product logistics services comprehensively serve the region. Neste's main Baltic Rim terminal outside Finland is located at Muuga close to the Estonian capital, Tallinn. This will be joined by one in Riga in Latvia at the end of this year. A terminal for St. Petersburg is in the planning stage

  7. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda.

    Science.gov (United States)

    Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie

    2015-05-01

    Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.

    Science.gov (United States)

    Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld

    2005-03-01

    Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.

  9. Challenges in Teaching Space Physics to Different Target Groups From Space Weather Forecasters to Heavy-weight Theorists

    Science.gov (United States)

    Koskinen, H. E.

    2008-12-01

    Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.

  10. INSPIRE: Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Franzen, K. A.; Garcia, L. N.; Webb, P. A.; Green, J. L.

    2007-12-01

    The INSPIRE Project is a non-profit scientific and educational corporation whose objective is to bring the excitement of observing very low frequency (VLF) natural radio waves to high school students. Underlying this objective is the conviction that science and technology are the underpinnings of our modern society, and that only with an understanding of these disciplines can people make correct decisions in their lives. Since 1989, the INSPIRE Project has provided specially designed radio receiver kits to over 2,500 students and other groups to make observations of signals in the VLF frequency range. These kits provide an innovative and unique opportunity for students to actively gather data that can be used in a basic research project. Natural VLF emissions that can be studied with the INSPIRE receiver kits include sferics, tweeks, whistlers, and chorus, which originate from phenomena such as lightning. These emissions can either come from the local atmospheric environment within a few tens of kilometers of the receiver or from outer space thousands of kilometers from the Earth. VLF emissions are at such low frequencies that they can be received, amplified and turned into sound that we can hear, with each emission producing in a distinctive sound. In 2006 INSPIRE was re-branded and its mission has expanded to developing new partnerships with multiple science projects. Links to magnetospheric physics, astronomy, and meteorology are being identified. This presentation will introduce the INSPIRE project, display the INSPIRE receiver kits, show examples of the types of VLF emissions that can be collected and provide information on scholarship programs being offered.

  11. RIMS/sup tm/ - radiological information management system: software package EI-029-S86

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    RIMS/sup tm/ has been developed for health physics record keeping and reporting. It provides for the management needs relating to radiological information control at a nuclear facility. The program is comprised of the following modules: Personnel Radiological Information, Radiological Work Permit, Radiation Survey Records, Access Control, ALARA Reporting, and Respirator and Survey Instrument Inventory Modules.

  12. RIMS/sup tm/ - radiological information management system: software package EI-029-S86

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    RIMS/sup tm/ has been developed for health physics record keeping and reporting. It provides for the management needs relating to radiological information control at a nuclear facility. The program is comprised of the following modules: Personnel Radiological Information, Radiological Work Permit, Radiation Survey Records, Access Control, ALARA Reporting, and Respirator and Survey Instrument Inventory Modules

  13. Quantum physics of an elementary system in de Sitter space

    International Nuclear Information System (INIS)

    Rabeie, A.

    2012-01-01

    We present the coherent states of a scalar massive particle on 1+3-de Sitter space. These states are vectors in Hilbert space, and they are labeled by points in the associated phase space. To do this, we use the fact that the phase space of a scalar massive particle on 1+3-de Sitter space is a cotangent bundle T * (S 3 ) which is isomorphic with the complex sphere S C 3 . Then by using the heat kernel on '' S C 3 '' that was presented by Hall-Mitchell, we construct our coherent states. At the end, by these states we quantize the classical kinetic energy on de Sitter space. (orig.)

  14. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    Science.gov (United States)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and

  15. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    Science.gov (United States)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational

  16. Connecting the physical and psychosocial space to Sandia's mission

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Glory Ruth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva, Austin Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460. Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.

  17. Crystal Growth and Other Materials Physical Researches in Space Environment

    Science.gov (United States)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  18. Access to public spaces and physical activity for Mexican adult women

    Directory of Open Access Journals (Sweden)

    Ietza Bojorquez

    2018-04-01

    Full Text Available The aim of this article was to explore the association between access to public spaces and physical activity for adult women, controlling and testing interactions with sociodemographic and public spaces characteristics. We combined sociodemographic data from a survey with the adult (18-65 years of age women population of Tijuana, Mexico, conducted in 2014 (N = 2,345; with data from a 2013 study on public spaces in the same city. We evaluated access to public spaces by the presence and total area of public spaces in buffers of 400, 800, 1,000 and 1,600m around the participants’ homes. We measured physical activity with the short version of the International Physical Activity Questionnaire (IPAQ-short. We employed multinomial logistic models to evaluate the association between access to public spaces and physical activity, and tested for interactions between access to public spaces and public spaces quality and sociodemographic characteristics. We observed no interaction between access to public spaces and public spaces quality in their effect on physical activity. There was an association between the presence of public spaces in the 400m buffer, and higher odds of being in the low physical activity level (as opposed to being in the moderate level (coefficient: 0.50; 95%CI: 0.13; 0.87. Participants who used public transport were less likely to be in the low physical activity level (coefficient: -0.57; 95%CI: -0.97; -0.17. We suggest that, in this population, the access to public spaces might be less relevant for physical activity than other elements of the urban environment and sociodemographic characteristics.

  19. Space, time, and quanta an introduction to contemporary physics

    CERN Document Server

    Mills, Robert

    1994-01-01

    This is the ideal supplement for courses emphasizing modern physics. Part I covers special relativity and the meaning of time, Part II discusses quantum physics, Part III looks at elementary particles and force fields. The three self-contained parts can be used separately or in combination. Familiarity with calculus and classical physics, while helpful, is not necessary as the pertinent ideas of these fields are introduced as needed.

  20. Investigations of Ceres's Craters with Straightened Rim

    Science.gov (United States)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Formisano, M.; Ciarniello, M.; Magni, G.; Combe, J. P.; Marchi, S.; Raymond, C. A.; Schwartz, S. J.

    2017-12-01

    Dwarf planet Ceres hosts some geological features that are unique in the solar system because its composition, rich in aqueously-altered silicates, is usually found on full-size planets, whereas its mean radius is smaller than most natural satellites in the solar system. For example, the local high-albedo, carbonate-rich areas or faculaeare specific to Ceres; also, the absence of big impact crater structures is key to understand the overall mechanical behaviour of the Cerean crust. After the first findings of water ice occurring in the shadowed areas of craters on Ceres by the NASA/Dawn mission (1, 2), we analyzed the morphology of craters looking for features similar to the ones where the water ice composition has been detected analyzing the data from the VIR spectrometer (3). These craters fall outside of the family of polygonal craters which are mainly related to regional or global scale tectonics (4). We analyzed the morphology on the base of the global mosaic, the digital terrain model derived by using the stereo photogrammetry method and the single data frames of the Framing Camera. Our investigation started from crater Juling, which is characterized by a portion of the rim which forms a straight segment instead of a portion of a circle. This linear crater wall is also steep enough that it forms a cliff that is in the shadowed area in all images acquired by Dawn. Very smooth and bright deposits lay at the foot of this crater-wall cliff. Then, we identified several other craters, relatively fresh, with radius of 2 to 10 kilometers, showing one or two sectors of the crater-rim being truncated by a mass-wasting process, probably a rockfall. Our first analysis show that in the selected craters, the truncated sectors are always in the north-eastern sector of the rim for the craters in the southern hemisphere. Conversely, the craters on the northern hemisphere exhibit a truncated rim in their south-eastern sector. Although a more detailed analysis is mandatory

  1. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  2. Concepts of space the history of theories of space in physics

    CERN Document Server

    Jammer, Max

    1993-01-01

    Historical surveys consider Judeo-Christian notions of space, Newtonian absolute space, perceptions from 18th century to the present, more. Numerous quotations and references. "Admirably compact and swiftly paced style." - Philosophy of Science.

  3. Overcoming the physical barriers to urban green spaces in Kumasi

    African Journals Online (AJOL)

    To enhance the sustainability of urban green spaces, the study recommends that there .... city was built on the garden city model, which supports the incorporation of .... express their organization's views on the management and ownership of ...

  4. The Pacific Rim and global natural gas

    International Nuclear Information System (INIS)

    Dreyfus, D.A.

    1993-01-01

    There is a growing interest in natural gas as a part of national or international strategies to moderate the environmental consequences of fuel use. Although the underutilized global gas resource justifies the interest, the future consumption of gas is likely to be constrained by the high capital costs of new transportation facilities to bring remote gas supplies into areas of growing energy demand. The Asian Pacific Rim countries include rapidly growing demand areas as well as significant reserves of gas. The region will continue to play a leading role in the evolution of a world trade in gas. Gas resources within the Asian Pacific region are adequate to serve the foreseeable demands, but historically the region has utilized liquefied natural gas (LNG) imports. Financial constraints upon the gas producing countries of the region and political instability in some of them will probably continue to require the importing of sustantial quantities of gas from the Middle East and possibly from Alaska and the former USSR as the resources indigenous to the region itself are developed more slowly than demand. The financial arrangements and contractual approaches that evolve to meet the needs of the Asia Pacific Rim will shape the future of world LNG markets. (Author)

  5. Analytical applications of resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.

    1988-01-01

    A perspective on the role of resonance ionization mass spectrometry (RIMS) in the field of analytical chemistry is presented. RIMS provides new, powerful, and complementary capabilities relative to traditional methods of inorganic mass spectrometry. Much of the initial work in RIMS has been to illustrate these capabilities and define the potential of RIMS in the generalized field of chemical analysis. Three areas of application are reviewed here: (1) noble gas measurements; (2) materials analysis using isotope dilution (IDMS); and, (3) solids analysis using direct sampling. The role of RIMS is discussed relative to the more traditional mass spectrometric methods of analysis in these areas. The applications are meant to illustrate the present state-of-the-art as well as point to the future state-of-the-art of RIMS in chemical analysis. (author)

  6. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  7. Health Physics Innovations Developed During Cassini for Future Space Applications

    Science.gov (United States)

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  8. QIPS: quantum information and quantum physics in space

    Science.gov (United States)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  9. Curricular, Relational, and Physical Spaces in the Japanese Hoikuen

    Science.gov (United States)

    Ferguson, Daniel E.; Kuby, Candace R.

    2015-01-01

    Recent scholarship looks at the relationship of learning to space and place within educational research. The purpose of this article was to put data produced from teaching in four Japanese preschools into conversation with spatial theory and Ma, a Japanese spatial esthetic. We seek to understand "how" and "what" spaces…

  10. Planning for high-energy physics in space

    CERN Multimedia

    1971-01-01

    NASA has drawn up a proposal for a space observatory to study X-rays, gamma rays and the cosmic ray spectrum. The spacecraft would have a payload of six tons and could go into a 250-mile-high orbit in 1974 (1/2 page).

  11. On How physics Could impact on the Metaphysics of Space and Time

    Directory of Open Access Journals (Sweden)

    Alireza Mansouri

    2015-03-01

    Full Text Available This paper aims to illustrate the mutual inter-relation of physics and metaphysics in the context of the philosophy of space and time. We especially emphasize, in this paper, that scientific development could impact on our position regarding the reality of space and time. To illustrate this point, we investigate the mutual inter-relation of physics and metaphysics in the modern developments of physics, i.e. neo-Newtonian structure, special and general relativity (GR. This paper ends up anticipating that it is likely, by considering modern physics, especially GR, that substantivalism to be a more defensible position.

  12. The Space Vehicle--Teaching Physics through Astronomy.

    Science.gov (United States)

    Kibble, Bob

    1991-01-01

    Discussed are some areas of overlap between physics and astronomy. Topics include solar power, fusion reactions, atmospheric refraction, solar spectrum, Doppler effects, Hubble constant, quasars, redshift and the expanding universe, sunspots, sundial construction, solar spectroscopes, the moon, optics, wave theory, the history of science,…

  13. Historical epistemology of space from primate cognition to spacetime physics

    CERN Document Server

    Schemmel, Matthias

    2016-01-01

    This monograph investigates the development of human spatial knowledge by analyzing its elementary structures and studying how it is further shaped by various societal conditions. By taking a thoroughly historical perspective on knowledge and integrating results from various disciplines, this work throws new light on long-standing problems in epistemology such as the relation between experience and preformed structures of cognition. What do the orientation of apes and the theory of relativity have to do with each other? Readers will learn how different forms of spatial thinking are related in a long-term history of knowledge. Scientific concepts of space such as Newton’s absolute space or Einstein’s curved spacetime are shown to be rooted in pre-scientific structures of knowledge, while at the same time enabling the integration of an ever expanding corpus of experiential knowledge. This work addresses all readers interested in questions of epistemology, in particular philosophers and historians of scie...

  14. Visual illusions and plate design: the effects of plate rim widths and rim coloring on perceived food portion size.

    Science.gov (United States)

    McClain, A D; van den Bos, W; Matheson, D; Desai, M; McClure, S M; Robinson, T N

    2014-05-01

    The Delboeuf Illusion affects perceptions of the relative sizes of concentric shapes. This study was designed to extend research on the application of the Delboeuf illusion to food on a plate by testing whether a plate's rim width and coloring influence perceptual bias to affect perceived food portion size. Within-subjects experimental design. Experiment 1 tested the effect of rim width on perceived food portion size. Experiment 2 tested the effect of rim coloring on perceived food portion size. In both experiments, participants observed a series of photographic images of paired, side-by-side plates varying in designs and amounts of food. From each pair, participants were asked to select the plate that contained more food. Multilevel logistic regression examined the effects of rim width and coloring on perceived food portion size. Experiment 1: participants overestimated the diameter of food portions by 5% and the visual area of food portions by 10% on plates with wider rims compared with plates with very thin rims (Pfood portion sizes. Experiment 2: participants overestimated the diameter of food portions by 1.5% and the visual area of food portions by 3% on plates with rim coloring compared with plates with no coloring (P=0.01). The effect of rim coloring was greater with smaller food portion sizes. The Delboeuf illusion applies to food on a plate. Participants overestimated food portion size on plates with wider and colored rims. These findings may help design plates to influence perceptions of food portion sizes.

  15. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  16. Activating Public Space: How to Promote Physical Activity in Urban Environment

    Science.gov (United States)

    Kostrzewska, Małgorzata

    2017-10-01

    Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation

  17. Reaction rim growth in the system MgO-Al2O3-SiO2 under uniaxial stress

    Science.gov (United States)

    Götze, Lutz Christoph; Abart, Rainer; Rybacki, Erik; Keller, Lukas M.; Petrishcheva, Elena; Dresen, Georg

    2010-07-01

    We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as D_{MgO} = 1.4 ± 0.2 \\cdot 10^{-15} m2/s and D_{Al_2O_3} = 3.7 ± 0

  18. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  19. Incident laser modulation of a repaired damage site with a rim in fused silica rear subsurface

    Institute of Scientific and Technical Information of China (English)

    Li Li; Xiang Xia; Zu Xiao-Tao; Yuan Xiao-Dong; He Shao-Bo; Jiang Xiao-Dong; Zheng Wan-Guo

    2012-01-01

    Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sitesin a fused silica surface from exponentially growing,which is responsible for limiting the lifetime of optics in high fluence laser systems.However,the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge,which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics.In this work,the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica.The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Specifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics.The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail.

  20. Physical relativity. Space-time structure from a dynamical perspective

    Science.gov (United States)

    Brown, Harvey R.

    Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown's new interpretation of relativity theory will interest anyone working on

  1. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  2. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  3. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into

  4. Plasmas: from space to laboratory. 'Introduction to plasma physics' course

    International Nuclear Information System (INIS)

    Savoini, Philippe

    2011-01-01

    This course addresses the different basic concepts of plasma physics. After an introduction which addresses the plasma state, basic equations, the different theoretical approaches (orbitals, kinetic, multi-fluid, magnetohydrodynamics), and the different characteristic scales, waves are addressed and presented as a disordered electromagnetism: existence of plasma waves, generalities on waves, relationship of formal dispersion of plasmas, plasma without magnetic field (longitudinal, transverse, or low frequency wave), plasma with magnetic field (parallel, perpendicular, or arbitrary propagation). The next parts present various approaches: the particle-based approach (case of constant and uniform magnetic fields, case of non-uniform magnetic fields), the statistical approach (elements of kinetic theory, the collision phenomenon, the equilibrium state), and the fluid approach (fluid equations according to the multi-fluid theory, comparison with the particle-based approach, presentation of magnetohydrodynamics as the single-fluid model, validity of MHD)

  5. Application of the idea of morphism in solar-terrestrial physics and space weather

    International Nuclear Information System (INIS)

    Mateev, Lachezar; Tassev, Yordan; Velinov, Peter

    2016-01-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. In the present work we introduce a new mathematical approach to the study of physical processes in the system Sun-Earth. For example, in the ionization of the ionosphere and atmosphere under the influence of cosmic rays a model is used that applies the principle of homomorphism. When calculating the parameters of space weather such as solar wind, interplanetary magnetic fields, Earth’s magnetosphere, geomagnetic storms and others, the introduction and application of mathematical objects is appropriate: morphisms, groups, categories, monads, functors, natural transformations and others. Such an approach takes into account the general laws of physical processes in the system Sun – Earth and helps in their testing and calculation. It is useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Some methods for algebraic structures can be introduced. These methods give the possibility for axiomatization of the physical data reality and the application of algebraic methods for their processing. Here we give the base for the transformation from the algebraic theory of categories and morphisms to the physical structure of concepts and data. Such problems are principally considered in the proposed work. Key words: pace weather, space radiation environment, solar effects, forecasting, energetic solar particles, cosmic rays

  6. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  7. AMS-02 in space: physics results, overview, and challenges

    Science.gov (United States)

    Tomassetti, Nicola; AMS Collaboration

    2015-08-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state of the art particle detector measuring cosmic rays (CRs) on the International Space Station (ISS) since May 19th 2011. AMS-02 identifies CR leptons and nuclei in the energy range from hundreds MeV to few TeV per nucleon. Several sub-detector systems allow for redundant particle identification with unprecedented precision, a powerful lepton-hadron separation, and a high purity of the antimatter signal. The new AMS-02 leptonic data from 1 to 500 GeV are presented and discussed. These new data indicate that new sources of CR leptons need to be included to describe the observed spectra at high energies. Explanations of this anomaly may be found either in dark-matter particles annihilation or in the existence of nearby astrophysical sources of e±. Future data at higher energies and forthcoming measurements on the antiproton spectrum and the boron-to-carbon ratio will be crucial in providing the discrimination among the different scenario.

  8. Space distribution and physical properties of cool dwarf stars

    International Nuclear Information System (INIS)

    Staller, R.F.A.

    1979-01-01

    A new study of the space density of red dwarfs based on a sample of red dwarfs in a field of 238 square degrees towards the South Galactic Pole is presented. A blink survey using red and blue copies of Mount Palomar Sky Survey plates of a six square degrees field centered on the South Galactic Pole was performed and the results (approximately 2500 red objects) and the discussion of these results are presented. The time that elapsed before a black dwarf becomes invisible is estimated and is suggested that low-velocity red dwarfs could be explained by contracting black dwarfs. Based on theoretical considerations it can be shown that the existence of a large number of low-velocity stars is in serious conflict with criteria for the stability of the galactic disk. It is shown that if one also takes into account all generations of black dwarfs that are already invisible and therfore old, the mean velocity of all black dwarfs is much higher so that there is no conflict with theory. Luminosity functions of red and black dwarfs in several photometric passbands are calculated. (Auth.)

  9. Effects of space-dependent cross sections on core physics parameters for compact fast spectrum space power reactors

    International Nuclear Information System (INIS)

    Lell, R.M.; Hanan, N.A.

    1987-01-01

    Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design

  10. Modern education of future teacher of physical culture in the conditions of informatization of educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-03-01

    Full Text Available The informatization of the educational space is determined by the organizational, scientific-technical, educational processes, which update the creation of the unified information and educational space for the comprehensive use of information technologies in educational process of a future teacher of physical culture at the higher school. Stated that the integration and expansion of the educational space of the orients the higher school not only in the preparation of the literate student on the issues of information culture, but also to help the younger generation in the mastery of basic social abilities and skills in conditions of informatization of the educational space.

  11. Bony Reconstruction of the Anterior Glenoid Rim.

    Science.gov (United States)

    Willemot, Laurent B; Elhassan, Bassem T; Verborgt, Olivier

    2018-04-13

    Recurrent anterior shoulder instability is associated with glenohumeral bone loss. Glenoid deficiency compromises the concavity-compression mechanism. Medial Hill-Sachs lesions can result in an off-track humeral position. Anterior glenoid reconstruction or augmentation prevents recurrence by addressing the pathomechanics. In Bristow and Latarjet procedures, the coracoid process is harvested for conjoint tendon transfer, capsular reinforcement, and glenoid rim restoration. Complications and the nonanatomic nature of the procedure have spurred research on graft sources. The iliac crest is preferred for autogenous structural grafts. Tricortical, bicortical, and J-bone grafts have shown promising results despite the historical association of Eden-Hybinette procedures with early degenerative joint disease. Allogeneic osteochondral grafts may minimize the risk of arthropathy and donor site morbidity. Tibial plafond and glenoid allografts more closely match the native glenoid geometry and restore the articular chondral environment, compared with conventional grafts. Graft availability, cost, risk of disease transmission, and low chondrocyte viability have slowed the acceptance of osteochondral allografts.

  12. ULF wave index and its possible applications in space physics

    International Nuclear Information System (INIS)

    Romanova, N.; Pilipenko, V.; Khabarova, O.; Crosby, N.

    2007-01-01

    The solar wind-magnetosphere interaction has a turbulent character, which is not accounted for by commonly used geomagnetic indices and OMNI parameters. To quantify the level of low-frequency turbulence/variability of the geomagnetic field, IMP, and solar wind plasma, we have introduced ULP wave power indices. These simple hourly indices are based on the integrated spectral power in the band 2-7 mHz or wavelet power with time scales∼10-100 min. The ground wave index has been produced from the data of global magnetometer arrays in the Northern Hemisphere. The interplanetary and geostationary wave indices have been calculated using magnetometer and plasma data from interplanetary and geosynchronous satellites. These indices have turned out to be useful for statistical analysis of various space weather problems. These indices enable one to examine easily the statistical correspondence between the ULP activity and interplanetary conditions. For example, the enhancements of relativistic electrons at the geosynchronous orbit were not directly related to the intensity of magnetic storms, but they correlated well with intervals of elevated ground ULP wave index. This fact confirmed the importance of magnetospheric ULP turbulence in energising electrons up to relativistic energies. The interplanetary index has revealed statistically the role of the interplanetary turbulence in driving the magnetosphere by the IMP/solar wind. The application of this index to the analysis of conditions in the solar wind before magnetic storm onsets has shown that a weak irregular increase of the solar wind density is observed on average 2 days prior to storm commencement. The ULP index database for the period since 1991 is freely available via anonymous FTP for all interested researchers for further validation and statistical studies. (authors)

  13. Spatial Analysis in Determining Physical Factors of Pedestrian Space Livability, Case Study: Pedestrian Space on Jalan Kemasan, Yogyakarta

    Science.gov (United States)

    Fauzi, A. F.; Aditianata, A.

    2018-02-01

    The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.

  14. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  15. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.

    Science.gov (United States)

    Pickett, Andrew C; Cunningham, George B

    2017-09-01

    Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.

  16. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar

    2014-05-01

    © 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot\\'s location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.

  17. Denonvilliers' advancement flap in congenital alar rim defects correction

    Directory of Open Access Journals (Sweden)

    Novaković Marijan

    2009-01-01

    Full Text Available Background. Alar rim defects are mostly acquired, resulting from burns, traumas or tumor excision. Sometimes they can accompany craniofacial clefts. However, isolated congenital alar defects are extremely rare. Case report. We presented two cases of congenital isolated alar cleft. The defect was closed by the use of an advancement flap, the technique described by Denonvilliers. We achieved both symmetry and appropriate thickness of the nostrils. Skin color and texture of the alar rim were excellent, with scars not excessively visible. Conclusion. Denonvilliers' z-plasty technique by using advancement flap provides both functionally and aesthetically satisfying outcome in patients with congenital alar rim defects.

  18. Technique for forcing high Reynolds number isotropic turbulence in physical space

    Science.gov (United States)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  19. Free-surface entrainment into a rimming flow containing surfactants

    Science.gov (United States)

    Thoroddsen, S. T.; Tan, Y.-K.

    2004-02-01

    We study experimentally the free-surface entrainment of tubes into a steady rimming flow formed inside a partially filled horizontally rotating cylinder. The liquid consists of a glycerin-water mixture containing surfactants (fatty acids). The phenomenon does not occur without the surfactants and the details are sensitive to their concentration. The entrainment of numerous closely spaced air tubes and/or surfactant columns can start intermittently along a two-dimensional stagnation line, but is usually associated with the appearance of an axially periodic vortex structure, the so-called shark teeth, which fixes the spanwise location of these tubes. The number of tubes is governed by the three-dimensional shape of the free surface, reducing from more than 10 to only two in each trough, as the rotation rate is increased. The tubes vary in diameter from 10-30 μm and can extend hundreds of diameters into the liquid layer before breaking up into a continuous stream of bubbles and/or drops. The tubes are driven through the stagnation line by the strong viscous shear and are stretched in the downstream direction. The entrainment starts when the Capillary number Ca=μωR/σ≃0.4.

  20. Learning from California and the Pacific Rim

    International Nuclear Information System (INIS)

    Tussing, A.R.

    1993-01-01

    Heavy oils are found in 10 of the 14 largest oilfields in Alaska and California. In the US west coast region, petroleum demand is dominated by light transport fuels, and there is a lack of a discrete and conspicuous heavy oil market. The structure and behavior of west coast petroleum markets, and their interactions with crude-oil and petroleum product markets elsewhere on the Pacific Rim are discussed with regard to how the market for growing volumes of western Canadian heavy oils might evolve. An analysis of crude oil prices versus API gravity demonstrates the price penalties on oil of low gravity, high sulfur, and high transport cost. Prices at the high gravity end tend to correlate closely with Asian light crude and unfinished gasoline prices. The heaviest crudes are priced in competition with other chemically similar residual oils for direct fuel use, blending, or refinery feedstock. The biggest component of the west coast heavy oil market is bunker fuel. The market value of heavy crudes in the west coast is thus determined by regional supply and demand for heavy hydrocarbon molecules, whatever the source. The west coast is not a promising market for Canadian heavy crudes, and exports to Asia would have to compete both with residual oils from Asia and the US west coast and with California heavy crudes. US west coast production peaked in 1989 and regional production can be expected to decline further in average gravity. New production from known but undeveloped heavy oil pools near Prudhoe Bay or in the California offshore could be expected to postpone the need for imports to the west coast and to depress prices. A removal of the Alaska crude oil export ban could improve the west coast heavy oil market. 5 refs., 2 figs., 1 tab

  1. Analysis of wheel rim - Material and manufacturing aspects

    Science.gov (United States)

    Misra, Sheelam; Singh, Abhiraaj; James, Eldhose

    2018-05-01

    The tire in an automobile is supported by the rim of the wheel and its shape and dimensions should be adjusted to accommodate a specified tire. In this study, a tire of car wheel rim belonging to the disc wheel category is considered. Design is an important industrial operation used to define and specify the quality of the product. The design and modelling reduces the risk of damage involved in the manufacturing process. The design performed on this wheel rim is done on modelling software. After designing the model, it is imported for analysis purposes. The analysis software is used to calculate the different types of force, stresses, torque, and pressures acting upon the rim of the wheel and it reduces the time spent by a human for mathematical calculations. The analysis carried out considers two different materials namely structural steel and aluminium. Both materials are analyzed and their performance is noted.

  2. No Space for Girliness in Physics: Understanding and Overcoming the Masculinity of Physics

    Science.gov (United States)

    Götschel, Helene

    2014-01-01

    Allison Gonsalves' article on "women doctoral students' positioning around discourses of gender and competence in physics" explores narratives of Canadian women physicists concerning their strategies to gain recognition as physicists. In my response to her rewarding and inspiring analysis I will reflect on her findings and arguments and…

  3. Curricular Space Allocated for Dance Content in Physical Education Teacher Education Programs: A Literature Review

    Science.gov (United States)

    Marquis, Jenée Marie; Metzler, Mike

    2017-01-01

    This literature review examines curricular space allocated to activity based/movement content courses in Physical Education Teacher Education (PETE) pre-service programs, specifically focusing on how dance content knowledge and pedagogical content knowledge are addressed within those programs. This review includes original empirical research…

  4. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar; Agarwal, Saurav; Mahadevan, Aditya; Chakravorty, Suman; Tomkins, Daniel; Denny, Jory; Amato, Nancy M.

    2014-01-01

    , such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes

  5. Audiovisual Aids for Astronomy and Space Physics at an Urban College

    Science.gov (United States)

    Moche, Dinah L.

    1973-01-01

    Discusses the use of easily available audiovisual aids to teach a one semester course in astronomy and space physics to liberal arts students of both sexes at Queensborough Community College. Included is a list of teaching aids for use in astronomy instruction. (CC)

  6. The duality in the topological vector spaces and the linear physical system theory

    International Nuclear Information System (INIS)

    Oliveira Castro, F.M. de.

    1980-01-01

    The excitation-response relation in a linear, passive, and causal physical system who has the property of this relation be invariant for a time translation is univocally determined by the general form of the linear and continuous functionals defined on the linear topological space chosen for the representation of the excitations. (L.C.) [pt

  7. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  8. Aligning physical learning spaces with the curriculum: AMEE Guide No. 107.

    Science.gov (United States)

    Nordquist, Jonas; Sundberg, Kristina; Laing, Andrew

    2016-08-01

    This Guide explores emerging issues on the alignment of learning spaces with the changing curriculum in medical education. As technology and new teaching methods have altered the nature of learning in medical education, it is necessary to re-think how physical learning spaces are aligned with the curriculum. The better alignment of learning spaces with the curriculum depends on more directly engaged leadership from faculty and the community of medical education for briefing the requirements for the design of all kinds of learning spaces. However, there is a lack of precedent and well-established processes as to how new kinds of learning spaces should be programmed. Such programmes are essential aspects of optimizing the intended experience of the curriculum. Faculty and the learning community need better tools and instruments to support their leadership role in briefing and programming. A Guide to critical concepts for exploring the alignment of curriculum and learning spaces is provided. The idea of a networked learning landscape is introduced as a way of assessing and evaluating the alignment of physical spaces to the emerging curriculum. The concept is used to explore how technology has widened the range of spaces and places in which learning happens as well as enabling new styles of learning. The networked learning landscaped is explored through four different scales within which learning is accommodated: the classroom, the building, the campus, and the city. High-level guidance on the process of briefing for the networked learning landscape is provided, to take into account the wider scale of learning spaces and the impact of technology. Key to a successful measurement process is argued to be the involvement of relevant academic stakeholders who can identify the strategic direction and purpose for the design of the learning environments in relation to the emerging demands of the curriculum.

  9. Challenges in Physical Characterization of Dim Space Objects: What Can We Learn from NEOs

    Science.gov (United States)

    Reddy, V.; Sanchez, J.; Thirouin, A.; Rivera-Valentin, E.; Ryan, W.; Ryan, E.; Mokovitz, N.; Tegler, S.

    2016-09-01

    Physical characterization of dim space objects in cis-lunar space can be a challenging task. Of particular interest to both natural and artificial space object behavior scientists are the properties beyond orbital parameters that can uniquely identify them. These properties include rotational state, size, shape, density and composition. A wide range of observational and non-observational factors affect our ability to characterize dim objects in cis-lunar space. For example, phase angle (angle between Sun-Target-Observer), temperature, rotational variations, temperature, and particle size (for natural dim objects). Over the last two decades, space object behavior scientists studying natural dim objects have attempted to quantify and correct for a majority of these factors to enhance our situational awareness. These efforts have been primarily focused on developing laboratory spectral calibrations in a space-like environment. Calibrations developed correcting spectral observations of natural dim objects could be applied to characterizing artificial objects, as the underlying physics is the same. The paper will summarize our current understanding of these observational and non-observational factors and present a case study showcasing the state of the art in characterization of natural dim objects.

  10. Does rim microstructure formation degrade the fuel rod performance?

    International Nuclear Information System (INIS)

    Baron, D.; Spino, J.

    2002-01-01

    High burnup extension of LWR fuel is progressing to reduce the total process flow and eventually the costs of the nuclear fuel cycle. A particular fuel restructuring at high burnups, commonly observed at the periphery of LWR fuel pellets (rim structure), but also in FBR fuels to some extent and in the Plutonium rich clusters of the MOX Fuels, was considered a priori as a limitation for burnup extension. Since more than ten years this rim effect have been deeply investigated. Its causes and consequences are however not yet totally elucidated. The three steps actually identified of this phenomenon are first a progressive disappearing of the intra-granular Xenon, the outset of numerous 0.5 to 1 m pores and finally a grain subdivision around the pores. Penalty of the porosity increase on the thermal conductivity is obvious. One expect the fission gases to remain trapped in the rim porosity up to a 75 MWd/kgUO 2 local burnup. Above this threshold, 15 to 20 % of the fission gases seem to be quickly released. Microindentation tests conducted at ITU have shown the rim structure to resist fracture extension under punching. It is still open whether this implies certain ductility and viscosity of the material, or if it corresponds to stress relaxation by microcracking. Whatever the case be, it is suggested that the rim material would be able to decrease the interaction stresses and to equalise the cladding strains during a power ramp. Moreover, in the RIA tests, it was concluded so far that the grain de-cohesion caused by gas expansion at the grain boundaries was responsible for the cladding strain and failure. However, not the rim zone was affected by grain de-cohesion but the region adjacent to it. Therefore, in front of the question whether the rim structure degrades the fuel rod behaviour, we continue to argue on its benefit for fuel burnup extension. (author)

  11. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.

    Science.gov (United States)

    Pack, Min; Kaneelil, Paul; Kim, Hyoungsoo; Sun, Ying

    2018-05-01

    Drop impact is fundamental to various natural and industrial processes such as rain-induced soil erosion and spray-coating technologies. The recent discovery of the role of air entrainment between the droplet and the impacting surface has produced numerous works, uncovering the unique physics that correlates the air film dynamics with the drop impact outcomes. In this study, we focus on the post-failure air entrainment dynamics for We numbers well below the splash threshold under different ambient pressures and elucidate the interfacial instabilities formed by air entrainment at the wetting front of impacting droplets on perfectly smooth, viscous films of constant thickness. A high-speed total internal reflection microscopy technique accounting for the Fresnel reflection at the drop-air interface allows for in situ measurements of an entrained air rim at the wetting front. The presence of an air rim is found to be a prerequisite to the interfacial instability which is formed when the capillary pressure in the vicinity of the contact line can no longer balance the increasing gas pressure near the wetting front. A critical capillary number for the air rim formation is experimentally identified above which the wetting front becomes unstable where this critical capillary number inversely scales with the ambient pressure. The contact line instabilities at relatively low We numbers ( We ∼ O(10)) observed in this study provide insight into the conventional understanding of hydrodynamic instabilities under drop impact which usually require We ≫ 10.

  12. Aqueous Alteration of Endeavour Crater Rim Apron Rocks

    Science.gov (United States)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.

    2014-12-01

    Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis

  13. The relationship of the globe to the orbital rim.

    Science.gov (United States)

    Eckstein, Lauren A; Shadpour, Joseph M; Menghani, Ravi; Goldberg, Robert A

    2011-01-01

    To present a novel method for accurately characterizing the position of the globe relative to the orbital rim. The appearance and function of the eyelids are dependent on the underlying orbital bony architecture and globe position; however, no comprehensive language to describe these complex 3-dimensional relationships exists. Three-dimensional orbital reconstructions were generated from computed tomographic scans of 15 Occidental and 12 Oriental orbits without orbital pathologic disease. Globe and orbital rim anatomy were identified and outlined. Reference points were measured along 2 independent axes: (1) the distance between a plane defined by the corneal apex and the sagittal projection of the orbital rim and (2) the distance between the circumference of the globe and the coronal projection of the orbital rim. For Occidental orbits, the mean (SD) elevation of the sagittal projection of the orbital rim relative to the anterior projection of the globe was 4.6 (4.2) mm superiorly, 5.9 (3.0) mm nasally, 12.6 (3.7) mm inferiorly, and 20.6 (2.6) mm laterally. The mean (SD) radial distance between the coronal projection of the orbital rim and the circumference of the globe was 3.7 (2.1) mm superiorly, 7.6 (1.8) mm nasally, 6.6 (2.2) mm inferiorly, and 4.6 (2.3) mm laterally. For Oriental orbits, the mean (SD) elevation of the sagittal projection of the orbital rim relative to the anterior projection of the globe was 5.0 (4.5) mm superiorly, 6.8 (4.1) mm nasally, 11.1 (4.3) mm inferiorly, and 17.5 (3.3) mm laterally. The mean (SD) radial distance between the coronal projection of the orbital rim and the circumference of the globe was 2.1 (1.2) mm superiorly, 8.2 (2.0) mm nasally, 6.5 (1.9) mm inferiorly, and 4.5 (1.7) mm laterally. Comparison of Occidental and Oriental orbital rim and globe configurations revealed quantitative and qualitative differences. In addition to differences in soft-tissue anatomy, bony architectural variations may contribute substantially to

  14. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  15. Novel reconfigurable wide-beam radio interferometer for space physics instrumentation

    Science.gov (United States)

    Dekoulis, George; Honary, Farideh

    2008-07-01

    This paper describes the instrumentation design of a novel wide-beam interferometer system for radio astronomy studies. The system measures the Earth's or another planet's atmospheric layers attenuation of the highly energetic galactic electron emissions superimposed on the Cosmic Microwave Background (CMB) and other last scattering surface galactic and extragalactic radio astronomical background emissions. Right ascension coordinates are surveyed in a unique manner in terms of digital signal processing flexibility, compared to existing wide-beam instrumentations, allowing higher resolution analysis of the captured Space Physics events. The system provides a prototyping platform for other Space Physics projects, since a modular software and hardware design approach has been followed. The system is reconfigurable to meet a variety of testing scenarios.

  16. Features of public open spaces and physical activity among children: findings from the CLAN study.

    Science.gov (United States)

    Timperio, Anna; Giles-Corti, Billie; Crawford, David; Andrianopoulos, Nick; Ball, Kylie; Salmon, Jo; Hume, Clare

    2008-11-01

    To examine associations between features of public open spaces, and children's physical activity. 163 children aged 8-9 years and 334 adolescents aged 13-15 years from Melbourne, Australia participated in 2004. A Geographic Information System was used to identify all public open spaces (POS) within 800 m of participants' homes and their closest POS. The features of all POS identified were audited in 2004/5. Accelerometers measured moderate-to-vigorous physical activity (MVPA) after school and on weekends. Linear regression analyses examined associations between features of the closest POS and participants' MVPA. Most participants had a POS within 800 m of their home. The presence of playgrounds was positively associated with younger boys' weekend MVPA (B=24.9 min/day; pPOS were associated with participants' MVPA, although mixed associations were evident. Further research is required to clarify these complex relationships.

  17. Physics constraints on tokamak edge operational space and extrapolation to ITER

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Janeschitz, G.; Sugihara, M.; Pacher, H.D.; Post, D.E.; Pacher, G.W.; Pogutse, O.P.

    1998-01-01

    This paper emphasises the theoretical understanding of the physical processes in the edge tokamak plasma and their attendant uncertainties and constraints. The various operational boundaries are represented in the edge operational space (EOS) diagram, the space of edge density and temperature, defined at the top of the H-mode transport barrier. The EOS is governed by four boundaries representing physical constraints for the edge plasma parameters. The first boundary represents the onset of type I ELM instabilities in terms of a critical pressure gradient for MHD stability at the edge which defines the maximum pedestal temperature for a given density once the width of the H-mode transport barrier at the edge (pedestal width) is known. The ideal ballooning mode is a candidate for this instability. The second boundary defines the boundary between type III ELM's, which are probably resistive MHD modes, and the ELM-free region. (orig.)

  18. SmallSat Missions Traveling to Planetary Targets from Near-Earth-Space: Applications for Space Physics

    Science.gov (United States)

    Espley, J. R.; Folta, D.

    2017-12-01

    Recent advances in propulsion technology and interplanetary navigation theoretically allow very small spacecraft to travel directly to planetary destinations from near-Earth-space. Because there are currently many launches with excess mass capability (NASA, military, and even commercial), we anticipate a dramatic increase in the number of opportunities for missions to planetary targets. Spacecraft as small as 12U CubeSats can use solar electric propulsion to travel from Earth-orbit to Mars-orbit in approximately 2-3 years. Space physics missions are particularly well suited for such mission architectures since state-of-the-art instrumentation to answer fundamental science questions can be accommodated in relatively small payload packages. For example, multi-point measurements of the martian magnetosphere, ionosphere, and crustal magnetic fields would yield important new science results regarding atmospheric escape and the geophysical history of the martian surface. These measurements could be accomplished by a pair of 12U CubeSats with world-class instruments that require only modest mass, power, and telemetry resources (e.g. Goddard's mini-fluxgate vector magnetometer).

  19. The Dynamic Family Home: a qualitative exploration of physical environmental influences on children's sedentary behaviour and physical activity within the home space.

    Science.gov (United States)

    Maitland, Clover; Stratton, Gareth; Foster, Sarah; Braham, Rebecca; Rosenberg, Michael

    2014-12-24

    Recent changes in home physical environments, such as decreasing outdoor space and increasing electronic media, may negatively affect health by facilitating sedentariness and reducing physical activity. As children spend much of their time at home they are particularly vulnerable. This study qualitatively explored family perceptions of physical environmental influences on sedentary behaviour and physical activity within the home space. Home based interviews were conducted with 28 families with children aged 9-13 years (total n = 74 individuals), living in Perth, Australia. Families were stratified by socioeconomic status and selected to provide variation in housing. Qualitative methods included a family interview, observation and home tour where families guided the researcher through their home, enabling discussion while in the physical home space. Audio recordings were transcribed verbatim and thematically analysed. Emergent themes related to children's sedentariness and physical activity included overall size, space and design of the home; allocation of home space; equipment within the home space; perceived safety of the home space; and the changing nature of the home space. Families reported that children's activity options were limited when houses and yards were small. In larger homes, multiple indoor living rooms usually housed additional sedentary entertainment options, although parents reported that open plan home layouts could facilitate monitoring of children's electronic media use. Most families reported changing the allocation and contents of their home space in response to changing priorities and circumstances. The physical home environment can enhance or limit opportunities for children's sedentary behaviour and physical activity. However, the home space is a dynamic ecological setting that is amenable to change and is largely shaped by the family living within it, thus differentiating it from other settings. While size and space were considered

  20. The Physics of Imaging with Remote Sensors : Photon State Space & Radiative Transfer

    Science.gov (United States)

    Davis, Anthony B.

    2012-01-01

    Standard (mono-pixel/steady-source) retrieval methodology is reaching its fundamental limit with access to multi-angle/multi-spectral photo- polarimetry. Next... Two emerging new classes of retrieval algorithm worth nurturing: multi-pixel time-domain Wave-radiometry transition regimes, and more... Cross-fertilization with bio-medical imaging. Physics-based remote sensing: - What is "photon state space?" - What is "radiative transfer?" - Is "the end" in sight? Two wide-open frontiers! center dot Examples (with variations.

  1. The geometry of higher-order Lagrange spaces applications to mechanics and physics

    CERN Document Server

    Miron, Radu

    1997-01-01

    This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology

  2. The Virtual Space Physics Observatory: Quick Access to Data and Tools

    Science.gov (United States)

    Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.

    2006-01-01

    The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.

  3. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    Science.gov (United States)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  4. The impact of interventions to promote physical activity in urban green space

    DEFF Research Database (Denmark)

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny

    2015-01-01

    positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing...... in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation......Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken...

  5. Designing flexible instructional space for teaching introductory physics with emphasis on inquiry and collaborative active learning

    Science.gov (United States)

    Bykov, Tikhon

    2010-03-01

    In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.

  6. Assessment of Air Quality Impacts from the 2013 Rim Fire

    Science.gov (United States)

    Wildfires account for a significant fraction of PM2.5 emissions in the U.S., the majority of which are organic aerosols. This work aims to quantify modeled impacts of wildfires, specifically the 2013 Rim Fire, and focuses on how recent organic aerosol updates in CMAQ v5.2 effect ...

  7. Posterior glenoid rim deficiency in recurrent (atraumatic) posterior shoulder instability

    International Nuclear Information System (INIS)

    Weishaupt, D.; Zanetti, M.; Hodler, J.; Nyffeler, R.W.; Gerber, C.

    2000-01-01

    Objective. To assess the shape of the posterior glenoid rim in patients with recurrent (atraumatic) posterior instability.Design and patients. CT examinations of 15 shoulders with recurrent (atraumatic) posterior instability were reviewed in masked fashion with regard to abnormalities of the glenoid shape, specifically of its posterior rim. The glenoid version was also assessed. The findings were compared with the findings in 15 shoulders with recurrent anterior shoulder instability and 15 shoulders without instability. For all patients, surgical correlation was available.Results. Fourteen of the 15 (93%) shoulders with recurrent (atraumatic) posterior shoulder instability had a deficiency of the posteroinferior glenoid rim. In patients with recurrent anterior instability or stable shoulders such deficiencies were less common (60% and 73%, respectively). The craniocaudal length of the deficiencies was largest in patients with posterior instability. When a posteroinferior deficiency with a craniocaudal length of 12 mm or more was defined as abnormal, sensitivity and specificity for diagnosing recurrent (atraumatic) posterior instability were 86.7% and 83.3%, respectively. There was a statistically significant difference in glenoid version between shoulders with posterior instability and stable shoulders (P=0.01).Conclusion. Recurrent (atraumatic) posterior shoulder instability should be considered in patients with a bony deficiency of the posteroinferior glenoid rim with a craniocaudal length of more than 12 mm. (orig.)

  8. Threshold burnup for recrystallization and model for rim porosity in the high burnup UO2 fuel

    International Nuclear Information System (INIS)

    Lee, Byung Ho; Koo, Yang Hyun; Sohn, Dong Seong

    1998-01-01

    Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75μm and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup

  9. Opened athletic-educational space - the condition of professional development of future teacher of physical culture is needed

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-04-01

    Full Text Available It is shown that the opening of the sports and educational space is determined by the whole space, where the interaction of the activity of the pedagogical university with different educational institutions on the basis of integration, continuity of the educational process, aimed at physical education, the development of children and young people take place. It is revealed the importance of awareness of such concepts as the world educational space, the international educational space, the European higher education area, European space of higher education and educational space of the CIS countries.

  10. Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space.

    Science.gov (United States)

    Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim

    2016-08-01

    Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.

  11. Using observational methods to evaluate public open spaces and physical activity in Brazil.

    Science.gov (United States)

    Hino A A, F; Reis, Rodrigo S; Ribeiro, Isabela C; Parra, Diana C; Brownson, Ross C; Fermino, Rogerio C

    2010-07-01

    Open public spaces have been identified as important facilities to promote physical activity (PA) at the community level. The main goals of this study are to describe open public spaces user's characteristics and to explore to what extent these characteristics are associated with PA behavior. A system of direct observation was used to evaluate the PA levels on parks and squares (smaller parks) and users's characteristics (gender and age). The 4 parks and 4 squares observed were selected from neighborhoods with different socioeconomic status and environmental characteristics. The settings were observed 3 times a day, 6 days per week, during 2 weeks. More men than women were observed in parks (63.1%) and squares (70.0%) as well as more adults and adolescents than older adults and children. Users were more physically active in parks (men = 34.1%, women = 36.1%) than in squares (men = 25.5%, women 22.8%). The characteristics of public open spaces may affect PA in the observed places. Initiatives to improve PA levels in community settings should consider users' characteristics and preferences to be more effective and reach a larger number of people.

  12. Unique Programme of Indian Centre for Space Physics using large rubber Balloons

    Science.gov (United States)

    Chakrabarti, Sandip Kumar; Sarkar, Ritabrata; Bhowmick, Debashis; Chakraborty, Subhankar

    Indian Centre for Space Physics (ICSP) has developed a unique capability to pursue space based studies at a very low cost. Here, large rubber balloons are sent to near space (~ 40km) with payloads of less than 4kg weight. These payloads can be cosmic ray detectors, X-ray detectors, muon detectors apart from communication device, GPS, and nine degrees of freedom measuring capabilities. With two balloons in orbiter-launcher configuration, ICSP has been able to conduct long duration flights upto 12 hours. ICSP has so far sent 56 Dignity missions to near space and obtained Cosmic Ray and muon variation on a regular basis, dynamical spectrum of solar flares and gamma ray burst apart from other usual parameters such as wind velocity components, temperature and pressure variations etc. Since all the payloads are retrieved by parachutes, the cost per mission remains very low, typically around USD1000.00. The preparation time is low. Furthermore, no special launching area is required. In principle, such experiments can be conducted on a daily basis, if need be. Presently, we are also incorporating studies relating to earth system science such as Ozone, aerosols, micro-meteorites etc.

  13. Identity, Physical Space, and Stigma Among African American Men Living with HIV in Chicago and Seattle.

    Science.gov (United States)

    Singleton, Judith L; Raunig, Manuela; Brunsteter, Halley; Desmond, Michelle; Rao, Deepa

    2015-12-01

    African American men have the highest rates of HIV in the USA, and research has shown that stigma, mistrust of health care, and other psychosocial factors interfere with optimal engagement in care with this population. In order to further understand reducing stigma and other psychosocial issues among African American men, we conducted qualitative interviews and focus groups with African American men in two metropolitan areas in the USA: Chicago and Seattle. We examined transcripts for relationships across variables of stigma, anonymity, self-identity, and space within the context of HIV. Our analysis pointed to similarities between experiences of stigma across the two cities and illustrated the relationships between space, isolation, and preferred anonymity related to living with HIV. The men in our study often preferred that their HIV-linked identities remain invisible and anonymous, associated with perceived and created isolation from physical community spaces. This article suggests that our health care and housing institutions may influence preferences for anonymity. We make recommendations in key areas to create safer spaces for African American men living with HIV and reduce feelings of stigma and isolation.

  14. How does mental-physical multimorbidity express itself in lived time and space? A phenomenological analysis of encounters with depression and chronic physical illness.

    Science.gov (United States)

    Coventry, Peter A; Dickens, Chris; Todd, Chris

    2014-10-01

    Mental-physical multimorbidity (the co-existence of mental and physical ill health) is highly prevalent and associated with significant impairments and high healthcare costs. While the sociology of chronic illness has developed a mature discourse on coping with long term physical illness the impact of mental and physical health have remained analytically separated, highlighting the need for a better understanding of the day-to-day complexities encountered by people living with mental-physical multimorbidity. We used the phenomenological paradigm of the lived body to elucidate how the experience of mental-physical multimorbidity shapes people's lifeworlds. Nineteen people with chronic obstructive pulmonary disease (COPD) and depression (defined as a score ≥8 on depression scale of Hospital Anxiety and Depression Scale) were recruited from secondary NHS care and interviewed at their homes. Data were analysed phenomenologically using van Manen's lifeworld existential framework of the lived body, lived time, lived space, lived relations. Additionally, we re-analysed data (using the same framework) collected from 13 people recruited from secondary NHS care with either COPD, rheumatoid arthritis, heart disease, or type 1 or type 2 diabetes and depression. The phenomenology of mental-physical multimorbidity was articulated through embodied and emotional encounters with day-to-day life in four ways: [a] participants' perception of lived time and lived space contracted; [b] time and [c] space were experienced as liminal categories, enforcing negative mood and temporal and spatial contraction; and [d] time and space could also be customised to reinstate agency and self-determination. Mental-physical multimorbidity negatively impacts on individuals' perceptions of lived time and lived space, leading to a loss of agency, heightened uncertainty, and poor well-being. Harnessing people's capacity to modify their experience of time and space may be a novel way to support people

  15. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don

    2003-01-01

    and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii......) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed......Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...

  16. The coronas-F space mission key results for solar terrestrial physics

    CERN Document Server

    2014-01-01

    This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.

  17. Physical interpretation and geometrical representation of constant curvature surfaces in Euclidean and pseudo-Euclidean spaces

    International Nuclear Information System (INIS)

    Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo

    2005-08-01

    The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it

  18. Programme of Indian Centre for Space Physics using Very Low Frequency Radio Waves

    Science.gov (United States)

    Chakrabarti, Sandip Kumar; Sasmal, Sudipta; Pal, Sujay; Kanta Maji, Surya; Ray, Suman

    Indian Centre for Space Physics conducted two major VLF campaigns all over Indian Sub-continent to study the propagation effects of VLF radio waves. It made multi-receiver observations during solar eclipse. ICSP not only recorded multitudes of solar flares, it also reproduced VLF observation from ab initio calculation. ICSP extended its study to the field of earthquake predictions using signal anomalies and using case by case studies as well as statistical analysis, showed that anomalies are real and more studies are required to understand them. Using earth as a gigantic detector, it detected ionospheric perturbations due to soft gamma-ray repeaters and gamma-ray bursts.

  19. On knottings in the physical Hilbert space of LQG as given by the EPRL model

    International Nuclear Information System (INIS)

    Bahr, Benjamin

    2011-01-01

    We consider the EPRL spin foam amplitude for arbitrary embedded two-complexes. Choosing a definition of the face- and edge amplitudes which lead to spin foam amplitudes invariant under trivial subdivisions, we investigate invariance properties of the amplitude under consistent deformations, which are deformations of the embedded two-complex where faces are allowed to pass through each other in a controlled way. Using this surprising invariance, we are able to show that the physical Hilbert space, as defined by the sum over all spin foams, contains no information about knotting classes of graphs anymore.

  20. Success Stories of Undergraduate Retention: A Pathways Study of Graduate Students in Solar and Space Physics

    Science.gov (United States)

    Morrow, C. A.; Stoll, W.; Moldwin, M.; Gross, N. A.

    2012-12-01

    This presentation describes results from an NSF-funded study of the pathways students in solar and space physics have taken to arrive in graduate school. Our Pathways study has documented results from structured interviews conducted with graduate students attending two, week-long, NSF-sponsored scientific workshops during the summer of 2011. Our research team interviewed 48 solar and space physics students (29 males and 19 females currently in graduate programs at US institutions,) in small group settings regarding what attracted and retained them along their pathways leading to grad school. This presentation addresses what these students revealed about the attributes and influences that supported completion of their undergraduate experience and focused their aspirations toward graduate school. In advance of the interview process, we collected 125 on-line survey responses from students at the two workshops. This 20-item survey included questions about high school and undergraduate education, as well as about research and graduate experience. A subset of the 125 students who completed this on-line survey volunteered to be interviewed. Two types of interview data were collected from the 48 interviewees: 1) written answers to a pre-interview questionnaire; and 2) detailed notes taken by researchers during group interviews. On the pre-interview questionnaire, we posed the question: "How did you come to be a graduate student in your field?" Our findings to date are based on an analysis of responses to this question, cross correlated with the corresponding on-line survey data. Our analysis reveals the importance of early research experiences. About 80% of the students participating in the Pathways study cited formative undergraduate research experiences. Moreover, about 50% of participants reported undergraduate research experiences that were in the field of their current graduate studies. Graduate students interviewed frequently cited a childhood interest in science

  1. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    Science.gov (United States)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid

  2. Optimization of professional preparation of future teacher of physical culture in informatively-educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y. V.

    2012-06-01

    Full Text Available It is marked that reformation of higher education is an objective necessity. It is marked that the educational system of Ukraine answers the new requirements of informative society not fully. It is certain that optimization of professional education of future teacher of physical culture must be characterized the choice of the most favourable variant of terms and teaching facilities. It is set that transitions within the limits of one informative space have an influence on professional development of future teacher during his studies. The followings terms of optimization of professional education of teacher are selected: system use of active and interactive methods; bringing in to the advanced study; the increase of role is informative of communication technologies in an educational process. The concordance of maintenance of curriculum of education of teachers of physical culture with the programs of education of the European countries and standardization is recommended them within the limits of Ukraine.

  3. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  4. Correlation indices physical space of soil and productivity of fruit tomato industry

    Directory of Open Access Journals (Sweden)

    Danilo Gomes de Oliveira

    2017-12-01

    Full Text Available With mechanization at all stages of crop management, the soil began to receive a higher surface load, which causes changes in its physical properties with possible production impacts. Thus, the objective of this work was to evaluate the variability and spatial correlation of the physical attributes of a Red Latosol with the productivity of industrial tomatoes. For this, a sample mesh was assembled using a global receiver positioning system (GPS, with 84 pairs of spaced apart 80 x 80 m points. After the mesh construction, samples in the 0.00-0.20 m layer were collected in the field to measure the physical attributes of the soil and plant data. The variables measured were: soil density (Ds, soil penetration resistance (PR, soil texture and tomato productivity. The values obtained were analyzed using geostatistics, and were classified according to the degree of spatial dependence. Then, using the ordinary kriging interpolation method and ordinary cokriging, the values for nonsampled sites were estimated, allowing the mapping of isovalues and the definition of management zones in the field. The spatial correlation of the physical attributes with the production components by the ordinary Cokriging method verified spatial correlation only between attributes (soil x soil density and sand content. The use of geostatistics and the construction of the maps by means of kriging and ordinary cokrigation allowed to identify different management zones, that is, the variability of soil attributes and productivity.

  5. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    Science.gov (United States)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  6. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    Science.gov (United States)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  7. Are some chondrule rims formed by impact processes? Observations and experiments.

    Science.gov (United States)

    Bunch, T E; Schultz, P; Cassen, P; Brownlee, D; Podolak, M; Lissauer, J; Reynolds, R; Chang, S

    1991-01-01

    Observations and experimental evidence are presented to support the hypothesis that high-speed impact into a parent body regolith can best explain certain textures and compositions observed for rims on some chondrules. A study of 19 interclastic rimmed chondrules in the Weston (H 3/4) ordinary chondrite shows that two main rim types are present on porphyritic olivine-pyroxene (POP) and porphyritic pyroxene (PP) chondrules: granular and opaque rims. Granular rims are composed of welded, fine-grained host chondrule fragments. Bulk compositions of granular rims vary among chondrules, but each rim is compositionally dependent on that of the host chondrule. Opaque rims contain mineral and glass compositions distinctly different from those of the host, partially reacted chondrule mantle components, and some matrix grains. Opaque rims are greatly enriched in FeO (up to 63 wt%). The original chondrule pyroxene compositional zonation patterns and euhedral grain outlines are discontinuous at the chondrule/rim interface. Opaque rims are dominated by fayalitic olivine (Fa92-56), with high Al2O3 content (0.78-3.15%), which makes them distinctly different from primary olivine, but similar to Fe-olivine in chondrule rims of other meteorites. Thin zones of chondrule minerals adjacent to the present rims are intermediate in FeO content between the Mg-rich interior and the Fe-rich rim, which indicates a reaction relationship. Regardless of conclusions drawn regarding other types of rims, granular and opaque rim characteristics appear to be inconsistent with nebular condensation, in that host and matrix fragments are included within the rim. We have initiated a series of experiments, using the Ames two-stage light gas gun, to investigate the hypothesis that the Weston chondrule rims are the result of thermal and mechanical alteration upon impact into a low-density medium. Clusters of approximately 200-micron-sized silicate particles were fired into aerogel (density = 0.1 g cm-3) at

  8. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    Science.gov (United States)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  9. Some Thermodynamic Considerations on the Physical and Quantum Nature of Space and Time

    Science.gov (United States)

    Sohrab, Siavash H.; Piltch, Nancy (Technical Monitor)

    2000-01-01

    It is suggested that the Planck h = m(sub k)c Lambda(sub k) and the Boltzmann k = m(sub k)c nu(sub k)Constants have stochastic foundation. It is further suggested that a body of fluid at equilibrium is composed of a spectrum of molecular clusters (energy levels) the size of which are governed by the Maxwell-Boltzmann distribution function. Brownian motions are attributed to equilibrium between suspensions and molecular clusters. Atomic (molecular) transition between different size atomic- (molecular-) clusters (energy levels) is shown to result in emission/absorption of energy in accordance with Bohr's theory of atomic spectra. Physical space is identified as a tachyonic fluid that is Dirac's stochastic ether or de Broglie's hidden thermostat. Compressibility of physical space, in accordance with Planck's compressible ether, is shown to result in the Lorentz-Fitzgerald contraction, thus providing a causal explanation of relativistic effect in accordance with the perceptions of Poincare and Lorentz. The invariant Schrodinger equation is derived from the invariant Bernoulli equation for incompressible potential flow. Following Heisenberg a temporal uncertainty relation is introduced as Delta(nu(sub Beta)) Delta(Rho(sub Beta)) > = k.

  10. Active living : the impact of renovating urban open spaces on increasing the level of physical activity among social groups

    NARCIS (Netherlands)

    Wiggers, Hiske; Shokoohi, Roya

    2017-01-01

    Introduction The provision of active parks/public open space is the key factor in promoting active living, because people and specially low-income and elderlies are being more interested in doing non-organized/informal, and no-cost sports/physical activities in outdoor spaces in recent decades

  11. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  12. Midterm Follow-up of Treating Volar Marginal Rim Fractures with Variable Angle Lcp Volar Rim Distal Radius Plates.

    Science.gov (United States)

    Goorens, Chul Ki; Geeurickx, Stijn; Wernaers, Pascal; Staelens, Barbara; Scheerlinck, Thierry; Goubau, Jean

    2017-06-01

    Specific treatment of the volar marginal rim fragment of distal radius fractures avoids occurance of volar radiocarpal dislocation. Although several fixation systems are available to capture this fragment, adequately maintaining internal fixation is difficult. We present our experience of the first 10 cases using the 2.4 mm variable angle LCP volar rim distal radius plate (Depuy Synthes®, West Chester, US), a low-profile volar rim-contouring plate designed for distal plate positioning and stable buttressing of the volar marginal fragment. Follow-up patient satisfaction, range of motion, grips strength, functional scoring with the QuickDASH and residual pain with a numeric rating scale were assessed. Radiological evaluation consisted in evaluating fracture consolidation, ulnar variance, volar angulation and maintenance of the volar rim fixation. The female to male ratio was 5:5 and the mean age was 52.2 (range, 17-80) years. The mean follow-up period was 11 (range, 5-19) months postoperatively. Patient satisfaction was high. The mean total flexion/extension range was 144° (range, 100-180°) compared to the contralateral uninjured side 160° (range, 95-180°). The mean total pronation/supination range was 153° (range, 140-180°) compared to the contralateral uninjured side 170° (range, 155-180°). Mean grip strength was 14 kg (range, 9-22), compared to the contralateral uninjured side 20 kg (range, 12-25 kg). Mean pre-injury level activity QuickDASH was 23 (range, 0-34.1), while post-recovery QuickDASH was 25 (range 0-43.2). Residual pain was 1.5 on the visual numerical pain rating scale. Radiological evaluation revealed in all cases fracture consolidation, satisfactory reconstruction of ulnar variance, volar angulation and volar rim. We encountered no flexor tendon complications, although plate removal was systematically performed after fracture consolidation. The 2.4 mm variable angle LCP volar rim distal radius plates is a valid treatment option for treating

  13. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  14. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  15. Start small, dream big: Experiences of physical activity in public spaces in Colombia.

    Science.gov (United States)

    Díaz Del Castillo, Adriana; González, Silvia Alejandra; Ríos, Ana Paola; Páez, Diana C; Torres, Andrea; Díaz, María Paula; Pratt, Michael; Sarmiento, Olga L

    2017-10-01

    Multi-sectoral strategies to promote active recreation and physical activity in public spaces are crucial to building a "culture of health". However, studies on the sustainability and scalability of these strategies are limited. This paper identifies the factors related to the sustainability and scaling up of two community-based programs offering physical activity classes in public spaces in Colombia: Bogotá's Recreovía and Colombia's "Healthy Habits and Lifestyles Program-HEVS". Both programs have been sustained for more than 10years, and have benefited 1455 communities. We used a mixed-methods approach including semi-structured interviews, document review and an analysis of data regarding the programs' history, characteristics, funding, capacity building and challenges. Interviews were conducted between May-October 2015. Based on the sustainability frameworks of Shediac-Rizkallah and Bone and Scheirer, we developed categories to independently code each interview. All information was independently analyzed by four of the authors and cross-compared between programs. Findings showed that these programs underwent adaptation processes to address the challenges that threatened their continuation and growth. The primary strategies included flexibility/adaptability, investing in the working conditions and training of instructors, allocating public funds and requesting accountability, diversifying resources, having community support and champions at different levels and positions, and carrying out continuous advocacy to include physical activity in public policies. Recreovía and HEVS illustrate sustainability as an incremental, multi-level process at different levels. Lessons learned for similar initiatives include the importance of individual actions and small events, a willingness to start small while dreaming big, being flexible, and prioritizing the human factor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space

    Science.gov (United States)

    Strayer, Don (Editor)

    2003-01-01

    The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.

  17. Rim formation and fission gas behaviour: some structure remarks

    International Nuclear Information System (INIS)

    Spino, J.; Papaioannou, D.; Ray, I.; Baron, D.

    2002-01-01

    In high burn-up LWR nuclear fuel an increase of the Xe-mobility is observed in the rim region according to EPMA. This often coincides with an increase of the local porosity and the grain subdivision of the material in regions around the pores. The restructuring does not always imply disappearance of the prior grain boundaries. This seems to occur in a final step. Micro-XRD studies also show a contraction of the fuel lattice in the rim zone, reflecting mainly the release of accumulated stresses during irradiation, via reordering of defects and defect complexes, including sub-grain formation and displacement of Xe traps. The lattice contraction is not measurable when the fraction of restructured areas is low and the prior grain structure still remains. Nevertheless, in such a case, even the Xe signal by EPMA is observed to decrease, anticipating the displacement of Xe inside the grains, probably towards cavities. However, the quantitative proportion of Xe in matrix and pores can not be given by EPMA. This is confirmed by TEM examinations, showing still plenty of gas bubbles inside restructured grains, in spite of the low Xe signal detected by EPMA. An alternative determination therefore appears necessary. The fission gas release (FGR) behaviour of the rim zone seems then to depend basically on the efficiency of gas retention in its porosity. The closed character of these pores and the low percolation probability derived from the high pore to grain size ratio anticipate a low incidence of open porosity. Also, mechanical tests suggest a low pore interconnection probability by microcracking. However, at very high local burn-ups (>150 GWd/tM), too high porosity values are determined compared to the values derived from immersion density and solid swelling, suggesting the potential existence of open channels. Also, abnormally high porosity values by quantitative metallography might arise from grain pullout during sample preparation. Here, a rough estimation of the release

  18. Crosswalking near-Earth and space physics ontologies in SPASE and ESPAS

    Science.gov (United States)

    Galkin, I. A.; Fung, S. F.; Benson, R. F.; Heynderickx, D.; Ritschel, B.; King, T. A.; Roberts, D. A.; Hapgood, M. A.; Belehaki, A.

    2015-12-01

    In order to support scientific discoveries in Heliophysics (HP), with modern data systems, the HP Data Centers actively pursue harmonization of available metadata that allows crossing boundaries between existing data models, conventions, and resource interfaces. The discoverability of HP observations is improved when associated metadata describes their physical content in agreed terms as a part of the resource registration. One of the great challenges of enabling such content-targeted data search capability is the harmonization of domain ontology across data providers. Ontologies are the cornerstones of the content-aware data systems: they define an agreed vocabulary of keywords that capture the essence of domain-specific concepts and their relationships. With the introduction of the Virtual Wave Observatory (VWO), as part of NASA's Virtual System Observatory in 2008, the task of formulating the HP ontology became yet more complicated. Definitions of the wave domain concepts required several layers of specifications that described the generation, propagation, and interaction of the waves with the underlying medium in addition to the observation itself. Simple keyword lists could not provide a sufficiently information-rich description, given the complexity of the wave domain, and the development of a more powerful schema was required. The ontology research at the VWO eventually resulted in a suitable multi-hierarchical design that found its first implementation in 2015 at one of the European space physics data repositories, the near-Earth Space Data Infrastructure for e-Science (ESPAS). Similar to many other European geoscience projects, ESPAS is based on the ISO 19156 Observation and Measurements standard. In cooperation with the NASA VWO, the ESPAS project has deployed a space physics ontology design for all data registration purposes. The VWO science team is now uniquely positioned to establish a crosswalk between the ESPAS ontology based on ISO 19156 and the VWO

  19. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Science.gov (United States)

    Momma, Kazunari; Noguchi, Satoru; Malicdan, May Christine V; Hayashi, Yukiko K; Minami, Narihiro; Kamakura, Keiko; Nonaka, Ikuya; Nishino, Ichizo

    2012-01-01

    Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  20. Rimmed vacuoles in Becker muscular dystrophy have similar features with inclusion myopathies.

    Directory of Open Access Journals (Sweden)

    Kazunari Momma

    Full Text Available Rimmed vacuoles in myofibers are thought to be due to the accumulation of autophagic vacuoles, and can be characteristic in certain myopathies with protein inclusions in myofibers. In this study, we performed a detailed clinical, molecular, and pathological characterization of Becker muscular dystrophy patients who have rimmed vacuoles in muscles. Among 65 Becker muscular dystrophy patients, we identified 12 patients who have rimmed vacuoles and 11 patients who have deletions in exons 45-48 in DMD gene. All patients having rimmed vacuoles showed milder clinical features compared to those without rimmed vacuoles. Interestingly, the rimmed vacuoles in Becker muscular dystrophy muscles seem to represent autophagic vacuoles and are also associated with polyubiquitinated protein aggregates. These findings support the notion that rimmed vacuoles can appear in Becker muscular dystrophy, and may be related to the chronic changes in muscle pathology induced by certain mutations in the DMD gene.

  1. The management of helical rim keloids with excision, split thickness skin graft and intralesional triamcinolone acetonide

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdul Rasheed

    2014-01-01

    Full Text Available Keloids of the helical rim are disfiguring. A cosmetically acceptable reconstruction is difficult especially in moderate to large sized lesions because the helical rim is a 3-dimensional structure with curved and thin cartilage. We report our experience in the management of moderate (4-10 cm and large (>10 cm helical rim keloids in five patients. Six helical rim keloids were reconstructed. There were four moderate (4-10 cm and two large (>10 cm helical rim keloids. Four were on the right helix and two on the left helix. One patient had bilateral helical rim keloids. The follow-up period ranged from 6 months to 4 years. No secondary surgical revision was required to improve the contour of the reconstructed helical rim. The aesthetic results were satisfactory in all the patients.

  2. Promoting physical activity through the shared use of school recreational spaces: a policy statement from the American Heart Association.

    Science.gov (United States)

    Young, Deborah R; Spengler, John O; Frost, Natasha; Evenson, Kelly R; Vincent, Jeffrey M; Whitsel, Laurie

    2014-09-01

    Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces.

  3. Principle of minimum distance in space of states as new principle in quantum physics

    International Nuclear Information System (INIS)

    Ion, D. B.; Ion, M. L. D.

    2007-01-01

    The mathematician Leonhard Euler (1707-1783) appears to have been a philosophical optimist having written: 'Since the fabric of universe is the most perfect and is the work of the most wise Creator, nothing whatsoever take place in this universe in which some relation of maximum or minimum does not appear. Wherefore, there is absolutely no doubt that every effect in universe can be explained as satisfactory from final causes themselves the aid of the method of Maxima and Minima, as can from the effective causes'. Having in mind this kind of optimism in the papers mentioned in this work we introduced and investigated the possibility to construct a predictive analytic theory of the elementary particle interaction based on the principle of minimum distance in the space of quantum states (PMD-SQS). So, choosing the partial transition amplitudes as the system variational variables and the distance in the space of the quantum states as a measure of the system effectiveness, we obtained the results presented in this paper. These results proved that the principle of minimum distance in space of quantum states (PMD-SQS) can be chosen as variational principle by which we can find the analytic expressions of the partial transition amplitudes. In this paper we present a description of hadron-hadron scattering via principle of minimum distance PMD-SQS when the distance in space of states is minimized with two directional constraints: dσ/dΩ(±1) = fixed. Then by using the available experimental (pion-nucleon and kaon-nucleon) phase shifts we obtained not only consistent experimental tests of the PMD-SQS optimality, but also strong experimental evidences for new principles in hadronic physics such as: Principle of nonextensivity conjugation via the Riesz-Thorin relation (1/2p + 1/2q = 1) and a new Principle of limited uncertainty in nonextensive quantum physics. The strong experimental evidence obtained here for the nonextensive statistical behavior of the [J,

  4. Thermally-induced amphibole reaction rim development: EBSD insights into microlite orientation

    Science.gov (United States)

    De Angelis, Sarah; Lavallée, Yan; Larsen, Jessica; Mariani, Elisabetta

    2014-05-01

    Amphibole is an important mineral present in many calc-alkaline volcanic deposits. A hydrous phase, volcanic amphibole is only stable at pressures greater than 100 MPa (approx. 4 km), temperature less than ~860-870 oC, and in melts containing at least 4 wt % H2O. When removed from their thermal and barometric stability field, amphiboles decompose to form aggregate rims of anhydrous minerals. The thickness, texture, and mineralogy of these rims are thought to be reflective of the process driving amphibole disequilibrium (e.g. heating, decompression, etc). However, significant overlap in rim thicknesses and microlite textures means that distinguishing between processes it not simple. This study employed backscatter diffraction (EBSD) to examine both experimental heating-indced amphibole reaction rims and natural amphibole reaction rim from Augustine Volcano. We collected crystal orientation maps of amphibole reaction rims to investigate if different types of disequilibrium produce different patterns of microlite orientation. We identified two types of reaction rim: Type 1- reaction rim microlites are generally oriented at random and share little or no systematic relationship with the crystallographic orientation of the host amphibole, and; Type 2- reaction rim microlites exhibit a topotactic relationship with the host amphibole (they share the same crystallographic orientation). Experimentally produced heating reaction rims are without exception Type 2. However the natural reaction rims are evenly distributed between Types 1 and 2. Further experimental data on decompression induced reaction rim formation is needed to investigate if Type 1 reaction rims resemble the breakdown of amphibole due to decompression. If so, reaction rim microlite orientation could provide a clear method for distinguishing between heating and decompression processes in amphibole bearing magmas.

  5. Concurrent Rotator Cuff Tear and Axillary Nerve Palsy Associated with Anterior Dislocation of the Shoulder and Large Glenoid Rim Fracture: A “Terrible Tetrad”

    Directory of Open Access Journals (Sweden)

    Fumiaki Takase

    2014-01-01

    Full Text Available We present a case of concurrent rotator cuff tear and axillary nerve palsy resulting from anterior dislocation of the shoulder and a large glenoid rim fracture—a “terrible tetrad.” A 61-year-old woman fell on her right shoulder. Radiographs showed anterior dislocation of the shoulder with a glenoid rim fracture, and an MRI two months after injury revealed a rotator cuff tear. Upon referral to our hospital, physical and electrophysiological examinations revealed axillary nerve palsy. The axillary nerve palsy was incomplete and recovering, and displacement of the glenoid rim fracture was minimal and already united; therefore, we surgically repaired only the rotator cuff tear three months after injury. The patient recovered satisfactorily following the operation. In patients whose axillary nerve palsy is recovering, surgeons should consider operating on rotator cuff tears in an attempt to prevent rotator cuff degeneration.

  6. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  7. Modern Physics in High School: Space time in Einstein’s comic strips

    Directory of Open Access Journals (Sweden)

    Francisco Caruso

    2009-08-01

    Full Text Available A   brief   summary   of   the  impact  of   Einstein's   contribution  concerning  concepts  like  space,  time,  simultaneity,  mass  and  energy is presented. Some of the main purposes of an education project through comics are sketched. The present work is inserted in this project and it shows a set of seven original comic strips which can be used by High School teachers to talk about one of Einstein’s  revolutionary  contributions  to  Modern  Physics:  Relativity.

  8. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    Science.gov (United States)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  9. Physical activity as a possible mechanism behind the relationship between green space and health: A multilevel analysis

    Directory of Open Access Journals (Sweden)

    Spreeuwenberg Peter

    2008-06-01

    Full Text Available Abstract Background The aim of this study was to investigate whether physical activity (in general, and more specifically, walking and cycling during leisure time and for commuting purposes, sports and gardening is an underlying mechanism in the relationship between the amount of green space in people's direct living environment and self-perceived health. To study this, we first investigated whether the amount of green space in the living environment is related to the level of physical activity. When an association between green space and physical activity was found, we analysed whether this could explain the relationship between green space and health. Methods The study includes 4.899 Dutch people who were interviewed about physical activity, self-perceived health and demographic and socioeconomic background. The amount of green space within a one-kilometre and a three-kilometre radius around the postal code coordinates was calculated for each individual. Multivariate multilevel analyses and multilevel logistic regression analyses were performed at two levels and with controls for socio-demographic characteristics and urbanicity. Results No relationship was found between the amount of green space in the living environment and whether or not people meet the Dutch public health recommendations for physical activity, sports and walking for commuting purposes. People with more green space in their living environment walked and cycled less often and fewer minutes during leisure time; people with more green space garden more often and spend more time on gardening. Furthermore, if people cycle for commuting purposes they spend more time on this if they live in a greener living environment. Whether or not people garden, the time spent on gardening and time spent on cycling for commuting purposes did not explain the relationship between green space and health. Conclusion Our study indicates that the amount of green space in the living environment is

  10. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    Science.gov (United States)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  11. Investigating plasma-rotation methods for the Space-Plasma Physics Campaign at UCLA's BAPSF.

    Science.gov (United States)

    Finnegan, S. M.; Koepke, M. E.; Reynolds, E. W.

    2006-10-01

    In D'Angelo et al., JGR 79, 4747 (1974), rigid-body ExB plasma flow was inferred from parabolic floating-potential profiles produced by a spiral ionizing surface. Here, taking a different approach, we report effects on barium-ion azimuthal-flow profiles using either a non-emissive or emissive spiral end-electrode in the WVU Q-machine. Neither electrode produced a radially-parabolic space-potential profile. The emissive spiral, however, generated controllable, radially-parabolic structure in the floating potential, consistent with a second population of electrons having a radially-parabolic parallel-energy profile. Laser-induced-fluorescence measurements of spatially resolved, azimuthal-velocity distribution functions show that, for a given flow profile, the diamagnetic drift of hot (>>0.2eV) ions overwhelms the ExB-drift contribution. Our experiments constitute a first attempt at producing controllable, rigid-body, ExB plasma flow for future experiments on the LArge-Plasma-Device (LAPD), as part of the Space-Plasma Physics Campaign (at UCLA's BAPSF).

  12. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  13. Characteristics of personal space during obstacle circumvention in physical and virtual environments.

    Science.gov (United States)

    Gérin-Lajoie, Martin; Richards, Carol L; Fung, Joyce; McFadyen, Bradford J

    2008-02-01

    It is not known how the flexible protective zone maintained around oneself during locomotion (personal space or PS; see [Gérin-Lajoie M, Richards CL, McFadyen BJ. The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor Control 2005;9:242-69]) is modulated with walking speed, whether both sides of the PS are symmetrical, and whether the circumvention of physical and virtual obstructions elicit the same use of such PS. Personal space was measured in ten adults as they circumvented a cylindrical obstacle that was stationary within their path. Both left and right passes were performed at natural self-selected, slow and fast walking speeds. The same circumvention task was also performed at natural speeds in an immersive virtual environment (VE) replicating the same obstruction scenario. The shape and size of PS were maintained across walking speeds, and a smaller PS was generally observed on the dominant side. The general shape and lateral bias of the PS were preserved in the VE while its size was slightly increased. The systematic behavior across walking speeds and types of environment and the lateral bias suggest that PS is used to control navigation. This study deepens our understanding of normal adaptive walking behavior and has implications for the development of better tools for the assessment and retraining of locomotor capacity in different populations, from people with walking deficits to elite athletes. Since the PS behavior was shown to be robust in the VE used for this study, the virtual reality technology is proposed as a promising platform for the development of such assessment and retraining applications.

  14. Assessing the Associations Between Types of Green Space, Physical Activity, and Health Indicators Using GIS and Participatory Survey

    Science.gov (United States)

    Akpinar, A.

    2017-11-01

    This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands) are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke). Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small), quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.

  15. ASSESSING THE ASSOCIATIONS BETWEEN TYPES OF GREEN SPACE, PHYSICAL ACTIVITY, AND HEALTH INDICATORS USING GIS AND PARTICIPATORY SURVEY

    Directory of Open Access Journals (Sweden)

    A. Akpinar

    2017-11-01

    Full Text Available This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke. Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small, quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.

  16. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research.

    Science.gov (United States)

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny; Astell-Burt, Thomas; Hipp, J Aaron; Schipperijn, Jasper

    2015-01-01

    Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken to assess the effectiveness of interventions to encourage PA in urban green space. Five databases were searched independently by two reviewers using search terms relating to 'physical activity', 'urban green space' and 'intervention' in July 2014. Eligibility criteria included: (i) intervention to encourage PA in urban green space which involved either a physical change to the urban green space or a PA intervention to promote use of urban green space or a combination of both; and (ii) primary outcome of PA. Of the 2405 studies identified, 12 were included. There was some evidence (4/9 studies showed positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing urban green space use and PA of users. Recommendations for future research include the need for longer term follow-up post-intervention, adequate control groups, sufficiently powered studies, and consideration of the social environment, which was identified as a significantly under-utilized resource in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation and evaluation of future urban green space and PAintervention research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Flock, M.; Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Fromang, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Benisty, M., E-mail: mflock@caltech.edu [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France)

    2016-08-20

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating; silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density; and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  18. Pac-Rim LNG project : final project report specifications

    International Nuclear Information System (INIS)

    1996-01-01

    PAC-RIM LNG Inc. has submitted a proposal to the British Columbia Environmental Assessment Office, to develop a liquefied natural gas project which would purchase pipeline quality natural gas from sources in northeast British Columbia and Alberta and transport it via a dedicated pipeline system to a LNG processing plant on tidewater on the Pacific coast. The project would include storage and processing facilities and a marine loading terminal. This document sets out the final project report specifications prepared by the Project Committee on the basis of input received from the public, First Nations and federal, provincial and local governments

  19. The spatial-temporal evolution of aerosol optical depth and the analysis of influence factors in Bohai Rim

    International Nuclear Information System (INIS)

    Hou, Chunliang; Jiang, Hong; Wang, Xiaoyan; Pei, Huan

    2014-01-01

    Aerosol Optical Depth (AOD) is an important parameter of aerosol optical properties and it is an important physical parameter quantity to understanding the atmospheric environment. Bohai Rim is one of the three major urban agglomeration regions with rapidly developing economy in China. The study of AOD over this region is important to understand the environment and climate in Bohai Rim. Firstly, aerosol product data from 2000 to 2010, published by NASA, were used to analyze the temporal-spatial evolution of AOD in Bohai Rim with precision evaluation. The results showed that the spatial distribution of AOD had an obvious regional characteristic. The spatial distribution characterized that a much high value existed at urban areas and plain areas. On the contrary, the low value data existed in some mountainous regions which had higher percentages of forest coverage. The AOD values fluctuated somewhat each year in the region, from the minimum annual mean in 2003 to the maximum in 2009. Generally, the highest AOD value was in summer, followed by spring, autumn and winter. In terms of monthly variation, the value of AOD reached its peak in June and the lowest value was in December. This study analyzed the relation between AOD and some influence factors such as land use types, elevation, and distribution of urban agglomeration and so on. These results provide an important basic dataset for climate and environmental research

  20. Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS)

    International Nuclear Information System (INIS)

    Erdmann, N.; Herrmann, G.; Huber, G.; Koehler, S.; Kratz, J.V.; Mansel, A.; Nunnemann, M.; Passler, G.; Trautmann, N.; Waldek, A.

    1997-01-01

    Trace amounts of plutonium in the environment can be detected by resonance ionization mass spectroscopy (RIMS). An atomic beam of plutonium is produced after its chemical separation and deposition on a filament. The atoms are ionized by a three-step excitation using pulsed dye-lasers. The ions are mass-selectively detected in a time-of-flight (TOF) mass spectrometer. With this setup a detection limit of 1·10 6 atoms of plutonium has been achieved. Furthermore, the isotopic composition can be determined. Different samples, including soil from the Chernobyl area, IAEA-certified sediments from the Mururoa Atoll and urine, have been investigated. copyright 1997 American Institute of Physics

  1. SU-E-E-03: Shared Space Fosters Didactic and Professional Learning Across Professions for Medical and Physics Residents

    International Nuclear Information System (INIS)

    Dieterich, S; Perks, J; Fragoso, R

    2015-01-01

    Purpose: Medical Physicists and Radiation Oncologists are two professions who should be working as a team for optimal patient care, yet lack of mutual understanding about each others respective role and work environment creates barriers To improve collaboration and learning, we designed a shared didactic and work space for physics and radiation oncology residents to maximize interaction throughout their professional training. Methods: Physician and Physics residents are required to take the same didactic classes, including journal clubs and respective seminars. The residents also share an office environment among the seven physician and two physic residents. Results: By maximizing didactic overlap and sharing office space, the two resident groups have developed a close professional relationship and supportive work environment. Several joint research projects have been initiated by the residents. Awareness of physics tasks in the clinic has led to a request by the physician residents to change physics didactics, converting the physics short course into a lab-oriented course for the medical residents which is in part taught by the physics residents. The physics seminar is given by both residency groups; increased motivation and interest in learning about physics has led to several medical resident-initiated topic selections which generated lively discussion. The physics long course has changed toward including more discussion among residents to delve deeper into topics and study beyond what passing the boards would require. A supportive work environment has developed, embedding the two physics residents into a larger residents group, allowing them to find mentor and peers more easily. Conclusion: By creating a shared work and didactic environment, physician and physics residents have improved their understanding of respective professional practice. Resident-initiated changes in didactic practice have led to improved learning and joint research. A strong social

  2. SU-E-E-03: Shared Space Fosters Didactic and Professional Learning Across Professions for Medical and Physics Residents

    Energy Technology Data Exchange (ETDEWEB)

    Dieterich, S; Perks, J; Fragoso, R [UC Davis Medical Center, Sacramento, CA (United States)

    2015-06-15

    Purpose: Medical Physicists and Radiation Oncologists are two professions who should be working as a team for optimal patient care, yet lack of mutual understanding about each others respective role and work environment creates barriers To improve collaboration and learning, we designed a shared didactic and work space for physics and radiation oncology residents to maximize interaction throughout their professional training. Methods: Physician and Physics residents are required to take the same didactic classes, including journal clubs and respective seminars. The residents also share an office environment among the seven physician and two physic residents. Results: By maximizing didactic overlap and sharing office space, the two resident groups have developed a close professional relationship and supportive work environment. Several joint research projects have been initiated by the residents. Awareness of physics tasks in the clinic has led to a request by the physician residents to change physics didactics, converting the physics short course into a lab-oriented course for the medical residents which is in part taught by the physics residents. The physics seminar is given by both residency groups; increased motivation and interest in learning about physics has led to several medical resident-initiated topic selections which generated lively discussion. The physics long course has changed toward including more discussion among residents to delve deeper into topics and study beyond what passing the boards would require. A supportive work environment has developed, embedding the two physics residents into a larger residents group, allowing them to find mentor and peers more easily. Conclusion: By creating a shared work and didactic environment, physician and physics residents have improved their understanding of respective professional practice. Resident-initiated changes in didactic practice have led to improved learning and joint research. A strong social

  3. Space Time Physics and Fractality: Festschrift in honour of Mohamed El Naschie on the occasion of his 60th birthday

    Science.gov (United States)

    Weibel, Peter; Ord, Garnet; Rössler, Otto

    2005-01-01

    Space and Time are the prison bars of reality. Space Time Physics and Fractality is an attempt to tunnel through the rigidity of it all -- by turning everything into dust or smoke. These two ancient traditions are brought together here for the first time -- in the spirit of Democritus and Anaxagoras. Mohamed El Naschie, the sexagenarian, is the "dust dragon". The book contains papers by people who are infected by the same virus of desperately wanting to understand, and represents an incomparable breakthrough.

  4. Multi-element RIMS Analysis of Genesis Solar Wind Collectors

    Science.gov (United States)

    Veryovkin, I. V.; Tripa, C. E.; Zinovev, A. V.; King, B. V.; Pellin, M. J.; Burnett, D. S.

    2009-12-01

    The samples of Solar Wind (SW) delivered by the NASA Genesis mission, present significant challenges for surface analytical techniques, in part due to severe terrestrial contamination of the samples on reentry, in part due to the ultra-shallow and diffused ion implants in the SW collector materials. We are performing measurements of metallic elements in the Genesis collectors using Resonance Ionization Mass Spectrometry (RIMS), an ultra-sensitive analytical method capable of detecting SW in samples with lateral dimensions of only a few mm and at concentrations from above one ppm to below one ppt. Since our last report at 2008 AGU Fall Meeting, we have (a) developed and tested new resonance ionization schemes permitting simultaneous measurements of up to three (Ca, Cr, and Mg) elements, and (b) improved reproducibility and accuracy of our RIMS analyses for SW-like samples (i.e. shallow ion implants) by developing and implementing an optimized set of new analytical protocols. This is important since the quality of scientific results from the Genesis mission critically depends on the accuracy of analytical techniques. In this work, we report on simultaneous RIMS measurements of Ca and Cr performed on two silicon SW collector samples, (#60179 and #60476). First, we have conducted test experiments with 3×1013 at/cm2 52Cr and 44Ca implants in silicon to evaluate the accuracy of our quantitative analyses. Implant fluencies were measured by RIMS to be 2.73×1013 and 2.71×1013 at/cm2 for 52Cr and 44Ca, respectively, which corresponds to an accuracy of ≈10%. Using the same implanted wafer as a reference, we conducted RIMS analyses of the Genesis samples: 3 spots on #60179 and 4 spots on #60476. The elemental SW fluencies expected for Cr and Ca are 2.95×1010 and 1.33×1011 at/cm2 , respectively. Our measurements of 52Cr yielded 3.0±0.6×1011 at/cm2 and 5.1±4.1×1010 at/cm2 for #60179 and #60476, respectively. For 40Ca, SW fluencies of 1.39±0.70×1011 at/cm2 in #60179

  5. Influence of deformation on dolomite rim growth kinetics

    Science.gov (United States)

    Helpa, Vanessa; Rybacki, Erik; Grafulha Morales, Luiz Fernando; Dresen, Georg

    2015-04-01

    Using a gas-deformation apparatus stacks of oriented calcite (CaCO3) and magnesite (MgCO3) single crystals were deformed at T = 750° C and P = 400 MPa to examine the influence of stress and strain on magnesio-calcite and dolomite (CaMg[CO3]2) growth kinetics. Triaxial compression and torsion tests performed at constant stresses between 7 and 38 MPa and test durations between 4 and 171 hours resulted in bulk strains of 0.03-0.2 and maximum shear strains of 0.8-5.6, respectively. The reaction rims consist of fine-grained (2-7 μm) dolomite with palisade-shaped grains growing into magnesite reactants and equiaxed granular dolomite grains next to calcite. In between dolomite and pure calcite, magnesio-calcite grains evolved with an average grain size of 20-40 μm. Grain boundaries tend to be straighter at high bulk strains and equilibrium angles at grain triple junctions are common within the magnesio-calcite layer. Transmission electron microscopy shows almost dislocation free palisades and increasing dislocation density within granular dolomite towards the magnesio-calcite boundary. Within magnesio-calcite grains, dislocations are concentrated at grain boundaries. Variation of time at fixed stress (˜17 MPa) yields a parabolic time dependence of dolomite rim width, indicating diffusion-controlled growth, similar to isostatic rim growth behavior. In contrast, the magnesio-calcite layer growth is enhanced compared to isostatic conditions. Triaxial compression at given time shows no significant change of dolomite rim thickness (11±2 μm) and width of magnesio-calcite layers (33±5 μm) with increasing stress. In torsion experiments, reaction layer thickness and grain size decrease from the center (low stress/strain) to the edge (high strain/stress) of samples. Chemical analysis shows nearly stoichiometric composition of dolomite palisades, but enhanced Ca content within granular grains, indicating local disequilibrium with magnesio-calcite, in particular for twisted

  6. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions

    Science.gov (United States)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei

    2018-03-01

    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  7. Analysis of the energy capacity of rim-spoke composite flywheels

    International Nuclear Information System (INIS)

    Moorlat, P.A.; Portnov, G.G.

    1986-01-01

    The rim-spoke flywheel consisting of a rim, connected to the hub by spokes encompassing the rim periphery, is one of the most promising types of energy accumulators. For the rational design of rim-spoke flywheels, the authors investigate the dependence of their mass energy capacity and their volume energy capacity; the limit speed on the geometric parameters of the flywheel and the properties of the composites used in making the rim and the spokes are also examined. It is shown through various programs, worked out for analyzing the energy capacity of rim-spoke flywheels, that they can substantially facilitate the designing of such flywheels according to specified requirements that their operational characteristics have to meet

  8. Social and Physical Environmental Factors Influencing Adolescents’ Physical Activity in Urban Public Open Spaces: A Qualitative Study Using Walk-Along Interviews

    Science.gov (United States)

    Van Hecke, Linde; Deforche, Benedicte; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Veitch, Jenny; Van Cauwenberg, Jelle

    2016-01-01

    Most previous studies examining physical activity in Public Open Spaces (POS) focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents’ visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12–16 years, 64% boys) were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium). Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active) friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people), the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents’ behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents’ home or school may

  9. Social and Physical Environmental Factors Influencing Adolescents' Physical Activity in Urban Public Open Spaces: A Qualitative Study Using Walk-Along Interviews.

    Directory of Open Access Journals (Sweden)

    Linde Van Hecke

    Full Text Available Most previous studies examining physical activity in Public Open Spaces (POS focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents' visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12-16 years, 64% boys were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium. Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people, the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents' behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents' home or school

  10. Social and Physical Environmental Factors Influencing Adolescents' Physical Activity in Urban Public Open Spaces: A Qualitative Study Using Walk-Along Interviews.

    Science.gov (United States)

    Van Hecke, Linde; Deforche, Benedicte; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Veitch, Jenny; Van Cauwenberg, Jelle

    2016-01-01

    Most previous studies examining physical activity in Public Open Spaces (POS) focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents' visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12-16 years, 64% boys) were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium). Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active) friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people), the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents' behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents' home or school may stimulate

  11. re ipit tion re onstru tion using ringEwidth hronology of rim lyn ed r ...

    Indian Academy of Sciences (India)

    r nges from IHHEEIUS mF hue to he vy r inf ll it does not grow in the e stern rim l y eyond q rhw lF he ringEwidth hronology of rim l y n ed r @eh. IIUIEEIWVVAD prep red from tree ores olle ted from two disjun t m ture forests in western rim l y . @figure IAD h s een used in the present studyF het ils of the methodology ...

  12. Synthesis of calix[6]arenes partially functionalized at the upper rim

    NARCIS (Netherlands)

    Casnati, Alessandro; Domiano, Laura; Pochini, Andrea; Ungaro, Rocco; Carramolino, Mar; Magrans, J. Oriol; Nieto, Pedro M.; Lopez-Prados, Javier; Prados, Pilar; de Mendoza, Javier; Janssen, Rob G.; Janssen, R.G.; Verboom, Willem; Reinhoudt, David

    1995-01-01

    Several new examples of calix[6]arenes selectively functionalized at the upper rim are reported. Starting from calix[6]arenes 1,3,5-tri-, 1,2,4,5-tetra- and 1,2,3,4,5-pentaalkylated at the lower rim, it is possible to isolate macrocycles 2,4,6-tri-, 3,6-di- and 6-mono functionalized at the upper rim

  13. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    Science.gov (United States)

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  14. Geometric constraints on the space of N = 2 SCFTs. Part I: physical constraints on relevant deformations

    Science.gov (United States)

    Argyres, Philip; Lotito, Matteo; Lü, Yongchao; Martone, Mario

    2018-02-01

    We initiate a systematic study of four dimensional N = 2 superconformal field theories (SCFTs) based on the analysis of their Coulomb branch geometries. Because these SCFTs are not uniquely characterized by their scale-invariant Coulomb branch geometries we also need information on their deformations. We construct all inequivalent such deformations preserving N = 2 supersymmetry and additional physical consistency conditions in the rank 1 case. These not only include all the ones previously predicted by S-duality, but also 16 additional deformations satisfying all the known N = 2 low energy consistency conditions. All but two of these additonal deformations have recently been identified with new rank 1 SCFTs; these identifications are briefly reviewed. Some novel ingredients which are important for this study include: a discussion of RG-flows in the presence of a moduli space of vacua; a classification of local N = 2 supersymmetry-preserving deformations of unitary N = 2 SCFTs; and an analysis of charge normalizations and the Dirac quantization condition on Coulomb branches. This paper is the first in a series of three. The second paper [1] gives the details of the explicit construction of the Coulomb branch geometries discussed here, while the third [2] discusses the computation of central charges of the associated SCFTs.

  15. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  16. The NASA Heliophysics Active Final Archive at the Space Physics Data Facility

    Science.gov (United States)

    McGuire, Robert E.

    2012-01-01

    The 2009 NASA Heliophysics Science Data Management Policy re-defined and extended the responsibilities of the Space Physics Data Facility (SPDF) project. Building on SPDF's established capabilities, the new policy assigned the role of active "Final Archive" for non-solar NASA Heliophysics data to SPDF. The policy also recognized and formalized the responsibilities of SPDF as a source for critical infrastructure services such as VSPO to the overall Heliophysics Data Environment (HpDE) and as a Center of Excellence for existing SPDF science-enabling services and software including CDAWeb, SSCWeb/4D Orbit Viewer, OMNIweb and CDF. We will focus this talk to the principles, strategies and planned SPDF architecture to effectively and efficiently perform these roles, with special emphasis on how SPDF will ensure the long-term preservation and ongoing online community access to all the data entrusted to SPDF. We will layout our archival philosophy and what we are advocating in our work with NASA missions both current and future, with potential providers of NASA and NASA-relevant archival data, and to make the data and metadata held by SPDF accessible to other systems and services within the overall HpOE. We will also briefly review our current services, their metrics and our current plans and priorities for their evolution.

  17. Odyssey in the zepto-space. A voyage in the physics of the LHC

    International Nuclear Information System (INIS)

    Giudice, Gian Francesco

    2012-01-01

    Since end of 2009 the mostly ambitioned scientific experiment of all times runs with record energy - and however its goals are scarcely understandable for the generality. This book puts everyone in the position to consecute and reproduce the immediately imminent discoveries in the particle-accelerator project of the Large Hadron Collider (LHC) at CERN. It invites the reader to consider the theory of particle physics with the eyes of an insider, and gives him the tool in the hand in order to comprehend the importance of the mental revolution, the witnesses of which we are at time. To the mostly impressive aspects of this scientific eventure belong the technological innovations in the construction of the LHC. As part of the project history they are described here too. Furthermore this book gives a survey about the scientific goals and expectations connected with the LHC: Does the mysterious Higgs particle really exist? Hides the space a supersymmetry or extends to additional dimensions? How the protons colliding in the LHC ring can give away the mysteries of the origin of our universe? All these questions are explained in the present book by a proved expert. Without any cuts in the exactness the exceedingly technical matter is here presented in a pleasant, accessible style. This books wants not only informate, but also mediate to the reader, which respect and which excitation a physicist feels, when he stands at the threshold to a new era in the understanding of our world.

  18. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Science.gov (United States)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  19. The status of water and sanitation among Pacific Rim nations.

    Science.gov (United States)

    Arnold, Robert G; Heyworthz, Jane; Sáez, A Eduardo; Rodriguez, Clemencia; Weinstein, Phil; Ling, Bo; Memon, Saima

    2011-01-01

    Analysis of relationships among national wealth, access to improved water supply and sanitation facilities, and population health indices suggests that the adequacy of water resources at the national level is a poor predictor of economic development--namely, that low water stress is neither necessary nor sufficient for economic development at the present state of water stress among Pacific Rim nations. Although nations differ dramatically in terms of priority provided to improved water and sanitation, there is some level of wealth (per capita GNP) at which all nations promote the development of essential environmental services. Among the Pacific Rim countries for which there are data, no nation with a per capita GNP > US$18,000 per year has failed to provide near universal access to improved water supply and sanitation. Below US$18,000/person-year, however, there are decided differences in the provision of sanitary services (improved water supply and sanitation) among nations with similar economic success. There is a fairly strong relationship between child mortality/life expectancy and access to improved sanitation, as expected from the experiences of developed nations. Here no attempt is made to produce causal relationships among these data. Failure to meet Millennium Development Goals for the extension of improved sanitation is frequently evident in nations with large rural populations. Under those circumstances, capital intensive water and sanitation facilities are infeasible, and process selection for water/wastewater treatment requires an adaptation to local conditions, the use of appropriate materials, etc., constraints that are mostly absent in the developed world. Exceptions to these general ideas exist in water-stressed parts of developed countries, where water supplies are frequently augmented by water harvesting, water reclamation/reuse, and the desalination of brackish water resources. Each of these processes involves public acceptance of water

  20. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakamori

    Full Text Available BACKGROUND: Rimmed vacuoles (RVs are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM and distal myopathy with RVs (DMRV. Granulovacuolar degeneration (GVD bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS: Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1 tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK], (2 lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1, and (3 other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43] in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS: GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS: These results suggest that RVs of muscle

  1. Physical activity as a possible mechanism behind the relationship between green space and health: a multilevel analysis.

    NARCIS (Netherlands)

    Maas, J.; Verheij, R.A.; Spreeuwenberg, P.; Groenewegen, P.P.

    2008-01-01

    Background: The aim of this study was to investigate whether physical activity (in general, and more specifically, walking and cycling during leisure time and for commuting purposes, sports and gardening) is an underlying mechanism in the relationship between the amount of green space in people's

  2. Investigating fundamental physics and space environment with a dedicated Earth-orbiting spacecraft

    Science.gov (United States)

    Peron, Roberto

    The near-Earth environment is a place of first choice for performing fundamental physics experiments, given its proximity to Earth and at the same time being relatively quiet dynamically for particular orbital arrangements. This environment also sees a rich phenomenology for what concerns gravitation. In fact, the general theory of relativity is an incredibly accurate description of gravitational phenomenology. However, its overall validity is being questioned by the theories that aim at reconciling it with the microscopic domain. Challenges come also from the ‘mysteries’ of Dark Matter and Dark Energy, though mainly at scales from the galactic up to the cosmological. It is therefore important to precisely test the consequences of the theory -- as well as those of competing ones -- at all the accessible scales. At the same time, the development of high-precision experimental space techniques, which are needed for tests in fundamental physics, opens the way to complementary applications. The growth of the (man-made) orbital debris population is creating problems to the future development of space. The year 2009 witnessed the first accidental collision between two satellites in orbit (Iridium and Cosmos) that led to the creation of more debris. International and national agencies are intervening by issuing and/or adopting guidelines to mitigate the growth of orbital debris. A central tenet of these guidelines requires a presence in space shorter than 25 years to satellites in low Earth orbit (LEO) after the conclusion of their operational lives. However, the determination of the natural lifetime of a satellite in LEO is very uncertain due to a large extent to the short-term and long-term variability of the atmospheric density in LEO and the comparatively low-accuracy of atmospheric density models. Many satellites orbiting in the 500-1200 km region with circular or elliptical orbits will be hard pressed to establish before flight whether or not they meet the 25

  3. Mass movement on Vesta at steep scarps and crater rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  4. Laboratory and field experience with rim ditch dewatering of MFT

    Energy Technology Data Exchange (ETDEWEB)

    Demoz, A.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre; Lahaie, R. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a rim ditch method of dewatering mature fine tailings (MFT). Polymer additions were used to strengthen the MFT and to decrease the capillary suction time (CST). Laboratory and field-scale studies were conducted to demonstrate the dewatering method. The flocculants were added in a Komax inline mixer. Polymers were then injected into the tailings. The mixing processes were optimized in a series of laboratory studies and then demonstrated in the field tests. The tests showed that CST and high dewatering rates were consistently maintained using the method. MFT feeds were also consistent. Release water quality was improved using the method. The large-scale test site is now being monitored for compliance with Directive 74. tabs., figs.

  5. Theoretical modelling of hot gas ingestion through turbine rim seals

    Directory of Open Access Journals (Sweden)

    J. Michael Owen

    2012-12-01

    The nozzle guide vanes create three-dimensional (3D variations in the distribution of pressure in the mainstream annulus and the turbine blades create unsteady effects. Computational fluid dynamics (CFD is both time-consuming and expensive for these 3D unsteady flows, and engine designers tend to use correlations or simple models to predict ingress. This paper describes the application of simple ‘orifice models’, the analytical solutions of which can be used to calculate the sealing effectiveness of turbine rim seals. The solutions agree well with available data for externally-induced ingress, where the effects of rotation are negligible, for rotationally-induced ingress, where the effects of the external flow are small, and for combined ingress, where the effects of both external flow and rotation are significant.

  6. Mass Movement on Vesta at Steep Scarps and Crater Rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  7. Radial Internal Material Handling System (RIMS) for Circular Habitat Volumes

    Science.gov (United States)

    Howe, Alan S.; Haselschwardt, Sally; Bogatko, Alex; Humphrey, Brian; Patel, Amit

    2013-01-01

    On planetary surfaces, pressurized human habitable volumes will require a means to carry equipment around within the volume of the habitat, regardless of the partial gravity (Earth, Moon, Mars, etc.). On the NASA Habitat Demonstration Unit (HDU), a vertical cylindrical volume, it was determined that a variety of heavy items would need to be carried back and forth from deployed locations to the General Maintenance Work Station (GMWS) when in need of repair, and other equipment may need to be carried inside for repairs, such as rover parts and other external equipment. The vertical cylindrical volume of the HDU lent itself to a circular overhead track and hoist system that allows lifting of heavy objects from anywhere in the habitat to any other point in the habitat interior. In addition, the system is able to hand-off lifted items to other material handling systems through the side hatches, such as through an airlock. The overhead system consists of two concentric circle tracks that have a movable beam between them. The beam has a hoist carriage that can move back and forth on the beam. Therefore, the entire system acts like a bridge crane curved around to meet itself in a circle. The novelty of the system is in its configuration, and how it interfaces with the volume of the HDU habitat. Similar to how a bridge crane allows coverage for an entire rectangular volume, the RIMS system covers a circular volume. The RIMS system is the first generation of what may be applied to future planetary surface vertical cylinder habitats on the Moon or on Mars.

  8. Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule.

    Directory of Open Access Journals (Sweden)

    Teresa R O'Meara

    2010-02-01

    Full Text Available Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101 multiply sign in circle mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101 multiply sign in circle strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101 multiply sign in circle mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions.

  9. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.

    2003-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.

  10. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes. Update.

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2005-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.

  11. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    Science.gov (United States)

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  12. Analysis of bubble pressure in the rim region of high burnup PWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Yang Hyun; Lee, Byung Ho; Sohn, Dong Seong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-02-01

    Bubble pressure in the rim region of high burnup PWR UO{sub 2} fuel has been modeled based on measured rim width, porosity and bubble density. Using the assumption that excessive bubble pressure in the rim is inversely proportional to its radius, proportionality constant is derived as a function of average pellet burnup and bubble radius. This approach is possible because the integration of the number of Xe atoms retained in the rim bubbles, which can be calculated as a function of bubble radius, over the bubble radius gives the total number of Xe atoms in the rim bubbles. Here the total number of Xe atoms in the rim bubbles can be derived from the measured Xe depletion fraction in the matrix and the calculated rim thickness. Then the rim bubble pressure is obtained as a function of fuel burnup and bubble size from the proportionality constant. Therefore, the present model can provide some useful information that would be required to analyze the behavior of high burnup PWR UO{sub 2} fuel under both normal and transient operating conditions. 28 refs., 9 figs. (Author)

  13. Wheelchair racing : effects of rim diameter and speed on physiology and technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; van Ingen Schenau, G J; Rooth, F; van Nierop, P

    1988-01-01

    Effects of different hand rim diameters in wheelchair racing were studied with respect to physiological and technique parameters at five speed levels (N = 8 wheelchair sportsmen). In each of five subsequent 15-min exercise tests on a treadmill, a different sized hand rim was mounted to the rear

  14. Design and analytic evaluation of a rim effect reduction type LWR fuel for extending burnup

    International Nuclear Information System (INIS)

    Matsumura, Tetsuo; Kameyama, Takanori; Kinoshita, Motoyasu

    1991-01-01

    We have designed a new concept fuel design 'Rim effect reduction type fuel' which has thin natural UO 2 layer on surface of a UO2 pellet. Our neutronic analyses with ANRB code show this fuel design can reduce rim effect (burnup at plelet rim) by about 30 GWd/t comparing a normal fuel. It is known that a high burnup fuel has different microstructure from as-fabricated one at fuel rim (which is called as rim region) due to rim effect. Therefore this fuel design can expect smaller rim region than a normal fuel. Our fuel performance analyses with EIMUS code show this fuel design can reduce fuel center temperature at high burnup if thermal conductivity of fuel pellet decreases with burnup in inverse proportion. However, this fuel design increases fuel center temperature at low and middle burnup than a normal fuel due to increase of thermal power density at pellet center. Additionally Irradiation experiment of this fuel design can be considered to offer important data which make clear the relation between rim effect and fuel performance. (author)

  15. From Theory to Practice: "Kaizen" and the Academy of the Pacific Rim

    Science.gov (United States)

    Blasdale, Spencer

    2004-01-01

    In this article, the author profiles the Academy of the Pacific Rim Charter Public School (Hyde Park, Massachusetts) and describes the school's culture. The school's students, who are in grades 6 through 12, are surrounded by rituals, routines, and relationship-building activities. Pacific Rim's culture stems from and supports the school's…

  16. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  17. An analysis of the suitability of public spaces to physical activity practice in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Vieira, Marcelo Carvalho; Sperandei, Sandro; Reis, Arianne; da Silva, Cláudia Gonçalves Thaumaturgo

    2013-09-01

    To assess the physical characteristics of public spaces designed for sport/physical activity/leisure in Rio de Janeiro, Brazil, and their relationship to the socioeconomic indicators. Public spaces (n = 38) spread across the city were evaluated between December 2011 and January 2012 using the Physical Activity Resource Assessment (PARA) instrument. Based on PARA results, a Quality Indicator (QI) was prepared and the sample was grouped into "High QI" and "Low QI" using a k-means clustering algorithm. The association between QI and the local Social Development Index (SDI) was tested using a Chi-square test. The average QI was 13.6 ± 4.91 and the median was equal to 13 points. The High QI group, composed of sites with a QI above median, reached 17.9 ± 2.35 points, while the Low QI group reached 9.3 ± 2.16 points. Pearson's Chi-square tests identified a significant association between QI and SDI when the value of SDI 0.7 was used as a criterion for separation (χ(2) = 17.84, p public spaces usually had a lower QI. Policies to encourage physical activity need to focus attention on the built environment also, particularly in socially vulnerable areas. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Spinorial space-time and the origin of Quantum Mechanics. The dynamical role of the physical vacuum

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2016-01-01

    Is Quantum Mechanics really and ultimate principle of Physics described by a set of intrinsic exact laws? Are standard particles the ultimate constituents of matter? The two questions appear to be closely related, as a preonic structure of the physical vacuum would have an influence on the properties of quantum particles. Although the first preon models were just « quark-like » and assumed preons to be direct constituents of the conventional « elementary » particles, we suggested in 1995 that preons could instead be constituents of the physical vacuum (the superbradyon hypothesis). Standard particles would then be excitations of the preonic vacuum and have substantially different properties from those of preons themselves (critical speed…). The standard laws of Particle Physics would be approximate expressions generated from basic preon dynamics. In parallel, the mathematical properties of space-time structures such as the spinoral space-time (SST) we introduced in 1996-97 can have strong implications for Quantum Mechanics and even be its real origin. We complete here our recent discussion of the subject by pointing out that: i) Quantum Mechanics corresponds to a natural set of properties of vacuum excitations in the presence of a SST geometry ; ii) the recently observed entanglement at long distances would be a logical property if preons are superluminal (superbradyons), so that superluminal signals and correlations can propagate in vacuum ; iii) in a specific description, the function of space-time associated to the extended internal structure of a spin-1/2 particle at very small distances may be incompatible with a continuous motion at space and time scales where the internal structure of vacuum can be felt. In the dynamics associated to iii), and using the SST approach to space-time, a contradiction can appear between macroscopic and microscopic space-times due to an overlap in the time variable directly related to the fact that a spinorial function takes

  19. Hyper-Echoic Rim in Thyroid Nodules: A New Ultrasonographic Feature for Malignancy Prediction.

    Science.gov (United States)

    Dong, YiJie; Zhan, WeiWei; Zhou, JianQiao; Song, LinLin; Ni, XiaoFeng; Zhang, BenYan

    2016-09-01

    The goal of this study was to verify the ultrasound features of hyper-echoic rims in thyroid nodules and to evaluate their diagnostic value in predicting thyroid malignancies. We retrospectively analyzed 228 pathologically proven thyroid nodules (137 malignant and 91 benign nodules). Forty-eight thyroid nodules had a hyper echogenic rim. All malignant nodules (137) were papillary carcinomas, which were studied to identify the correlation between the hyper-echoic rim (detected by ultrasound) and other histologic features. Presence of a hyper-echoic rim had high specificity (94.51%), but low sensitivity (31.39%) in predicting malignancy (p hyper-echogenic rim could be one additional ultrasound parameter in the diagnosis of thyroid lesions. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    International Nuclear Information System (INIS)

    Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna

    2014-01-01

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers

  1. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kolobov, Vladimir [CFD Research Corporation, Huntsville, AL 35805, USA and The University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Arslanbekov, Robert [CFD Research Corporation, Huntsville, AL 35805 (United States); Frolova, Anna [Computing Center of the Russian Academy of Sciences, Moscow, 119333 (Russian Federation)

    2014-12-09

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.

  2. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous, avionic and robotic systems are used in a variety of applications including launch vehicles, robotic precursor platforms, etc. Most avionic innovations...

  3. SPACE for physical activity - a multicomponent intervention study: study design and baseline findings from a cluster randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Kristensen Peter L

    2011-10-01

    Full Text Available Abstract Background The aim of the School site, Play Spot, Active transport, Club fitness and Environment (SPACE Study was to develop, document, and assess a comprehensive intervention in local school districts that promote everyday physical activity (PA among 11-15-year-old adolescents. The study is based on a social ecological framework, and is designed to implement organizational and structural changes in the physical environment. Methods/design The SPACE Study used a cluster randomized controlled study design. Twenty-one eligible schools in the Region of Southern Denmark were matched and randomized in seven pairs according to eight matching variables summarized in an audit tool (crow-fly distance from residence to school for 5-6th graders; area household income; area education level; area ethnicity distribution; school district urbanity; condition and characteristics of school outdoor areas; school health policy; and active transport in the local area. Baseline measurements with accelerometers, questionnaires, diaries, and physical fitness tests were obtained in Spring 2010 in 5-6th grade in 7 intervention and 7 control schools, with follow-up measurements to be taken in Spring 2012 in 7-8th grade. The primary outcome measure is objective average daily physical activity and will be supported by analyses of time spent in moderate to vigorous activity and time spent sedentary. Other secondary outcome measures will be obtained, such as, overweight, physical fitness, active commuting to/from school and physical activity in recess periods. Discussion A total of 1348 adolescents in 5-6th grade in the Region of Southern Denmark participated at baseline (n = 14 schools. The response rate was high in all type of measurements (72.6-97.4%. There were no significant differences between intervention and control groups at baseline according to selected background variables and outcome measures: gender (p = .54, age (p = .17, BMI (p = .59, waist

  4. 3rd International Conference on Particle Physics Beyond the Standard Model : Accelerator, Non-Accelerator and Space Approaches

    CERN Document Server

    Beyond The Desert 2002

    2003-01-01

    The third conference on particle physics beyond the Standard Model (BEYOND THE DESERT'02 - Accelerator, Non-accelerator and Space Approaches) was held during 2--7 June, 2002 at the Finish town of Oulu, almost at the northern Arctic Circle. It was the first of the BEYOND conference series held outside Germany (CERN Courier March 2003, pp. 29-30). Traditionally the Scientific Programme of BEYOND conferences, brought into life in 1997 (see CERN Courier, November 1997, pp.16-18), covers almost all topics of modern particle physics (see contents).

  5. Physical Space and the Resource-Based View of the College

    Science.gov (United States)

    Fugazzotto, Sam J.

    2010-01-01

    Space serves as a key resource for colleges and universities, and institutions exchange information about it with each other and with prospective students. Using content analysis to examine several widely circulated publications, this study looked for differences in the value attributed to space when institutional leaders present it to students…

  6. Parallel field line and stream line tracing algorithms for space physics applications

    Science.gov (United States)

    Toth, G.; de Zeeuw, D.; Monostori, G.

    2004-05-01

    Field line and stream line tracing is required in various space physics applications, such as the coupling of the global magnetosphere and inner magnetosphere models, the coupling of the solar energetic particle and heliosphere models, or the modeling of comets, where the multispecies chemical equations are solved along stream lines of a steady state solution obtained with single fluid MHD model. Tracing a vector field is an inherently serial process, which is difficult to parallelize. This is especially true when the data corresponding to the vector field is distributed over a large number of processors. We designed algorithms for the various applications, which scale well to a large number of processors. In the first algorithm the computational domain is divided into blocks. Each block is on a single processor. The algorithm folows the vector field inside the blocks, and calculates a mapping of the block surfaces. The blocks communicate the values at the coinciding surfaces, and the results are interpolated. Finally all block surfaces are defined and values inside the blocks are obtained. In the second algorithm all processors start integrating along the vector field inside the accessible volume. When the field line leaves the local subdomain, the position and other information is stored in a buffer. Periodically the processors exchange the buffers, and continue integration of the field lines until they reach a boundary. At that point the results are sent back to the originating processor. Efficiency is achieved by a careful phasing of computation and communication. In the third algorithm the results of a steady state simulation are stored on a hard drive. The vector field is contained in blocks. All processors read in all the grid and vector field data and the stream lines are integrated in parallel. If a stream line enters a block, which has already been integrated, the results can be interpolated. By a clever ordering of the blocks the execution speed can be

  7. Connecting physical and social dimensions of place attachment: What can we learn from attachment to urban recreational spaces?

    Science.gov (United States)

    Madgin, Rebecca; Bradley, Lisa; Hastings, Annette

    2016-01-01

    This paper is concerned with the ways in which people form attachments to recreational spaces. More specifically it examines the relationship between recreational spaces associated with sporting activity in urban neighbourhoods and place attachment. The focus is on the ways in which changes to these spaces exposes the affective bonds between people and their surroundings. The paper applies a qualitative methodology, namely focus groups and photo elicitation, to the case study of Parkhead, a neighbourhood in the East End of Glasgow. Parkhead has historically been subjected to successive waves of redevelopment as a result of deindustrialization in the late twentieth century. More recently redevelopment associated with the 2014 Commonwealth Games involved further changes to neighbourhood recreational spaces, including refurbishing of existing sports facilities and building new ones. This paper reflects on the cumulative impacts of this redevelopment to conclude (a) that recreational sports spaces provoke multi-layered and complex attachments that are inextricably connected to both temporal and spatial narratives and (b) that research on neighbourhood recreational spaces can develop our understanding of the intricate relationship between the social and physical dimensions of place attachment.

  8. Effect of PCMI restraint on bubble size distribution in the rim structure of UO2 fuel

    International Nuclear Information System (INIS)

    Oh, Je-Yong; Koo, Yang-Hyun; Cheon, Jin-Sik; Lee, Byung-Ho; Sohn, Dong-Seong

    2005-01-01

    Generally, the bubble size in the rim structure of UO 2 is not dependent on the fuel burnup and the bubble pressure is higher than that in the equilibrium condition. However it was also observed that if the fuel pellet is not restrained, the size of the bubbles in the rim structure could be larger than that in the restraint condition. Although the wide variety of rim bubble sizes and porosities possibly result from an external restrain effect, the quantitative method to analyze the effect of PCMI restraint on bubble distribution in the rim is not available at the moment. In this paper, a method is developed which can be used to analyze the effect of PCMI restraint on the bubble distribution in the rim structure of UO 2 fuel based on the data in the literatures. The total number of Xe atoms in the rim bubbles per unit rim volume could be derived by a summation of the number of Xe atoms of each rim bubble in a unit rim volume. The number of Xe atoms of each rim bubble could be calculated by the Van der Waals equation of state and the pressure expressed by p=σ+C/r, where C is an unknown constant to be determined as a function of the temperature and the burnup. On the other hand, the total number of Xe atoms in the rim bubbles per unit rim volume can also be calculated by Xe depression data. If the fuel pellet is not restrained, the uniform hydrostatic stress, σ is zero. Hence if the data of the fuel disk without a restraint is used, a constant C can be obtained at 823K and a local burnup of 90 GWd/t. Although the local burnup of PCMI restraint case is slightly different from that without PCMI restraint, the value derived above is used for the analysis of PCMI restraint case. The calculated bubble distribution with PCMI restraint was similar to the measured one. Because the effect of PCMI restraint on bubble size increased with the bubble size, the development of a large bubble was suppressed. Hence, the PCMI restraint caused a typical bubble size in the rim and

  9. 49 CFR 571.110 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Science.gov (United States)

    2010-10-01

    ... of manufacturer's designation for a rim by style or code. Rim width means nominal distance between... Note: For Federal Register citations affecting § 571.111 see the List of CFR Sections Affected which...

  10. The Hadamard construction of Green's functions on a curved space-time: physics and explicit rigorous results

    International Nuclear Information System (INIS)

    John, R.W.

    1987-01-01

    First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)

  11. Human Rights in the Countries of the Southern Rim

    Directory of Open Access Journals (Sweden)

    Laura Feliu i Martínez

    1997-09-01

    Full Text Available After practically all of the southern-rim countries of the Mediterranean gained their independence, the process of national construction has been predicated on authoritarian regimes. These regimes justified both the use of force against political opposition and the limits on rights and liberties on the need for maintaining the unanimity of the people which had manifested itself during the struggles for liberation from the colonial yoke. Towards the end of the 1980s, the regional and international context seemed to presage a very much longed for opening-up of the political scene after some of these countries (Tunisia, Algeria and Jordan initiated a series of movements that pointed to their democratisation. The posterior evolution of events has crushed those hopes in every case, and only Morocco and Jordan (each with their respective limitations appear to have evolved towards a softening of repression. The excuse put forth from the collection of states in the region to justify the step backwards is the existence of two threats they must act with forcefulness before: the threat of Islamic “fundamentalism” and the desire of certain groups to boycott the on-going Israeli-Palestinian Peace Process.

  12. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    Science.gov (United States)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  13. SPACE PHYSICS: Developing resources for astrophysics at A-level: the TRUMP Astrophysics project

    Science.gov (United States)

    Swinbank, Elizabeth

    1997-01-01

    After outlining the astrophysical options now available in A-level physics syllabuses, this paper notes some of the particular challenges facing A-level teachers and students who chose these options and describes a project designed to support them. The paper highlights some key features of the project that could readily be incorporated into other areas of physics curriculum development.

  14. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Substantial progress has been made by NASA in integrating flight avionics and ISHM with well-defined caution and warning system, however, the scope of ACAW alerting...

  15. Theory and Simulation of the Physics of Space Charge Dominated Beams

    International Nuclear Information System (INIS)

    Haber, Irving

    2002-01-01

    This report describes modeling of intense electron and ion beams in the space charge dominated regime. Space charge collective modes play an important role in the transport of intense beams over long distances. These modes were first observed in particle-in-cell simulations. The work presented here is closely tied to the University of Maryland Electron Ring (UMER) experiment and has application to accelerators for heavy ion beam fusion

  16. Locally covariant quantum field theory and the problem of formulating the same physics in all space-times.

    Science.gov (United States)

    Fewster, Christopher J

    2015-08-06

    The framework of locally covariant quantum field theory is discussed, motivated in part using 'ignorance principles'. It is shown how theories can be represented by suitable functors, so that physical equivalence of theories may be expressed via natural isomorphisms between the corresponding functors. The inhomogeneous scalar field is used to illustrate the ideas. It is argued that there are two reasonable definitions of the local physical content associated with a locally covariant theory; when these coincide, the theory is said to be dynamically local. The status of the dynamical locality condition is reviewed, as are its applications in relation to (i) the foundational question of what it means for a theory to represent the same physics in different space-times and (ii) a no-go result on the existence of natural states. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. RIM, Munc13, and Rab3A interplay in acrosomal exocytosis

    International Nuclear Information System (INIS)

    Bello, Oscar D.; Zanetti, M. Natalia; Mayorga, Luis S.; Michaut, Marcela A.

    2012-01-01

    Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: ► RIM and Munc13 are present in human sperm and localize to the acrosomal region. ► RIM and Munc13 are necessary for acrosomal exocytosis. ► RIM and Munc13 participate before the acrosomal calcium efflux. ► RIM, Munc13 and Rab3A interplay in human sperm acrosomal exocytosis. ► RIM and Rab3A

  18. RIM, Munc13, and Rab3A interplay in acrosomal exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar D.; Zanetti, M. Natalia [Laboratorio de Biologia Celular y Molecular, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Mayorga, Luis S. [Laboratorio de Biologia Celular y Molecular, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Michaut, Marcela A., E-mail: mmichaut@fcm.uncu.edu.ar [Laboratorio de Biologia Reproductiva, Instituto de Histologia y Embriologia, IHEM (CONICET-UNCuyo), Facultad de Ciencias Medicas (Argentina); Instituto de Ciencias Basicas, Universidad Nacional de Cuyo, Mendoza (5500) (Argentina)

    2012-03-10

    Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking. -- Highlights: Black-Right-Pointing-Pointer RIM and Munc13 are present in human sperm and localize to the acrosomal region. Black-Right-Pointing-Pointer RIM and Munc13 are necessary for acrosomal exocytosis. Black-Right-Pointing-Pointer RIM and Munc13 participate before the acrosomal calcium efflux. Black

  19. Physical systems conceptual pathways between flat space-time and matter

    CERN Document Server

    Belkind, Ori

    2012-01-01

    This book offers a new philosophical interpretation of classical mechanics and the Special Theory of Relativity, in which motions of parts and wholes of physical systems are taken to be fundamental, prior to spacetime, material properties and laws of motion.

  20. Out of the Blue: The Pacific Rim as a Region

    Directory of Open Access Journals (Sweden)

    Arturo Santa-Cruz

    2005-08-01

    Full Text Available In 1993, in advance of what was to be the first Asia Pacific Economic Cooperation (APEC leader’s summit, US president Bill Clinton gave a lecture at Waseda University in Japan. In his speech, Clinton called for the creation of a “community of the Pacific.” The idea of a Pacific community is neither Clinton’s nor the Democratic Party’s invention, however. In the previous decade Ronald Reagan had already used it, going even beyond later conceptualizations, by referring to the 21st century as the Pacific’s century. But Reagan's prophecy concerning the Great Ocean was not new back in the 1980s either. In 1900 then US Secretary of State John Hay wrote: “the Mediterranean is the ocean of the past, the Atlantic the ocean of the present and the Pacific is the ocean of the future.” In a more general manner, as Christopher Coker has observed, the notion of the “Century of the Pacific” is plausible because it is consistent with the idea, popularized by Hegel, that the spirit of civilization is moving toward that part of the globe. Thus, the century of the Pacific has become a kind of zeitgeist. In this paper I undertake a conceptual, historical, and theoretical journey through the “Pacific Rim” or “Asia-Pacific,” as it has been called more recently. Although I will question the utility of the term, I want to make clear that my purpose is only to undertake a critical survey of “the Pacific.” As in any trip, however, one needs a starting point. But, What is the starting point of the Pacific Rim, that geographic zone that has been compared to Pascal’s sphere: “with periphery indeterminable and a center that may be anywhere”?

  1. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    Science.gov (United States)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine

  2. Molecules and grains in space: 50th International meeting of physical chemistry

    International Nuclear Information System (INIS)

    Nenner, I.

    1994-01-01

    These proceedings represent papers presented at a meeting on molecular and grains in space. Among the varied topics discussed were observational data from diffuse clouds, structure and dynamics of molecular systems, collisions and reactivity, ices and carbonaceous materials in grains etc.. There were ninety three papers presented at the meeting and one has been abstracted for the Energy Science and Technology database

  3. Oculopharyngeal Weakness, Hypophrenia, Deafness, and Impaired Vision: A Novel Autosomal Dominant Myopathy with Rimmed Vacuoles

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Conclusions: We reported a novel autosomal dominant myopathy with rimmed vacuoles characterized by dysarthria, dysphagia, external ophthalmoplegia, limb weakness, hypophrenia, deafness, and impaired vision, but the causative gene has not been found and needs further study.

  4. Fixation of revision implants is improved by new surgical technique to crack the sclerotic endosteal rim.

    Science.gov (United States)

    Kold, S; Soballe, K; Mouzin, O; Chen, Xiangmei; Toft, M; Bechtold, J

    2002-01-01

    We used an experimental model producing a tissue response with a sclerotic endosteal neo-cortical rim associated with implant loosening in humans: a 6 mm PMMA cylinder pistoned 500 m concentrically in a 7.5 mm hole, with polyethylene particles. At a second operation at eight weeks, the standard revision procedure removed the fibrous membrane in one knee, and the crack revision procedure was used to crack the sclerotic endosteal rim in the contralateral knee. Once stability was achieved following the revision procedures, loaded Ti plasma sprayed implants were inserted into the revision cavities of 8 dogs for an additional 4 weeks. Revision implant fixation (ultimate shear strength and energy absorption) was significantly enhanced by cracking the sclerotic endosteal rim. In conclusion, we demonstrated a simple technique of cracking the sclerotic endosteal rim as an additional method for improving revision fixation. (Hip International 2002; 2: 77-9).

  5. 49 CFR 238.119 - Rim-stamped straight-plate wheels.

    Science.gov (United States)

    2010-10-01

    ... input to the wheel during braking. (b) A rim-stamped straight-plate wheel shall not be used as a... that is periodically tread-braked for a short duration by automatic circuitry for the sole purpose of...

  6. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  7. Mesoscale raised rim depressions (MRRDs) on Earth: A review of the characteristics, processes, and spatial distributions of analogs for Mars

    Science.gov (United States)

    Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan, Bun Tseung J.-M.; Skinner, J.A.; Baloga, S.M.

    2009-01-01

    Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach. ?? 2008 Elsevier Ltd.

  8. Ruthenium concentrations in geological boundary deposits and their correlation with Iridium by RIMS

    Science.gov (United States)

    Xu, X. Y.; Xin, X. B.; Ji, W. X.; Mao, X. Y.; Chai, C. F.

    1995-04-01

    The reason the biological mass extinctions in the earth history is a great concern of geologists. A method using RIMS to determine the concentration of Ru has been developed. The Ru/Ir concentration ratios favour the impact model of extraterrestrial material on the earth to explain the dinosaur extinction at the end of the Cretaceous. This is the first data on Ru abundances in geological boundary deposits analyzed by RIMS.

  9. Ruthenium concentrations in geological boundary deposits and their correlation with Iridium by RIMS

    International Nuclear Information System (INIS)

    Xu, X. Y.; Xin, X. B.; Ji, W. X.; Mao, X. Y.; Chai, C. F.

    1995-01-01

    The reason the biological mass extinctions in the earth history is a great concern of geologists. A method using RIMS to determine the concentration of Ru has been developed. The Ru/Ir concentration ratios favour the impact model of extraterrestrial material on the earth to explain the dinosaur extinction at the end of the Cretaceous. This is the first data on Ru abundances in geological boundary deposits analyzed by RIMS

  10. Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars

    Science.gov (United States)

    Crumpler, L.S.; Tanaka, K.L.

    2003-01-01

    The southern rim of the Isidis basin contains one of the highest densities of valley networks, several restricted paleolake basins, and the stratigraphically lowest (oldest) terrain on Mars. Geologic mapping in Viking, MGS/MOC, and MOLA data, Odyssey/ THEMIS data, and other multispectral data products supports the presence of extensive fans of debris and sediments deposited along the inner rim of the Isidis basin where large valleys enter the lowlands. Additional processes subsequent to the period of intense fluvial activity, including mass flow analogous to some glacial processes, have contributed to the materials accumulated on the margins of the Isidis basin. These have occurred along preexisting channels and valleys at the termini of major channels where they enter the plains along the highland-lowland boundary. If the abundant valley networks in highland terrains are the result of runoff accompanied by saturated groundwater flow, as has been suggested in previous studies of ancient fluvial highland terrains, then the extreme age and abundance of early valley networks in the Libya Montes highland rocks should have resulted in deposition of materials that record evidence for the long-term presence of water in the form of aqueous alteration of polycrystalline constituents. The material deposited along the basin margin is likely to consist of ancient altered highland rocks in several physical states (weathered, rounded, and angular) exposing both weathered and altered surfaces, and exposures of alteration profiles in fractured faces and unweathered material from rock interiors. Debris fans shed off the southern rim of Isidis Planitia should contain materials that have experienced possible saturated groundwater flow, residence within paleolake basins, and derivative materials deposited during the most fluvially intensive part of Martian geologic history. Many of these materials have also been reworked by ice-related processes. In situ measurements of the ancient

  11. Intervention Effects on Adolescent Physical Activity in the Multicomponent SPACE Study

    DEFF Research Database (Denmark)

    Toftager, Mette; Christiansen, Lars B; Ersbøll, Annette K

    2014-01-01

    BACKGROUND: Multicomponent school-based interventions have the potential to reduce the age-related decline in adolescents' physical activity (PA), yet there is not consistent evidence to guide non-curricular and school environment interventions. The aim of this study was to assess the effectiveness......-up. A total of 1,348 students (11-13 years, in grade 5 and 6) enrolled in the study at baseline. The 14 schools included in the study were located in the Region of Southern Denmark. The intervention consisted of organizational and physical changes in the school environment with a total of 11 intervention...

  12. Public open space characteristics influencing adolescents' use and physical activity: A systematic literature review of qualitative and quantitative studies.

    Science.gov (United States)

    Van Hecke, Linde; Ghekiere, Ariane; Veitch, Jenny; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; Deforche, Benedicte

    2018-04-06

    The objective of this systematic review was to provide insight into the specific characteristics of public open spaces (POS) associated with adolescents' POS visitation and physical activity (PA). Qualitative research suggests many characteristics to be associated with POS visitation and PA. Quantitative evidence confirmed a positive association between presence of trails, playgrounds and specific types of sports fields (e.g. basketball) with POS visitation and PA, whereas safety and aesthetics seemed subordinate. Suggestions for future research, as well as some methodological recommendations are provided. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Urban media geographies : Interfacing ubiquitous computing with the physicality of urban space

    NARCIS (Netherlands)

    Psyllidis, A.; Biloria, N.M.

    2013-01-01

    This paper aims at establishing an associative relation between the proliferating digital technologies, the physical context of the urban fabric, its inhabitants and the multiplicity of their activities as an emergent phenomenon of contemporary urbanity. It introduces a methodological framework for

  14. The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory

    International Nuclear Information System (INIS)

    Ding You; Rovelli, Carlo

    2010-01-01

    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit). We also generalize the definition of the volume operator in the spin-foam model to the Lorentzian signature and show that it matches the one of loop quantum gravity, as in the Euclidean case.

  15. Reinventing the Arcade: Computer Game Mediated Play Spaces for Physical Interaction

    Directory of Open Access Journals (Sweden)

    A. M. Connor

    2015-10-01

    Full Text Available This paper suggests that recent developments in video game technology have occurred in parallel to play being moved from public into private spaces, which has had impact on the way people interact with games. The paper also argues and that there is potentially value in the creation of public play spaces to create opportunities to utilise both technology and body for the benefit of community culture and experiences through gaming. Co-located social gaming coupled with tangible interfaces offer alternative possibilities for the local video game scene. This paper includes a descriptive account of Rabble Room Arcade, an experimental social event combining custom-built tangible interface devices and multiplayer video games. The event was designed around games that promoted a return to simplicity through the use of unique tangible controllers to allow casual gamers to connect to the game and to each other, whilst also transforming the event into a spectacle.

  16. New Solutions of Three Nonlinear Space- and Time-Fractional Partial Differential Equations in Mathematical Physics

    International Nuclear Information System (INIS)

    Yao Ruo-Xia; Wang Wei; Chen Ting-Hua

    2014-01-01

    Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper. (general)

  17. Hierarchical Stereo Matching in Two-Scale Space for Cyber-Physical System

    Directory of Open Access Journals (Sweden)

    Eunah Choi

    2017-07-01

    Full Text Available Dense disparity map estimation from a high-resolution stereo image is a very difficult problem in terms of both matching accuracy and computation efficiency. Thus, an exhaustive disparity search at full resolution is required. In general, examining more pixels in the stereo view results in more ambiguous correspondences. When a high-resolution image is down-sampled, the high-frequency components of the fine-scaled image are at risk of disappearing in the coarse-resolution image. Furthermore, if erroneous disparity estimates caused by missing high-frequency components are propagated across scale space, ultimately, false disparity estimates are obtained. To solve these problems, we introduce an efficient hierarchical stereo matching method in two-scale space. This method applies disparity estimation to the reduced-resolution image, and the disparity result is then up-sampled to the original resolution. The disparity estimation values of the high-frequency (or edge component regions of the full-resolution image are combined with the up-sampled disparity results. In this study, we extracted the high-frequency areas from the scale-space representation by using difference of Gaussian (DoG or found edge components, using a Canny operator. Then, edge-aware disparity propagation was used to refine the disparity map. The experimental results show that the proposed algorithm outperforms previous methods.

  18. Hierarchical Stereo Matching in Two-Scale Space for Cyber-Physical System.

    Science.gov (United States)

    Choi, Eunah; Lee, Sangyoon; Hong, Hyunki

    2017-07-21

    Dense disparity map estimation from a high-resolution stereo image is a very difficult problem in terms of both matching accuracy and computation efficiency. Thus, an exhaustive disparity search at full resolution is required. In general, examining more pixels in the stereo view results in more ambiguous correspondences. When a high-resolution image is down-sampled, the high-frequency components of the fine-scaled image are at risk of disappearing in the coarse-resolution image. Furthermore, if erroneous disparity estimates caused by missing high-frequency components are propagated across scale space, ultimately, false disparity estimates are obtained. To solve these problems, we introduce an efficient hierarchical stereo matching method in two-scale space. This method applies disparity estimation to the reduced-resolution image, and the disparity result is then up-sampled to the original resolution. The disparity estimation values of the high-frequency (or edge component) regions of the full-resolution image are combined with the up-sampled disparity results. In this study, we extracted the high-frequency areas from the scale-space representation by using difference of Gaussian (DoG) or found edge components, using a Canny operator. Then, edge-aware disparity propagation was used to refine the disparity map. The experimental results show that the proposed algorithm outperforms previous methods.

  19. Calibration, checking and physical corrections for a new dual-spaced neutron porosity tool

    International Nuclear Information System (INIS)

    Smith, M.P.

    1986-01-01

    A new dual-spaced neutron tool has been developed that features high count rates and improved statistical precision and log repeatability. Environmental corrections including borehole diameter, standoff, and lithology are at acceptable levels for DSN-II. The effects of varying source-to-detector spacings and shielding are summarized. Porosity measurement resolution and statistical precision are discussed and it is indicated how tradeoffs between higher count rates and increased environmental corrections must be considered. The absolute calibration of a standard tool is based on its response to limestone test pits, field data, and theoretical calculations. Test data for actual manufactured tools are presented. Shop calibration and wellsite check procedures are discussed. The advantages of multiposition check operations are explained, including reduced sensitivity to check block positioning and external environment. An analysis is presented of errors from tool manufacturing, calibration, and check procedures. A generalized theory of neutron scattering and absorption has been developed to correct dual-spaced neutron logs for unusual minerals and fluids

  20. Rim 2/Hipa CACTA transposon display ; A new genetic marker technique in Oryza species

    Directory of Open Access Journals (Sweden)

    Lee Ju

    2005-03-01

    Full Text Available Abstract Background Transposons constitute the major fractions of repetitive sequences in eukaryotes, and have been crucial in the shaping of current genomes. Transposons are generally divided into two classes according to the mechanism underlying their transposition: RNA intermediate class 1 and DNA intermediate class 2. CACTA is a class 2 transposon superfamily, which is found exclusively in plants. As some transposons, including the CACTA superfamily, are highly abundant in plant species, and their nucleotide sequences are highly conserved within a family, they can be utilized as genetic markers, using a slightly modified version of the conventional AFLP protocol. Rim2 /Hipa is a CACTA transposon family having 16 bp consensus TIR sequences to be present in high copy numbers in rice genome. This research was carried out in order to develop a Rim2/Hipa CACTA-AFLP or Rim2/Hipa CACTA-TD (transposon display, hereafter Rim2/Hipa-TD protocol for the study of genetic markers in map construction and the study of genetic diversity in rice. Results Rim2/Hipa-TD generated ample polymorphic profiles among the different rice accessions, and the amplification profiles were highly reproducible between different thermocyclers and Taq polymerases. These amplification profiles allowed for clear distinction between two different ecotypes, Japonica and Indica, of Oryza sativa. In the analysis of RIL populations, the Rim2/Hipa-TD markers were found to be segregated largely in a dominant manner, although in a few cases, non-parental bands were observed in the segregating populations. Upon linkage analysis, the Rim2/Hipa-TD markers were found to be distributed in the regions proximal to the centromeres of the chromosomes. The distribution of the Rim2/Hipa CACTA elements was surveyed in 15 different Oryza species via Rim2/Hipa-TD. While Rim2/Hipa-TD yielded ample amplification profiles between 100 to 700 bp in the AA diploid Oryza species, other species having BB, CC

  1. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    Science.gov (United States)

    Punjabi, Alkesh; Ali, Halima

    2008-12-01

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.

  2. Symplectic approach to calculation of magnetic field line trajectories in physical space with realistic magnetic geometry in divertor tokamaks

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima

    2008-01-01

    A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.

  3. Effect of major school playground reconstruction on physical activity and sedentary behaviour: Camden active spaces

    Directory of Open Access Journals (Sweden)

    Mark Hamer

    2017-06-01

    Full Text Available Abstract Background The physical school environment is a promising setting to increase children’s physical activity although robust evidence is sparse. We examined the effects of major playground reconstruction on physical activity and sedentary time in primary schools using a quasi-experimental design (comparison group pre-test/post-test design. Methods Five experimental and two control schools from deprived areas of inner city London were recruited at baseline. Main outcome was physical activity and sedentary time measured from objective monitoring (Actigraph accelerometer at one year follow up. Pupils’ impressions of the new playground were qualitatively assessed post construction. Results A total of 347 pupils (mean age = 8 years, 55% boys; 36% Caucasian were recruited into the study at baseline; 303 provided valid baseline Actigraph data. Of those, 231 (76% completed follow-up (n = 169 intervention; n = 62 control and 77.4% of the sample recorded at least 4 days of Actigraph wear. In mixed models adjusted for age, sex, ethnicity, ratio activity or sedentary/wear time at baseline, wear time at follow up, and school, no differences were observed in total moderate – vigorous activity (B = −1.4, 95% CI, −7.1, 4.2 min/d, light activity (B = 4.1, 95% CI, −17.9, 26.1, or sedentary time (B = −3.8, 95% CI, −29.2, 21.6 min/d between groups. There were significant age interactions for sedentary (p = 0.002 and light intensity physical activity (p = 0.008. We observed significant reductions in total sedentary (−28.0, 95% CI, −1.9, −54.1 min/d, p = 0.037 and increases in total light intensity activity (24.6, 95% CI, 0.3, 48.9 min/d, p = 0.047 for children aged under 9 yrs. old in the intervention. Conclusion Major playground reconstruction had limited effects on physical activity, but reduced sedentary time was observed in younger children. Qualitative data suggested that the children enjoyed the new

  4. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  5. International Living With a Star (ILWS), a new collaborative space program in Solar, Heliospheric and Solar-Terrestrial Physics

    Science.gov (United States)

    Opgenoorth, H. J.; Guhathakurta, M.; Liu, W.; Kosugi, T.; Zelenyi, L.

    2003-04-01

    International cooperation has long been a vital element in the scientific investigation of solar variability and its impact on Earth and its space environment. Recently a new international cooeperative program in solar terrestrial physics has been established by the major space agencies of the world, called the International Living With a Star (ILWS) program. ILWS is a follow on to the highly successful International Solar Terrestrial Physics (ISTP) program which involved international parterners. ISTP, with its steady flow of discoveries and new knowledge in solar Terrestrial physics, has laid the foundation for the coordinated study of the Sun-Earth sytem as a connected stellar-planetary system, system which is humanity's home. The first step in establishing ILWS was taken in the fall of 2000 when funding was approved for the NASA's Living With a Star (LWS) program whose goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. The scientific goals of ILWS are defined in a broader sense, aiming to include future solar, heliospheric and solar terrestrial missions of both applied and fundamental scientific focus. The ultimate goal of ILWS wil be to increase our understanding of how solar variability affects the terrestrial and other planetary environments both in the short and long term, and in particular how man and society may be affected by solar variability and its consequences. The mission charter of ILWS is 'to stimulate, strengthen and coordinate space research in order to understand the governing processes of the connected Sun-Earth System as an integrated entity'. More detailed ILWS Objectives are to stimulate and facilitate: - The study of the Sun Earth connected system and the effects which influence life and society - Collaboration among all potential partners in solar-terrestrial space missions - Synergistic coordination of international

  6. Morrow, Reiff, Receive 2013 Space Physics and Aeronomy Richard Carrington Awards: Response

    Science.gov (United States)

    Reiff, Patricia H.

    2014-08-01

    It is a special privilege to receive this award honoring Richard Carrington's discovery of what we now call space weather. It is particularly appropriate that this award also recognizes Cherilynn Morrow, who 20 years ago made a presentation to the Space Science Advisory Committee on Jeff Rosendhal's idea of mission-based E/PO. We worked together, bringing that idea to the successful, but threatened, network it is today. For me, learning and teaching go hand in hand—as we publish our findings for our peers, we should also repay the public investment in our research with accurate, understandable results. My interest in space science was sparked by a father-daughter course in astronomy sponsored by the Brownies at the Oklahoma City Planetarium and kindled by the Bell Labs production The Strange Case of the Cosmic Rays directed by Frank Capra. Knowing that planetarium shows and educational movies can change lives, I have devoted a large portion of my last 25 years to creating software, shows, and portable planetariums to inspire and engage youth. This has not been a one-person effort, of course. My work Cherilynn Ann Morrow would have been impossible without the collaboration of Carolyn Sumners, vice president of the Houston Museum of Natural Science. Our museum kiosk and planetarium control software would not have happened without the skill and perseverance of my chief programmer, Colin Law. Jim Burch has been first a mentor and then a colleague on both the research and outreach sides of my career. I share this honor with a long line of highly talented students and postdocs who have contributed science content and outreach efforts. Most importantly, without the support of my husband, Tom Hill, I would not have had the time and freedom to build an educational network while continuing research and raising a family. I thank AGU for bestowing this honor.

  7. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    Science.gov (United States)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  8. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    Science.gov (United States)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  9. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  10. The CALorimetric Electron Telescope (CALET for high-energy astroparticle physics on the International Space Station

    Directory of Open Access Journals (Sweden)

    Adriani O.

    2015-01-01

    Full Text Available The CALorimetric Electron Telescope (CALET is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015 to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF.

  11. Italian Physical Society DAMPE: A gamma and cosmic ray observatory in space

    CERN Document Server

    D'Urso, D

    2017-01-01

    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500 km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5 GeV–10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anticoincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100...

  12. Physics and potentials of fissioning plasmas for space power and propulsion

    Science.gov (United States)

    Thom, K.; Schwenk, F. C.; Schneider, R. T.

    1976-01-01

    Fissioning uranium plasmas are the nuclear fuel in conceptual high-temperature gaseous-core reactors for advanced rocket propulsion in space. A gaseous-core nuclear rocket would be a thermal reactor in which an enriched uranium plasma at about 10,000 K is confined in a reflector-moderator cavity where it is nuclear critical and transfers its fission power to a confining propellant flow for the production of thrust at a specific impulse up to 5000 sec. With a thrust-to-engine weight ratio approaching unity, the gaseous-core nuclear rocket could provide for propulsion capabilities needed for manned missions to the nearby planets and for economical cislunar ferry services. Fueled with enriched uranium hexafluoride and operated at temperatures lower than needed for propulsion, the gaseous-core reactor scheme also offers significant benefits in applications for space and terrestrial power. They include high-efficiency power generation at low specific mass, the burnup of certain fission products and actinides, the breeding of U-233 from thorium with short doubling times, and improved convenience of fuel handling and processing in the gaseous phase.

  13. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion.

    Science.gov (United States)

    Kloosterman, Marieke G M; Eising, Hilde; Schaake, Leendert; Buurke, Jaap H; Rietman, Johan S

    2012-06-01

    Repetitive forces and moments are among the work requirements of hand-rim wheelchair propulsion that are related to shoulder injuries. No previous research has been published about the influence of power-assisted wheelchair propulsion on these work requirements. The purpose of our study was therefore to determine the influence of power-assisted propulsion on shoulder biomechanics and muscle activation patterns. We also explored the theoretical framework for the effectiveness of power-assisted propulsion in preventing shoulder injuries by decreasing the work requirements of hand-rim wheelchair propulsion. Nine non-wheelchair users propelled a hand-rim wheelchair on a treadmill at 0.9 m/s. Shoulder biomechanics, and muscle activation patterns, were compared between propulsion with and without power-assist. Propulsion frequency did not differ significantly between the two conditions (Wilcoxon Signed Rank test/significance level/effect size:4/.314/-.34). During power-assisted propulsion we found significantly decreased maximum shoulder flexion and internal rotation angles (1/.015/-.81 and 0/.008/-.89) and decreased peak force on the rim (0/.008/-.89). This resulted in decreased shoulder flexion, adduction and internal rotation moments (2/.021/-.77; 0/.008/-.89 and 1/.011/-.85) and decreased forces at the shoulder in the posterior, superior and lateral directions (2/.021/-.77; 2/.008/-.89 and 2/.024/-.75). Muscle activation in the pectoralis major, posterior deltoid and triceps brachii was also decreased (2/.038/-.69; 1/.015/-.81 and 1/.021/-.77). Power-assist influenced the work requirements of hand-rim wheelchair propulsion by healthy subjects. It was primarily the kinetics at rim and shoulder which were influenced by power-assisted propulsion. Additional research with actual hand-rim wheelchair users is required before extrapolation to routine clinical practice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    Science.gov (United States)

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    batholith have yielded more than 100 million oz of gold. Additional significant ore-forming events during the development of North America's Cordilleran orogen included those in the Klamath Mountains region, California in the Late Jurassic and Early Cretaceous; the Klondike district, Yukon by the Early Cretaceous; the Nome and Fairbanks districts, Alaska, and the Bridge River district, British Columbia in the middle Cretaceous; and the Juneau gold belt, Alaska in the Eocene. Gold-bearing veins deposited during the Late Jurassic and Early Cretaceous terrane collision that formed the present-day Russian Far East have been the source for more than 130 million oz of placer gold. The abundance of gold-bearing quartz-carbonate veins throughout the Gondwanan, North American and Eurasian continental margins suggests the migration and concentration of large fluid volumes during continental growth. Such volumes could be released during orogenic heating of hydrous silicate mineral phases within accreted marine strata. The common temporal association between gold veining and magmatism around the Pacific Rim reflects these thermal episodes. Melting of the lower thickened crust during arc formation, slab rollback and extensional tectonism, and subduction of a slab window beneath the seaward part of the forearc region can all provide the required heat for initation of the ore-forming processes.

  15. Cosmic ray physics in space: the role of Sergey Vernov's scientific school

    Science.gov (United States)

    Panasyuk, M. I.

    2011-04-01

    Cosmic rays were discovered almost 100 years ago. Since then the scientific world has learned a lot from their nature: the particles nascent in the Universe, both in our Galaxy and outside, the basic mechanisms of their acceleration, transfer in the interstellar environment and the interaction of the primary cosmic rays with the atmosphere surrounding the Earth. Before 1957, i.e., the beginning of the Space Era, researchers' capabilities were limited to experiments performed on the ground, underground and in near-ground atmosphere to flight altitudes of aerostats, airplanes and rockets, i.e., where only secondary radiation is in existence, this is the result of the interaction of cosmic rays with the Earth's atmosphere. The launching of spacecraft allowed the scientists to commence exploring the Universe's primordial matter itself outside the atmosphere, i.e., the primary cosmic rays. Sergey Vernov, the Russian scientist, was among them.

  16. Main physical environmental drivers of occupant behaviour with regard to space heating energy demand

    DEFF Research Database (Denmark)

    Fabi, Valentina; Andersen, Rune Korsholm; Corgnati, Stefano Paolo

    2012-01-01

    Several studies have highlighted the significant gap between the predicted energy performance of buildings and their measured actual performance. Uncertainties regarding behaviour of building occupants are one of the key factors limiting the ability of energy simulation tools to accurately predict...... real building energy requirements . The paper focuses on the particular topics of space heating energy demand related to the occupants habits of adjusting heating set-points. The parameters influencing the user interaction with the heating control system are analyzed in literature for residential......) environmental conditions and the occupants’ heating set-point preferences. The paper aims at providing a reliable basis for a more accurate description of control action models in performance simulation applications....

  17. A Large-Scale Study of Surrogate Physicality and Gesturing on Human–Surrogate Interactions in a Public Space

    Directory of Open Access Journals (Sweden)

    Kangsoo Kim

    2017-07-01

    Full Text Available Technological human surrogates, including robotic and virtual humans, have been popularly used in various scenarios, including training, education, and entertainment. Prior research has investigated the effects of the surrogate’s physicality and gesturing in human perceptions and social influence of the surrogate. However, those studies have been carried out in research laboratories, where the participants were aware that it was an experiment, and the participant demographics are typically relatively narrow—e.g., college students. In this paper, we describe and share results from a large-scale exploratory user study involving 7,685 people in a public space, where they were unaware of the experimental nature of the setting, to investigate the effects of surrogate physicality and gesturing on their behavior during human–surrogate interactions. We evaluate human behaviors using several variables, such as proactivity and reactivity, and proximity. We have identified several interesting phenomena that could lead to hypotheses developed as part of future hypothesis-based studies. Based on the measurements of the variables, we believe people are more likely to be engaged in a human–surrogate interaction when the surrogate is physically present, but movements and gesturing with its body parts have not shown the expected benefits for the interaction engagement. Regarding the demographics of the people in the study, we found higher overall engagement for females than males, and higher reactivity for younger than older people. We discuss implications for practitioners aiming to design a technological surrogate that will directly interact with real humans.

  18. Mental health benefits of neighbourhood green space are stronger among physically active adults in middle-to-older age: evidence from 260,061 Australians.

    Science.gov (United States)

    Astell-Burt, Thomas; Feng, Xiaoqi; Kolt, Gregory S

    2013-11-01

    While many studies report that green spaces promote mental health, some suggest the psychological benefits of physical activity are amplified if participation occurs within greener environs. We investigated whether this relationship could be observed among adults in middle-to-older age. Multilevel logit regression was used to investigate association between green space and psychological distress (Kessler scores of 22+) among 260,061 Australians over 45 years old living in New South Wales (2006-2009). Physical activity was measured using the Active Australia survey. Percentage green space was estimated within a 1-kilometre of residence. In comparison to residents of the least green areas, those in the greenest neighbourhoods were at a lower risk of psychological distress (Odds Ratio 0.83, 95% CI: 0.76, 0.92) and were less sedentary (0.81: 0.77, 0.87). An interaction was observed between physical activity and green space (p=0.0028). More green space did not appear to benefit mental health among the least active (0.99: 0.85, 1.15), but there was a protective association for the more physically active (0.82: 0.67, 0.99). For adults in middle-to-older age, green spaces are not only important for promoting physical activity, but the mental health benefits of greener environs appear contingent upon those active lifestyles. © 2013.

  19. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  20. Hybrid modeling of plasma and applications to fusion and space physics

    International Nuclear Information System (INIS)

    Kazeminejad, F.

    1989-01-01

    Obtaining reasonable solutions to the nonlinear equations is crucial to the understanding of the behavior of plasmas. With the advent of high speed computers, computer modeling of plasmas has moved into the front row of the tools used in research of their nonlinear plasma dynamics. There are roughly speaking two types of plasma models, particle models and fluid models. Particle models try to emulate nature by following the motion of a large number of charged particles in their self consistent electromagnetic fields. Fluid models on the other hand use macroscopic fluid equations to model the plasma. MHD models are typical of this type. Particle models in general require larger memory for the computer due to the massive amount of data associated with the particles' kinematical variables. Particle models are generally limited to studying small regions of plasma for relatively short time intervals. Fluid models are better fit to handle large scales and long times; i.e., quite often the complete plasma involved in an experiment. The drawback of the fluid models however is that, they miss the physical phenomenon taking place at the microscale and these phenomenon can influence the properties of fluid. Another approach is to start with fluid models and incorporate more physics. Such models are referred to as hybrid models. In this thesis, two such models are discussed. They are then applied to two problems; the first is a simulation of the artificial comet generated by the AMPTE experiment; the second is the production of enhanced noise in fusion plasmas by injected energetic ions or by fusion reaction products. In both cases the models demonstrate qualitative agreement with the experimental observations

  1. STRUCTURAL STUDIES OF EIGHT BRIGHT RIMMED CLOUDS IN THE SOUTHERN HEMISPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Saurabh; Pandey, A. K.; Gopinathan, M. [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital, 263 001 (India); Borissova, J.; Kurtev, R. [Departamento de Física y Astronomía, Universidad de Valparaíso, Ave. Gran Bretaña 1111, Valparaíso (Chile); Ojha, D. K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai—400 005 (India); Ivanov, V. D. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei Mũnchen (Germany); Ogura, K. [Kokugakuin University, Higashi, Shibuya-ku, Tokyo 150-8440 (Japan); Kobayashi, N. [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Yadav, Ram Kesh, E-mail: saurabh@aries.res.in [National Astronomical Research Institute of Thailand, Chiang Mai (Thailand)

    2016-05-01

    We carried out deep- and wide-field near- and mid-infrared observations for a sample of eight bright-rimmed clouds (BRCs). Supplemented with the Spitzer archival data, we have identified and classified 44 to 433 young stellar objects (YSOs) associated with these BRCs. The Class I sources are generally located toward the places with higher extinction and are relatively closer to each other than the Class II sources, confirming that the young protostars are usually found in regions with denser molecular material. On the other hand the comparatively older population, Class II objects, are more randomly found throughout the regions, which can be due to their dynamical evolution. Using the minimal sampling tree analyses, we have extracted 13 stellar cores of eight or more members, which contain 60% of the total YSOs. The typical core is ∼0.6 pc in radii and somewhat elongated (aspect ratio of 1.45), of relatively low stellar density (surface density 60 pc{sup −2}), consisting of a small (35) number of YSOs of relatively young sources (66% Class I), and partially embedded (median A{sub K}  = 1.1 mag). But the cores show a wide range in their mass distribution (∼20 to 2400 M {sub ⊙}), with a median value of around 130 M {sub ⊙}. We found the star-formation efficiencies in the cores to be between 3% and 30% with an average of ∼14%, which agrees with the efficiencies needed to link the core mass function to the initial mass function. We also found a linear relation between the density of the clouds and the number of YSOs. The peaked nearest neighbor spacing distributions of the YSOs and the ratio of Jeans lengths to the YSO separations indicates a significant degree of non-thermally driven fragmentation in these BRCs.

  2. Hypoechoic rim of chronically inflamed prostate, as seen at TRUS: histopathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hak Jong [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choe, Ghee Young; Kim, Seung Hyup [Seoul National University College of Medicine, Seoul (Korea, Republic of); Seong, Chang Gyu [Kyungpook National University College of Medicine, Taegu (Korea, Republic of)

    2001-09-01

    The purpose of this study is to correlate the findings of peripheral hypoechoic rim, seen at transrectal ultrasonography (TRUS) in chronic prostatitis patients, with the histopthologic findings. Seven patients with pathologically proven chronic prostatitis were involved in this study. The conspicuity of the peripheral hypoechoic prostatic rim, seen at TRUS, was prominent and subtle, and to determine its histopathologic nature, the microscopic findings were reviewed. In five of seven cases (71%), TRUS demonstrated a prominent peripheral hypoechoic rim. Microscopic examination revealed that inflammatory cell infiltration of prostatic glandular tissue was severe in three cases (42.9%), moderate in two (28.6%), and minimal in two (28.6%). In all seven cases, the common histopathologic findings of peripheral hypoechoic rim on TRUS were loose stromal tissues, few prostatic glands, and sparse infiltration by inflammatory cells. The peripheral hypoechoic rim accompanying prostatic inflammation and revealed by TRUS reflects a sparsity of prostate glandular tissue and is thought to be an area in which inflammatory cell infiltration is minimal.

  3. Anterior glenoid rim fracture: the value of helical CT with threedimensional reconstruction and electronic humeral disarticulation

    Directory of Open Access Journals (Sweden)

    Heverton César de Oliveira

    2003-06-01

    Full Text Available Objectives: To show a new three-dimensional reconstructiontechnique based on helical computed tomography images withelectronic humeral disarticulation in anterior glenoid rim fractures,correlating the anatomic specimen with simulation of an anteriorglenoid rim fracture, as well as evaluating the extension of thefracture, the bone fragment position and distance in relation to theglenoid cavity in six patients. Methods: One scapula and onehumerus with no signs of fracture or congenital malformationswere placed in anatomical position using an adhesive tape aftersimulating an anterior glenoid rim fracture made by an osteotome.Helical CT imaging was acquired and three-dimensionalreconstructions were made based on these images, with andwithout electronic humeral disarticulation. The bone fragment waslocated, measured and its position in relation to the glenoid cavitywas assessed. Six patients with anterior glenoid rim fracture weresubmitted to CT of the shoulder using the same parameters asthose applied to the anatomic specimen. Results: In the anatomicspecimen and in all six patients the bone fragment was clearlydemonstrated; bone fragment measurements in the anatomicspecimen and in three-dimensional reconstructions wereequivalent. The fragment was better demonstrated in the imagestaken with electronic humeral disarticulation, particularly in thefrontal view of the glenoid cavity as observed in all six patients.Conclusion: We concluded that our experiment with the anatomicspecimen and the study of six patients allow us to state that thistechnique is safe and accurate to demonstrate the extension, sizeand location of the bone fragment in anterior glenoid rim fractures,and it provides essential elements for therapeutic planning.

  4. Results of auricular helical rim reconstruction with post-auricular tube flap.

    Science.gov (United States)

    Iljin, Aleksandra; Lewandowicz, Edward; Antoszewski, Bogusław; Zieliński, Tomasz

    2016-01-01

    The aim of the study was to present our experience with post-auricular tube flap (ptf) and clinical evaluation of the results following auricular helical rim reconstruction with this technique in patients after trauma. We analyzed the results in 12 patients who underwent three-staged auricular helical rim reconstruction with ptf following trauma in the Department of Plastic, Reconstructive and Aesthetic Surgery between 2005-2014. The patients were followed-up for at least 1 year. We evaluated early and long-term results after surgery including plastic surgeon's and patient's opinion. Postoperative results were satisfactory (very good) in 10 cases, both in the opinion of the plastic surgeon and patients. Transient venous congestion of the helix occurred in two cases (16.6%). This complication did not have any influence on estimation of the results after surgery. Delayed wound healing in the poles of the reconstructed helical edge, as well as non-aesthetic helical scars with imperfections of helical rim, were seen in another two patients (16.6%). 1. Post-auricular tube flap reconstructions after helical rim trauma allowed for complete restoration of contour, size and orientation of the helix and the whole operated ear, which confirms the efficiency of the applied technique. 2. Reconstructive surgery with post-auricular tube flap in patients with auricular helical rim defects contributed to postoperative satisfaction in both patients and doctors' estimations.

  5. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  6. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  7. AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics

    Science.gov (United States)

    Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.

    2017-05-01

    We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.

  8. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    Science.gov (United States)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  9. The Riverscape Analysis Project: Using Remote Sensing to Leverage Salmon Science and Management Applications Around the Pacific Rim

    Science.gov (United States)

    Chilcote, S.; Maumenee, N.; Lucotch, J.; Whited, D.; Bansack, T.; Kimball, J. S.; Stanford, J.

    2009-12-01

    The Salmonid Rivers Observatory Network (SaRON) is an intensive field research project which aims to describe the relation between salmon productivion and diversity in relation to environmental drivers and physical complexity of riverine shifting habitat mosaics. The Riverscape Analysis Project (RAP) is a spatially explicit remote sensing database which quantifies and ranks different combinations of physical landscape metrics around the Pacific Rim, displaying results through a publically accessible web based decision support framework designed to empower regional management and conservation efforts for wild salmon. The objective of our research is to explicitly describe and relate different habitat types and their potential fish production at a variety of scales and throughout the range of Pacific salmon, leveraging our field research through available satellite remote sensing and geospatial analysis. We find that rivers exhibit a range of physical, chemical, and biotic conditions consistent with the shifting habitat mosaic (SHM) concept. Landscape physical variables derived from global Landsat imagery and SRTM-DEM information explain 93.2% of observed variability in over 1500 watersheds across the Pacific Rim. We expect that it is these coarse scale differences in river typologies which are responsible for the fine scale differences in habitat conditions and juvenile salmon production. Therefore, we ranked rivers using landscape scale physical variables to prioritize them for management actions based on potential productivity. For example, the Kvichak River of Bristol Bay is highly ranked, 8th, based on its physical landscape structure as well as current human impacts. Currently, the Bristol Bay fishery is extremely productive. Habitat structure can be used not only to define reference conditions and management targets for how many fish we would expect a river to produce based on its potential habitat capacity, but it also provides new analytical tools to

  10. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    Science.gov (United States)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  11. Probing early universe cosmology and high energy physics through space-borne interferometers

    International Nuclear Information System (INIS)

    Ungarelli, C.; Vecchio, A.

    2001-01-01

    We discuss the impact of space-borne laser interferometric experiments operating in the low-frequency window (∼ 1 μHz - 1 Hz), with the goal of identifying the fundamental issues that regard the detection of a primordial background of GW predicted by slow-roll inflationary models, corresponding to h 100 2 Ω ∼ 10 -16 - 10 -15 . We analyse the capabilities of the planned single-instrument LISA mission and the sensitivity improvements that could be achieved by cross-correlating the data streams from a pair of detectors of the LISA-class. We show that the two-detectors configuration is extremely powerful, and leads to the detection of a stochastic background as weak as h 100 2 Ω ∼ 10 -14 . However, such instrumental sensitivity cannot be exploited to achieve a comparable performance for the detection of the primordial component of the background, due to the overwhelming power of the stochastic signal produced by short-period solar-mass binary systems of compact objects, that cannot be resolved as individual sources. We estimate that the primordial background can be detected only if its fractional energy density h 100 2 Ω is greater than a few times 10 -12 . The key conclusion of our analysis is that the typical mHz frequency band, regardless of the instrumental noise level, is the wrong observational window to probe slow-roll inflationary models. We discuss possible follow-on missions with optimal sensitivity in the ∼ μHz-regime and/or in the ∼ 0.1Hz-band specifically aimed at gravitational wave cosmology. (author)

  12. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  13. Nonequatorial tachyon trajectories in Kerr space-time and the second law of black-hole physics

    International Nuclear Information System (INIS)

    Dhurandhar, S.V.

    1979-01-01

    The behavior of tachyon trajectories (spacelike geodesics) in Kerr space-time is discussed. It is seen that the trajectories may be broadly classified into three types according to the magnitude of the angular momentum of the tachyon. When the magnitude of angular momentum is large [vertical-barhvertical-bar > or = a (1 + GAMMA 2 )atsup 1/2at, where h and GAMMA are the angular momentum and energy at infinity and a 0. In the other cases, a negative value for Carter's constant of motion Q is permitted, which happens to be a necessary condition for the tachyon to fall into the singularity. Next, the second law of black-hole physics is investigated in the general case of nonequatorial trajectories. It is shown that nonequatorial tachyons can decrease the area of the Kerr black hole only if it is rotating sufficiently rapidly [a > (4/3√3) M

  14. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Dagkesamanskii, Rustam D

    2009-01-01

    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  15. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Dagkesamanskii, Rustam D [Pushchino Radio Astronomy Observatory, Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2009-11-30

    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  16. Professional development of future teacher of physical culture in informatively-educational space: information technologies in educational process

    Directory of Open Access Journals (Sweden)

    Dragnev Y. V.

    2012-07-01

    Full Text Available A role and value of informative educational space in the professional becoming of future teacher of physical culture is considered. It is well-proven that such environment is characterized: by the volume of educational services, power, intensity, set of terms. It is shown that higher professional education requires perfection of the use of information technologies, programmatic and informative providing of educational process. It is set that modern information technologies are the mean of increase of efficiency of management all of spheres of public activity. It is marked that the process of forming of informative culture needs the personally oriented and differentiated going near the choice of the teaching programs. Directions of the use of information technologies in the controlled from distance teaching are selected. The ways of intensification of educational process are recommended through the increase of interest of students to the study of concrete discipline, increase of volume of independent work, increase of closeness of educational material.

  17. Entertainment, Engagement and Education: Foundations and Developments in Digital and Physical Spaces to Support Learning through Making

    DEFF Research Database (Denmark)

    Giannakos, Michail N.; Divitini, Monica; Iversen, Ole Sejer

    2017-01-01

    like problem solving, design thinking, collaboration, and innovation, to mention few. Contemporary technical and infrastructural developments, like Hackerspaces, Makerspaces, TechShops, FabLabs and the appearance of tools such as wearable computing, robotics, 3D printing, microprocessors, and intuitive......Making is a relatively new concept applied to describe the increasing attention on constructing activities to enable entertaining, engaging and efficient learning. Making focuses on the process that occurs in digital and/or physical spaces that is not always learning oriented, but enables qualities...... programming languages; posit making as a very promising research area to support the learning processes, especially towards the acquisition of 21st Century learning competences. Collecting learning evidence via rigorous multidimensional and multidisciplinary case studies will allow us to better understand...

  18. Development of phased array UT technique for inspection of turbine wheel rim

    International Nuclear Information System (INIS)

    Komura, I.; Nagal, S.; Goto, M.; Ohmatsu, K.

    1986-01-01

    A phased array UT technique has been developed for the improvement of defect detection under the keyway region of shrunk-on type turbine wheel. The sector scanning mode operation with plexiglas wedge of phased array capability was applied to construct the B-scope image of turbine wheel rim region. Preceding to the inspection test of the model specimen having real shape of rim region, the distribution of sound field intensity along the steering angle of the scanning line was measured on the test block. Then, the minimum depth of detectable defect by the B-scope imaging was evaluated on the dovetail shape specimens which had different depth EDM notches at the each hook fillet. As the results, it has been realized that the B-scope imaging of the sector scanning mode phased array technique has a capability for distinguishing the defect echoes from the many reflection echoes caused by the complexed shape of wheel rim region

  19. Study and simulation of the rim effect in rep fuel rods

    International Nuclear Information System (INIS)

    Hermitte, B.

    1996-01-01

    The RIM effect has been discovered fifteen years ago during the examination of first irradiated rods at more than 45 gWJ/TU in experimental reactors. The rods observation revealed a continuously degradation of the granular structure in the pellet skin, jointly to the porosity increase in this area. This study proposes a RIM formation and development mechanism for high combustion level. The first part presents the simulation of the fission gases in the fuel fraction concerned by the RIM. In the proposed model the gas bubbles increase is bound to the volume fraction of restructured fuel. This model allows the determination of the pores volume fraction in the fuel, the average size of these pores and the volume distribution of the fission gases between the bubbles and the fuel matrix. (A.L.B.)

  20. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Julia

    2017-02-07

    By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

  1. A unified world oil market: Regions in physical, economic, geographic, and political space

    International Nuclear Information System (INIS)

    Kaufmann, Robert K.; Banerjee, Shayan

    2014-01-01

    Although there is a general consensus that the market is unified, here we quantify the factors that create regions by analyzing the price relation between 33 crude oils. ADF statistics indicate that 447 of the 528 crude oil pairings cointegrate; 81 do not. The presence/absence of cointegration is analyzed using a logit model. The likelihood that the prices for two crude oils cointegrate depends on their physical characteristics (density and sulfur content), economic factors (country risk for the nation of origin), their geographic location (distance between supply ports), and political factors (OPEC membership). Over the sample period, the technology to refine heavy crude oils penetrates the market, and this reduces the price difference between heavy and light crude oils. The effect of country risk implies that crude oils from high risk nations are not perfect substitutes for crude oils of similar quality from low risk nations. Finally, crude oils from widely separated suppliers are more likely to cointegrate than crude oils from near-by nations, which suggests consumers diversify supply across transportation chokepoints. For this sample, these sources of regionalization add $0.20 per barrel to the $2.86 average price difference between crude oils in the same market. Together, these factors have important implications for the efficacy of policy aimed at reducing dependence on unreliable suppliers and the spill-over effects of holding inventories. - Highlights: • The world oil market is not completely unified. • Regions are defined by differences in API gravity and sulfur content. • Country risk regionalizes the world oil market. • Shipping chokepoints regionalize the world oil market. • Regionalization adds $0.20 to $2.86 price difference between oils in same market

  2. Automatic Georeferencing of Astronaut Auroral Photography: Providing a New Dataset for Space Physics

    Science.gov (United States)

    Riechert, Maik; Walsh, Andrew P.; Taylor, Matt

    2014-05-01

    Astronauts aboard the International Space Station (ISS) have taken tens of thousands of photographs showing the aurora in high temporal and spatial resolution. The use of these images in research though is limited as they often miss accurate pointing and scale information. In this work we develop techniques and software libraries to automatically georeference such images, and provide a time and location-searchable database and website of those images. Aurora photographs very often include a visible starfield due to the necessarily long camera exposure times. We extend on the proof-of-concept of Walsh et al. (2012) who used starfield recognition software, Astrometry.net, to reconstruct the pointing and scale information. Previously a manual pre-processing step, the starfield can now in most cases be separated from earth and spacecraft structures successfully using image recognition. Once the pointing and scale of an image are known, latitudes and longitudes can be calculated for each pixel corner for an assumed auroral emission height. As part of this work, an open-source Python library is developed which automates the georeferencing process and aids in visualization tasks. The library facilitates the resampling of the resulting data from an irregular to a regular coordinate grid in a given pixel per degree density, it supports the export of data in CDF and NetCDF formats, and it generates polygons for drawing graphs and stereographic maps. In addition, the THEMIS all-sky imager web archive has been included as a first transparently accessible imaging source which in this case is useful when drawing maps of ISS passes over North America. The database and website are in development and will use the Python library as their base. Through this work, georeferenced auroral ISS photography is made available as a continously extended and easily accessible dataset. This provides potential not only for new studies on the aurora australis, as there are few all-sky imagers in

  3. Optimization Strategies for Bruch's Membrane Opening Minimum Rim Area Calculation: Sequential versus Simultaneous Minimization.

    Science.gov (United States)

    Enders, Philip; Adler, Werner; Schaub, Friederike; Hermann, Manuel M; Diestelhorst, Michael; Dietlein, Thomas; Cursiefen, Claus; Heindl, Ludwig M

    2017-10-24

    To compare a simultaneously optimized continuous minimum rim surface parameter between Bruch's membrane opening (BMO) and the internal limiting membrane to the standard sequential minimization used for calculating the BMO minimum rim area in spectral domain optical coherence tomography (SD-OCT). In this case-control, cross-sectional study, 704 eyes of 445 participants underwent SD-OCT of the optic nerve head (ONH), visual field testing, and clinical examination. Globally and clock-hour sector-wise optimized BMO-based minimum rim area was calculated independently. Outcome parameters included BMO-globally optimized minimum rim area (BMO-gMRA) and sector-wise optimized BMO-minimum rim area (BMO-MRA). BMO area was 1.89 ± 0.05 mm 2 . Mean global BMO-MRA was 0.97 ± 0.34 mm 2 , mean global BMO-gMRA was 1.01 ± 0.36 mm 2 . Both parameters correlated with r = 0.995 (P < 0.001); mean difference was 0.04 mm 2 (P < 0.001). In all sectors, parameters differed by 3.0-4.2%. In receiver operating characteristics, the calculated area under the curve (AUC) to differentiate glaucoma was 0.873 for BMO-MRA, compared to 0.866 for BMO-gMRA (P = 0.004). Among ONH sectors, the temporal inferior location showed the highest AUC. Optimization strategies to calculate BMO-based minimum rim area led to significantly different results. Imposing an additional adjacency constraint within calculation of BMO-MRA does not improve diagnostic power. Global and temporal inferior BMO-MRA performed best in differentiating glaucoma patients.

  4. The influence of neighbourhood green space on children's physical activity and screen time: findings from the longitudinal study of Australian children.

    Science.gov (United States)

    Sanders, Taren; Feng, Xiaoqi; Fahey, Paul P; Lonsdale, Chris; Astell-Burt, Thomas

    2015-09-30

    It is often hypothesised that neighbourhood green space may help prevent well-known declines in physical activity and increases in sedentary behaviour that occur across childhood. As most studies in this regard are cross-sectional, the purpose of our study was to use longitudinal data to examine whether green space promotes active lifestyles as children grow older. Data came from participants (n = 4983; age = 4-5) of the Longitudinal Study of Australian Children, a nationally representative study on health and child development. Physical activity and screen time were measured biennially (2004-2012) using questionnaires and time use diaries. Quantity of neighbourhood green space was objectively measured using Australian Bureau of Statistics mesh block data for each participant's statistical area level 2. Multilevel regression was used to test for associations between physical activity and screen time with green space quantity, adjusting for socio-economic confounders. Boys living in areas with 10% more neighbourhood green space had a: 7% (95% CI = 1.02, 1.13) greater odds of choosing physically active pastimes; 8% (95 % CI = 0.85, 1.00) lower odds of not enjoying physical activity; 2.3 min reduction in weekend television viewing (95% CI = -4.00, -0.69); and 7% (95% CI = 1.02; 1.12) and 9% (95% CI = 1.03; 1.15) greater odds of meeting physical activity guidelines on weekdays and weekends, respectively. No statistically (or practically) significant results were observed for girls. Current provisions of neighbourhood green space may be more amenable to promoting active lifestyles among boys than girls. Research is needed to explore what types of green space promote active lifestyles in all children.

  5. Performance Analysis Rim Driven Propeller as a Propulsor using Open Water Test

    OpenAIRE

    Agoes Santoso; Irfan Syarif Arief; Anggara Tio Kurniawan

    2017-01-01

    The use of duct in propeller is one of the breakthrough in the development of the propeller. Ducting not only claimed to be increasing efficiency of the propeller, but also capable to protect the propeller from impact therefore propeller lifespan is longer. From that idea then RDP is created. RDP propeller blade are designed to be fix at their housing called Rim, in the other word, the driving force came from it’s rim. On current RDP blade used is non-conventional blade. This thesis will disc...

  6. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    Science.gov (United States)

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  7. RIM as the data base management system for a material properties data base

    Science.gov (United States)

    Karr, P. H.; Wilson, D. J.

    1984-01-01

    Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.

  8. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  9. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  10. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  11. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  12. The influence of neighbourhood green space on children's physical activity and screen time : findings from the longitudinal study of Australian children

    OpenAIRE

    Sanders, Taren; Feng, Xiaoqi; Fahey, Paul P.; Lonsdale, Chris; Astell-Burt, Thomas Edward

    2015-01-01

    TS is supported by an Australian Postgraduate Award. TAB is supported by a Fellowship with the National Heart Foundation of Australia (No. 100161). Objective: It is often hypothesised that neighbourhood green space may help prevent well-known declines in physical activity and increases in sedentary behaviour that occur across childhood. As most studies in this regard are cross-sectional, the purpose of our study was to use longitudinal data to examine whether green space promotes active li...

  13. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  14. Engineering geology model of the Crater Lake outlet, Mt. Ruapehu, New Zealand, to inform rim breakout hazard

    Science.gov (United States)

    Cook, Stefan C. W.; Kennedy, Ben M.; Villeneuve, Marlène C.

    2018-01-01

    Mt. Ruapehu, in the central North Island of New Zealand, hosts a hot acidic Crater Lake over the active volcanic vent with a surface elevation of c. 2530 m.a.s.l. Volcanic activity and other montane processes have previously resulted in catastrophic releases of some or all of the c. 10 Mm3 of water retained in the lake, creating serious hazards downstream. A major lahar in March 2007 exposed a 10 m high face representative of the rock units impounding the lake, providing an opportunity to conduct both field and laboratory analysis to characterise the rock mass conditions at the outlet to assess the stability of the outlet area. This paper presents an engineering geology model of Crater Lake outlet. Our model shows three andesitic geological units at the outlet, each with different geological histories and physical and mechanical properties, which impact its stability. Geotechnical methods used to characterise the outlet include laboratory testing of the strength, stiffness, porosity and unit weight, and field-based rock mass characterisation using the geological strength index (GSI) and rock mass rating (RMR). Field observations, geomorphology mapping, historic and contemporary photographs, and laboratory results are combined to create cross sections that provide key information for establishing the engineering geology model. The units are recognised in what is informally termed the Crater Lake Formation: i) The upper surface layer is a c. 2 m thick sub-horizontal dark grey lava unit (Armoured Lava Ledge) with sub-horizontal cooling joints spaced at 0.2 m to 2.0 m intervals. The intact rock has a porosity range of 15-27%, density range of 1723-2101 kg/m3, GSI range of 45-75, and unconfined compressive strength (UCS) range of 19-48 MPa. ii) Below this, and outcropping down the majority of the outlet waterfall is a poorly sorted breccia unit composed of block and matrix material (Lava Breccia). The blocks range from 0.1 m to 0.8 m in diameter with an average porosity

  15. 29 CFR 1910.177 - Servicing multi-piece and single piece rim wheels.

    Science.gov (United States)

    2010-07-01

    ...” and “Multi-piece Rim Matching Chart,” or any other poster which contains at least the same... procedure shall include at least the following elements: (1) Tires shall be completely deflated before... and follow that procedure. The procedure shall include at least the following elements: (1) Tires...

  16. Coal use expansion ahead for Pacific Rim power plants (Part 1)

    International Nuclear Information System (INIS)

    Mahr, D.

    1991-01-01

    The growing importance of coal to Pacific Rim countries and their plans to greatly expand coal use in power generation are discussed. Coal acquisition and costs are considered. Cost, much of it freight, often dictates the selection of a coal source. 7 refs., 2 figs., 3 tabs

  17. Opportunities for Partnership in the Pacific Rim: Reflections on a Visit to Vietnam.

    Science.gov (United States)

    Sykes, Abel B., Jr.

    Community colleges are poised to play a vital role in Vietnam and other Pacific Rim nations currently seeking to develop their business sectors and economies. Projects and partnerships with U.S. community colleges are currently in progress in India, Malaysia, China, Japan, Taiwan, and Korea. In addition, the Vietnamese Ministry of Education and…

  18. Hand-rim Forces and Gross Mechanical Efficiency at Various Frequencies of Wheelchair Propulsion

    NARCIS (Netherlands)

    Lenton, J. P.; van der Woude, L. H. V.; Fowler, N. E.; Nicholson, G.; Tolfrey, K.; Goosey-Tolfrey, V. L.

    To determine the effects of push frequency changes on force application, fraction of effective force (FEF) and gross efficiency (GE) during hand-rim propulsion. 8 male able-bodied participants performed five 4-min sub-maximal exercise bouts at 1.8 m.s(-1); the freely chosen frequency (FCF), followed

  19. Hand-Rim Forces and Gross Mechanical Efficiency in Asynchronous and Synchronous Wheelchair Propulsion : A Comparison

    NARCIS (Netherlands)

    Lenton, J. P.; Fowler, N.; Nicholson, G.; Tolfrey, K.; Goosey-Tolfrey, V.; van der Woude, Lucas

    To compare the force application characteristics at various push frequencies of asynchronous (ASY) and synchronous (SYN) hand-rim propulsion, 8 able-bodied participants performed a separate sub-maximal exercise test on a wheelchair roller ergometer for each propulsion mode. Each test consisted of a

  20. Evidence for accretion of fine-grained rims in a turbulent nebula for CM Murchison

    Science.gov (United States)

    Hanna, Romy D.; Ketcham, Richard A.

    2018-01-01

    We use X-ray computed tomography (XCT) to examine the 3D morphology and spatial relationship of fine-grained rims (FGRs) of Type I chondrules in the CM carbonaceous chondrite Murchison to investigate the formation setting (nebular vs. parent body) of the FGRs. We quantify the sizes, shapes, and orientations of the chondrules and FGRs and develop a new algorithm to examine the 3D variation of FGR thickness around each chondrule. We find that the average proportion of chondrule volume contained in the rim for Murchison chondrules is 35.9%. The FGR volume in relation to the interior chondrule radius is well described by a power law function as proposed for accretion of FGRs in a weakly turbulent nebula by Cuzzi (2004). The power law exponent indicates that the rimmed chondrules behaved as Stokes number Stη > 1 nebular particles in Kolmogorov η scale turbulence. FGR composition as inferred from XCT number appears essentially uniform across interior chondrule types and compositions, making formation by chondrule alteration unlikely. We determine that the FGRs were compressed by the impact event(s) that deformed Murchison (Hanna et al., 2015), resulting in rims that are thicker in the plane of foliation but that still preserve their nebular morphological signature. Finally, we propose that the irregular shape of some chondrules in Murchison is a primary feature resulting from chondrule formation and that chondrules with a high degree of surface roughness accreted a relatively larger amount of nebular dust compared to smoother chondrules.

  1. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF AGRICULTURE Forest Service Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger District, Coconino County, AZ AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The U.S. Forest Service (FS) will...

  2. Transportation costs for forest products from the Puget Sound area and Alaska to Pacific Rim markets.

    Science.gov (United States)

    Harold W. Wisdom

    1990-01-01

    Ocean freight rates to Pacific Rim markets for softwood logs, cants, and wood pulp from Alaska were compared with rates from the Puget Sound area by using analysis of covariance and analysis of variance techniques. The results did not support the hypothesis that lower freight rates for Alaska result from shorter shipping distances. In many cases, ocean freight rates...

  3. Proceedings of the Pacific Rim Statistical Conference for Production Engineering : Big Data, Production Engineering and Statistics

    CERN Document Server

    Jang, Daeheung; Lai, Tze; Lee, Youngjo; Lu, Ying; Ni, Jun; Qian, Peter; Qiu, Peihua; Tiao, George

    2018-01-01

    This book presents the proceedings of the 2nd Pacific Rim Statistical Conference for Production Engineering: Production Engineering, Big Data and Statistics, which took place at Seoul National University in Seoul, Korea in December, 2016. The papers included discuss a wide range of statistical challenges, methods and applications for big data in production engineering, and introduce recent advances in relevant statistical methods.

  4. Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations

    Science.gov (United States)

    Liu, Hongyu; Jacob, Daniel J.; Chan, Lo Yin; Oltmans, Samuel J.; Bey, Isabelle; Yantosca, Robert M.; Harris, Joyce M.; Duncan, Bryan N.; Martin, Randall V.

    2002-11-01

    The sources contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong and Japanese ozonesonde observations with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations. Particular focus is placed on the extensive observations available from Hong Kong in 1996. In the middle-upper troposphere (MT-UT), maximum Asian pollution influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution. In the lower troposphere (LT) the season of maximum Asian pollution influence shifts to summer at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability observed over Hong Kong in winter reflects frequent tropical intrusions alternating with stratospheric intrusions. Asian biomass burning makes a major contribution to ozone at pollution influence (pollution influence exceeds European influence in the UT-MT, reflecting the uplift from convection and the warm conveyor belts over the eastern seaboard of North America. African outflow makes a major contribution to ozone in the low-latitude MT-UT over the Pacific Rim during November-April. Lightning influence over the Pacific Rim is minimum in summer due to westward UT transport at low latitudes associated with the Tibetan anticyclone. The Asian outflow flux of ozone to the Pacific is maximum in spring and fall and includes a major contribution from Asian anthropogenic sources year-round.

  5. Effects of Wheel and Hand-Rim Size on Submaximal Propulsion in Wheelchair Athletes

    NARCIS (Netherlands)

    Mason, Barry S.; Van der Woude, Lucas H. V.; Tolfrey, Keith; Lenton, John P.; Goosey-Tolfrey, Victoria L.

    MASON, B. S., L. H. V. VAN DER WOUDE, K. TOLFREY, J. P. LENTON, and V. L. GOOSEY-TOLFREY. Effects of Wheel and Hand-Rim Size on Submaximal Propulsion in Wheelchair Athletes. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 126-134, 2012. Purpose: This study aimed to investigate the effects of fixed gear

  6. Dioptrics of the facet lenses in the dorsal rim area of the cricket Gryllus bimaculatus

    NARCIS (Netherlands)

    Ukhanov, KY; Leertouwer, HL; Gribakin, FG; Stavenga, DG

    1996-01-01

    1. The optics of the corneal facet lenses from the dorsal rim area (DRA) and from the dorso-lateral areas (DA) of the compound eye of the cricket Gryllus bimaculatus were studied. 2. The DRA of the cricket eye contains quite normally shaped facet lenses. The diameter of the facet lens in the DA is

  7. 78 FR 15920 - Federal Motor Vehicle Safety Standards; Tire Selection and Rims

    Science.gov (United States)

    2013-03-13

    ... [Docket No. NHTSA-2013-0030] RIN 2127-AL24 Federal Motor Vehicle Safety Standards; Tire Selection and Rims... Safety Standard (FMVSS) No. 110 to make it clear that special trailer (ST) tires are permitted to be... also proposes to exclude these trailers from a vehicle testing requirement that a tire must be retained...

  8. Education Needs of California Firms for Trade in Pacific Rim Markets. Commission Report 88-43.

    Science.gov (United States)

    California State Postsecondary Education Commission, Sacramento.

    An exploratory survey of firms concerning their need for specialists for pursuing trade in Pacific Rim markets is reported. The industries surveyed include food and agriculture, sportswear and sports equipment, and applied electronics. After an introductory section explaining the origins and development of the survey, the report presents the major…

  9. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique

    NARCIS (Netherlands)

    van der Woude, L H; Veeger, DirkJan (H. E. J.); Rozendal, R H; Sargeant, A J

    1989-01-01

    To study the effect of different cycle frequencies on cardio-respiratory responses and propulsion technique in hand-rim wheelchair propulsion, experienced wheelchair sportsmen (WS group; n = 6) and non-wheelchair users (NW group; n = 6) performed wheelchair exercise tests on a motor-driven

  10. Isotopically selective RIMS of rare radionuclides by double-resonance excitation with cw lasers

    International Nuclear Information System (INIS)

    Bushaw, B.A.; Munley, J.T.

    1990-09-01

    Double-resonance, Resonance Ionization Mass Spectroscopy (RIMS) using two single-frequency dye lasers and a CO 2 laser for photoionization has been shown to be both extremely sensitive and highly selective. Measurements on the radioisotope 210 Pb have demonstrated optical selectivity in excess of 10 9 and detection limits of less than 1 femtogram

  11. Studies on the alkali-silica reaction rim in a simplified calcium-alkali-silicate system

    NARCIS (Netherlands)

    Zheng, Kunpeng; Adriaensens, Peter; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work is intended to provide a better understanding about the properties and roles of the reaction rim in an alkali-silica reaction. A simplified calcium-alkali-silicate system was created to simulate the multiple interactions among reactive silica, alkaline solution and portlandite near the

  12. 76 FR 14697 - Aleris Blanking and Rim Products, Inc., a Division of Aleris International, Inc., Terre Haute, IN...

    Science.gov (United States)

    2011-03-17

    ... Products, Inc., a Division of Aleris International, Inc., Terre Haute, IN; Notice of Revised Determination... workers of Aleris Blanking and Rim Products, Inc., a division of Aleris International, Inc., Terre Haute... Blanking and Rim Products, Inc., a division of Aleris International, Inc., Terre Haute, Indiana, who became...

  13. 76 FR 55708 - Servicing Multi-Piece and Single Piece Rim Wheels; Extension of the Office of Management and...

    Science.gov (United States)

    2011-09-08

    ...] Servicing Multi-Piece and Single Piece Rim Wheels; Extension of the Office of Management and Budget's (OMB... concerning its proposal to extend the Office of Management and Budget's (OMB) approval of the information collection requirements specified in the Standard on Servicing Multi-Piece and Single Piece Rim Wheels (29...

  14. 76 FR 69720 - NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-295-000] NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... NaturEner Rim Rock Wind Energy, LLC's application for market-based rate authority, with an accompanying...

  15. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    Directory of Open Access Journals (Sweden)

    Timothy Read

    2016-01-01

    Full Text Available Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  16. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  17. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  18. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  19. Whistler wave propagation in the antenna near and far fields in the Naval Research Laboratory Space Physics Simulation Chamber

    International Nuclear Information System (INIS)

    Blackwell, David D.; Walker, David N.; Amatucci, William E.

    2010-01-01

    In previous papers, early whistler propagation measurements were presented [W. E. Amatucci et al., IEEE Trans. Plasma Sci. 33, 637 (2005)] as well as antenna impedance measurements [D. D. Blackwell et al., Phys. Plasmas 14, 092106 (2007)] performed in the Naval Research Laboratory Space Physics Simulation Chamber (SPSC). Since that time there have been major upgrades in the experimental capabilities of the laboratory in the form of improvement of both the plasma source and antennas. This has allowed access to plasma parameter space that was previously unattainable, and has resulted in measurements that provide a significantly clearer picture of whistler propagation in the laboratory environment. This paper presents some of the first whistler experimental results from the upgraded SPSC. Whereas previously measurements were limited to measuring the cyclotron resonance cutoff and elliptical polarization indicative of the whistler mode, now it is possible to experimentally plot the dispersion relation itself. The waves are driven and detected using balanced dipole and loop antennas connected to a network analyzer, which measures the amplitude and phase of the wave in two dimensions (r and z). In addition the frequency of the signals is also swept over a range of several hundreds of megahertz, providing a comprehensive picture of the near and far field antenna radiation patterns over a variety of plasma conditions. The magnetic field is varied from a few gauss to 200 G, with the density variable over at least 3 decades from 10 7 to 10 10 cm -3 . The waves are shown to lie on the dispersion surface for whistler waves, with observation of resonance cones in agreement with theoretical predictions. The waves are also observed to propagate without loss of amplitude at higher power, a result in agreement with previous experiments and the notion of ducted whistlers.

  20. Information Environment is an Integral Element of Informational Space in the Process of Professional Development of Future Teacher of Physical Culture

    Directory of Open Access Journals (Sweden)

    Yuri V. Dragnev

    2012-04-01

    Full Text Available The article examines information environment as an integral element of information space in the process of professional development of future teacher of physical culture, notes that the strategic objective of the system of higher education is training of competent future teacher of physical culture in the field of information technologies, when information competence and information culture are major components of professionalism in modern information-oriented society

  1. The kinetics of dolomite reaction rim growth under isostatic and non-isostatic pressure conditions

    Science.gov (United States)

    Helpa, V.; Rybacki, E.; Morales, L. G.; Abart, R.; Dresen, G. H.

    2013-12-01

    During burial and exhumation, rocks are simultaneously exposed to metamorphic reactions and tectonic stresses. Therefore, the reaction rate of newly formed minerals may depend on chemical and mechanical driving forces. Here, we investigate the reaction kinetics of dolomite (CaMg[CO3]2) rim growth by solid-state reactions experiments on oriented calcite (CaCO3) and magnesite (MgCO3) single crystals under isostatic and non-isostatic pressure conditions. Cylindrical samples of 3-5 mm length and 7 mm diameter were drilled and polished perpendicular to the rhombohedral cleavage planes of natural clear crystals. The tests were performed using a Paterson-type deformation apparatus at P = 400 MPa confining pressure, temperatures, T, between 750 and 850°C, and reaction durations, t, of 2 - 146 h to calculate the kinetic parameters of dolomite rim growth under isostatic stress conditions. For non-isostatic reaction experiments we applied in addition differential stresses, σ, up to 40 MPa perpendicular to the contact interface at T = 750°C for 4 - 171 h duration, initiating minor inelastic deformation of calcite. The thickness of the resulting dolomite reaction rims increases linearly with the square root of time, indicating a diffusion-controlled reaction. The rims consist of two different textural domains. Granular dolomite grains (≈ 2 -5 μm grain size) form next to calcite and elongated palisade-shaped grains (1-6 μm diameter) grow perpendicular to the magnesite interface. Texture measurements with the electron backscatter diffraction technique indicate that the orientations of dolomite grains are mainly influenced by the orientation of the calcite educt crystal, in particular in the granular rim. To some extent, the texture of dolomite palisades is also influenced by the orientation of magnesite. The thickness of the two individual layers increases with temperature. At 400 MPa isostatic pressure, T = 750°C and t = 29 hours, a 5 μm thick granular dolomite layer

  2. Assessing the effect of physical activity classes in public spaces on leisure-time physical activity: "Al Ritmo de las Comunidades" A natural experiment in Bogota, Colombia.

    Science.gov (United States)

    Torres, Andrea; Díaz, María Paula; Hayat, Matthew J; Lyn, Rodney; Pratt, Michael; Salvo, Deborah; Sarmiento, Olga L

    2017-10-01

    The Recreovia program provides free physical activity (PA) classes in public spaces in Bogota, Colombia. The purpose of this study was to assess the effectiveness of the Recreovia program in increasing PA among users of nine parks in Bogota. This study was a natural experiment conducted between 2013 and 2015 in Bogota. Community members and park users living nearby three groups of parks were compared: Group 1 were parks implementing new Recreovias (n=3), Group 2 were control parks (n=3) without Recreovias, and Group 3 were parks with existing Recreovías. Individuals in the "intervention" group were exposed to newly implemented Recreovia programs in parks near their homes. Measurements were collected at baseline and 6-8months after the intervention started. A total of 1533 participants were enrolled in the study: 501 for the existing Recreovias (included in a cross-sectional assessment) and 1032 participants (from the new Recreovias and control parks) included in the cross-sectional and pre-post study. Most participants were low income females. Twenty-three percent of the intervention group started participating in the program. Users of existing Recreovias were significantly more active and less likely to be overweight/obese compared to new Recreovia users at baseline. No changes on PA were found when comparing the intervention and control groups. Recreovias may have potential for increasing PA at the population level in urban areas given their rapid scalability, the higher levels of PA observed among program users, and its potential to reach women, low-income, less educated populations, and the overweight and obese. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  4. Iron-Manganese Redox Reactions in Endeavour Crater Rim Apron Rocks

    Science.gov (United States)

    Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Peretyazhko, T.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; hide

    2015-01-01

    The Mars Exploration Rover Opportunity has been exploring Noachian age rocks and outcrops on the rim of the 22 km diameter Endeavour crater since August 2011. The Cape York area is a low-lying rim of Endeavour that contains 3 distinct lithologies: 1) the stratigraphically lowest Matijevic fm of pre-impact lithology, 2) Shoemaker fm of impact breccias, and 3) the stratigraphically highest rim lithology Grasberg fm of post-impact sediments that drape the lower slopes of the rim. The sulfate-rich sediment of the Burns fm lies unconformably over the Grasberg fm. Ca-sulfate veins were discovered in Grasberg fm sediments; the sulfates precipitated from aqueous fluids flowing upward through these materials. Opportunity investigated the chemistry and morphology of outcrops in the Matijevic fm that have Fe(sup 3+)-rich smectite detected by orbital signatures returned by CRISM on MRO. Matijevic fm also contains "boxwork" fractures with chemistry consistent with an Al-rich smectite and veins that appear to be rich in Ca-sulfate. More recently on Cape Tribulation, Opportunity has characterized two S-, Mg- and Mn-rich rich rocks overturned and fractured by the rover's wheels on Cook Haven. Those rocks have been dubbed "Pinnacle Island" and "Stuart Island" and will be referred to as the "Island" rocks. The objectives of this study are to characterize the Fe and Mn contents in the Cape York materials, including the two Island rocks, and to provide a model for Mn mobilization and precipitation. Detailed geochemistry of Endeavour rim rocks is presented in a companion paper. Geochemical trends and elemental associations were obtained from data returned by the Alpha Particle X-ray Spectrometer (APXS) on Opportunity.

  5. Does office space occupation matter? The role of the number of persons per enclosed office space, psychosocial work characteristics, and environmental satisfaction in the physical and mental health of employees.

    Science.gov (United States)

    Herbig, B; Schneider, A; Nowak, D

    2016-10-01

    The study examined the effects of office space occupation, psychosocial work characteristics, and environmental satisfaction on physical and mental health of office workers in small-sized and open-plan offices as well as possible underlying mechanisms. Office space occupation was characterized as number of persons per one enclosed office space. A total of 207 office employees with similar jobs in offices with different space occupation were surveyed regarding their work situation (psychosocial work characteristics, satisfaction with privacy, acoustics, and control) and health (psychosomatic complaints, irritation, mental well-being, and work ability). Binary logistic and linear regression analyses as well as bootstrapped mediation analyses were used to determine associations and underlying mechanisms. Employee health was significantly associated with all work characteristics. Psychosocial work stressors had the strongest relation to physical and mental health (OR range: 1.66-3.72). The effect of office space occupation on employee health was mediated by stressors and environmental satisfaction, but not by psychosocial work resources. As assumed by sociotechnical approaches, a higher number of persons per enclosed office space was associated with adverse health effects. However, the strongest associations were found with psychosocial work stressors. When revising office design, a holistic approach to work (re)design is needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  7. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  8. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  9. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  10. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  11. PHYSICS

    CERN Document Server

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  12. Drone swarm with free-space optical communication to detect and make deep decisions about physical problems for area surveillance

    Science.gov (United States)

    Mazher, Wamidh Jalil; Ibrahim, Hadeel T.; Ucan, Osman N.; Bayat, Oguz

    2018-03-01

    This paper aims to design a drone swarm network by employing free-space optical (FSO) communication for detecting and deep decision making of topological problems (e.g., oil pipeline leak), where deep decision making requires the highest image resolution. Drones have been widely used for monitoring and detecting problems in industrial applications during which the drone sends images from the on-air camera video stream using radio frequency (RF) signals. To obtain higher-resolution images, higher bandwidth (BW) is required. The current study proposed the use of the FSO communication system to facilitate higher BW for higher image resolution. Moreover, the number of drones required to survey a large physical area exceeded the capabilities of RF technologies. Our configuration of the drones is V-shaped swarm with one leading drone called mother drone (DM). The optical decode-and-forward (DF) technique is used to send the optical payloads of all drones in V-shaped swarm to the single ground station through DM. Furthermore, it is found that the transmitted optical power (Pt) is required for each drone based on the threshold outage probability of FSO link failure among the onboard optical-DF drones. The bit error rate of optical payload is calculated based on optical-DF onboard processing. Finally, the number of drones required for different image resolutions based on the size of the considered topological area is optimized.

  13. Technologies and Methods Used at the Laboratory for Atmospheric and Space Physics (LASP) to Serve Solar Irradiance Data

    Science.gov (United States)

    Pankratz, Chris; Beland, Stephane; Craft, James; Baltzer, Thomas; Wilson, Anne; Lindholm, Doug; Snow, Martin; Woods, Thomas; Woodraska, Don

    2018-01-01

    The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder, USA operates the Solar Radiation and Climate Experiment (SORCE) NASA mission, as well as several other NASA spacecraft and instruments. Dozens of Solar Irradiance data sets are produced, managed, and disseminated to the science community. Data are made freely available to the scientific immediately after they are produced using a variety of data access interfaces, including the LASP Interactive Solar Irradiance Datacenter (LISIRD), which provides centralized access to a variety of solar irradiance data sets using both interactive and scriptable/programmatic methods. This poster highlights the key technological elements used for the NASA SORCE mission ground system to produce, manage, and disseminate data to the scientific community and facilitate long-term data stewardship. The poster presentation will convey designs, technological elements, practices and procedures, and software management processes used for SORCE and their relationship to data quality and data management standards, interoperability, NASA data policy, and community expectations.

  14. The link between perceived characteristics of neighbourhood green spaces and adults' physical activity in UK cities: analysis of the EURO-URHIS 2 Study.

    Science.gov (United States)

    Ali, Omer; Di Nardo, Francesco; Harrison, Annie; Verma, Arpana

    2017-08-01

    Urban dwellers represent half the world's population and are increasing worldwide. Their health and behaviours are affected by the built environment and green areas may play a major role in promoting physical activity, thus decreasing the burden of chronic diseases, overweight and inactivity. However, the availability of green areas may not guarantee healthy levels of physical activity among the urban dwellers. It is therefore necessary to study how the perceived characteristics of green areas affect physical activity. Data from the EURO-URHIS 2 survey of residents of 13 cities across the UK were analyzed and a multivariable model was created in order to assess the association between their perceptions of the green areas in their neighbourhood and their engagement in physical activity. Results were adjusted for age, gender and other potential confounders. Those who felt unable to engage in active recreational activities in their local green spaces were significantly less likely to carry out moderate physical exercise for at least 60 min per week (adjusted OR: 0.50; 95% 0.37-0.68). Availability of green areas within walking distance did not affect engagement in physical activity. Other characteristics such as accessibility and safety may play an important role. This study showed that the presence of green space may not itself encourage the necessary preventative health behaviours to tackle physical inactivity in urban populations. Development of more appropriate green spaces may be required. Further research is needed to shed light on the types green spaces that are most effective. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  15. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  16. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  17. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  18. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  19. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  20. Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation.

    Science.gov (United States)

    Ost, Kyla S; Esher, Shannon K; Leopold Wager, Chrissy M; Walker, Louise; Wagener, Jeanette; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew

    2017-01-31

    Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to

  1. A cross-sectional study examining predictors of visit frequency to local green space and the impact this has on physical activity levels

    Directory of Open Access Journals (Sweden)

    Elliott P. Flowers

    2016-05-01

    Full Text Available Abstract Background Lack of physical activity (PA is a growing public health concern. There is a growing body of literature that suggests a positive relationship may exist between the amount of local green space near one’s home and PA levels. For instance, park proximity has been shown to predict PA levels amongst certain populations. However, there is little evidence for the role of relatedness towards nature and perceptions of local green space on this relationship. The aim of this study was to examine, in a National UK sample, whether subjective indices associated with local green space were better predictors of visit frequency to local green space and PA levels compared to objectively measured quantity of local green space. Methods A cross-sectional survey was designed. From a random sample, 2079 working age adults responded to an online survey in September 2011. Demographics, self-reported PA, objective measures of the local environment (including local green space, road coverage, and environmental deprivation, were assessed in conjunction with perceptions of local green space and nature relatedness. Quantity of local green space was assessed by cross-referencing respondents’ home postcodes with general land use databases. Regression models were conducted to assess which of our independent variables best predicted visit frequency to local green space and/or meeting PA guidelines. In addition, an ordinal regression was run to examine the relationship between visit frequency to local green space and the likelihood of meeting national PA guidelines. Results Nature relatedness was the strongest predictor for both visit frequency to local green space and meeting PA guidelines. Results show that perceived quality is a better predictor of visit frequency to local green space than objective quantity of local green space. The odds of achieving the recommended amount of PA was over four times greater for people who visited local green space once

  2. Rim versus Non-Rim States in the Arctic Region: Prospects for a Zero-Sum Game or a Win-Win One?

    Directory of Open Access Journals (Sweden)

    Ana-Maria Ghimiş

    2013-09-01

    Full Text Available The present paper aims to develop a critical approach on one of the most urgent energy security challenges: the Arctic region. Until recently, it was considered to be a frozen desert, upon which no one raised any legal demands or interests. The global warming, the technological development and the increased need for energy resources had transformed the frozen High North into a very hot spot, where states like US, Canada, Norway, Denmark or Russia started an energy race that threatens to escalate. The Arctic became a strategic area given its opportunities: besides the energy resources, new commercial routes could become available for a longer period of time. But, due to legal uncertainties, the lack of coherent and direct legal procedures of international law, the Arctic game is an open one, in which any state can intervene and ask for a solution that is suitable for its interests. This aspect complicates even further the already unstable region. Some of the actors see the region as an international area, as a common good, where everyone has the right to explore or exploit, while the rim states see the Arctic in sovereign rights terms. Therefore, the game tends to complicate as non-rim players (the EU, China, Japan, NATO and South Korea want to intervene in the region and try to influence its development.

  3. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users : A pilot study with an instrumented wheelchair

    NARCIS (Netherlands)

    Kloosterman, Marieke G. M.; Buurke, Jaap H.; de Vries, Wiebe; Van der Woude, Lucas H. V.; Rietman, Johan S.

    2015-01-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an

  4. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair

    NARCIS (Netherlands)

    Kloosterman, Marieke; Buurke, Jaap; de Vries, W.; de Vries, W.; van der Woude, L.H.V.; Rietman, Johan Swanik

    2015-01-01

    This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an

  5. Random forest learning of ultrasonic statistical physics and object spaces for lesion detection in 2D sonomammography

    Science.gov (United States)

    Sheet, Debdoot; Karamalis, Athanasios; Kraft, Silvan; Noël, Peter B.; Vag, Tibor; Sadhu, Anup; Katouzian, Amin; Navab, Nassir; Chatterjee, Jyotirmoy; Ray, Ajoy K.

    2013-03-01

    Breast cancer is the most common form of cancer in women. Early diagnosis can significantly improve lifeexpectancy and allow different treatment options. Clinicians favor 2D ultrasonography for breast tissue abnormality screening due to high sensitivity and specificity compared to competing technologies. However, inter- and intra-observer variability in visual assessment and reporting of lesions often handicaps its performance. Existing Computer Assisted Diagnosis (CAD) systems though being able to detect solid lesions are often restricted in performance. These restrictions are inability to (1) detect lesion of multiple sizes and shapes, and (2) differentiate between hypo-echoic lesions from their posterior acoustic shadowing. In this work we present a completely automatic system for detection and segmentation of breast lesions in 2D ultrasound images. We employ random forests for learning of tissue specific primal to discriminate breast lesions from surrounding normal tissues. This enables it to detect lesions of multiple shapes and sizes, as well as discriminate between hypo-echoic lesion from associated posterior acoustic shadowing. The primal comprises of (i) multiscale estimated ultrasonic statistical physics and (ii) scale-space characteristics. The random forest learns lesion vs. background primal from a database of 2D ultrasound images with labeled lesions. For segmentation, the posterior probabilities of lesion pixels estimated by the learnt random forest are hard thresholded to provide a random walks segmentation stage with starting seeds. Our method achieves detection with 99.19% accuracy and segmentation with mean contour-to-contour error < 3 pixels on a set of 40 images with 49 lesions.

  6. Sobolev spaces

    CERN Document Server

    Adams, Robert A

    2003-01-01

    Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.This second edition of Adam''s ''classic'' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.* Self-contained and accessible for readers in other disciplines.* Written at elementary level making it accessible to graduate students.

  7. Asia/Pacific Rim renewable energy market assessments by the State of Hawaii

    International Nuclear Information System (INIS)

    Ishimura, D.M.; Kinoshita, C.M.; Turn, S.Q.

    1999-01-01

    The State of Hawaii has begun to encourage its economic growth and diversification by increasing the export of U.S. energy, environment, ocean, and information technologies. Hawaii's Strategic Technology Market Assessment and Development (STMAD) program promotes the transfer of U.S. technology into Asia and the Pacific Rim, locations having phenomenal growth potential and vast technological infrastructure demands. The STMAD program is managed by the State's Department of Business, Economic Development and Tourism (DBEDT). Under the auspices of STMAD, the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii is assessing biomass energy resources of Asian and Pacific Rim countries to identify and investigate sustainable energy markets. This paper reviews the STMAD program and reports findings of renewable energy assessment performed by HNEI and DBEDT. (author)

  8. Performance Analysis Rim Driven Propeller as a Propulsor using Open Water Test

    Directory of Open Access Journals (Sweden)

    Agoes Santoso

    2017-12-01

    Full Text Available The use of duct in propeller is one of the breakthrough in the development of the propeller. Ducting not only claimed to be increasing efficiency of the propeller, but also capable to protect the propeller from impact therefore propeller lifespan is longer. From that idea then RDP is created. RDP propeller blade are designed to be fix at their housing called Rim, in the other word, the driving force came from it’s rim. On current RDP blade used is non-conventional blade. This thesis will discuss about design analysis of Kaplan Propeller Kaplan Ka-70 that modified on it’s thickness distribution. On this thesis data that is varied is motor load. Simulation using Open Water Test. The result, highest value of KT and KQ occur on 30% motor load and highest efficiency is 18,338% achieved on 260 Rpm.

  9. Development of SFR Research and Integration Management System (S-RIMS)

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Kim, Young Gyun; Kim, Yeong Il

    2011-01-01

    Up to the present, the management of research and development (R and D) for a sodium cooled fast reactor (SFR) could be individually performed on each project without an organic relationship. However, a more systemic and effective integrated management of a project is required because the research and development environment is currently changing. Thus, we developed a Research and Integration Management System for SFR (S-RIMS) based on the enterprise project management (EPM) solution. The functional goals of the S-RIMS are as follows: 1. Provide data that show the progress and status of a project 2. Manage the design process and R and D products 3. Share the consistent design data between sub-projects

  10. Ultrasonic inspection method and system for detection of steeple cracking in turbine disk rims

    International Nuclear Information System (INIS)

    Birring, A.S.; Lamping, G.A.; Van der Veer, W.R.; Hanley, J.J.

    1990-01-01

    Steam turbine disks which operate under high cyclic stress in a moist environment can develop cracks in the disk-rim steeples. Detection of these cracks using nondestructive testing methods is necessary to assure safe operation and avoid unnecessary disk replacement. Both magnetic particle (MT) and ultrasonic testing (UT) can be used to inspect the steeples; however, UT can be used without removing the blades. A system for inspecting bladed steeples has been developed that can be applied on a range of disks including those in Westinghouse, General Electric, and Allis Chalmers turbines. The system performs an inspection as the turbine is rotated at slow speeds over turning rolls. This procedure greatly reduces inspection time because the inspection can be done without deblading the disk or resetting the inspection equipment for different rim segments

  11. WORKSHOP: Inner space - outer space

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology

  12. WORKSHOP: Inner space - outer space

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-09-15

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology.

  13. Analysis of Dual Mobility Liner Rim Damage Using Retrieved Components and Cadaver Models.

    Science.gov (United States)

    Nebergall, Audrey K; Freiberg, Andrew A; Greene, Meridith E; Malchau, Henrik; Muratoglu, Orhun; Rowell, Shannon; Zumbrunn, Thomas; Varadarajan, Kartik M

    2016-07-01

    The objective of this study was to assess the retentive rim of retrieved dual mobility liners for visible evidence of deformation from femoral neck contact and to use cadaver models to determine if anterior soft tissue impingement could contribute to such deformation. Fifteen surgically retrieved polyethylene liners were assessed for evidence of rim deformation. The average time in vivo was 31.4 months, and all patients were revised for reasons other than intraprosthetic dislocation. Liner interaction with the iliopsoas was studied visually and with fluoroscopy in cadaver specimens using a dual mobility system different than the retrieval study. For fluoroscopic visualization, a metal wire was sutured to the iliopsoas and wires were also embedded into grooves on the outer surface of the liner and the inner head. All retrievals showed evidence of femoral neck contact. The cadaver experiments showed that liner motion was impeded by impingement with the iliopsoas tendon in low flexion angles. When observing the hip during maximum hyperextension, 0°, 15°, and 30° of flexion, there was noticeable tenting of the iliopsoas caused by impingement with the liner. Liner rim deformation resulting from contact with the femoral neck likely begins during early in vivo function. The presence of deformation is indicative of a mechanism inhibiting mobility of the liner. The cadaver studies showed that liner motion could be impeded because of its impingement with the iliopsoas. Such soft tissue impingement may be one mechanism by which liner motion is routinely inhibited, which can result in load transfer from the neck to the rim. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. VARIOUS PRESENTATIONS OF HYDATID DISEASE AND THEIR MANAGEMENT : A STUDY AT RIMS, KADAPA, A. P.

    OpenAIRE

    Giridhar; Suresh Babu

    2015-01-01

    Hydatid disease most often involves the liver and lung. Actually it can involve any part of the body but primary extra hepaticopulmonary hydatid cyst are rare and their presentation is sporadic. MATERIALS AND METHODS: A retrospective study of 21 cases of hydatid disease repor ted at RIMS, Kadapa, A . P . from 2012 involving liver, spleen, peritoneal cavity, breast and soft tissues. RESULTS: All the cases are successfully operated without any complicat...

  15. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  16. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART B : Results and Capacity Building

    Science.gov (United States)

    Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.

  17. Radiolucent rim as a possible diagnostic aid for differentiating jaw lesions

    Science.gov (United States)

    Mortazavi, Hamed; Rahmani, Somayeh; Jafari, Soudeh; Parvaei, Parvin

    2015-01-01

    In this study, we formulate a new proposal that complements previous classifications in order to assist dental practitioners in performing a differential diagnosis based on patients' radiographs. We used general search engines and specialized databases such as Google Scholar, PubMed, PubMed Central, MedLine Plus, Science Direct, Scopus, and well-recognized textbooks to find relevant studies by using keywords such as "jaw disease," "jaw lesions," "radiolucent rim," "radiolucent border," and "radiolucent halo." More than 200 articles were found, of which 70 were broadly relevant to the topic. We ultimately included 50 articles that were closely related to the topic of interest. When the relevant data were compiled, the following eight lesions were identified as having a radiolucent rim: periapical cemento-osseous dysplasia, focal cemento-osseous dysplasia, florid cemento-osseous dysplasia, cemento-ossifying fibroma, osteoid osteoma, osteoblastoma, odontoma, and cementoblastoma. We propose a novel subcategory, jaw lesions with a radiolucent rim, which includes eight entities. The implementation of this new category can help improve the diagnoses that dental practitioners make based on patients' radiographs. PMID:26730374

  18. Radiolucent rim as a possible diagnostic aid for differentiating jaw lesions

    International Nuclear Information System (INIS)

    Mortazavi, Hamed; Baharvand, Maryam; Rarahmani, Somayeh; Jafati, Soudeh; Parvaei, Parvin

    2015-01-01

    In this study, we formulate a new proposal that complements previous classifications in order to assist dental practitioners in performing a differential diagnosis based on patients' radiographs. We used general search engines and specialized databases such as Google Scholar, PubMed, PubMed Central, MedLine Plus, Science Direct, Scopus, and well-recognized textbooks to find relevant studies by using keywords such as 'jaw disease,' 'jaw lesions,' 'radiolucent rim,' 'radiolucent border,' and 'radiolucent halo.' More than 200 articles were found, of which 70 were broadly relevant to the topic. We ultimately included 50 articles that were closely related to the topic of interest. When the relevant data were compiled, the following eight lesions were identified as having a radiolucent rim: periapical cemento-osseous dysplasia, focal cemento-osseous dysplasia, florid cemento-osseous dysplasia, cemento-ossifying fibroma, osteoid osteoma, osteoblastoma, odontoma, and cementoblastoma. We propose a novel subcategory, jaw lesions with a radiolucent rim, which includes eight entities. The implementation of this new category can help improve the diagnoses that dental practitioners make based on patients' radiographs

  19. Energy indicators series: analyzing the energy-related evidence of economic transition in the Pacific Rim

    International Nuclear Information System (INIS)

    Paga, Enrique; Birol, Fatih

    1992-01-01

    In recent years, much attention has been focused upon the Asian Pacific countries as constituting an economic 'miracle' over the last two decades. Economic growth in the Pacific Rim has been higher than in any other area of the world. The rapid industrialization process and its impact on the economies of these countries, at both macro and micro levels, are discussed widely in the economic literature. Of particular interest are the fundamental structural changes these countries have experienced in their transition to industrialized economies. This instalment of the annual 'Energy indicators' series concentrates on Pacific Rim countries, namely Hong Kong, the Philippines, Singapore, South Korea, Taiwan and Thailand. Similar to other experiences, rapid economic growth in these countries has been accompanied by 'spectacular' growth in demand for energy. Therefore, this year's paper not only underlines certain trends in these six energy markets but also attempts to test the phenomenon 'threshold country', i.e., shifting from the developing to the industrialized world by using common indicators and methodologies. The analysis starts with a comparison of energy intensities. Section 2 provides an overview of the socio-economic and energy indicators of the Pacific Rim countries. Section 3 introduces a standard econometric model on the most dynamic consuming sector, namely transport. Section 4 presents the projections of consumption in this sector and discusses policy issues. Some concluding remarks in Section 6 complete the paper. (author)

  20. Production of Nα-acetyl Tα1-HSA through in vitro acetylation by RimJ.

    Science.gov (United States)

    Chen, Jing; Li, Haibin; Wang, Tao; Sun, Shuyang; Liu, Jia; Chen, Jianhua

    2017-11-10

    Thymosin alpha 1 (Tα1) is an important immunomodulating agent with various clinical applications. The natural form of Tα1 is N α -acetylated, which was supposed to be related to in vivo stability of the hormone. In this study, fusion protein Tα1-HSA was constructed and expressed in Pichia pastoris . RimJ, a N α -acetyltransferase from E.coli , was also overexpressed and purified to homogeneity. In vitro acetylation of Tα1-HSA in the presence of RimJ and acetyl coenzyme A resulted in N α -acetyl Tα1-HSA. The N α -acetylation was determined by LC-MS/MS. Kinetic assay indicated that RimJ had a higher affinity to desacetyl Tα1 than to Tα1-HSA. Bioactivity assay revealed fully retained activity of Tα1 when the hormone was connected to the N-terminus of the fusion protein, while the activity was compromised in our previously constructed HSA-Tα1. With fully retained activity and N-terminal acetylation, N α -acetyl Tα1-HSA was expected to be a more promising pharmaceutical agent than Tα1.

  1. Radiolucent rim as a possible diagnostic aid for differentiating jaw lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Hamed; Baharvand, Maryam; Rarahmani, Somayeh; Jafati, Soudeh; Parvaei, Parvin [Oral Medicine, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-12-15

    In this study, we formulate a new proposal that complements previous classifications in order to assist dental practitioners in performing a differential diagnosis based on patients' radiographs. We used general search engines and specialized databases such as Google Scholar, PubMed, PubMed Central, MedLine Plus, Science Direct, Scopus, and well-recognized textbooks to find relevant studies by using keywords such as 'jaw disease,' 'jaw lesions,' 'radiolucent rim,' 'radiolucent border,' and 'radiolucent halo.' More than 200 articles were found, of which 70 were broadly relevant to the topic. We ultimately included 50 articles that were closely related to the topic of interest. When the relevant data were compiled, the following eight lesions were identified as having a radiolucent rim: periapical cemento-osseous dysplasia, focal cemento-osseous dysplasia, florid cemento-osseous dysplasia, cemento-ossifying fibroma, osteoid osteoma, osteoblastoma, odontoma, and cementoblastoma. We propose a novel subcategory, jaw lesions with a radiolucent rim, which includes eight entities. The implementation of this new category can help improve the diagnoses that dental practitioners make based on patients' radiographs.

  2. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    Science.gov (United States)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  3. Environmental science applications with Rapid Integrated Mapping and analysis System (RIMS)

    Science.gov (United States)

    Shiklomanov, A.; Prusevich, A.; Gordov, E.; Okladnikov, I.; Titov, A.

    2016-11-01

    The Rapid Integrated Mapping and analysis System (RIMS) has been developed at the University of New Hampshire as an online instrument for multidisciplinary data visualization, analysis and manipulation with a focus on hydrological applications. Recently it was enriched with data and tools to allow more sophisticated analysis of interdisciplinary data. Three different examples of specific scientific applications with RIMS are demonstrated and discussed. Analysis of historical changes in major components of the Eurasian pan-Arctic water budget is based on historical discharge data, gridded observational meteorological fields, and remote sensing data for sea ice area. Express analysis of the extremely hot and dry summer of 2010 across European Russia is performed using a combination of near-real time and historical data to evaluate the intensity and spatial distribution of this event and its socioeconomic impacts. Integrative analysis of hydrological, water management, and population data for Central Asia over the last 30 years provides an assessment of regional water security due to changes in climate, water use and demography. The presented case studies demonstrate the capabilities of RIMS as a powerful instrument for hydrological and coupled human-natural systems research.

  4. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain

    Science.gov (United States)

    Burgess, K. D.; Stroud, R. M.

    2018-03-01

    The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.

  5. Fusing a Reversed and Informal Learning Scheme and Space: Student Perceptions of Active Learning in Physical Chemistry

    Science.gov (United States)

    Donnelly, Julie; Hernández, Florencio E.

    2018-01-01

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…

  6. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  7. New Methods for Landslide Identification and Mapping Using SAR Polarimetry Obtained During the PacRim 2000 Mission in Taiwan

    National Research Council Canada - National Science Library

    Czuchlewski, Kristina R; Weissel, Jeffrey K; Lee, Jong-Sen

    2005-01-01

    We reanalyze PacRim 2000 L-band AIRSAR polarimetry collected over the western foothills of central Taiwan a year after the September 20, 1999 ChiChi earthquake, which produced more than 10,000 landslide...

  8. Geometric interpretation of the ratio of overall diameter to rim crest diameter for lunar and terrestrial craters.

    Science.gov (United States)

    Siegal, B. S.; Wickman, F. E.

    1973-01-01

    An empirical linear relationship has been established by Pike (1967) between the overall diameter and the rim crest diameter for rimmed, flat-floored as well as bowl-shaped, lunar and terrestrial craters formed by impact and explosion. A similar relationship for experimentally formed fluidization craters has been established by Siegal (1971). This relationship is examined in terms of the geometry of the crater and the slope angles of loose materials. The parameter varies from 1.40 to 1.65 and is found to be dependent on mean interior flat floor radius, exterior and interior rim slope angles, angle of aperture of the crater cone, and the volume fraction of crater void accounted for in the rim. The range of the observed parameter can be understood in terms of simple crater geometry by realistic values of the five parameters.

  9. Growth of enstatite and enstatite-forsterite reaction rims under wet conditions during isostatic annealing and triaxial deformation

    Science.gov (United States)

    Helpa, Vanessa; Rybacki, Erik; Dresen, Georg

    2017-04-01

    To investigate the influence of differential stress and microstructure on reaction rates, we studied experimentally enstatite-forsterite double rim formation in between periclase and quartz according to the reaction MgO +

  10. 49 CFR 571.120 - Tire selection and rims and motor home/recreation vehicle trailer load carrying capacity...

    Science.gov (United States)

    2010-10-01

    ... industry or manufacturer's designation for a rim by style or code. Weather side means the surface area of... CFR 1.50) [42 FR 7144, Feb. 7, 1977] Editorial Note: For Federal Register citations affecting § 571...

  11. Mineralogy and Textural Characteristics of Fine-grained Rims in the Yamato 791198 CM2 Carbonaceous Chondrite: Constraints on the Location of Aqueous Alteration

    Science.gov (United States)

    Chizmadia, Lysa J.; Brearley, Adrian J.

    2003-01-01

    Carbonaceous chondrites provide important clues into the nature of physical and chemical processes in the early solar system. A question of key importance concerns the role of water in solar nebular and asteroidal processes. The effects of water on primary mineral assemblages have been widely recognized in chondritic meteorites, especially the CI and CM carbonaceous chondrites. These meteorites have undergone extensive aqueous alteration that occurred prior to their arrival on Earth. In the case of the CM chondrites, this alteration has resulted in the partial to complete replacement of the primary nebular phases with secondary alteration phases. Considerable controversy exists as to the exact location where the alteration of the CM chondrites occurred. Several textural lines of evidence have been cited in support of aqueous alteration prior to the accretion of the final parent asteroid. An important line of evidence to support this hypothesis is the dis-equilibrium nature of fine-grained rims and matrix materials. [2] also noted the juxtaposition of micron-sized Fe-Ni metal grains and apparently unaltered chondrule glass against hydrated rim silicates. Conversely, there is a large body of evidence in favor of parent body alteration such as the occurrence of undisturbed Fe-rich aureoles and the systematic redistribution of elemental components over millimeters, e.g., Mg(+2) into the matrix and Fe(+2) into chondrules etc.

  12. Accuracy of Transthoracic Echocardiography in Assessing Retro-aortic Rim prior to Device Closure of Atrial Septal Defects.

    Science.gov (United States)

    O'Byrne, Michael L; Glatz, Andrew C; Goldberg, David J; Shinohara, Russell; Dori, Yoav; Rome, Jonathan J; Gillespie, Matthew J

    2015-01-01

    Deficient retro-aortic rim has been identified as a risk factor for device erosion following trans-catheter closure of atrial septal defects (ASDs). Transthoracic echocardiography (TTE) is the primary screening method for subjects for possible device closure of ASD, but its reliability in measuring retro-aortic rim size has not been assessed previously. A single-institution cross-sectional analysis of children and adults referred for trans-catheter device closure of single ostium secundum ASD from January 1, 2005 to April 1, 2012 with reviewable TTE and trans-esophageal echocardiogram images was performed. Inter-rater reliability of measurements was tested in a 24% sample. Accuracy of TTE measurement of retro-aortic rim was assessed using a Bland-Altman plot with trans-esophageal echocardiogram measurement as the gold standard. Test characteristics of TTE detection of deficient retro-aortic rim were calculated. Risk factors for misclassification of deficient retro-aortic rim were assessed using receiver operator characteristic curves. Risk factors for measurement error were assessed through multivariate linear regression. In total, 163 subjects of median age 5 years (range: 0.3-46 years) were included. Trans-thoracic echocardiography had 90% sensitivity, 84% specificity, 90% positive predictive value, and 83% negative predictive value to detect deficient retro-aortic rim. Bland-Altman plot demonstrated no fixed bias (P = .23), but errors in measurement increased on average as the aortic rim increased in size (P affect receiver operator characteristic curve area under the curve, nor were any patient-level risk factors independently associated with increased measurement error on TTE. TTE is a sensitive and specific screening test for deficient retro-aortic rim across a range of patient ages and sizes. © 2014 Wiley Periodicals, Inc.

  13. COMPARATIVE STUDY OF MANAGEMENT OF FEMORAL HERNIA – (HERNIORRHAPHY VS . H ERNIOPLASTY) IN RIMS, KADAPA, ANDHRA P RADESH

    OpenAIRE

    Giridhar; Hareesh; Suresh Babu

    2015-01-01

    Femoal hernia has always been one of the most challenging disease a surgeon will face in his career. Open method of repair has been the traditionally followed method for many years. This study compares the results of herniorrha phy with hernioplasty in RIMS, K adapa . MATERIALS AND METHODS: This is a retrospective study of all the patients who have undergone femoral hernia surgery in RIMS, K adapa from 2012 . RESULTS: 18 cases of unilateral fem ...

  14. AoRim15 is involved in conidial stress tolerance, conidiation and sclerotia formation in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Nakamura, Hidetoshi; Kikuma, Takashi; Jin, Feng Jie; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2016-04-01

    The serine-threonine kinase Rim15p is a master regulator of stress signaling and is required for stress tolerance and sexual sporulation in the yeast Saccharomyces cerevisiae. However, in filamentous fungi that reproduce asexually via conidiation, the physiological function of Rim15p homologs has not been extensively analyzed. Here, we functionally characterized the protein homolog of Rim15p in the filamentous fungus Aspergillus oryzae, by deleting and overexpressing the corresponding Aorim15 gene and examining the role of this protein in stress tolerance and development. Deletion of Aorim15 resulted in an increase in the sensitivity of conidia to oxidative and heat stresses, whereas conidia of the Aorim15 overexpressing strain were more resistant to these stresses. These results indicated that AoRim15 functions in stress tolerance, similar to S. cerevisiae Rim15p. Phenotypic analysis revealed that conidiation was markedly reduced by overexpression of Aorim15 in A. oryzae, and was completely abolished in the deletion strain. In addition, the formation of sclerotia, which is another type of developmental structure in filamentous fungi, was decreased by the deletion of Aorim15, whereas Aorim15 overexpression increased the number of sclerotia. These results indicated that AoRim15 is a positive regulator of sclerotia formation and that overexpression of AoRim15 shifts the developmental balance from conidiation towards sclerotia formation. Collectively, we demonstrated that AoRim15 is involved in the stress tolerance of conidia and differentially regulates between the two developmental fates of conidiation and sclerotia formation. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Diagnostic capability of optic nerve head rim width and retinal nerve fiber thickness in open-angle glaucoma.

    Science.gov (United States)

    Di Staso, Silvio; Agnifili, Luca; Di Staso, Federico; Climastone, Hilary; Ciancaglini, Marco; Scuderi, Gian Luca

    2018-03-01

    This study was performed to test the diagnostic capability of the minimum rim width compared to peripapillary retinal nerve fiber layer thickness in patients with glaucoma. A case control, observer masked study, was conducted. Minimum rim width and retinal nerve fiber layer thickness were assessed using the patient-specific axis traced between fovea-to-Bruch's membrane opening center axis. For both minimum rim width and retinal nerve fiber layer thickness, the regionalization in six sectors (nasal, superior-nasal, superior-temporal, temporal, inferior-temporal, and inferior-nasal) was analyzed. Eyes with at least one sector with value below the 5% or 1% normative limit of the optical coherence tomography normative database were classified as glaucomatous. The area under the receiver operator characteristic curve, the accuracy, sensitivity, specificity, and predictive positive and negative values were calculated for both minimum rim width and retinal nerve fiber layer thickness. A total of 118 eyes of 118 Caucasian subjects (80 eyes with open-angle glaucoma and 38 control eyes) were enrolled in the study. Accuracy, sensitivity, and specificity were 79.7%, 77.5%, and 84.2%, respectively, for minimum rim width and 84.7%, 82.5%, and 89.5% for retinal nerve fiber layer thickness. The positive predictive values were 0.91% and 0.94% for minimum rim width and retinal nerve fiber layer thickness, respectively, whereas the negative predictive values were 0.64% and 0.70%. The area under the receiver operator characteristic curve was 0.892 for minimum rim width and 0.938 for retinal nerve fiber layer thickness. Our results indicated that the sector analysis based on Bruch's membrane opening and fovea to disk alignment is able to detect glaucomatous defects, and that Bruch's membrane opening minimum rim width and retinal nerve fiber layer thickness showed equivalent diagnostic ability.

  16. Space Radiation Risk Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — Project A: Integration and Review: A review of current knowledge from space radiation physics was accepted for publication in Reviews of Modern Physics (Durante and...

  17. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    Science.gov (United States)

    2013-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842

  18. Maxillary distraction osteogenesis at Le Fort-I level induces bone apposition at infraorbital rim.

    Science.gov (United States)

    Rattan, Vidya; Jena, Ashok Kumar; Singh, Satinder Pal; Utreja, Ashok Kumar

    2014-09-01

    The aim of this study is to evaluate whether there is any remodeling of bone at infraorbital rim following maxillary distraction osteogenesis (DO) at Le Fort-I level. Twelve adult subjects in the age range of 17-21 years with complete unilateral cleft lip and palate underwent advancement of the maxilla by DO. The effect of maxillary DO on the infraorbital rim remodeling was evaluated from lateral cephalograms recorded prior to the DO (T0), at the end of DO (T1), and at least 2-years after the DO (T2) by Walker's analysis. The ANOVA and two-tailed t test were used and probability value (P value) 0.05 was considered as statistically significant level. There was anterior movement of maxilla by 9.22 ± 3.27 mm and 7.67 ± 3.99 mm at the end of immediate (T1) and long-term (T2) follow-up of maxillary DO, respectively. The Walker's analysis showed 1.49 ± 1.22 mm and 2.31 ± 1.81 mm anterior movement of the infraorbital margin (Orbitale point) at the end of T1 and T2, respectively (P distraction osteogenesis at Le Fort-I level induced significant bone apposition at infraorbital rim. Patients with mild midface hypoplasia who would otherwise may be candidates for osteotomy at Le Fort-II or Le Fort-III level may benefit from maxillary distraction at Le Fort-I level.

  19. RIMS: An Integrated Mapping and Analysis System with Applications to Earth Sciences and Hydrology

    Science.gov (United States)

    Proussevitch, A. A.; Glidden, S.; Shiklomanov, A. I.; Lammers, R. B.

    2011-12-01

    A web-based information and computational system for analysis of spatially distributed Earth system, climate, and hydrologic data have been developed. The System allows visualization, data exploration, querying, manipulation and arbitrary calculations with any loaded gridded or vector polygon dataset. The system's acronym, RIMS, stands for its core functionality as a Rapid Integrated Mapping System. The system can be deployed for a Global scale projects as well as for regional hydrology and climatology studies. In particular, the Water Systems Analysis Group of the University of New Hampshire developed the global and regional (Northern Eurasia, pan-Arctic) versions of the system with different map projections and specific data. The system has demonstrated its potential for applications in other fields of Earth sciences and education. The key Web server/client components of the framework include (a) a visualization engine built on Open Source libraries (GDAL, PROJ.4, etc.) that are utilized in a MapServer; (b) multi-level data querying tools built on XML server-client communication protocols that allow downloading map data on-the-fly to a client web browser; and (c) data manipulation and grid cell level calculation tools that mimic desktop GIS software functionality via a web interface. Server side data management of the system is designed around a simple database of dataset metadata facilitating mounting of new data to the system and maintaining existing data in an easy manner. RIMS contains "built-in" river network data that allows for query of upstream areas on-demand which can be used for spatial data aggregation and analysis of sub-basin areas. RIMS is an ongoing effort and currently being used to serve a number of websites hosting a suite of hydrologic, environmental and other GIS data.

  20. Anterior versus posterior, and rim-rent rotator cuff tears: prevalence and MR sensitivity

    International Nuclear Information System (INIS)

    Tuite, M.J.; Turnbull, J.R.; Orwin, J.F.

    1998-01-01

    Purpose. To determine the relative distribution of the locations of rotator cuff tears, and the sensitivity of anterior versus posterior tears on MR images. Patients and methods. We identified 110 consecutive patients who had a shoulder MR and either a partial-thickness or a small full-thickness rotator cuff tear diagnosed at arthroscopy. MR sensitivity and patient age were compared between patients with tears in the anterior and posterior halves of the cuff. In addition, in patients with partial tears less than 2 cm in diameter, an age comparison between those with tears in the critical zone and those with articular surface tears adjacent to the bony insertion (rim-rent tear) was performed. Results. The tear was centered in the anterior half of the rotator cuff in 79% of the patients younger than 36 years old, and in 89% of the patients 36 years old and over. The average age of the patients with tears in the anterior half (44 years) was not significantly different from the average age of those with posterior tears (40 years). The sensitivity of MR for anterior tears was 0.69, and for posterior tears it was 0.56. Five of the nine rim-rent tears (0.56) were interpreted correctly on the original MR report; two of the other tears were misinterpreted as intratendinous fluid but were diagnosable in retrospect. Conclusion. Even in patients less than 36 years old, most partial and small full-thickness rotator cuff tears are centered in the anterior half of the supraspinatus. Although our figure for MR sensitivity for these tears is lower than in recent articles, we found no significant difference between the sensitivity of MR for diagnosing posterior tears versus tears in the anterior half of the supraspinatus tendon. Rim-rent tears can be mistaken for intratendinous signal, and should be carefully looked for in younger patients with shoulder pain. (orig.)

  1. Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris

    Science.gov (United States)

    Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.

    2018-04-01

    The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.

  2. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    Science.gov (United States)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  3. Improvements in RIMS Isotopic Precision: Application to in situ atom-limited analyses

    International Nuclear Information System (INIS)

    Levine, J.; Stephan, T.; Savina, M.; Pellin, M.

    2009-01-01

    Resonance ionization mass spectrometry offers high sensitivity and elemental selectivity in microanalysis, but the isotopic precision attainable by this technique has been limited. Here we report instrumental modifications to improve the precision of RIMS isotope ratio measurements. Special attention must be paid to eliminating pulse-to-pulse variations in the time-of-flight mass spectrometer through which the photoions travel, and resonant excitation schemes must be chosen such that the resonance transitions can substantially power-broadened to cover the isotope shifts. We report resonance ionization measurements of chromium isotope ratios with statistics-limited precision better than 1%.

  4. A bright-rimmed cloud sculpted by the H ii region Sh2-48

    Science.gov (United States)

    Ortega, M. E.; Paron, S.; Giacani, E.; Rubio, M.; Dubner, G.

    2013-08-01

    Aims: We characterize a bright-rimmed cloud embedded in the H ii region Sh2-48 while searching for evidence of triggered star formation. Methods: We carried out observations towards a region of 2' × 2' centered at RA = 18h22m11.39s, Dec = -14°35'24.81''(J2000) using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J = 3-2, 13CO J = 3-2, HCO+J = 4-3, and CS J = 7-6 lines with an angular resolution of about 22''. We also present radio continuum observations at 5 GHz carried out with the Jansky Very Large Array (JVLA; EEUU) interferometer with a synthetized beam of 7'' × 5''. The molecular transitions were used to study the distribution and kinematics of the molecular gas of the bright-rimmed cloud. The radio continuum data was used to characterize the ionized gas located on the illuminated border of this molecular condensation. Combining these observations with infrared public data allowed us to build up a comprehensive picture of the current state of star formation within this cloud. Results: The analysis of our molecular observations reveals a relatively dense clump with n(H2) ~ 3 × 103cm-3, located in projection onto the interior of the H ii region Sh2-48. The emission distribution of the four observed molecular transitions has, at VLSR ~ 38 km s-1, morphological anticorrelation with the bright-rimmed cloud as seen in the optical emission. From the new radio continuum observations, we identify a thin layer of ionized gas located on the border of the clump that is facing the ionizing star. The ionized gas has an electron density of about 73 cm-3, which is a factor three higher than the typical critical density (nc ~ 25 cm-3), above which an ionized boundary layer can be formed and maintained. This supports the hypothesis that the clump is being photoionized by the nearby O9.5V star, BD-14 5014. From the evaluation of the pressure balance between the ionized and molecular gas, we conclude that the clump would be in a prepressure balance

  5. Radioisotopic measurement methods for determining the wear railway brake shoe and its rim wearing effect

    International Nuclear Information System (INIS)

    Doman, P.

    1979-01-01

    Under operating conditions the wear of brake shoe was tested by a measuring method based on the principle of radioisotopic thickness measurement. It is characteristic to the sensitivity of the method that the wear caused by the fast braking of a train (speed: 100 km/h) as well as the uneven wear distribution were determinable. Surface activating methods assuring the periodic and continuous evaluation were also developed. A test was performed with galvanic surface activation under operating conditions to determine the rim wearing effect of the brake shoe. Apart from the operational tests a new method based on activated wear measurement was also developed. (author)

  6. Selection and evaluation of technologies for oil rim preparation of Zapolyarnoye oilfield

    Science.gov (United States)

    Vazhenina, L. V.

    2017-10-01

    The article deals with various technologies for the oil rims preparation of Zapolyarnoye oil and gas condensate field. The following circuits were considered for the selection of the technology of preparation of extracted fluid: low-temperature separation (STC); low-temperature condensation (LTC); a low-temperature rectification (NTR); low-temperature absorption (LTA); membrane technology (Mt). Diagrams of these processes were collected and tested in the system HYSYS process simulation. Efficiency analysis of hydrocarbon raw materials preparation on the basis of functions, selection of components and narrow fractions.

  7. "Walk the Rim, Feel the Bone" Technique in Superior Sulcus Filling.

    Science.gov (United States)

    Looi, Audrey L G; Yong, Kai-Ling

    2015-12-01

    Superior sulcus filler injection is a nonsurgical method to rejuvenate the upper face. Blindness and stroke are devastating complications of facial filler injection. This study describes an injection technique that minimizes the risk of blindness and includes a case study demonstrating the cosmetic benefits of this procedure. To avoid retrograde injection of filler embolus into the ophthalmic artery, we advocate a "'walk the rim, feel the bone" approach. Small boluses of hyaluronic acid filler are given in preperiosteal plane, avoiding the superior orbital foramen.

  8. Technical Efficiency and Port Competition: Revisiting the Bohai Economic Rim, China

    Directory of Open Access Journals (Sweden)

    Grace Wang

    2012-12-01

    Full Text Available The Bohai Economic Rim plays an important role in supporting China’s economic growth. For this research, we selected nine main ports in the region to study whether intra-port competition or corporatization would improve efficiency. Using a panel fixed effect model and stochastic frontier model, we found that the technical efficiency of selected ports is significantly influenced by the time of the initial public offering than by regional competition. The results are supportive and encouraging for policy makers to move toward the decentralized port governance in China.

  9. A Cost Optimized Fully Sustainable Power System for Southeast Asia and the Pacific Rim

    OpenAIRE

    Ashish Gulagi; Dmitrii Bogdanov; Christian Breyer

    2017-01-01

    In this paper, a cost optimal 100% renewable energy based system is obtained for Southeast Asia and the Pacific Rim region for the year 2030 on an hourly resolution for the whole year. For the optimization, the region was divided into 15 sub-regions and three different scenarios were set up based on the level of high voltage direct current grid connections. The results obtained for a total system levelized cost of electricity showed a decrease from 66.7 €/MWh in a decentralized scenario to 63...

  10. Outflow of chromospheric emission features from the rim of a sunspot

    Science.gov (United States)

    Liu, S.-Y.

    1973-01-01

    In viewing a 16 mm movie made from a time sequence of spectroheliograms, some of these emission features are found to move outward from the rim of the sunspot until they are eventually lost in the small plage. There are two interpretations for the streaming of the magnetic features. It is possible that kinks in the line of force propagate along a horizontal extension of the penumbral magnetic field. Alternatively, fragments of the sunspot magnetic field are carried away by the photospheric velocity field.

  11. Anterior versus posterior, and rim-rent rotator cuff tears: prevalence and MR sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Tuite, M J; Turnbull, J R; Orwin, J F [Wisconsin Univ., Madison, WI (United States). Dept. of Radiology

    1998-05-01

    Purpose. To determine the relative distribution of the locations of rotator cuff tears, and the sensitivity of anterior versus posterior tears on MR images. Patients and methods. We identified 110 consecutive patients who had a shoulder MR and either a partial-thickness or a small full-thickness rotator cuff tear diagnosed at arthroscopy. From the arthroscopy videotapes, we classified the tears as centered in the anterior or posterior half of the cuff, and as either in the critical zone or adjacent to the bony insertion. The original MR interpretation was compared with the arthroscopic findings. MR sensitivity and patient age were compared between patients with tears in the anterior and posterior halves of the cuff. In addition, in patients with partial tears less than 2 cm in diameter, an age comparison between those with tears in the critical zone and those with articular surface tears adjacent to the bony insertion (rim-rent tear) was performed. Results. The tear was centered in the anterior half of the rotator cuff in 79% of the patients younger than 36 years old, and in 89% of the patients 36 years old and over. The average age of the patients with tears in the anterior half (44 years) was not significantly different from the average age of those with posterior tears (40 years)(P=0.23). The sensitivity of MR for anterior tears was 0.69, and for posterior tears it was 0.56 (P=0.17). The average age of the 9 patients with rim-rent tears was 31 years, while that of the 28 patients with similarly-sized partial tears not involving the insertion was 40 years old (P=0.048). Five of the nine rim-rent tears (0.56) were interpreted correctly on the original MR report; two of the other tears were misinterpreted as intratendinous fluid but were diagnosable in retrospect. Conclusion. Even in patients less than 36 years old, most partial and small full-thickness rotator cuff tears are centered in the anterior half of the supraspinatus. Although our figure for MR sensitivity

  12. Track calorimeter (TCAL) of alpha magnetic spectrometer (AMS) (a particle physics experiment on the international space station alpha)

    International Nuclear Information System (INIS)

    Anosov, V.; Baranov, S.; Bednyakov, V.

    1999-01-01

    Based on the simulation and R and D results the JINR project - to supplement AMS with a finely granulated scintillator calorimeter (TCAL) - is discussed. The project cost is about 1 million USD. TCAL would essentially increase the AMS potential in the studies of antimatter, matter and missing matter in the experiments in outer space

  13. Review of psychiatric services to mentally disordered offenders around the Pacific Rim.

    Science.gov (United States)

    Every-Palmer, Susanna; Brink, Johann; Chern, Tor P; Choi, Wing-Kit; Hern-Yee, Jerome Goh; Green, Bob; Heffernan, Ed; Johnson, Sarah B; Kachaeva, Margarita; Shiina, Akihiro; Walker, David; Wu, Kevin; Wang, Xiaoping; Mellsop, Graham

    2014-03-01

    This article was commissioned to collate and review forensic psychiatric services provided in a number of key Pacific Rim locations in the hope that it will assist in future dialogue about service development. The Board of the Pacific Rim College of Psychiatrists identified experts in forensic psychiatry from Australia, Canada, China, Hong Kong, Japan, Russia, Singapore, Taiwan, and the US. Each contributor provided an account of issues in their jurisdiction, including mental health services to mentally disordered offenders in prison, competence or fitness to stand trial, legal insanity as a defense at trial, diminished responsibility, and special forensic services available, including forensic hospitals and community forensic mental health services. Responses have been collated and are presented topic by topic and country by country within the body of this review. The availability of mental health screening and psychiatric in-reach or forensic liaison services within prisons differed considerably between countries, as did provisioning of community forensic mental health and rehabilitation services. Diversion of mentally disordered offenders to forensic, state, or hybrid hospitals was common. Legal constructs of criminal responsibility (insanity defense) and fitness to stand trial ("disability") are almost universally recognized, although variably used. Disparities between unmet needs and resourcing available were common themes. The legislative differences between contributing countries with respect to the mental health law and criminal law relating to mentally disordered offenders are relatively subtle. The major differences lie in operationalizing and resourcing forensic services. Copyright © 2013 Wiley Publishing Asia Pty Ltd.

  14. High-Grade Transformation of Adenoid Cystic Carcinoma Delineated with a Fibrous Rim: A Case Report

    Directory of Open Access Journals (Sweden)

    Hamide Sayar

    2013-09-01

    Full Text Available Background: High-grade transformation or dedifferentiation in carcinoma is progression of a low-grade malignant neoplasm to a high-grade carcinoma or poorly differentiated adenocarcinoma. This is rarely observed in adenoid cystic carcinoma of the salivary glands. Case Report: A 39 year-old woman presented with a painless mass at the left submandibulary region that had been growing slowly for 5 years. Submandibulary mass resection revealed a mass with peripheral adenoid cystic carcinoma and a central high-grade tumor delineated with a fibrous rim, raising the possibility of a hybrid or composite carcinoma, requiring differential diagnosis depending upon morphology and immunohistochemistry findings. The final histopathological diagnosis was high-grade transformation of adenoid cystic carcinoma. After surgical therapy, the patient was irradiated to the neck and submandibulary region. No sign of tumor recurrence has been evident for 36 months. Conclusion: This present case seems to be another rare case with high-grade transformation of adenoid cystic carcinoma and the fibrous rim may be a histopathological feature of such cases, which should be kept in mind.

  15. Definition imaging of an orebody with the radio imaging method (RIM)

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1992-01-01

    Waste rock dilution is an economic concern in the planning and design of mining methods for mineralized ore zones. Diamond core drilling and mineralogical examination of core are routinely used to determine the general shape of the ore body. Drilling on closer centers enhances the definition of the mineralization and oregrade across the orebody. In a practical sense, drilling time and cost limit definition. Crosshole scanning between drillholes with the radio imaging method (RIM) has been used to map changes in mineralization in the rock mass. The magnitude and phase of the RIM radio wave depend on the electrical conductivity of the rock mass. The conductivity strongly depends on the percent mineralization. Since the attenuation rate and phase constants of the radio wave are proportional to the one half power of conductivity, the measured crosshole radio wave data can be processed in a tomography algorithm to reconstruct images (map the change in conductivity (mineralization)). The tomography image enhances definition in the orebody while reducing the number of drillholes. This paper compares reconstructed images of the radio wave propagation constants to percent mineralization in the ore body

  16. Alumina+Silica+/-Germanium Alteration in Smectite-Bearing Marathon Valley, Endeavour Crater Rim, Mars

    Science.gov (United States)

    Mittlefehldt, D. W.; Gellert, R.; Van Bommel, S.; Arvidson, R. E.; Clark, B. C.; Ming, D. W.; Schroeder, C.; Yen, A. S.; Fox, V. K.; Farrand, W. H.; hide

    2016-01-01

    Mars Exploration Rover Opportunity has been exploring Mars for 12+ years, and is presently investigating the geology of a western rim segment of 22 kilometers diameter, Noachian- aged Endeavour crater. The Alpha Particle X-ray Spectrometer has determined the compositions of a pre-impact lithology, the Matijevic fm., and polymict impact breccias ejected from the crater, the Shoemaker fm. Opportunity is now investigating a region named Marathon Valley that cuts southwest-northeast through the central portion of the rim segment and provides a window into the lower stratigraphic record. (Geographic names used here are informal.) At the head of Marathon Valley, referred to here as Upper Marathon Valley, is a shallow, ovoid depression approximately 25×35 millimeters in size, named Spirit of Saint Louis. Layering inside Spirit of Saint Louis appears continuous with the Upper Marathon Valley rocks outside, indicating they are coeval. Spirit of Saint Louis is partly bounded by approximately 10-20 centimeters wide zone containing reddish altered rocks (red zone). Red zones also form prominent curvilinear features in Marathon Valley. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectra provide evidence for a really extensive Fe-Mg smectite in the Marathon Valley region, indicating distinct styles of aqueous alteration. The CRISM detections of smectites are based on metal-OH absorptions at approximately 2.3 and 2.4 micron that are at least two times the background noise level.

  17. The GT-MHR - clear, economic, and safe power for the Pacific Rim

    International Nuclear Information System (INIS)

    Blue, L.S.; Etzel, K.T.; Simon, W.A.; Wistrom, J.D.

    1994-01-01

    In recent decades the nations of the Pacific Rim have outpaced the rest of the world in economic growth. Beyond an abundant labor market and the region's natural resources, energy has played a pivotal role in fuelling this boom. The diverse sources of this energy largely reflect the naturally occurring fuel assets in the Rim countries. Only in the countries where these resources are less plentiful has nuclear energy become a significant sources of electric power generation. Persuasive as the argument for non-polluting power may be by itself it does not sell the nuclear energy option. In addition to being clean it must also be economically competitive and very safe. The authors claim that the Gas-Turbine Modular Helium Reactor (GT-MHR) is an advances nuclear power system that addresses the issues, and should be viewed as an attractive candidate to meet future energy needs. The GT-MHR derives from the coupling of a small, passively safe, modular reactor directly with a compact power conversion module. It uses the Brayton cycle to produce electricity directly with the primary helium coolant driving the turbine-generator. Thus, it shows promise for a quantum reduction in power generation costs by increasing plant efficiency to a remarkable 48% This paper highlights the advantages of the fact that the design is based on proven technology, and offers a clean, economic and safe energy for electricity and high temperature process heat. 2 refs., 4 figs

  18. Ultratrace analysis of plutonium in environmental samples by resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Trautmann, N.; Erdmann, N.; Gruening, C.; Kratz, J. V.; Waldek, A.; Huber, G.; Nunnemann, M.; Passler, G.

    2000-01-01

    Plutonium is present in the environment mainly as a result of global fallout from nuclear weapons tests, satellite and reactor accidents as well as releases from nuclear facilities. Sensitive and fast detection methods are required for risk assessment, low-level surveillance of the environment, personnel dose monitoring, studies of biological effects and investigations of the migration behavior of plutonium. Furthermore, the isotopic composition is of interest to get information from what source the plutonium contamination originated. Alpha-spectroscopy is most frequently used for the determination of trace amounts of plutonium in the environment with the disadvantage that the detection sensitivity depends on the half-life of the isotope to be measured and that there are limitations in the isotopic resolution. Conventional mass spectrometry may suffer from isobaric interferences. Therefore, in the last years resonant laser ionization mass spectrometry (RIMS) has been explored as an alternative for ultratrace analysis of plutonium. This method provides a high element and isotope selectivity and a good overall efficiency, resulting in a detection limit of ∼10 6 atoms (∼0.4 fg). RIMS meets also the requirements of a low background and a short measuring time (1-2 h)

  19. Towards mathematical model of grain sub-division and rim structure formation

    International Nuclear Information System (INIS)

    Kinoshita, Mikiyasu; Kitajima, Shoichi; Sonoda, Ken

    1999-01-01

    The high burnup LWR UO 2 fuels show a notable micro-structural change around pellet outer zone and it called rim structure. It is observed at temperature as low as 400degC so that fission track and cascade mixing could be the key mechanism. SEM observation revealed that the structure primarily appear on free surfaces of UO 2 , indicating strong sink for point defects may have a big role. And as generic observations, increase of lattice parameter indicates extensive amount of vacancies are stored in high burnup fuel, which may induce the restructuring interacting with dislocations of high density at high burnup. Considering these observations a model of reaction-diffusion process of defects with irradiation induced transport is proposed. The equations are investigated numerically. The model indicates that an instability starts when dislocation network starts intensive interaction with vacancy flux which is modified by interstitial diffusion between spatial segments. It appeared to be similar to the Turing type instability which indicates that the rim structure formation is one kind of the self-organizing processes of open reaction-diffusion systems. (author)

  20. RPPAML/RIMS: a metadata format and an information management system for reverse phase protein arrays.

    Science.gov (United States)

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-12-22

    Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1,000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis.