WorldWideScience

Sample records for space physics program

  1. CSSP implementation plan for space plasma physics programs

    International Nuclear Information System (INIS)

    Baker, D.N.; Williams, D.J.; Johns Hopkins Univ., Laurel, MD)

    1985-01-01

    The Committee on Solar and Space Physics (CSSP) has provided NASA with guidance in the areas of solar, heliospheric, magnetospheric, and upper atmospheric research. The budgetary sitation confronted by NASA has called for a prioritized plane for the implementation of solar and space plasma physics programs. CSSP has developed the following recommendations: (1) continue implementation of both the Upper Atmosphere Research Satellite and Solar Optical Telescope programs; (2) initiate the International Solar Terrestrial Physics program; (3) plan for later major free-flying missions and carry out the technology development they require; (4) launch an average of one solar and space physics Explorer per yr beginning in 1990; (5) enhance current Shuttle/Spacelab programs; (6) develop facility-class instrumentation; (7) augment the solar terrestrial theory program by FY 1990; (8) support a compute modeling program; (9) strengthen the research and analysis program; and (10) maintain a stable suborbital program for flexible science objectives in upper atmosphere and space plasma physics

  2. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  3. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    Science.gov (United States)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  4. Curricular Space Allocated for Dance Content in Physical Education Teacher Education Programs: A Literature Review

    Science.gov (United States)

    Marquis, Jenée Marie; Metzler, Mike

    2017-01-01

    This literature review examines curricular space allocated to activity based/movement content courses in Physical Education Teacher Education (PETE) pre-service programs, specifically focusing on how dance content knowledge and pedagogical content knowledge are addressed within those programs. This review includes original empirical research…

  5. High Energy Astrophysics and Cosmology from Space: NASA's Physics of the Cosmos Program

    Science.gov (United States)

    Hornschemeier, Ann

    2016-03-01

    We summarize currently-funded NASA activities in high energy astrophysics and cosmology, embodied in the NASA Physics of the Cosmos program, including updates on technology development and mission studies. The portfolio includes development of a space mission for measuring gravitational waves from merging supermassive black holes, currently envisioned as a collaboration with the European Space Agency (ESA) on its L3 mission and development of an X-ray observatory that will measure X-ray emission from the final stages of accretion onto black holes, currently envisioned as a NASA collaboration on ESA's Athena observatory. The portfolio also includes the study of cosmic rays and gamma ray photons resulting from a range of processes, of the physical process of inflation associated with the birth of the universe and of the nature of the dark energy that dominates the mass-energy of the modern universe. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis and the talk will include a description of activities of this group.

  6. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  7. Space Physics Data Facility Web Services

    Science.gov (United States)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  8. International Living With a Star (ILWS), a new collaborative space program in Solar, Heliospheric and Solar-Terrestrial Physics

    Science.gov (United States)

    Opgenoorth, H. J.; Guhathakurta, M.; Liu, W.; Kosugi, T.; Zelenyi, L.

    2003-04-01

    International cooperation has long been a vital element in the scientific investigation of solar variability and its impact on Earth and its space environment. Recently a new international cooeperative program in solar terrestrial physics has been established by the major space agencies of the world, called the International Living With a Star (ILWS) program. ILWS is a follow on to the highly successful International Solar Terrestrial Physics (ISTP) program which involved international parterners. ISTP, with its steady flow of discoveries and new knowledge in solar Terrestrial physics, has laid the foundation for the coordinated study of the Sun-Earth sytem as a connected stellar-planetary system, system which is humanity's home. The first step in establishing ILWS was taken in the fall of 2000 when funding was approved for the NASA's Living With a Star (LWS) program whose goal is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun-Earth system that directly affect life and society. The scientific goals of ILWS are defined in a broader sense, aiming to include future solar, heliospheric and solar terrestrial missions of both applied and fundamental scientific focus. The ultimate goal of ILWS wil be to increase our understanding of how solar variability affects the terrestrial and other planetary environments both in the short and long term, and in particular how man and society may be affected by solar variability and its consequences. The mission charter of ILWS is 'to stimulate, strengthen and coordinate space research in order to understand the governing processes of the connected Sun-Earth System as an integrated entity'. More detailed ILWS Objectives are to stimulate and facilitate: - The study of the Sun Earth connected system and the effects which influence life and society - Collaboration among all potential partners in solar-terrestrial space missions - Synergistic coordination of international

  9. Cost-estimating relationships for space programs

    Science.gov (United States)

    Mandell, Humboldt C., Jr.

    1992-01-01

    Cost-estimating relationships (CERs) are defined and discussed as they relate to the estimation of theoretical costs for space programs. The paper primarily addresses CERs based on analogous relationships between physical and performance parameters to estimate future costs. Analytical estimation principles are reviewed examining the sources of errors in cost models, and the use of CERs is shown to be affected by organizational culture. Two paradigms for cost estimation are set forth: (1) the Rand paradigm for single-culture single-system methods; and (2) the Price paradigms that incorporate a set of cultural variables. For space programs that are potentially subject to even small cultural changes, the Price paradigms are argued to be more effective. The derivation and use of accurate CERs is important for developing effective cost models to analyze the potential of a given space program.

  10. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  11. The NASA Physics of the Cosmos Program

    Science.gov (United States)

    Bock, Jamie

    2015-04-01

    The NASA Physics of the Cosmos program is a portfolio of space-based investigations for studying fundamental processes in the universe. Areas of focus include: probing the physical process of inflation associated with the birth of the universe, studying the nature of the dark energy that dominates the mass-energy of the modern universe, advancing new ways to observe the universe through gravitational-wave astronomy, studying the universe in X-rays and gamma rays to probe energetic astrophysical processes and to study the formation and behavior of black holes in strong gravity, and determining the energetic origins and history of cosmic rays. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis. Space offers unique advantages for these exciting investigations, and the program seeks to guide the development of future space missions through observations from current facilities, and by formulating new technologies and capabilities.

  12. Space Matters: Physical-Digital and Physical-Virtual Codesign in inSpace

    DEFF Research Database (Denmark)

    Reilly, D.; Voida, S.; McKeon, M.

    2010-01-01

    The physical and social cues on which we rely during collaboration can vanish in the digital realm. inSpace focuses on physical-digital codesign, leveraging an approach grounded in social behavior patterns.......The physical and social cues on which we rely during collaboration can vanish in the digital realm. inSpace focuses on physical-digital codesign, leveraging an approach grounded in social behavior patterns....

  13. Kennedy Space Center environmental health program

    International Nuclear Information System (INIS)

    Marmaro, G.M.; Cardinale, M.A.; Summerfield, B.R.; Tipton, D.A.

    1992-01-01

    The Kennedy Space Center's environmental health organization is responsible for programs which assure its employees a healthful workplace under diverse and varied working conditions. These programs encompass the disciplines of industrial hygiene, radiation protection (health physics), and environmental sanitation/pollution control. Activities range from the routine, such as normal office work, to the highly specialized, such as the processing of highly toxic and hazardous materials

  14. Solar and Space Physics: A Science for a Technological Society

    Science.gov (United States)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  15. Waves in Space Plasmas Program

    Science.gov (United States)

    Fredricks, R. W.; Taylor, W. W. L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions; ELF/VLF propagation; traveling ionospheric disturbances and gravity wave coupling; equatorial plasma bubble phenomena; plasma wave physics such as mode-coupling, dispersion, and instabilities; and plasma physics of the antenna-plasma interactions.

  16. Waves in Space Plasmas Program

    International Nuclear Information System (INIS)

    Fredricks, R.W.; Taylor, W.W.L.

    1981-01-01

    The Waves in Space Plasmas (WISP) program is a joint international effort involving instrumentation to be designed and fabricated by funding from NASA and the National Research Council of Canada. The instrumentation, with a tentatively planned payload for 1986, can be used to perturb the plasma with radio waves to solve problems in ionospheric, atmospheric, magnetospheric, and plasma physics. Among the ionospheric and plasma phenomena to be investigated using WISP instrumentation are VLF wave-particle interactions, ELF/VLF propagation, traveling ionospheric disturbances and gravity wave coupling, equatorial plasma bubble phenomena, plasma wave physics such as mode-coupling, dispersion, and instabilities, and plasma physics of the antenna-plasma interactions

  17. Plasma physics and the 2013-2022 decadal survey in solar and space physics

    Science.gov (United States)

    Baker, Daniel N.

    2016-11-01

    The U.S. National Academies established in 2011 a steering committee to develop a comprehensive strategy for solar and space physics research. This updated and extended the first (2003) solar and space physics decadal survey. The latest decadal study implemented a 2008 Congressional directive to NASA for the fields of solar and space physics, but also addressed research in other federal agencies. The new survey broadly canvassed the fields of research to determine the current state of the discipline, identified the most important open scientific questions, and proposed the measurements and means to obtain them so as to advance the state of knowledge during the years 2013-2022. Research in this field has sought to understand: dynamical behaviour of the Sun and its heliosphere; properties of the space environments of the Earth and other solar system bodies; multiscale interaction between solar system plasmas and the interstellar medium; and energy transport throughout the solar system and its impact on the Earth and other solar system bodies. Research in solar and space plasma processes using observation, theory, laboratory studies, and numerical models has offered the prospect of understanding this interconnected system well enough to develop a predictive capability for operational support of civil and military space systems. We here describe the recommendations and strategic plans laid out in the 2013-2022 decadal survey as they relate to measurement capabilities and plasma physical research. We assess progress to date. We also identify further steps to achieve the Survey goals with an emphasis on plasma physical aspects of the program.

  18. The Israel Physical Society 1997 Annual Meeting. Program and abstracts

    International Nuclear Information System (INIS)

    1997-01-01

    The book of program and abstracts of the 43rd meeting of the Israel physical society presents abstracts of presentations in various field of physics. Follow is the list of these fields. Astrophysics, condensed matter, laser and quantum optics, nuclear physics, particle and fields, physics in biology, physics in industry, plasma and space physics, statistical physics and nonlinear dynamics

  19. Space Station Program threat and vulnerability analysis

    Science.gov (United States)

    Van Meter, Steven D.; Veatch, John D.

    1987-01-01

    An examination has been made of the physical security of the Space Station Program at the Kennedy Space Center in a peacetime environment, in order to furnish facility personnel with threat/vulnerability information. A risk-management approach is used to prioritize threat-target combinations that are characterized in terms of 'insiders' and 'outsiders'. Potential targets were identified and analyzed with a view to their attractiveness to an adversary, as well as to the consequentiality of the resulting damage.

  20. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    Science.gov (United States)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  1. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  2. Challenges in Teaching Space Physics to Different Target Groups From Space Weather Forecasters to Heavy-weight Theorists

    Science.gov (United States)

    Koskinen, H. E.

    2008-12-01

    Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.

  3. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  4. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  5. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.

  6. The REU Program in Solar Physics at Montana State University

    Science.gov (United States)

    Martens, Petrus C.; Canfield, R. C.; McKenzie, D. M.

    2007-05-01

    The Solar Physics group at Montana State University has organized an annual summer REU program in Solar Physics, Astronomy, and Space Physics since 1999, with NSF funding since 2003. The number of students applying and being admitted to the program has increased every year, and we have been very successful in attracting female participants. A great majority of our REU alumni have chosen career paths in the sciences, and, according to their testimonies, our REU program has played a significant role in their decisions. From the start our REU program has had an important international component through a close collaboration with the University of St. Andrews in Scotland. In our poster we will describe the goals, organization, scientific contents, international aspects, and results, and present statistics on applications, participants, gender balance, and diversity.

  7. The French balloon and sounding rocket space program

    Science.gov (United States)

    Coutin/Faye, S.; Sadourny, I.

    1987-08-01

    Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.

  8. Logic for physical space

    DEFF Research Database (Denmark)

    Aiello, Marco; Bezhanishvili, Guram; Bloch, Isabelle

    2012-01-01

    Since the early days of physics, space has called for means to represent, experiment, and reason about it. Apart from physicists, the concept of space has intrigued also philosophers, mathematicians and, more recently, computer scientists. This longstanding interest has left us with a plethora...

  9. PREFACE: International Symposium on Physical Sciences in Space

    Science.gov (United States)

    Meyer, Andreas; Egry, Ivan

    2011-12-01

    Scientific Program Committee. It is our pleasure to thank the members of this committee for their excellent support in setting up a high-quality, well-balanced program. We also thank our sponsors, the German Aerospace Center and the European Space Agency, the Bundesministerium für Wirtschaft und Technologie (German Federal Ministry of Economics and Technology), the ZARM Center of Applied Space Technology and Microgravity as well as our industrial sponsors EADS-Astrium and Kayser-Threde, for their generous contributions. Our special thanks go to the authors and reviewers of the papers in these proceedings. Together we were able to realize up-to-date, peer reviewed conference proceedings, containing new and original data. Thanks to their efforts and that of the IOP Publishing staff, we succeeded in publishing the proceedings within six months of the conference. We are confident that this collection of papers will provide a useful reference for all workers in the field. Andreas Meyer and Ivan Egry Chairmen ISPS-4 Institute of Materials Physics in Space German Aerospace Center, Cologne Conference photograph Opening ceremony Professor Dr Andreas Meyer, Chairman ISPS 4, Professor Dr Johann-Dietrich Wörner, CEO DLR, and Dr Martin Zell, Head of ESA ISS Utilisation (left to right), at the opening ceremony of ISPS-4.

  10. Man in space - A time for perspective. [crew performance on Space Shuttle-Spacelab program

    Science.gov (United States)

    Winter, D. L.

    1975-01-01

    Factors affecting crew performances in long-term space flights are examined with emphasis on the Space Shuttle-Spacelab program. Biomedical investigations carried out during four Skylab missions indicate that initially rapid changes in certain physiological parameters, notably in cardiovascular response and red-blood-cell levels, lead to an adapted condition. Calcium loss remains a potential problem. Space Shuttle environmental control and life-support systems are described together with technology facilitating performance of mission objectives in a weightless environment. It is concluded that crew requirements are within the physical and psychological capability of astronauts, but the extent to which nonastronaut personnel will be able to participate without extensive training and pre-conditioning remains to be determined.

  11. Physical Origins of Space Weather Impacts: Open Physics Questions

    Science.gov (United States)

    Lanzerotti, L. J.

    2011-12-01

    Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.

  12. Book Review: Physics of the Space Environment

    Science.gov (United States)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  13. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  14. 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications

    CERN Document Server

    Leroy, Claude; Price, Lawrence; Rancoita, Pier-Giorgio; Ruchti, Randy; ICATPP 2013; International Conference on Advanced Technology and Particle Physics

    2014-01-01

    The exploration of the subnuclear world is done through increasingly complex experiments covering a wide range of energy and performed in a large variety of environments ranging from particle accelerators, underground detectors to satellites and the space laboratory. The achievement of these research programs calls for novel techniques, new materials and instrumentation to be used in detectors, often of large scale. Therefore, fundamental physics is at the forefront of technological advance and also leads to many applications. Among these, are the progresses from space experiments whose results allow the understanding of the cosmic environment, of the origin and evolution of the universe after the Big Bang.

  15. Aligning physical learning spaces with the curriculum: AMEE Guide No. 107.

    Science.gov (United States)

    Nordquist, Jonas; Sundberg, Kristina; Laing, Andrew

    2016-08-01

    This Guide explores emerging issues on the alignment of learning spaces with the changing curriculum in medical education. As technology and new teaching methods have altered the nature of learning in medical education, it is necessary to re-think how physical learning spaces are aligned with the curriculum. The better alignment of learning spaces with the curriculum depends on more directly engaged leadership from faculty and the community of medical education for briefing the requirements for the design of all kinds of learning spaces. However, there is a lack of precedent and well-established processes as to how new kinds of learning spaces should be programmed. Such programmes are essential aspects of optimizing the intended experience of the curriculum. Faculty and the learning community need better tools and instruments to support their leadership role in briefing and programming. A Guide to critical concepts for exploring the alignment of curriculum and learning spaces is provided. The idea of a networked learning landscape is introduced as a way of assessing and evaluating the alignment of physical spaces to the emerging curriculum. The concept is used to explore how technology has widened the range of spaces and places in which learning happens as well as enabling new styles of learning. The networked learning landscaped is explored through four different scales within which learning is accommodated: the classroom, the building, the campus, and the city. High-level guidance on the process of briefing for the networked learning landscape is provided, to take into account the wider scale of learning spaces and the impact of technology. Key to a successful measurement process is argued to be the involvement of relevant academic stakeholders who can identify the strategic direction and purpose for the design of the learning environments in relation to the emerging demands of the curriculum.

  16. Ground Robotic Hand Applications for the Space Program study (GRASP)

    Science.gov (United States)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  17. Space program management methods and tools

    CERN Document Server

    Spagnulo, Marcello; Balduccini, Mauro; Nasini, Federico

    2013-01-01

    Beginning with the basic elements that differentiate space programs from other management challenges, Space Program Management explains through theory and example of real programs from around the world, the philosophical and technical tools needed to successfully manage large, technically complex space programs both in the government and commercial environment. Chapters address both systems and configuration management, the management of risk, estimation, measurement and control of both funding and the program schedule, and the structure of the aerospace industry worldwide.

  18. Responsive Space Program Brief

    Energy Technology Data Exchange (ETDEWEB)

    Dors, Eric E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-11

    The goal of the Responsive Space program is to make significant, integrated science and technology contributions to the end-to-end missions of the U.S. Government that protect against global emerging and nuclear threats, from the earliest adversary planning through resilient event response report describes the LANL space program, mission, and other activities. The report describes some of their activities.

  19. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  20. Cosmic perspectives in space physics

    CERN Document Server

    Biswas, Sukumar

    2000-01-01

    In the early years of the twentieth century, Victor Hess of Germany flew instruments in balloons and so discovered in 1912 that an extra-~errestial radiation of unknown origin is incident on the earth with an almost constant intensity at all times. These penetrating non­ solar radiations which were called Cosmic Rays by Millikan, USA, opened the new frontier of space physics and many leading scientists were attracted to it. At the end of World War II a number of space vehicles, e.g. stratospheric balloons, rockets and satellites were developed. In 1950 and onwards, these vehicles enabled spectacular advances in space physics and space astrophysics. New horizons were opened in the explorations of cosmic rays, the earth's magnetosphere, the Sun and the heliosphere, the moon and the planets. Using space-borne instruments, exciting discoveries were made of stars, and galaxies in the infra-red, ultra violet, x-ray and gamma-ray wavelengths. In this text book these fascinating new findings are presented in depth a...

  1. Understanding space weather with new physical, mathematical and philosophical approaches

    Science.gov (United States)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    physical one, in our case. The corresponding mathematical relations are needed for the application of this analogy in the solar-terrestrial physics and space weather. For this purpose in the contemporary categories theory in the algebra a whole field for it exists - the theory of monads (M. Barr, Ch. Wells, 1985, Toposes, Triples and Theories, Springer-Verlag, 278, p. 82). This theory is generated by analogous elements as in the Leibniz's Monadology. As it is known the categories theory and in particular the monad theory (also named triple or triad theory) tends to make axioms in mathematics. This approach would be very useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Here some methods for algebraic data structures could be introduced. Or some imperative programs can be embedded in a purely functional program for modeling, respectively. All these problems are principally considered in the proposed report.

  2. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  3. On the structure of physical space

    CERN Document Server

    Wisnivesky, D

    2001-01-01

    In this paper we develop a theory based on the postulate that the environment where physical phenomena take place is the space of four complex parameters of the linear group of transformations. Using these parameters as fundamental building blocks we construct ordinary space-time and the internal space. Lorentz invariance is built in the definition of external space, while the symmetry of the internal space, S(1)*SU(2) results as a consequence of the identification of the external coordinates. Thus, special relativity and the electroweak interaction symmetry ensue from the properties of the basic building blocks of physical space. Since internal and external space are derived from a common structure, there is no need to bring into the theory any additional hypothesis to account for the microscopic nature of the internal space, nor to introduce symmetry breaking mechanisms that would normally be required to force a splitting of the internal and external symmetries. As an outcome of the existence of a basic str...

  4. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  5. Space Discovery: Teaching with Space. Evaluation: Summer, Fall 1998 Programs

    Science.gov (United States)

    Ewell, Bob

    1998-01-01

    This is the final report of the 1998 NASA-sponsored evaluation of the effectiveness of the United States Space Foundation's five-day Space Discovery Standard Graduate Course (Living and Working in Space), the five-day Space Discovery Advanced Graduate Course (Advanced Technology and Biomedical Research), the five-day introductory course Aviation and Space Basics all conducted during the summer of 1998, and the Teaching with Space two-day Inservice program. The purpose of the program is to motivate and equip K- 12 teachers to use proven student-attracting space and technology concepts to support standard curriculum. These programs support the America 2000 National Educational Goals, encouraging more students to stay in school, increase in competence, and have a better opportunity to be attracted to math and science. The 1998 research program continues the comprehensive evaluation begun in 1992, this year studying five summer five-day sessions and five Inservice programs offered during the Fall of 1998 in California, Colorado, New York, and Virginia. A comprehensive research design by Dr. Robert Ewell of Creative Solutions and Dr. Darwyn Linder of Arizona State University evaluated the effectiveness of various areas of the program and its applicability on diverse groups. Preliminary research methodology was a set of survey instruments administered after the courses, and another to be sent in April-4-5 months following the last inservice involved in this study. This year, we have departed from this evaluation design in two ways. First, the five-day programs used NASA's new EDCATS on-line system and associated survey rather than the Linder/Ewell instruments. The Inservice programs were evaluated using the previously developed survey adapted for Inservice programs. Second, we did not do a follow-on survey of the teachers after they had been in the field as we have done in the past. Therefore, this evaluation captures only the reactions of the teachers to the programs

  6. Green space definition affects associations of green space with overweight and physical activity.

    Science.gov (United States)

    Klompmaker, Jochem O; Hoek, Gerard; Bloemsma, Lizan D; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A H

    2018-01-01

    In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness. Copyright © 2017 The Authors. Published by

  7. Physics of the Space Environment

    Science.gov (United States)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  8. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  9. Start small, dream big: Experiences of physical activity in public spaces in Colombia.

    Science.gov (United States)

    Díaz Del Castillo, Adriana; González, Silvia Alejandra; Ríos, Ana Paola; Páez, Diana C; Torres, Andrea; Díaz, María Paula; Pratt, Michael; Sarmiento, Olga L

    2017-10-01

    Multi-sectoral strategies to promote active recreation and physical activity in public spaces are crucial to building a "culture of health". However, studies on the sustainability and scalability of these strategies are limited. This paper identifies the factors related to the sustainability and scaling up of two community-based programs offering physical activity classes in public spaces in Colombia: Bogotá's Recreovía and Colombia's "Healthy Habits and Lifestyles Program-HEVS". Both programs have been sustained for more than 10years, and have benefited 1455 communities. We used a mixed-methods approach including semi-structured interviews, document review and an analysis of data regarding the programs' history, characteristics, funding, capacity building and challenges. Interviews were conducted between May-October 2015. Based on the sustainability frameworks of Shediac-Rizkallah and Bone and Scheirer, we developed categories to independently code each interview. All information was independently analyzed by four of the authors and cross-compared between programs. Findings showed that these programs underwent adaptation processes to address the challenges that threatened their continuation and growth. The primary strategies included flexibility/adaptability, investing in the working conditions and training of instructors, allocating public funds and requesting accountability, diversifying resources, having community support and champions at different levels and positions, and carrying out continuous advocacy to include physical activity in public policies. Recreovía and HEVS illustrate sustainability as an incremental, multi-level process at different levels. Lessons learned for similar initiatives include the importance of individual actions and small events, a willingness to start small while dreaming big, being flexible, and prioritizing the human factor. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Characteristics of physical activity programs in the Brazilian primary health care system

    Directory of Open Access Journals (Sweden)

    Grace Angélica de Oliveira Gomes

    2014-10-01

    Full Text Available The aim of this study was to describe the characteristics of programs that promote physical activity in the public primary care system by region of Brazil, subject to the presence or absence of multidisciplinary primary care teams (NASF. We conducted a cross sectional and population-based telephone survey of the health unit coordinators from 1,251 health care units. Coordinators were asked about the presence and characteristics of physical activity programs. Four out of ten health units reported having a physical activity intervention program, the most common involving walking groups. Most of the activities were performed in the morning, once or twice a week, and in sessions of 30 minutes or more. Physical education professionals were primarily responsible for directing the activities. Interventions occurred in the health unit itself or in adjacent community spaces. In general, these characteristics were similar between units with or without NASF, but varied substantially across regions. These findings will guide future physical activity policies and programs within primary care in Brazil.

  11. Sustaining Physics Teacher Education Coalition programs in physics teacher education

    Directory of Open Access Journals (Sweden)

    Rachel E. Scherr

    2017-02-01

    Full Text Available Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC, led by the American Physical Society (APS and the American Association of Physics Teachers (AAPT, has supported transformation of physics teacher preparation programs at a number of institutions around the country for over a decade. In 2012–2013, PhysTEC supported an independent study on the sustainability of its sites after project funding ends. The study sought to measure the extent to which programs have been sustained and to identify what features should be prioritized for building sustainable physics teacher preparation programs. Most of the studied sites have sustained increases in the number of physics teachers educated per year as well as funding for physics teacher preparation. About half of the programs are thriving, in that in the post-award period, they have further increased both the number of physics teachers educated per year and funding for physics teacher preparation. All studied sites that sustained increases in the number of physics teachers educated per year have two features in common: a champion of physics teacher education and institutional commitment. The thriving physics teacher preparation programs in this study implemented different elements of physics teacher preparation according to diverse local priorities and opportunities, including the unique expertise of local personnel.

  12. The impact of interventions to promote physical activity in urban green space

    DEFF Research Database (Denmark)

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny

    2015-01-01

    positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing...... in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation......Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken...

  13. Space- and ground-based particle physics meet at CERN

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    The fourth international conference on Particle and Fundamental Physics in Space (SpacePart12) will take place at CERN from 5 to 7 November. The conference will bring together scientists working on particle and fundamental physics in space and on ground, as well as space policy makers from around the world.   One hundred years after Victor Hess discovered cosmic rays using hot air balloons, the experimental study of particle and fundamental physics is still being pursued today with extremely sophisticated techniques: on the ground, with state-of-the-art accelerators like the LHC; and in space, with powerful observatories that probe, with amazing accuracy, the various forms of cosmic radiation, charged and neutral, which are messengers of the most extreme conditions of matter and energy. SpacePart12 will be the opportunity for participants to exchange views on the progress of space-related science and technology programmes in the field of particle and fundamental physics in space. SpacePar...

  14. Philosophy of physics space and time

    CERN Document Server

    Maudlin, Tim

    2012-01-01

    This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than coordinate systems or reference frames. He gives readers enough detail about special relativity to solve concrete physical problems while presenting general relativity in a more qualitative way, with an informative discussion of the geometrization of gravity, the bending of light, and black holes. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed...

  15. Sustaining Physics Teacher Education Coalition programs in physics teacher education

    OpenAIRE

    Rachel E. Scherr; Monica Plisch; Renee Michelle Goertzen

    2017-01-01

    Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC), led by the American Physical Society (APS) and the American Association of Physics Teachers (AAPT), has supported transformation of physics teacher preparation programs at a number of institutions aro...

  16. High-Latitude Space Plasma Physics

    International Nuclear Information System (INIS)

    Hultqvist, B.; Hagfors, T.

    1983-01-01

    This book constitutes the proceedings of the Nobel Symposium No. 54 on High Latitude Magnetospheric/Ionospheric Plasma Physics. The main purpose of the symposium was to prepare for the European research effort in space plasma physics in the mid-1980's, in which two major constituents are the European Incoherent Scatter Association (EISCAT) facilities and the Swedish satellite Viking. The physics of the high-latitude ionosphere and how this part of near space is affected by the properties of the solar wind and the interplanetary magnetic field are explored. A detailed discussion is provided on high-latitude magnetospheric physics at altitudes of 1-2 earth radii, the main focus of the Viking project. Specific topics considered include the role of the auroral ionosphere in magnetospheric substorms, the low altitude cleft, ionospheric modification and stimulated emissions, plasma physics on auroral field lines, solar wind-magnetosphere energy coupling, cold plasma distribution above a few thousand kilometers at high latitudes, hot electrons in and above the auroral ionosphere, the correlation of auroral kilometric radiation with visual auroras and with Birkeland currents, electrostatic waves in the topside ionosphere, solitary waves and double layers, and an Alfven wave model of auroral arcs

  17. Physics of Space Plasma Activity

    International Nuclear Information System (INIS)

    Cramer, N F

    2007-01-01

    This book provides a timely review of our present understanding of plasma phenomena in magnetized terrestrial and solar space plasmas. The author's emphasis is on the fluid and particle modeling and interpretation of observed active processes in space plasmas, i.e. 'the physical background of large plasma eruptions in space'. It is somewhat alarming for a plasma physicist to read that an emphasis on processes in spatially inhomogeneous plasmas means that the work '... excludes a considerable fraction of the available methods in space plasma physics, such as the theory of waves, instabilities and wave particle interactions on a homogeneous background', particularly in light of the fact that much of our knowledge of these plasmas is derived from observations of such waves. However, it is clear on reading the book that such a restriction is not a disadvantage, but allows the author to concentrate on the main theme of the book, namely the use of fluid and particle pictures to model the equilibrium and active states of space plasmas. There are many other books which cover the wave aspects of space plasmas, and would complement this book. The book's coverage is based on the extensive and profound research of the author and his colleagues in the area of fluid and particle modeling of space plasma structures. After an introduction to the physical setting of active plasmas, and a necessarily concise, but effective, discussion of the fluid and particle models to be used, the steady states of the magnetized plasmas of interest are treated, including the magnetosphere, solar plasmas and current sheets. Next the dynamics of unstable states is covered, including MHD and tearing instabilities, and nonlinear aspects, with a detailed discussion of magnetic reconnection. Finally, the models are applied to magnetospheric and solar observations. The book is attractively written and produced, and this reviewer managed to find a minimum number of errors. A particularly attractive

  18. The Canadian space program from Black Brant to the International Space Station

    CERN Document Server

    Godefroy, Andrew B

    2017-01-01

    Canada’s space efforts from its origins towards the end of the Second World War through to its participation in the ISS today are revealed in full in this complete and carefully researched history. Employing recently declassified archives and many never previously used sources, author Andrew B. Godefroy explains the history of the program through its policy and many fascinating projects. He assesses its effectiveness as a major partner in both US and international space programs, examines its current national priorities and capabilities, and outlines the country’s plans for the future. Despite being the third nation to launch a satellite into space after the Soviet Union and the United States; being a major partner in the US space shuttle program with the iconic Canadarm; being an international leader in the development of space robotics; and acting as one of the five major partners in the ISS, the Canadian Space Program remains one of the least well-known national efforts of the space age. This book atte...

  19. Physical models on discrete space and time

    International Nuclear Information System (INIS)

    Lorente, M.

    1986-01-01

    The idea of space and time quantum operators with a discrete spectrum has been proposed frequently since the discovery that some physical quantities exhibit measured values that are multiples of fundamental units. This paper first reviews a number of these physical models. They are: the method of finite elements proposed by Bender et al; the quantum field theory model on discrete space-time proposed by Yamamoto; the finite dimensional quantum mechanics approach proposed by Santhanam et al; the idea of space-time as lattices of n-simplices proposed by Kaplunovsky et al; and the theory of elementary processes proposed by Weizsaecker and his colleagues. The paper then presents a model proposed by the authors and based on the (n+1)-dimensional space-time lattice where fundamental entities interact among themselves 1 to 2n in order to build up a n-dimensional cubic lattice as a ground field where the physical interactions take place. The space-time coordinates are nothing more than the labelling of the ground field and take only discrete values. 11 references

  20. Physical sciences research plans for the International Space Station

    Science.gov (United States)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  1. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  2. The Necessity of Functional Analysis for Space Exploration Programs

    Science.gov (United States)

    Morris, A. Terry; Breidenthal, Julian C.

    2011-01-01

    As NASA moves toward expanded commercial spaceflight within its human exploration capability, there is increased emphasis on how to allocate responsibilities between government and commercial organizations to achieve coordinated program objectives. The practice of program-level functional analysis offers an opportunity for improved understanding of collaborative functions among heterogeneous partners. Functional analysis is contrasted with the physical analysis more commonly done at the program level, and is shown to provide theoretical performance, risk, and safety advantages beneficial to a government-commercial partnership. Performance advantages include faster convergence to acceptable system solutions; discovery of superior solutions with higher commonality, greater simplicity and greater parallelism by substituting functional for physical redundancy to achieve robustness and safety goals; and greater organizational cohesion around program objectives. Risk advantages include avoidance of rework by revelation of some kinds of architectural and contractual mismatches before systems are specified, designed, constructed, or integrated; avoidance of cost and schedule growth by more complete and precise specifications of cost and schedule estimates; and higher likelihood of successful integration on the first try. Safety advantages include effective delineation of must-work and must-not-work functions for integrated hazard analysis, the ability to formally demonstrate completeness of safety analyses, and provably correct logic for certification of flight readiness. The key mechanism for realizing these benefits is the development of an inter-functional architecture at the program level, which reveals relationships between top-level system requirements that would otherwise be invisible using only a physical architecture. This paper describes the advantages and pitfalls of functional analysis as a means of coordinating the actions of large heterogeneous organizations

  3. Data management, archiving, visualization and analysis of space physics data

    Science.gov (United States)

    Russell, C. T.

    1995-01-01

    A series of programs for the visualization and analysis of space physics data has been developed at UCLA. In the course of those developments, a number of lessons have been learned regarding data management and data archiving, as well as data analysis. The issues now facing those wishing to develop such software, as well as the lessons learned, are reviewed. Modern media have eased many of the earlier problems of the physical volume required to store data, the speed of access, and the permanence of the records. However, the ultimate longevity of these media is still a question of debate. Finally, while software development has become easier, cost is still a limiting factor in developing visualization and analysis software.

  4. Girls InSpace project: A new space physics outreach initiative.

    Science.gov (United States)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space

  5. Capacity Building in Space Weather in the context of the ISWI program

    Science.gov (United States)

    Vilmer, Nicole; Amory, Christine

    2012-07-01

    In the context of the International Space Weather Initiative program, we organized a school on solar-terrestrial physics for French- speaking professors and PhD students from African countries. The school was organized in Rabat (Morocco) in December 2011. We shall present here the goals of the school, our program and our funding. We shall also comment on the feedback of the school and on the potential organization of a similar school in Algeria in 2013.

  6. Time and space: undergraduate Mexican physics in motion

    Science.gov (United States)

    Candela, Antonia

    2010-09-01

    This is an ethnographic study of the trajectories and itineraries of undergraduate physics students at a Mexican university. In this work learning is understood as being able to move oneself and, other things (cultural tools), through the space-time networks of a discipline (Nespor in Knowledge in motion: space, time and curriculum in undergraduate physics and management. Routledge Farmer, London, 1994). The potential of this socio-cultural perspective allows an analysis of how students are connected through extended spaces and times with an international core discipline as well as with cultural features related to local networks of power and construction. Through an example, I show that, from an actor-network-theory (Latour in Science in action. Harvard University Press, Cambridge, 1987), that in order to understand the complexities of undergraduate physics processes of learning you have to break classroom walls and take into account students' movements through complex spatial and temporal traces of the discipline of physics. Mexican professors do not give classes following one textbook but in a moment-to-moment open dynamism tending to include undergraduate students as actors in classroom events extending the teaching space-time of the classroom to the disciplinary research work of physics. I also find that Mexican undergraduate students show initiative and display some autonomy and power in the construction of their itineraries as they are encouraged to examine a variety of sources including contemporary research articles, unsolved physics problems, and even to participate in several physicists' spaces, as for example being speakers at the national congresses of physics. Their itineraries also open up new spaces of cultural and social practices, creating more extensive networks beyond those associated with a discipline. Some economic, historical and cultural contextual features of this school of sciences are analyzed in order to help understanding the particular

  7. On the physics of electron beams in space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.

    2002-01-01

    This paper discusses the main physical processes related to the injection, the propagation and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the physical linear and nonlinear mechanisms involved in the generation, the stabilization and the saturation of the electromagnetic waves excited by the beams in wide frequency ranges. and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the

  8. Sustaining Physics Teacher Education Coalition Programs in Physics Teacher Education

    Science.gov (United States)

    Scherr, Rachel E.; Plisch, Monica; Goertzen, Renee Michelle

    2017-01-01

    Understanding the mechanisms of increasing the number of physics teachers educated per year at institutions with thriving physics teacher preparation programs may inspire and support other institutions in building thriving programs of their own. The Physics Teacher Education Coalition (PhysTEC), led by the American Physical Society (APS) and the…

  9. Space Solar Power Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Humayun; Barbosa, Hugo; Bardet, Christophe; Baroud, Michel; Behar, Alberto; Berrier, Keith; Berthe, Phillipe; Bertrand, Reinhold; Bibyk, Irene; Bisson, Joel; Bloch, Lawrence; Bobadilla, Gabriel; Bourque, Denis; Bush, Lawrence; Carandang, Romeo; Chiku, Takemi; Crosby, Norma; De Seixas, Manuel; De Vries, Joha; Doll, Susan; Dufour, Francois; Eckart, Peter; Fahey, Michael; Fenot, Frederic; Foeckersperger, Stefan; Fontaine, Jean-Emmanuel; Fowler, Robert; Frey, Harald; Fujio, Hironobu; Gasa, Jaume Munich; Gleave, Janet; Godoe, Jostein; Green, Iain; Haeberli, Roman; Hanada, Toshiya; Harris, Peter; Hucteau, Mario; Jacobs, Didier Fernand; Johnson, Richard; Kanno, Yoshitsugu; Koenig, Eva Maria; Kojima, Kazuo; Kondepudi, Phani; Kottbauer, Christian; Kulper, Doede; Kulagin, Konstantin; Kumara, Pekka; Kurz, Rainer; Laaksonen, Jyrki; Lang, Andrew Neill; Lathan, Corinna; Le Fur, Thierry; Lewis, David; Louis, Alain; Mori, Takeshi; Morlanes, Juan; Murbach, Marcus; Nagatomo, Hideo; O' brien, Ivan; Paines, Justin; Palaszewski, Bryan; Palmnaes, Ulf; Paraschivolu, Marius; Pathare, Asmin; Perov, Egor; Persson, Jan; Pessoa-Lopes, Isabel; Pinto, Michel; Porro, Irene; Reichert, Michael; Ritt-Fischer, Monika; Roberts, Margaret; Robertson II, Lawrence; Rogers, Keith; Sasaki, Tetsuo; Scire, Francesca; Shibatou, Katsuya; Shirai, Tatsuya; Shiraishi, Atsushi; Soucaille, Jean-Francois; Spivack, Nova; St. Pierre, Dany; Suleman, Afzal; Sullivan, Thomas; Theelen, Bas Johan; Thonstad, Hallvard; Tsuji, Masatoshi; Uchiumi, Masaharu; Vidqvist, Jouni; Warrell, David; Watanabe, Takafumi; Willis, Richard; Wolf, Frank; Yamakawa, Hiroshi; Zhao, Hong

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  10. SPORTS PHYSICAL THERAPY CURRICULA IN PHYSICAL THERAPIST PROFESSIONAL DEGREE PROGRAMS.

    Science.gov (United States)

    Mulligan, Edward P; DeVahl, Julie

    2017-10-01

    The specialty niche of sports physical therapy has grown at a significant rate over the past 40 years. Despite this growth there is little information or direction from the physical therapy education accreditation body or professional association to guide academic programs on the interest or necessity of this type of practice content in physical therapy professional degree programs. The purpose of this survey study is to report on the prevalence, attitudes, barriers, resources, and faculty expertise in providing required or elective sports physical therapy course work. Cross-sectional descriptive survey. A 57-item questionnaire with branching logic was distributed via a web-based electronic data capture tool to survey all Commission on Accreditation for Physical Therapy Education (CAPTE) accredited and candidate schools in the United States. Response data was analyzed to describe typical educational program profiles, faculty demographics, and correlational factors consistent with the presence or absence of specific sports physical therapy curricular content. Thirty one percent of the schools responded to the survey and the program demographics were consistent with all currently accredited schools in regards to their geography, Carnegie classification, and faculty and student size. Forty three percent of programs offered a required or elective course distinct to the practice of sports physical therapy. Descriptive information regarding the sequencing, curricular make-up, resources, and assessment of content competence is reported. The odds of providing this content nearly doubles for programs that have faculty with sports clinical specialist credentials, accredited sports residency curriculums, or state practice acts that allow sports venue coverage. This survey provides an initial overview of sports physical therapy educational efforts in professional physical therapy degree programs. The data can used to spur further discussion on the necessity, structure, and

  11. Comprehensive School Physical Activity Programs: Recommendations for Physical Education Teacher Education

    Science.gov (United States)

    Zhang, Xiaoxia; Gu, Xiangli; Zhang, Tao; Keller, Jean; Chen, Senlin

    2018-01-01

    Comprehensive school physical activity programs (CSPAPs) aim to promote physical activity and healthy lifestyles among school-age children and adolescents. Physical educators are highly qualified individuals taking on the role of certified physical activity leaders. Physical education teacher education (PETE) programs should consider preparing…

  12. HIRFL-CSR physics program

    International Nuclear Information System (INIS)

    Xu, Hushan

    2009-01-01

    The research activities at HIRFL-CSR cover the fields of the radio-biology, material science, atomic physics, and nuclear physics. This talk will mainly concentrate on the program on nuclear physics with the existing and planned experimental setups at HIRFL-CSR. (author)

  13. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  14. Access to public spaces and physical activity for Mexican adult women

    Directory of Open Access Journals (Sweden)

    Ietza Bojorquez

    2018-04-01

    Full Text Available The aim of this article was to explore the association between access to public spaces and physical activity for adult women, controlling and testing interactions with sociodemographic and public spaces characteristics. We combined sociodemographic data from a survey with the adult (18-65 years of age women population of Tijuana, Mexico, conducted in 2014 (N = 2,345; with data from a 2013 study on public spaces in the same city. We evaluated access to public spaces by the presence and total area of public spaces in buffers of 400, 800, 1,000 and 1,600m around the participants’ homes. We measured physical activity with the short version of the International Physical Activity Questionnaire (IPAQ-short. We employed multinomial logistic models to evaluate the association between access to public spaces and physical activity, and tested for interactions between access to public spaces and public spaces quality and sociodemographic characteristics. We observed no interaction between access to public spaces and public spaces quality in their effect on physical activity. There was an association between the presence of public spaces in the 400m buffer, and higher odds of being in the low physical activity level (as opposed to being in the moderate level (coefficient: 0.50; 95%CI: 0.13; 0.87. Participants who used public transport were less likely to be in the low physical activity level (coefficient: -0.57; 95%CI: -0.97; -0.17. We suggest that, in this population, the access to public spaces might be less relevant for physical activity than other elements of the urban environment and sociodemographic characteristics.

  15. Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this paper into nine, fairly independent sections for ease of reading: I. "Michael Jordan or Mia Hamm" - Introduction and Background II. "Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe III. "From Cosmic Noise to the Big Bang" - The

  16. Dual Vector Spaces and Physical Singularities

    Science.gov (United States)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  17. The Virtual Space Physics Observatory: Quick Access to Data and Tools

    Science.gov (United States)

    Cornwell, Carl; Roberts, D. Aaron; McGuire, Robert E.

    2006-01-01

    The Virtual Space Physics Observatory (VSPO; see http://vspo.gsfc.nasa.gov) has grown to provide a way to find and access about 375 data products and services from over 100 spacecraft/observatories in space and solar physics. The datasets are mainly chosen to be the most requested, and include most of the publicly available data products from operating NASA Heliophysics spacecraft as well as from solar observatories measuring across the frequency spectrum. Service links include a "quick orbits" page that uses SSCWeb Web Services to provide a rapid answer to questions such as "What spacecraft were in orbit in July 1992?" and "Where were Geotail, Cluster, and Polar on 2 June 2001?" These queries are linked back to the data search page. The VSPO interface provides many ways of looking for data based on terms used in a registry of resources using the SPASE Data Model that will be the standard for Heliophysics Virtual Observatories. VSPO itself is accessible via an API that allows other applications to use it as a Web Service; this has been implemented in one instance using the ViSBARD visualization program. The VSPO will become part of the Space Physics Data Facility, and will continue to expand its access to data. A challenge for all VOs will be to provide uniform access to data at the variable level, and we will be addressing this question in a number of ways.

  18. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research.

    Science.gov (United States)

    Hunter, Ruth F; Christian, Hayley; Veitch, Jenny; Astell-Burt, Thomas; Hipp, J Aaron; Schipperijn, Jasper

    2015-01-01

    Evidence is mounting on the association between the built environment and physical activity (PA) with a call for intervention research. A broader approach which recognizes the role of supportive environments that can make healthy choices easier is required. A systematic review was undertaken to assess the effectiveness of interventions to encourage PA in urban green space. Five databases were searched independently by two reviewers using search terms relating to 'physical activity', 'urban green space' and 'intervention' in July 2014. Eligibility criteria included: (i) intervention to encourage PA in urban green space which involved either a physical change to the urban green space or a PA intervention to promote use of urban green space or a combination of both; and (ii) primary outcome of PA. Of the 2405 studies identified, 12 were included. There was some evidence (4/9 studies showed positive effect) to support built environment only interventions for encouraging use and increasing PA in urban green space. There was more promising evidence (3/3 studies showed positive effect) to support PAprograms or PA programs combined with a physical change to the built environment, for increasing urban green space use and PA of users. Recommendations for future research include the need for longer term follow-up post-intervention, adequate control groups, sufficiently powered studies, and consideration of the social environment, which was identified as a significantly under-utilized resource in this area. Interventions that involve the use of PA programs combined with a physical change to the built environment are likely to have a positive effect on PA. Robust evaluations of such interventions are urgently required. The findings provide a platform to inform the design, implementation and evaluation of future urban green space and PAintervention research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space

    Science.gov (United States)

    Strayer, Don (Editor)

    2003-01-01

    The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.

  20. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1991-01-01

    This paper presents a retrospective summary and bibliography of the National Aeronautics and Space Administration research program on fusion energy for space power and propulsion systems conducted at the Lewis Research Center. This effort extended over a 20-yr period ending in 1978, involved several hundred person-years of effort, and included theory, experiment, technology development, and mission analysis. This program was initiated in 1958 and was carried out within the Electromagnetic Propulsion Division. Within this division, mission analysis and basic research on high-temperature plasma physics were carried out in the Advanced Concepts Branch. Three pioneering high-field superconducting magnetic confinement facilities were developed with the support of the Magnetics and Cryophysics Branch. The results of this program serve as a basis for subsequent discussions of the space applications of fusion energy, contribute to the understanding of high-temperature plasmas and how to produce them, and advance the state of the art of superconducting magnet technology used in fusion research

  1. Is physical space unique or optional

    International Nuclear Information System (INIS)

    Ekstein, H.; Centre National de la Recherche Scientifique, 13 - Marseille

    1975-02-01

    There are two concepts of the physical space-time. One, S(F), is that of a fixed arena in which events take place. The other S(D), is that of a space-time shaped by events. The second depends on the state (initial conditions) or on the external field, the first does not. The main assertions of the present paper are: 1) the fixed space-time S(F) is neither incompatibles with nor made superfluous, by Einstein's theory. S(F) is experimentally explorable, unique, and probably identical with Minkowski space M. 2) The dynamical space S(D) is largely optional. It can be chosen to be M, but the natural choice is Einstein's pseudo-Riemanian manifold [fr

  2. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  3. How to upload a physical quantum state into correlation space

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki

    2011-01-01

    In the framework of the computational tensor network [Phys. Rev. Lett. 98, 220503 (2007)], the quantum computation is performed in a virtual linear space called the correlation space. It was recently shown [Phys. Rev. Lett. 103, 050503 (2009)] that a state in a correlation space can be downloaded to the real physical space. In this paper, conversely, we study how to upload a state from a real physical space to the correlation space. After showing the impossibility of cloning a state between a real physical space and the correlation space, we propose a simple teleportation-like method of uploading. This method also enables the Gottesman-Chuang gate teleportation trick and entanglement swapping in the virtual-real hybrid setting. Furthermore, compared with the inverse of the downloading method by Cai et al. [Phys. Rev. Lett. 103, 050503 (2009)], which also works to upload, the proposed uploading method has several advantages.

  4. The ATLAS Forward Physics Program

    OpenAIRE

    Royon, C

    2010-01-01

    After a brief review of the approved ATLAS forward detector system we describe the main ATLAS forward physics program. This program currently includes such topics as soft and hard diffraction, double pomeron exchange, central exclusive production, rapidity gap survival, two photon physics, the determination of the total cross-section and the determination of the absolute luminosity A possible high luminosity upgrade program involving new forward proton detectors is also briefly reviewed. This...

  5. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  6. A Prototype for Education Programs using Planetari and Space Centres as Key Tools

    Science.gov (United States)

    Thompson, L; Brumfitt, A.; Honan, P.

    Few hands on space experiments designed for school education allow the students and teachers to participate in the discovery of new science. One particularly experiment which flew on STS107 Columbia was designed specifically to do just this. A key feature of the project was to use a Zoo and a University as key tools in providing through life development and support. The project, "Spiders in Space" ran over a four year period resulted in the student and scientist team publishing over twenty refereed papers on their research findings. Throughout the project teacher and student performance, satisfaction, knowledge, abilities and competency were monitored and critically evaluated. The progressive gathering and feedback was used to improve the program and adapt the learning experience to the student needs and abilities. Based on the experience gained with the Spider Experiment on STS-107, the originating team of scientists and teachers have formulated a structure on which to facilitate the design of similar space education cross discipline projects. The project architecture presented uses as key tools Planetaria, Space science education centres, zoos and Universities in the successful delivery of the programs.The engagement of these key tools facilitates a cost effective and educationally sound support network for thousands of schools to have some ownership of their space program. These key tools provide both continuing professional development for teachers wishing to enter the program and field laboratory support for the student classes engaged in it. The resulting programs are designed to foster collaboration between space research and education on an international scale. The sample new program is presented which demonstrates the application of scientific principles by making students and teachers an integral part of current space research. Issues such as environment, climate control and biological diversity are investigated with a view to providing research outcomes

  7. Physical Fock space of tensionless strings

    CERN Document Server

    Antoniadis, Ignatios; Antoniadis, Ignatios; Savvidy, George

    2004-01-01

    We study the physical Fock space of the tensionless string theory with perimeter action which has pure massless spectrum. The states are classified by the Wigner's little group for massless particles. The ground state contains infinite many massless fields of fixed helicity, the excitation levels realize CSR representations. We demonstrate that the first and the second excitation levels are physical null states.

  8. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  9. A Peer Mentor Tutor Program in Physics

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.; Buehlman, J. D.; Middlecamp, C. H.

    2001-05-01

    The Peer Mentor Tutor (PMT) program in the University of Wisconsin-Madison's Physics Department matches upper level undergraduate physics majors in small groups with students potentially at-risk for having academic trouble with their gateway introductory non-calculus physics course or for feeling isolated at the University. The program enhances students'learning and confidence by providing an emphasis on problem solving, a supportive environment for asking questions, and opportunities for acquiring missing math skills. The students assisted include, among others, returning adults, students of color,students with English as a second language, and students who have never taken physics in high school. The tutors acquire teaching and leadership experience with ongoing training throughout the year. The Physics PMT program is run in collaboration with a similar program in Chemistry. The peer model is also being applied to other science courses at the University of Wisconsin. We will describe the structure of the Physics PMT program and our current efforts to expand the program into a broader Physics Learning Center that may serve multiple purposes and courses.

  10. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  11. Space plasma physics stationary processes

    CERN Document Server

    Hasegawa, Akira

    1989-01-01

    During the 30 years of space exploration, important discoveries in the near-earth environment such as the Van Allen belts, the plasmapause, the magnetotail and the bow shock, to name a few, have been made. Coupling between the solar wind and the magnetosphere and energy transfer processes between them are being identified. Space physics is clearly approaching a new era, where the emphasis is being shifted from discoveries to understanding. One way of identifying the new direction may be found in the recent contribution of atmospheric science and oceanography to the development of fluid dynamics. Hydrodynamics is a branch of classical physics in which important discoveries have been made in the era of Rayleigh, Taylor, Kelvin and Helmholtz. However, recent progress in global measurements using man-made satellites and in large scale computer simulations carried out by scientists in the fields of atmospheric science and oceanography have created new activities in hydrodynamics and produced important new discover...

  12. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  13. Promoting Success in the Physical Sciences: The University of Wisconsin's Physics Learning Program

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.

    2002-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides small group, academic and mentoring support for students enrolled in algebra-based introductory physics courses. Those students accepted into our program are potentially at-risk academically in their physics course or for feeling isolated at the University. They include, among others, students who have not taken high school physics, returning adults, minority students, students with disabilities, and students with English as a second language. A core component of the program is the peer-lead teaching and mentoring groups that match upper level undergraduate physics majors with students potentially at-risk in introductory physics. The tutors receive ongoing training and supervision throughout the year. The program has expanded over the years to include staff tutors, the majority of whom are scientists who seek additional teaching experience. The Physics Peer Mentor Tutor Program is run in collaboration with a similar chemistry program at the University of Wisconsin's Chemistry Learning Center. We will describe our Physics Learning Programs and discuss some of the challenges, successes, and strategies used to work with our tutors and students.

  14. Emerging Space Powers The New Space Programs of Asia, the Middle East, and South America

    CERN Document Server

    Harvey, Brian; Pirard, Théo

    2010-01-01

    This work introduces the important emerging space powers of the world. Brian Harvey describes the origins of the Japanese space program, from rocket designs based on WW II German U-boats to tiny solid fuel 'pencil' rockets, which led to the launch of the first Japanese satellite in 1970. The next two chapters relate how Japan expanded its space program, developing small satellites into astronomical observatories and sending missions to the Moon, Mars, comet Halley, and asteroids. Chapter 4 describes how India's Vikram Sarabhai developed a sounding rocket program in the 1960s. The following chapter describes the expansion of the Indian space program. Chapter 6 relates how the Indian space program is looking ahead to the success of the moon probe Chandrayan, due to launch in 2008, and its first manned launching in 2014. Chapters 7, 8, and 9 demonstrate how, in Iran, communications and remote sensing drive space technology. Chapter 10 outlines Brazil's road to space, begun in the mid-1960's with the launch of th...

  15. Particle physics software aids space and medicine

    CERN Document Server

    Pia, M G

    2002-01-01

    Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science. Geant4 was first used for space applications by ESA in 1999, when ESA and NASA each launched an X-ray telescope. Geant4's extended set of physics models, which handle both electromagnetic and hadronic interactions, can be used to address a range of medical applications from conventional photon-beam radiotherapy to brachytherapy (using radioactive sources), hadron therapy and boron neutron capture therapy. The tools for describing geometries, materials and electromagnetic fields can precisely model diverse real-life configurations.

  16. Green space definition affects associations of green space with overweight and physical activity

    NARCIS (Netherlands)

    Klompmaker, Jochem O.; Hoek, Gerard; Bloemsma, Lizan D.; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H.; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A.H.

    Introduction In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data

  17. Playful Interactions Stimulating Physical Activity in Public Spaces

    DEFF Research Database (Denmark)

    Sturm, Janienke; Bekker, Tilde; Vanden Abeele, Vero

    In this position paper we describe our vision on designing playful interactions to persuade people to be physically active in public spaces. Social embeddedness and playful interaction are the core elements of this vision. We illustrate how our design vision is incorporated into innovative concepts...... to motivate each other to be physically active by creating challenges for each other. Designing playful solutions for public spaces asks for low-threshold solutions that support easy stepping in and stepping out solutions....

  18. Gemini Space Program emblem

    Science.gov (United States)

    1965-01-01

    The insignia of the Gemini space program is a disc of dark blue as a background for a gold Zodiac Gemini symbol. A white star on each of the two vertical curves of the Gemini symbol represent the Gemini twins, Pollux and Castor.

  19. tactusLogic: programming using physical objects

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2011-05-01

    Full Text Available We describe a new programming language that is based on physical elements and especially developed to test the hypothesis that a physical computer programming language is possible. This imperative language is deliberately limited to a few operators...

  20. National Space Weather Program Advances on Several Fronts

    Science.gov (United States)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  1. Connecting the physical and psychosocial space to Sandia's mission

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Glory Ruth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva, Austin Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460. Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.

  2. Neighborhood-based physical activity differences: Evaluation of the effect of health promotion program.

    Directory of Open Access Journals (Sweden)

    Amanda Cristina de Souza Andrade

    Full Text Available The practice of physical activity is an important factor in the prevention of health problems. However, a small portion of the population is physically active. Recent reviews show that physical activity classes in community settings have the potential to increase population levels of physical activity and reduce health inequalities.To evaluate the effect of the Academias da Cidade Program in Belo Horizonte on the practice of physical activity in leisure time (PALT by non-users living near the program centers.We conducted a home-based health survey in Belo Horizonte (2008-2009 with 1,581 adults who were non-users of the program and who lived within a 1,500-meter radius of one active program center (exposed group and two nonoperational centers with sites reserved for their construction (unexposed group. We collected data on PALT levels (≥150 minutes/week, which was measured with the Physical Activity International Questionnaire and analyzed with binary logistic regression using the Generalized Estimating Equations method. The propensity score was used as an adjustment variable to control the potential confusion in the measures of effect of exposure studied.The overall prevalence of the PALT was 26.5% in the exposed group and 22.7% in the unexposed group. The exposed group was more likely to be active in leisure time (OR = 1.05; CI 95%: 1.01-1.10. When considering the interaction between exposed group and distance, individuals in the exposed group who lived less than 500 meters from the program center were more likely to be active in leisure time (OR = 1.18, CI 95%: 1.03-1.35 compared to their counterparts.Promoting physical activity in the community can favorably affect PALT levels among residents, especially those living closest to intervention centers. We believe the Academias da Cidade Program is a promising strategy to facilitate the access to appropriate spaces for the practice of physical activity and contribute to increase the levels

  3. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  4. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine

    2016-01-01

    BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess....

  5. Interactive Physics Programs

    Science.gov (United States)

    Goldstein, Philip

    1973-01-01

    Presents an annotated list of 13 programs which are used to discuss such physical aspects as trajectories, refraction indices, equipotential lines, force fields, computer plots, kinematics applications, Fermat's principle, and measurements of electricity and magnetism knowledge. (CC)

  6. The coronas-F space mission key results for solar terrestrial physics

    CERN Document Server

    2014-01-01

    This volume is the updated and extended translation of the Russian original. It presents the results of observations of solar activity and its effects in the Earth space environment carried out from July 2001 to December 2005 on board the CORONAS-F space mission. The general characteristics of the CORONAS-F scientific payload are provided with a description of the principal experiments. The main results focus on the global oscillations of the Sun (p-modes), solar corona, solar flares, solar cosmic rays, Earth’s radiation belts, and upper atmosphere. The book will be welcomed by students, post-graduates, and scientists working in the field of solar and solar-terrestrial physics. This English edition is supplemented by sections presenting new results of the SPIRIT and TESIS experiments under the CORONAS solar program, as well as from the SONG experiment onboard the CORONAS-F satellite.

  7. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  8. SPACE 365: Upgraded App for Aviation and Space-Related Information and Program Planning

    Science.gov (United States)

    Williams, S.; Maples, J. E.; Castle, C. E.

    2014-12-01

    Foreknowledge of upcoming events and anniversary dates can be extraordinarily valuable in the planning and preparation of a variety of aviation and Space-related educational programming. Alignment of programming with items "newsworthy" enough to attract media attention on their own can result in effective program promotion at low/no cost. Similarly, awareness and avoidance of dates upon which media and public attention will likely be elsewhere can keep programs from being lost in the noise.NASA has created a useful and entertaining app called "SPACE 365" to help supply that foreknowledge. The app contains an extensive database of historical aviation and Space exploration-related events, along with other events and birthdays to provide socio-historical context, as well as an extensive file of present and future space missions, complete with images and videos. The user can search by entry topic category, date, and key words. Upcoming Events allows the user to plan, participate, and engage in significant "don't miss" happenings.The historical database was originally developed for use at the National Air and Space Museum, then expanded significantly to include more NASA-related information. The CIMA team at NASA MSFC, sponsored by the Planetary Science Division, added NASA current events and NASA educational programming information, and are continually adding new information and improving the functionality and features of the app. Features of SPACE 365 now include: NASA Image of the Day, Upcoming NASA Events, Event Save, Do Not Miss, and Ask Dr. Steve functions, and the CIMA team recently added a new start page and added improved search and navigation capabilities. App users can now socialize the Images of the Day via Twitter, Pinterest, Facebook, and other social media outlets.SPACE 365 is available at no cost from both the Apple appstore and GooglePlay, and has helped NASA, NASM, and other educators plan and schedule programming events. It could help you, too!

  9. Space programs in Taiwan

    Science.gov (United States)

    Lee, Lou-Chuang; Chang, Guey-Shin; Ting, Nan-Hong

    2013-10-01

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, &3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload "Imager of Sprites and Upper Atmospheric Lightning (ISUAL)". ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research.

  10. CERN and ESA examine future fundamental physics research in space

    CERN Multimedia

    CERN Press Office. Geneva

    2000-01-01

    A special workshop on Fundamental Physics in Space and related topics will be held at CERN in Geneva from 5 to 7 April 2000. Remarkable advances in technology and progress made in reliability and cost effectiveness of European space missions in recent years have opened up exciting new directions for such research. The workshop provides a forum for sharing expertise gained in high energy physics research with colleagues working in research in space.

  11. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  12. Activating Public Space: How to Promote Physical Activity in Urban Environment

    Science.gov (United States)

    Kostrzewska, Małgorzata

    2017-10-01

    Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation

  13. Ad Hoc Physical Hilbert Spaces in Quantum Mechanics

    Czech Academy of Sciences Publication Activity Database

    Fernandez, F. M.; Garcia, J.; Semorádová, Iveta; Znojil, Miloslav

    2015-01-01

    Roč. 54, č. 12 (2015), s. 4187-4203 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : quantum mechanics * physical Hilbert spaces * ad hoc inner product * singular potentials regularized * low lying energies Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015

  14. Physics of the Cosmos (PCOS) Technology Development Program Overview

    Science.gov (United States)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  15. Impacts on power reactor health physics programs

    International Nuclear Information System (INIS)

    Meyer, B.A.

    1991-01-01

    The impacts on power reactor health physics programs form implementing the revised 10 CFR Part 20 will be extensive and costly. Every policy, program, procedure and training lesson plan involving health physics will require changes and the subsequent retraining of personnel. At each power reactor facility, hundreds of procedures and thousands of people will be affected by these changes. Every area of a power reactor health physics program will be affected. These areas include; ALARA, Respiratory Protection, Exposure Control, Job Coverage, Dosimetry, Radwaste, Effluent Accountability, Emergency Planning and Radiation Worker Training. This paper presents how power reactor facilities will go about making these changes and gives possible examples of some of these changes and their impact on each area of power reactor health physics program

  16. Computer Tutorial Programs in Physics.

    Science.gov (United States)

    Faughn, Jerry; Kuhn, Karl

    1979-01-01

    Describes a series of computer tutorial programs which are intended to help college students in introductory physics courses. Information about these programs, which are either calculus or algebra-trig based, is presented. (HM)

  17. Space Program Annual Report, For Approval

    International Nuclear Information System (INIS)

    TM Schaefer

    2004-01-01

    Knolls Atomic Power Laboratory (KAPL) (lead) has been requested by the Reference to create an unclassified report on the Prometheus Program's Jupiter Icy Moons Orbiter (JIMO) mission. This report is expected to be issued annually and be similar in level of content and scope to the NR Program's annual report ''The United States Naval Nuclear Propulsion Program'' (referred to as the Grey Book). The attachment to this letter provides a draft of the Prometheus Program report for NR review and approval. As stated in the Reference, a March 2005 issuance is planned following a coordinated NR Headquarter's review. The information contained in the attached report was obtained from open literature sources, NASA documents and Naval Reactors Program literature. The photographs contained in the report are drafts and their quality will be improved in the final version of the report. This report has been reviewed by the KAPL and Bettis Space Power Plant Staff and has been concurred with by the Manager of Space Power Plant (MJ Wollman) and the Manager of Bettis Reactor Engineering (C Eshelman)

  18. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  19. Physical Education Preservice Teachers' Perceptions About Preparation for Comprehensive School Physical Activity Programs.

    Science.gov (United States)

    Kwon, Ja Youn; Kulinna, Pamela Hodges; van der Mars, Hans; Koro-Ljungberg, Mirka; Amrein-Beardsley, Audrey; Norris, Jason

    2018-06-01

    Physical educators may be the responsible people for implementing comprehensive school physical activity programs (CSPAPs) in schools. However, it is unclear whether physical education teacher education (PETE) programs provide the relevant learning opportunities to preservice teachers for CSPAP implementation. The purpose of this study was to understand preservice teachers' perspectives and experiences of CSPAP preparation in their PETE programs. Fourteen PETE students from 6 different universities participated and shared their experiences in PETE programs. Data were collected through a short survey, 1 formal interview, field images, document gathering, and an additional survey to follow up the interview. Descriptive statistics, constant comparison, and analytic induction techniques were used to analyze the data. Participants' familiarity with CSPAPs was related to positive opinions about the role of physical educators in CSPAPs. Three common themes were revealed: (a) introducing CSPAP via courses, (b) the lack of programwide hands-on experiences for CSPAP, and (c) limited preparation for social skills with stakeholders. Participants' perceptions of the role of physical educators as physical activity leaders had been expanded during their training. The participating PETE programs integrated CSPAP components in the existing courses to introduce CSPAP, while there was a lack of sufficient practical opportunities to learn how to implement (aspects of) a CSPAP. Participants felt they were insufficiently prepared to promote and implement expanded physical activity programming beyond physical education classes in schools. The majority of the PETE preservice teachers wanted more practical CSPAP experiences in their programs.

  20. Can Programmed or Self-Selected Physical Activity Affect Physical Fitness of Adolescents?

    Directory of Open Access Journals (Sweden)

    Neto Cláudio F.

    2014-12-01

    Full Text Available The aim of this study was to verify the effects of programmed and self-selected physical activities on the physical fitness of adolescents. High school adolescents, aged between 15 and 17 years, were divided into two experimental groups: a a self-selected physical activity group (PAS with 55 students (aged 15.7 ± 0.7 years, who performed physical activities with self-selected rhythm at the following sports: basketball, volleyball, handball, futsal and swimming; and b a physical fitness training group (PFT with 53 students (aged 16.0 ± 0.7 years, who performed programmed physical fitness exercises. Both types of activity were developed during 60 min classes. To assess physical fitness the PROESP-BR protocol was used. The statistical analysis was performed by repeated measures ANOVA. The measurements of pre and post-tests showed significantly different values after PFT in: 9 minute running test, medicine ball throw, horizontal jump, abdominal endurance, running speed and flexibility. After PAS differences were detected in abdominal endurance, agility, running speed and flexibility. The intervention with programmed physical activity promoted more changes in the physical abilities; however, in the self-selected program, agility was improved probably because of the practice of sports. Therefore, physical education teachers can use PFT to improve cardiorespiratory fitness and power of lower and upper limbs and PAS to improve agility of high school adolescents.

  1. Can programmed or self-selected physical activity affect physical fitness of adolescents?

    Science.gov (United States)

    Neto, Cláudio F; Neto, Gabriel R; Araújo, Adenilson T; Sousa, Maria S C; Sousa, Juliana B C; Batista, Gilmário R; Reis, Victor M M R

    2014-09-29

    The aim of this study was to verify the effects of programmed and self-selected physical activities on the physical fitness of adolescents. High school adolescents, aged between 15 and 17 years, were divided into two experimental groups: a) a self-selected physical activity group (PAS) with 55 students (aged 15.7 ± 0.7 years), who performed physical activities with self-selected rhythm at the following sports: basketball, volleyball, handball, futsal and swimming; and b) a physical fitness training group (PFT) with 53 students (aged 16.0 ± 0.7 years), who performed programmed physical fitness exercises. Both types of activity were developed during 60 min classes. To assess physical fitness the PROESP-BR protocol was used. The statistical analysis was performed by repeated measures ANOVA. The measurements of pre and post-tests showed significantly different values after PFT in: 9 minute running test, medicine ball throw, horizontal jump, abdominal endurance, running speed and flexibility. After PAS differences were detected in abdominal endurance, agility, running speed and flexibility. The intervention with programmed physical activity promoted more changes in the physical abilities; however, in the self-selected program, agility was improved probably because of the practice of sports. Therefore, physical education teachers can use PFT to improve cardiorespiratory fitness and power of lower and upper limbs and PAS to improve agility of high school adolescents.

  2. Building an undergraduate physics program with Learning Assistants

    Science.gov (United States)

    Price, Edward

    2013-04-01

    In 2007, the CSUSM Physics Department began offering a B.S. in Applied Physics, its first physics bachelors degree program. The program has grown from 11 majors in 2008 to over 80 in 2012, due in part to recruiting students from local high schools and community colleges. More broadly, because most CSUSM students come from the local region, the longer-term health of the Department is coupled with the vitality and strength of local high school physics education. In addition, establishing a new physics degree required curriculum development and offered the opportunity to incorporate recent innovations in physics education when developing courses. A Learning Assistants (LA) Program, established by the Department in 2008, has been a critical component in these efforts to recruit students, build local educational networks, and implement innovative curricula. In an LA Program, undergraduate Learning Assistants assist faculty in class, meet regularly with the course instructor, and participate in a weekly seminar on teaching and learning, which provides guidance on effective instruction and an opportunity to reflect on their experiences in the classroom. The LA program promotes course transformation, improved student learning, and teacher recruitment. This talk will describe the CSUSM LA Program and its role in support of our growing applied physics degree program.

  3. The Space-Time Asymmetry Research (STAR) program

    Science.gov (United States)

    Buchman, Sasha

    Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment

  4. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  5. Centralising Space: The Physical Education and Physical Activity Experiences of South Asian, Muslim Girls

    Science.gov (United States)

    Stride, Annette

    2016-01-01

    This paper explores the physical education (PE) and physical activity experiences of a group of South Asian, Muslim girls, a group typically marginalised in PE and physical activity research. The study responds to ongoing calls for research to explore across different spaces in young people's lives. Specifically, I draw on a…

  6. Space programs in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Lou-Chuang [Academia Sinica, Institute of Earth Sciences, 128, Sec. 2, Academia Road, Nangang, Taipei 115, Taiwan (China); Institute of Space Science, National Central University, 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (China); Chang, Guey-Shin, E-mail: gschang@nspo.narl.org.tw [National Space Organization, 8F, 9 Prosperity 1st Rd., Hsinchu Science Park, Hsinchu 30078, Taiwan (China); Ting, Nan-Hong [National Applied Research Laboratories, 3F, 106, Sec. 2, Hepin East Rd., Taipei 10622, Taiwan (China)

    2013-10-15

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, and 3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload “Imager of Sprites and Upper Atmospheric Lightning (ISUAL)”. ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research.

  7. Space programs in Taiwan

    International Nuclear Information System (INIS)

    Lee, Lou-Chuang; Chang, Guey-Shin; Ting, Nan-Hong

    2013-01-01

    Taiwan's current and future space programs are briefly introduced in this paper. The National Space Organization (NSPO) in Taiwan has successfully carried out three satellite programs (FORMOSAT-1, 2, and 3) since its establishment in 1991. FORMOSAT-1 is a scientific satellite performing three scientific experiments for measuring the density, velocity and temperature of ionospheric plasmas, taking the ocean color image, and conducting Ka-band communication experiments. Equipped with a 2m ground resolution remote sensing instrument, FORMOSAT-2 operates in a sun-synchronous orbit with revisit time equal to one day. This unique feature of the daily revisit capability is significantly useful for post disaster assessment and environmental monitoring. FORMOSAT-2 also carries a scientific payload “Imager of Sprites and Upper Atmospheric Lightning (ISUAL)”. ISUAL provides the world's first long-term satellite observations on the lighting phenomenon in the earth's upper atmosphere. FORMOSAT-3 is a constellation of six micro-satellites to collect atmospheric and ionospheric data for weather prediction and for climate, ionosphere, and geodesy research. FORMOSAT-3 has demonstrated the ability to significantly increase the accuracy of weather forecasting by utilizing the GPS Radio Occultation (GPS-RO) technique. Currently, NSPO is pursuing the follow-on space missions of FORMOSAT-5 and FORMOSAT-7. FORMOSAT-5 will be the first to utilize a CMOS detector on a high-resolution earth-observation camera. FORMOSAT-7 is a joint mission of Taiwan/US to deploy a 12-satellite constellation operational system to provide dense and timely GNSS RO data to the global communities for real-time weather forecast as well as space science research

  8. The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, E. N.; Nash, R. L.

    2007-09-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the "First Nobel Prize for Space Exploration." Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, "The COBE results provided increased support for the Big Bang scenario for the origin of the Universe. These measurements also marked the inception of cosmology as a precise science." NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark. We have organized this lengthy paper into nine, fairly independent sections for ease of reading:1."Michael Jordan or Mia Hamm" - Introduction and Background2."Connecting the Dots Between the Heavens and Earth" - From Newton to Bethe3."From Cosmic Noise to the Big Bang" - The First Nobel

  9. Highlights from the LHCb ion physics program

    International Nuclear Information System (INIS)

    Schmelling, Michael

    2017-01-01

    Following the successful participation of LHCb in the 2013 proton-lead run of the LHC, in 2015 the collaboration decided to further extend its physics program to study also lead-lead collisions and fixed target interactions. These proceedings discuss the physics reach of the detector and the first results from the LHCb ion physics and fixed target program. (paper)

  10. Design of particle bed reactors for the space nuclear thermal propulsion program

    International Nuclear Information System (INIS)

    Ludewig, H.; Powell, J.R.; Todosow, M.; Maise, G.; Barletta, R.; Schweitzer, D.G.

    1996-01-01

    This paper describes the design for the Particle Bed Reactor (PBR) that was considered for the Space Nuclear Thermal Propulsion (SNTP) Program. The methods of analysis and their validation are outlined first. Monte Carlo methods were used for the physics analysis, several new algorithms were developed for the fluid dynamics, heat transfer and transient analysis; and commercial codes were used for the stress analysis. We carried out a critical experiment, prototypic of the PBR to validate the reactor physics; blowdown experiments with beds of prototypic dimensions were undertaken to validate the power-extraction capabilities from particle beds. In addition, materials and mechanical design concepts for the fuel elements were experimentally validated. (author)

  11. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  12. Technique for forcing high Reynolds number isotropic turbulence in physical space

    Science.gov (United States)

    Palmore, John A.; Desjardins, Olivier

    2018-03-01

    Many common engineering problems involve the study of turbulence interaction with other physical processes. For many such physical processes, solutions are expressed most naturally in physical space, necessitating the use of physical space solutions. For simulating isotropic turbulence in physical space, linear forcing is a commonly used strategy because it produces realistic turbulence in an easy-to-implement formulation. However, the method resolves a smaller range of scales on the same mesh than spectral forcing. We propose an alternative approach for turbulence forcing in physical space that uses the low-pass filtered velocity field as the basis of the forcing term. This method is shown to double the range of scales captured by linear forcing while maintaining the flexibility and low computational cost of the original method. This translates to a 60% increase of the Taylor microscale Reynolds number on the same mesh. An extension is made to scalar mixing wherein a scalar field is forced to have an arbitrarily chosen, constant variance. Filtered linear forcing of the scalar field allows for control over the length scale of scalar injection, which could be important when simulating scalar mixing.

  13. Physics of untied rotating space elevators

    Science.gov (United States)

    Knudsen, Steven; Golubović, Leonardo

    2015-12-01

    We explore fundamental aspects of the physics of a novel class of dynamical systems, Rotating Space Elevators (RSE) (L. Golubović, S. Knudsen, Europhys. Lett. 86, 34001 (2009) and S. Knudsen, L. Golubović, Eur. Phys. J. Plus 129, 242 (2014)). An RSE is a loopy string reaching deep into outer space. The floppy RSE loop executes a double rotating motion due to which the objects sliding along the RSE string (climbers) can be transported far away from the Earth's surface without using internal engines or propulsion. By extensive numerical simulations and analytic calculations, this study addresses an interesting and provocative question at the very heart of the RSE physics: What will happen if one unties the rotating space elevator from the Earth? We find that the untied RSE exhibits rich nonlinear dynamics. In particular, strikingly, we find that the untied RSE may still behave as if it were tied to the planet. Such a quasi-tied yet untied RSE remains close to the Earth and exhibits persistent shape and enduring double rotating motion. Moreover, the climbers sliding along such a quasi-tied RSE move in much the same way as they do along a tied RSE. Under some conditions however we find that the untied RSE may undergo an instability leading it to a dynamical state in which the RSE hops well above the Earth surface. By changing the untied RSE parameters, the maximum height reached during hopping may be made to diverge. Such an untied RSE unbinds from the Earth to infinity, i.e., to interplanetary space.

  14. Space-time structure and the origin of physical law

    International Nuclear Information System (INIS)

    Green, M.A.

    1980-01-01

    In the first part of this theses the author adopts a traditional world view, with space-time a topologically simple geometrical manifold, matter being represented by smooth classical fields, and space a Riemannian submanifold of space-time. It is shown how to characterize the space-time geometry in terms of fields defined on three-dimensional space. Accepting a finite number of the fields induced on space as independent initial data, a procedure is given for constructing dynamical and constraint equations which will propagate these fields forward in time. When the initial data are restricted to include only the hypersurface metric and the extrinsic curvature, the resulting equations combine to form the Einstein gravitational field equations with the cosmological term. The synthesis of gravitational and quantum physics is approached by proposing that the objective world underlying the perceived world is a four-dimensional topological manifold w, with no physically significant field structure and an unconstrianed and complex global topology. Conventional space-time is then a topologically simple replacement manifold for w. A preliminary outline of the correspondence is presented, based on a similarity between a natural graphical representation of 2 and the Feynman graphs of quantum field theory

  15. Space Drive Physics: Introduction and Next Steps

    Science.gov (United States)

    Millis, M. G.

    Research toward the visionary goal of propellantless ``space drives'' is introduced, covering key physics issues and a listing of roughly 2-dozen approaches. The targeted advantage of a space drive is to circumvent the propellant constraints of rockets and the maneuvering limits of light sails by using the interactions between the spacecraft and its surrounding space for propulsion. At present, the scientific foundations from which to engineer a space drive have not been discovered and, objectively, might be impossible. Although no propulsion breakthroughs appear imminent, the subject has matured to where the relevant questions have been broached and are beginning to be answered. The critical make-break issues include; conservation of momentum, uncertain sources of reaction mass, and the net-external thrusting requirement. Note: space drives are not necessarily faster- than-light devices. Speed limits are a separate, unanswered issue. Relevant unsolved physics includes; the sources and mechanisms of inertial frames, coupling of gravitation and electromagnetism, and the nature of the quantum vacuum. The propulsion approaches span mostly stages 1 through 3 of the scientific method (defining the problem, collecting data, and articulating hypotheses), while some have matured to stage 4 (testing hypotheses). Nonviable approaches include `stiction drives,' `gyroscopic antigravity,' and `lifters.' No attempt is made to gauge the prospects of the remaining approaches. Instead, a list of next-step research questions is derived from the examination of these goals, unknowns, and concepts.

  16. Creating Inclusive Physical Activity Spaces: The Case of Body-Positive Yoga.

    Science.gov (United States)

    Pickett, Andrew C; Cunningham, George B

    2017-09-01

    Within the modern cultural climate, those in larger bodies face high levels of weight stigma, particularly in sport and physical activity spaces, which serves as a strong barrier to their participation. However, given the strong link between physical activity and general health and well-being for participants, it is important to explore strategies that encourage participation of these individuals. Thus, the current research examined strategies that physical activity instructors use to develop inclusive exercise spaces for all body sizes. This study employed a series of semistructured qualitative interviews (n = 9) with instructors of body-inclusive yoga classes to explore the ways in which they encourage participation for those in larger bodies. Emergent themes from the current study suggested support for 6 factors for creating body-inclusive physical activity spaces: authentic leadership, a culture of inclusion, a focus on health, inclusive language, leader social activism, and a sense of community. This study revealed that leaders must intentionally cultivate inclusion in their spaces to encourage those in nonconforming bodies to participate. These findings have important health and management implications for the sport and physical activity context and provide a basic outline of practical strategies that practitioners can use to foster inclusion in their spaces.

  17. An Astrosocial Observation: The Nobel Connection to the Space Program

    Science.gov (United States)

    Ng, Edward W.; Nash, Rebecca L.

    2007-01-01

    The 2006 Nobel Prize in Physics was heralded by some in the press as the 'First Nobel Prize for Space Exploration.' Indeed the Nobel Foundation's announcement specifically cited the Cosmic Background Explorer (COBE) satellite launched by NASA in 1989 as the prime-enabling instrument It elaborated further, 'The COBE results provided increased support for the Big Bang scenario for the origin of the Universe... These measurements also marked the inception of cosmology as a precise science.' NASA also seized this unique moment of fame to honor its favorite son, the first Nobel scientist of the agency, John Mather, of the Goddard Space Flight Center, who shared the honor with Professor G. Smoot of the University of California, the Principal Investigator of the COBE measurement. It is without any dispute that the Nobel Prize is the highest scientific honor and best-known award of admiration and inspiration to the public and educational sectors. Unfortunately in the American culture, youths are mostly exposed to success icons in the sports, entertainment, and business domains. Science icons (of either gender) are largely unknown to them. We sincerely hope that success stories of Nobel scientists will become part of the learning curriculum in the K-16 educational experience. In this paper, we examine the pedigree of a number of Nobel Prizes over the years, and discuss their interactions with, and connections to, the space program. It is advantageous for the context of educational and public outreach to see such connections, because in a number of public surveys, one important customer expectation for the space program is the search for new knowledge, to which the Nobel Prize is a prominent benchmark.

  18. The chinese space program as the image instrument of the great China

    Directory of Open Access Journals (Sweden)

    Daniel Lemus Delgado

    2012-10-01

    Full Text Available This article analyzes the Chinese space program and how the bureaucratic elite acts to convert China as a leading nation in international arena. This article assumes that, beyond the scientific advances that space exploration has in multiple fields of knowledge, the support to the space program depicts a way to project a positive image of China. This image is a China rising in the international community. The author discusses how space missions and the discourse around the space program strengthen national pride. Thus, China’s space program projects the image of a Greater China. The article concludes that the space program shows that China is modernizing rapidly and is able to be a world power.

  19. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  20. Aligning Pedagogy with Physical Learning Spaces

    Science.gov (United States)

    van Merriënboer, Jeroen J. G.; McKenney, Susan; Cullinan, Dominic; Heuer, Jos

    2017-01-01

    The quality of education suffers when pedagogies are not aligned with physical learning spaces. For example, the architecture of the triple-decker Victorian schools across England fits the information transmission model that was dominant in the industrial age, but makes it more difficult to implement student-centred pedagogies that better fit a…

  1. Nuclear physics program plan

    International Nuclear Information System (INIS)

    1985-11-01

    The nuclear physics program objectives, resources, applications and implications of scientific opportunities are presented. The scope of projected research is discussed in conjunction with accelerator facilities and manpower. 25 figs., 2 tabs

  2. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F.; Damiani, R. (Compiler)

    2017-01-01

    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College.

  3. 41 CFR 105-8.152 - Program accessibility: Assignment of space.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Program accessibility: Assignment of space. 105-8.152 Section 105-8.152 Public Contracts and Property Management Federal Property...-8.152 Program accessibility: Assignment of space. (a) When GSA assigns or reassigns space to an...

  4. HAL/S programmer's guide. [for space shuttle program

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.

  5. HAL/SM language specification. [programming languages and computer programming for space shuttles

    Science.gov (United States)

    Williams, G. P. W., Jr.; Ross, C.

    1975-01-01

    A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.

  6. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  7. Towards testing quantum physics in deep space

    Science.gov (United States)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  8. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  9. Distance to green space and physical activity: a danish national representative survey

    DEFF Research Database (Denmark)

    Toftager, Mette; Ekholm, Ola; Schipperijn, Jasper

    2011-01-01

    This study examines the relationship between distance to green space and the level of physical activity among the population of Denmark. In addition, the relationship between distance to green space and obesity is investigated.......This study examines the relationship between distance to green space and the level of physical activity among the population of Denmark. In addition, the relationship between distance to green space and obesity is investigated....

  10. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  11. The effectiveness of worksite physical activity programs on physical activity, physical fitness, and health

    NARCIS (Netherlands)

    Proper, K.I.; Koning, M.; Beek, A.J. van der; Hildebrandt, V.H.; Bosscher, R.J.; Mechelen, W. van

    2003-01-01

    Objective: To critically review the literature with respect to the effectiveness of worksite physical activity programs on physical activity, physical fitness, and health. Data Sources: A search for relevant English-written papers published between 1980 and 2000 was conducted using MEDLINE, EMBASE,

  12. The Evaluation of Physical Space Quality in Education Buildings in Regard to User Satisfaction

    Directory of Open Access Journals (Sweden)

    Filiz ŞENKAL SEZER

    2016-08-01

    Full Text Available In this study, physical space quality of two different engineering department buildings in Uludag University Gorukle Campus, Bursa, Turkey are analyzed in regard to user evaluations about the physical space quality. In the analysis of these evaluations, criteria about physical space quality are predetermined by the authors. In the method of the study, the below phases are implemented. In first, the literature review about the physical space quality is done and then a questionnaire is prepared with regard to the key themes in literature review in order to evaluate the user satisfaction. The  key themes in user satisfaction questionnaire is accessibility, ergonomics, thermal comfort, audible comfort, visual comfort, inner space air quality, service spaces, socialization. The aim of this study is first to understand which criteria are important for the students and then to improve the physical space quality in regard to the dissatisfaction.

  13. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  14. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  15. IOTA (Integrable Optics Test Accelerator): facility and experimental beam physics program

    Science.gov (United States)

    Antipov, S.; Broemmelsiek, D.; Bruhwiler, D.; Edstrom, D.; Harms, E.; Lebedev, V.; Leibfritz, J.; Nagaitsev, S.; Park, C. S.; Piekarz, H.; Piot, P.; Prebys, E.; Romanov, A.; Ruan, J.; Sen, T.; Stancari, G.; Thangaraj, C.; Thurman-Keup, R.; Valishev, A.; Shiltsev, V.

    2017-03-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. The physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  16. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    International Nuclear Information System (INIS)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; Edstrom, Dean; Harms, Elvin

    2017-01-01

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning and research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.

  17. SP-100 Program: space reactor system and subsystem investigations

    International Nuclear Information System (INIS)

    Harty, R.B.

    1983-01-01

    For a space reactor power system, a comprehensive safety program will be required to assure that no undue risk is present. This report summarizes the nuclear safety review/approval process that will be required for a space reactor system. The documentation requirements are presented along with a summary of the required contents of key documents. Finally, the aerospace safety program conducted for the SNAP-10A reactor system is summarized. The results of this program are presented to show the type of program that can be expected and to provide information that could be usable in future programs

  18. Fusion programs in Applied Plasma Physics

    International Nuclear Information System (INIS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (a) Applied Plasma Physics Theory Program, (b) Alpha Particle Diagnostic, (c) Edge and Current Density Diagnostic, and (d) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (rf). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described in the following sections

  19. Programed Instruction in Health Education and Physical Education.

    Science.gov (United States)

    Mayshark, Cyrus; Evaul, Thomas W.

    This book contains eight chapters by several different authors, most of them professors of health or physical education. Focus is on applications and implications of programed instruction for professionals in the health and physical education fields. "Overview of Programed Instruction" defines programing, its development and implications for…

  20. Successful Physical Activity Programming for Students with Autism.

    Science.gov (United States)

    Schultheis, Susan F.; Boswell, Boni B.; Decker, Jim

    2000-01-01

    This article describes Success in Physical Activity, a program for students with autism. The program, based on adaptations of the Treatment and Education of Autistic and Related Communications-Handicapped Children (TEACCH) recreational structure program, focuses on two areas: physical fitness and motor ability. (Contains seven references.)…

  1. The Dynamic Family Home: a qualitative exploration of physical environmental influences on children's sedentary behaviour and physical activity within the home space.

    Science.gov (United States)

    Maitland, Clover; Stratton, Gareth; Foster, Sarah; Braham, Rebecca; Rosenberg, Michael

    2014-12-24

    Recent changes in home physical environments, such as decreasing outdoor space and increasing electronic media, may negatively affect health by facilitating sedentariness and reducing physical activity. As children spend much of their time at home they are particularly vulnerable. This study qualitatively explored family perceptions of physical environmental influences on sedentary behaviour and physical activity within the home space. Home based interviews were conducted with 28 families with children aged 9-13 years (total n = 74 individuals), living in Perth, Australia. Families were stratified by socioeconomic status and selected to provide variation in housing. Qualitative methods included a family interview, observation and home tour where families guided the researcher through their home, enabling discussion while in the physical home space. Audio recordings were transcribed verbatim and thematically analysed. Emergent themes related to children's sedentariness and physical activity included overall size, space and design of the home; allocation of home space; equipment within the home space; perceived safety of the home space; and the changing nature of the home space. Families reported that children's activity options were limited when houses and yards were small. In larger homes, multiple indoor living rooms usually housed additional sedentary entertainment options, although parents reported that open plan home layouts could facilitate monitoring of children's electronic media use. Most families reported changing the allocation and contents of their home space in response to changing priorities and circumstances. The physical home environment can enhance or limit opportunities for children's sedentary behaviour and physical activity. However, the home space is a dynamic ecological setting that is amenable to change and is largely shaped by the family living within it, thus differentiating it from other settings. While size and space were considered

  2. Interkosmos the Eastern bloc's early space program

    CERN Document Server

    Burgess, Colin

    2016-01-01

    This book focuses on the Interkosmos program, which was formed in 1967, marking a fundamentally new era of cooperation by socialist countries, led by the Soviet Union, in the study and exploration of space. The chapters shed light on the space program that was at that time a prime outlet for the Soviet Union's aims at becoming a world power. Interkosmos was a highly publicized Russian space program that rapidly became a significant propaganda tool for the Soviet Union in the waning years of communism. Billed as an international “research-cosmonaut” imperative, it was also a high-profile means of displaying solidarity with the nine participating Eastern bloc countries. Those countries contributed pilots who were trained in Moscow for week-long “guest” missions on orbiting Salyut stations. They did a little subsidiary science and were permitted only the most basic mechanical maneuvers. In this enthralling new book, and following extensive international research, the authors fully explore ...

  3. An overview of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite

    International Nuclear Information System (INIS)

    Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Early in 1992 the idea of purchasing a Russian designed and fabricated space reactor power system and integrating it with a US designed satellite went from fiction to reality with the purchase of the first two Topaz II reactors by the Strategic Defense Initiative Organization (now the Ballistic Missile Defense Organization (BMDO)). The New Mexico Alliance was formed to establish a ground test facility in which to perform nonnuclear systems testing of the Topaz II, and to evaluate the Topaz II system for flight testing with respect to safety, performance, and operability. In conjunction, SDIO requested that the Applied Physics Laboratory in Laurel, MD propose a mission and design a satellite in which the Topaz II could be used as the power source. The outcome of these two activities was the design of the Nuclear Electric Propulsion Space Test Program (NEPSTP) satellite which combines a modified Russian Topaz II power system with a US designed satellite to achieve a specified mission. Due to funding reduction within the SDIO, the Topaz II flight program was postponed indefinitely at the end of Fiscal year 1993. The purpose of this paper is to present an overview of the NEPSTP mission and the satellite design at the time the flight program ended

  4. Remote Sensing and Imaging Physics

    Science.gov (United States)

    2012-03-07

    Program Manager AFOSR/RSE Air Force Research Laboratory Remote Sensing and Imaging Physics 7 March 2012 Report Documentation Page Form...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Remote Sensing And Imaging Physics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Imaging of Space Objects •Information without Imaging •Predicting the Location of Space Objects • Remote Sensing in Extreme Conditions •Propagation

  5. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  6. Ongoing Space Physics - Astrophysics Connections

    OpenAIRE

    Eichler, David

    2005-01-01

    I review several ongoing connections between space physics and astrophysics: a) Measurements of energetic particle spectra have confirmed theoretical prediction of the highest energy to which shocks can accelerate particles, and this has direct bearing on the origin of the highest energy cosmic rays. b) Mass ejection in solar flares may help us understand photon ejection in the giant flares of magnetar outbursts. c) Measurements of electron heat fluxes in the solar wind can help us understand...

  7. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  8. Armstrong Laboratory Space Visual Function Tester Program

    Science.gov (United States)

    Oneal, Melvin R.; Task, H. Lee; Gleason, Gerald A.

    1992-01-01

    Viewgraphs on space visual function tester program are presented. Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth. Duntley space vision experiment, USSR space vision experiments, and visual function testers are described.

  9. Status and hadron physics program of J-PARC

    Directory of Open Access Journals (Sweden)

    Ozawa K.

    2012-12-01

    Full Text Available Current status and hadron physics programs of Japan Accelerator Research Complex (J-PARC are reported. Several physics programs are proposed at the Hadron Hall of J-PARC. Strangeness and hyper nuclear physics is undertaken at K1.8 beam line. Study of meson nucleon bound system is underway at K1.8BR beam line. After the earthquake, all beam line components and experimental setups are reassembled. Protons are successfully accelerated in the last December and hadron physics experiments are resumed in this February. In this manuscript, status of on-going experiment and near future plans of such physics programs are reported. Especially, a new beam line for a primary protons and high momentum secondary particles is proposed to study meson properties in nucleus.

  10. Semantic e-Science in Space Physics - A Case Study

    Science.gov (United States)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  11. Effect of programmed physical activity on the physical fitness of adolescent students

    OpenAIRE

    Edson Dos Santos Farias; Wellington Roberto Gomes Carvalho; Ezequiel Moreira Gonçalves; Gil Guerra Guerra-Júnior

    2010-01-01

    The objective of this study was to determine the influence of programmed physical activity on the physical fitness of adolescent students over one school year. The sample consisted of 383 students (age range: 10 to 14 years) divided into two groups: 186 cases (96 boys and 90 girls) and 197 controls (108 boys and 89 girls). An intervention study with pre- and post-tests was conducted, in which the intervention group was submitted to programmed physical activity, while the control group underwe...

  12. Physics issues of a proposed program, SPIRIT

    International Nuclear Information System (INIS)

    Ji, Hantao; Yamada, Masaaki

    2000-01-01

    Physics issues of the proposed program, SPIRIT (Self-organized Plasma with Induction, Reconnection, and Induction Techniques) are discussed. The main purpose of this program is to explore the physics of global stability and sustainment of compact toroids, including FRC (field reversed configuration) as well as low-aspect-ratio RFP (reversed field pinch), spheromak and spherical torus. (author)

  13. Medical Applications of the PHITS Code (3): User Assistance Program for Medical Physics Computation.

    Science.gov (United States)

    Furuta, Takuya; Hashimoto, Shintaro; Sato, Tatsuhiko

    2016-01-01

    DICOM2PHITS and PSFC4PHITS are user assistance programs for medical physics PHITS applications. DICOM2PHITS is a program to construct the voxel PHITS simulation geometry from patient CT DICOM image data by using a conversion table from CT number to material composition. PSFC4PHITS is a program to convert the IAEA phase-space file data to PHITS format to be used as a simulation source of PHITS. Both of the programs are useful for users who want to apply PHITS simulation to verification of the treatment planning of radiation therapy. We are now developing a program to convert dose distribution obtained by PHITS to DICOM RT-dose format. We also want to develop a program which is able to implement treatment information included in other DICOM files (RT-plan and RT-structure) as a future plan.

  14. The extensions of space-time. Physics in the 8-dimensional homogeneous space D = SU(2,2)/K

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-07-01

    The Minkowski space-time is only a boundary of a bigger homogeneous space of the conformal group. The conformal group is the symmetry group of our most fundamental massless wave equations. These extended groups and spaces have many remarkable properties and physical implications. (author). 36 refs

  15. A journey from particle physics to outer space

    CERN Document Server

    2006-01-01

    Particle physics can take you a long way - even into space! Astronaut Christer Fuglesang recently jetted into orbit on his first space mission, 14 years after he left CERN to join the European Space Agency. Christer Fuglesang near the launch pad area at NASA's Kennedy Space Center, Florida, in preparation for the STS-116 mission. (photo: ESA, S.Corvaja)Christer Fuglesang in space (photo: NASA). In CERN's years of efforts to explore the fundamentals of the Universe, it has not yet sent anyone beyond planet Earth. On 10 December 2006, Christer Fuglesang boldly went where no CERN scientist had ever gone before. The 49-year-old ex-CERN physicist-turned-astronaut embarked on his first mission on board space shuttle Discovery. Originally from Stockholm, he also had the honour of being the first Swedish national in space. Christer Fuglesang is an astronaut with the European Space Agency (ESA), a partner of the International Space Station (ISS) - a research facility that is being assembled in orbit around the Earth...

  16. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  17. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    International Nuclear Information System (INIS)

    Schulze, N.R.; Roth, J.R.

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology

  18. Benchmarking processes for managing large international space programs

    Science.gov (United States)

    Mandell, Humboldt C., Jr.; Duke, Michael B.

    1993-01-01

    The relationship between management style and program costs is analyzed to determine the feasibility of financing large international space missions. The incorporation of management systems is considered to be essential to realizing low cost spacecraft and planetary surface systems. Several companies ranging from large Lockheed 'Skunk Works' to small companies including Space Industries, Inc., Rocket Research Corp., and Orbital Sciences Corp. were studied. It is concluded that to lower the prices, the ways in which spacecraft and hardware are developed must be changed. Benchmarking of successful low cost space programs has revealed a number of prescriptive rules for low cost managements, including major changes in the relationships between the public and private sectors.

  19. Space for Ambitions: The Dutch Space Program in Changing European and Transatlantic Contexts

    NARCIS (Netherlands)

    Baneke, D.M.

    2014-01-01

    Why would a small country like the Netherlands become active in space? The field was monopolized by large countries with large military establishments, especially in the early years of spaceflight. Nevertheless, the Netherlands established a space program in the late 1960s. In this paper I will

  20. NASA Space Flight Program and Project Management Handbook

    Science.gov (United States)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  1. A Thriving and Innovative Undergraduate Experiential Physics Program

    Science.gov (United States)

    Roughani, Bahram

    2013-03-01

    The thriving physics program at Kettering University has experienced a three-fold increase in the number of physics majors since 2002. Our unique physics program requires students alternate between on-campus academic terms and off-campus co-op work terms on a three months rotation format to complete their degree in 4.5 years that includes summer as either school or co-op term. Students complete a minimum of five terms (~15 months) of cooperative work terms, and two terms (~6 months) of senior thesis work. The IP of the thesis work done at a co-op site belongs to the company. This has attracted co-op sponsors for our program by removing the IP concerns. The cooperative and experiential education part of our program is required for graduation, without any credits assigned to it. At the end of every co-op term students' work performance is evaluated by their co-op supervisor, which should match expected performance standards. In addition to co-op and thesis, our programs include a senior capstone design project course, concentrations within physics (Acoustics, Optics, and Materials), a required technical sequence outside physics, as well as entrepreneurship across curriculum. The success of our student securing the highest paid jobs for undergraduate physics majors in the nation plus their success in graduate studies are the main ``Pull Factors'' that has lead to three fold increase the physics majors since 2002.

  2. Hadron physics programs at J-PARC

    Directory of Open Access Journals (Sweden)

    Naruki M.

    2014-06-01

    Full Text Available The J-PARC Hadron Facility is designed as a multipurpose experimental facility for a wide range of particle and nuclear physics programs, aiming to provide the world highest intensity secondary beams. Currently three secondary beam lines; K1.8, K1.8BR and KL together with the test beam line named K1.1BR come into operation. Various experimental programs are proposed at each beam line and some of them have been performed so far. As the first experiment at the J-PARC Hadron Facility, the Θ+ pentaquark was searched for via the pion-induced hadronic reaction in the autumn of 2010. Also experimental programs to search for new hadronic states such as K−pp have started to perform a physics run. The current status and near future programs are introduced.

  3. Taiwan Space Programs

    Science.gov (United States)

    Liu, Jann-Yenq

    Taiwan space programs consist of FORMOSAT-1, -2, and -3, sounding rockets, and international cooperation. FORMOSAT-1, a low-earth-orbit (LEO) scientific experimental satellite, was launched on January 26, 1999. It circulates with an altitude of 600 km and 35 degree inclination around the Earth every 97 minutes, transmitting collected data to Taiwan's receiving stations approximately six times a day. The major mission of FORMOSAT-1 includes three scientific experiments for measuring the effects of ionospheric plasma and electrodynamics, taking the ocean color image and conducting Ka-band communication experiment. The FORMOSAT- 1 mission was ended by June 15, 2004. FORMOSAT-2, launched on May 21, 2004 onto the Sun-synchronous orbit located at 891 km above ground. The main mission of FORMOSAT-2 is to conduct remote sensing imaging over Taiwan and on terrestrial and oceanic regions of the entire earth. The images captured by FORMOSAT-2 during daytime can be used for land distribution, natural resources research, environmental protection, disaster prevention and rescue work etc. When the satellite travels to the eclipsed zone, it observes natural phenomena of lighting in the upper atmosphere. FORMOSAT-3 is an international collaboration project between Taiwan and the US to develop advanced technology for the real-time monitoring of the global climate. This project is also named Constellation Observing System for Meteorology, Ionosphere and Climate, or FORMOSAT-3/COSMIC for short. Six micro-satellites were launched on 15 April 2007 and eventually placed into six different orbits at 700 800 kilometer above the earth ground. These satellites orbit around the earth to form a LEO constellation that receives signals transmitted by the 24 US GPS satellites. The satellite observation covers the entire global atmosphere and ionosphere, providing over 2,500 global sounding data per day. These data distribute uniformly over the earth's atmosphere. The global climate information

  4. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda.

    Science.gov (United States)

    Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie

    2015-05-01

    Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Augmenting Phase Space Quantization to Introduce Additional Physical Effects

    Science.gov (United States)

    Robbins, Matthew P. G.

    Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.

  6. Space plasma branch at NRL

    Science.gov (United States)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  7. Automation and robotics for the National Space Program

    Science.gov (United States)

    1985-01-01

    The emphasis on automation and robotics in the augmentation of the human centered systems as it concerns the space station is discussed. How automation and robotics can amplify the capabilities of humans is detailed. A detailed developmental program for the space station is outlined.

  8. Best Practices in Physics Program Assessment: Should APS Provide Accreditation Standards for Physics?

    Science.gov (United States)

    Hodapp, Theodore

    The Phys21 report, ``Preparing Physics Students for 21st Century Careers,'' provides guidance for physics programs to improve their degree programs to make them more relevant for student career choices. Undertaking such changes and assessing impact varies widely by institution, with many departments inventing assessments with each periodic departmental or programmatic review. American Physical Society has embarked on a process to integrate information from Phys21, the results of other national studies, and educational research outcomes to generate a best-practices guide to help physics departments conduct program review, assessment, and improvement. It is anticipated that departments will be able to use this document to help with their role in university-level accreditation, and in making the case for improvements to departmental programs. Accreditation of physics programs could stem from such a document, and I will discuss some of the thinking of the APS Committee on Education in creating this guide, and how they are advising APS to move forward in the higher education landscape that is increasingly subject to standards-based evaluations. I will describe plans for the design, review, and dissemination of this guide, and how faculty can provide input into its development. This material is based upon work supported by the National Science Foundation under Grant No. 1540570. Opinions expressed do not necessarily reflect those of the NSF.

  9. Reduced Pseudoneglect for Physical Space, but Not Mental Representations of Space, for Adults with Autistic Traits

    Science.gov (United States)

    English, Michael C.; Maybery, Murray T.; Visser, Troy A.

    2017-01-01

    Neurotypical individuals display a leftward attentional bias, called pseudoneglect, for physical space (e.g. landmark task) and mental representations of space (e.g. mental number line bisection). However, leftward bias is reduced in autistic individuals viewing faces, and neurotypical individuals with autistic traits viewing "greyscale"…

  10. State Space Reduction for Model Checking Agent Programs

    NARCIS (Netherlands)

    S.-S.T.Q. Jongmans (Sung-Shik); K.V. Hindriks; M.B. van Riemsdijk; L. Dennis; O. Boissier; R.H. Bordini (Rafael)

    2012-01-01

    htmlabstractState space reduction techniques have been developed to increase the efficiency of model checking in the context of imperative programming languages. Unfortunately, these techniques cannot straightforwardly be applied to agents: the nature of states in the two programming paradigms

  11. Swedish Institute of Space Physics. Annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    The main task of the institute is to conduct research and perform observatory measurements in the field of space physics. It shall also provide postgraduate education in space physics. IRF consists of four divisions. The largest division as well as the main office is situated in Kiruna. The other divisions are the Laboratory of Mechanical Waves in Soerfors, the Umeaa Division and the Uppsala Division. Lycksele Ionospheric Observatory belongs to the Kiruna Division. The different divisions have independent research programmes and separate research grants. The field of study taking up most resources at IRF in Kiruna today is the in situ hot plasma investigations. We develop and build various types of plasma spectrometers for the energy range from 1 eV to several hundred keV. To date instruments constructed in Kiruna have been flown on eight satellites and more than 40 sounding rockets. We have also developed ground support equipment for a plasma experiment on board the Giotto spacecraft. (authors) The laboratory of Mechanical Waves concentrates on applied and basic research concerning infrasound and low frequency vibration; Development of methods for detection and signal processing of mechanical waves, and Investigation of the middle atmosphere through measurements of the propagation of infra-acoustic waves. The Umeaa and Uppsala divisions have their main interests in the areas of space plasma physics, e.g. wave-particle interactions and high latitude ionospheric phenomena. (L.E.)

  12. Skylab experiments. Volume 5: Astronomy and space physics. [Skylab observations of galactic radiation, solar energy, and interplanetary composition for high school level education

    Science.gov (United States)

    1973-01-01

    The astronomy and space physics investigations conducted in the Skylab program include over 20 experiments in four categories to explore space phenomena that cannot be observed from earth. The categories of space research are as follows: (1) phenomena within the solar system, such as the effect of solar energy on Earth's atmosphere, the composition of interplanetary space, the possibility of an inner planet, and the X-ray radiation from Jupiter, (2) analysis of energetic particles such as cosmic rays and neutrons in the near-earth space, (3) stellar and galactic astronomy, and (4) self-induced environment surrounding the Skylab spacecraft.

  13. High energy physics program at Texas A ampersand M University

    International Nuclear Information System (INIS)

    1992-12-01

    The Texas A ampersand M experimental high energy physics program has been supported since its inception by DOE Contract DE-AS05-81ER40039. During that period we established a viable experimental program at a university which before this time had no program in high energy physics. In 1990, the experimental program was augmented with a program in particle theory. In the accompanying final report, we outline the research work accomplished during the final year of this contract and the program being proposed for consideration by the Department of Energy for future grant support. Some of the particular areas covered are: Collider detector at Fermilab program; the TAMU MACRO program; SSC R ampersand D program; SSC experimental program; and theoretical physics program

  14. The LEP physics program

    International Nuclear Information System (INIS)

    Davier, M.

    1985-06-01

    The physics program of LEP is reviewed in the context of recent developments from the SpantipS collider. LEP offers the unique possibility to unambiguously explore the particle spectrum up to a mass of 100 GeV i.e. over the mass range typical of the electroweak symmetry breaking. 31 refs.

  15. On How physics Could impact on the Metaphysics of Space and Time

    Directory of Open Access Journals (Sweden)

    Alireza Mansouri

    2015-03-01

    Full Text Available This paper aims to illustrate the mutual inter-relation of physics and metaphysics in the context of the philosophy of space and time. We especially emphasize, in this paper, that scientific development could impact on our position regarding the reality of space and time. To illustrate this point, we investigate the mutual inter-relation of physics and metaphysics in the modern developments of physics, i.e. neo-Newtonian structure, special and general relativity (GR. This paper ends up anticipating that it is likely, by considering modern physics, especially GR, that substantivalism to be a more defensible position.

  16. Space operation system for Chang'E program and its capability ...

    Indian Academy of Sciences (India)

    investment. Due to the constraint in program cost, space operation for China's first lunar exploration program will be provided by the aerospace TT&C network designed for China's manned space pro- gram. The TT&C network consists of a ... foreign spacecrafts and for five spaceships in flight experiments of China's manned ...

  17. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  18. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  19. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  20. Joint Task Force on Undergraduate Physics Programs: Implications for physics programs and why you should care

    Science.gov (United States)

    Hodapp, Theodore

    2016-03-01

    The content of undergraduate physics programs has not changed appreciably in 50 years, however, the jobs our students take have changed dramatically. Preparing students for careers they are likely to encounter requires physics programs to rethink and in some cases retool to provide an education that will not only educate an individual in the habits of mind and keen sense of how to solve complex technical problems, but also what related skills they will need to be effective in those careers. Do you teach your student how to read or create a budget? How about dealing with a low-performing member of an R&D team? This talk will explore driving forces behind this report, potential implications for physics departments, and practical steps faculty members can take to continue to consider improvements in experiences for our students. This work is supported in part by the National Science Foundation (NSF-1540570).

  1. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  2. The bounds of feasible space on constrained nonconvex quadratic programming

    Science.gov (United States)

    Zhu, Jinghao

    2008-03-01

    This paper presents a method to estimate the bounds of the radius of the feasible space for a class of constrained nonconvex quadratic programmingsE Results show that one may compute a bound of the radius of the feasible space by a linear programming which is known to be a P-problem [N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395]. It is proposed that one applies this method for using the canonical dual transformation [D.Y. Gao, Canonical duality theory and solutions to constrained nonconvex quadratic programming, J. Global Optimization 29 (2004) 377-399] for solving a standard quadratic programming problem.

  3. Space, body, time and relationship experiences of recess physical activity: a qualitative case study among the least physical active schoolchildren.

    Science.gov (United States)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine; Troelsen, Jens; Schipperijn, Jasper

    2016-01-06

    Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. The study builds on ethnographic fieldwork in a public school in Denmark using a combination of participatory photo interviews and participant observation. Thirty-seven grade five children (11-12 years old) were grouped in quartiles based on their objectively measured daily physical activity levels. Eight children in the lowest activity quartile (six girls) were selected to participate in the study. To avoid stigmatising and to make generalisations more reliable we further recruited eight children from the two highest activity quartiles (four girls) to participate. An analysis of the least physically active children's "lived experiences" of space, body, time and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. We found that the four existential lifeworlds provided an in-depth understanding of the least physically active children's "lived experiences" of recess physical activity. Our findings imply that specific intervention strategies might be needed to increase the least physically active children's physical activity level. For example, rethinking the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and

  4. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar

    2014-05-01

    © 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot\\'s location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.

  5. Marshall Space Flight Center Faculty Fellowship Program

    Science.gov (United States)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  6. Health physics educational program in the Tennessee Valley Authority

    International Nuclear Information System (INIS)

    Holley, Wesley L.

    1978-01-01

    In the spring of 1977, the Radiological Hygiene Branch of the Tennessee Valley Authority (TVA) instituted a training program for health physics technicians to ensure availability of qualified personnel for the agency, which is rapidly becoming the world's largest nuclear utility. From this, a health physics education program is developing to also include health physics orientation and retraining for unescorted entry into nuclear power plants, health physics training for employees at other (non-TVA) nuclear plants, specialized health physics training, and possibly theoretical health physics courses to qualify technician-level personnel for professional status. Videotaped presentations are being used extensively, with innovations such as giving examinations by videotape of real-life, in-plant experiences and acted out scenarios of health physics procedures; and teaching health physics personnel to observe, detect, and act on procedural, equipment, and personnel deficiencies promptly. Video-taped lectures are being used for review and to complement live lectures. Also, a 35-mm slide and videotape library is being developed on all aspects of the operational health physics program for nuclear plants using pressurized and boiling water reactors. (author)

  7. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    Science.gov (United States)

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of

  8. ASI's space automation and robotics programs: The second step

    Science.gov (United States)

    Dipippo, Simonetta

    1994-01-01

    The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.

  9. Particle Physics and Programming Languages

    OpenAIRE

    Watts, Gordon

    2017-01-01

    A SeaLang meetup - a presentation discussing various programming languages used in particle physics, from pushing common modern languages a bit past where they should be pushed, to an embedded DSL, to some full blown ones written.

  10. Application of the idea of morphism in solar-terrestrial physics and space weather

    International Nuclear Information System (INIS)

    Mateev, Lachezar; Tassev, Yordan; Velinov, Peter

    2016-01-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. In the present work we introduce a new mathematical approach to the study of physical processes in the system Sun-Earth. For example, in the ionization of the ionosphere and atmosphere under the influence of cosmic rays a model is used that applies the principle of homomorphism. When calculating the parameters of space weather such as solar wind, interplanetary magnetic fields, Earth’s magnetosphere, geomagnetic storms and others, the introduction and application of mathematical objects is appropriate: morphisms, groups, categories, monads, functors, natural transformations and others. Such an approach takes into account the general laws of physical processes in the system Sun – Earth and helps in their testing and calculation. It is useful for such complex systems and processes as these in the solar-terrestrial physics and space weather. Some methods for algebraic structures can be introduced. These methods give the possibility for axiomatization of the physical data reality and the application of algebraic methods for their processing. Here we give the base for the transformation from the algebraic theory of categories and morphisms to the physical structure of concepts and data. Such problems are principally considered in the proposed work. Key words: pace weather, space radiation environment, solar effects, forecasting, energetic solar particles, cosmic rays

  11. Accelerated testing of space batteries

    Science.gov (United States)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  12. Comparison of Soviet and US space food and nutrition programs

    Science.gov (United States)

    Ahmed, Selina

    1989-01-01

    The Soviet Space Food and Nutrition programs are compared with those of the U.S. The Soviets established the first Space Food programs in 1961, when one of the Soviet Cosmonauts experienced eating in zero gravity. This study indicates that some major differences exist between the two space food and nutrition programs regarding dietary habits. The major differences are in recommended nutrient intake and dietary patterns between the cosmonauts and astronauts. The intake of protein, carbohydrates and fats are significantly higher in cosmonaut diets compared to astronauts. Certain mineral elements such as phosphorus, sodium and iron are also significantly higher in the cosmonauts' diets. Cosmonauts also experience intake of certain unconventional food and plant extracts to resist stress and increase stamina.

  13. Mastering the Master Space

    CERN Document Server

    Forcella, Davide; He, Yang-Hui; Zaffaroni, Alberto

    2008-01-01

    Supersymmetric gauge theories have an important but perhaps under-appreciated notion of a master space, which controls the full moduli space. For world-volume theories of D-branes probing a Calabi-Yau singularity X the situation is particularly illustrative. In the case of one physical brane, the master space F is the space of F-terms and a particular quotient thereof is X itself. We study various properties of F which encode such physical quantities as Higgsing, BPS spectra, hidden global symmetries, etc. Using the plethystic program we also discuss what happens at higher number N of branes. This letter is a summary and some extensions of the key points of a longer companion paper arXiv:0801.1585.

  14. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Science.gov (United States)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management

  15. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  16. Differential Programming Needs of College Students Preferring Web-Based Versus In-Person Physical Activity Programs.

    Science.gov (United States)

    Goldstein, Stephanie P; Forman, Evan M; Butryn, Meghan L; Herbert, James D

    2017-09-21

    College students report several barriers to exercise, highlighting a need for university-based programs that address these challenges. In contrast to in-person interventions, several web-based programs have been developed to enhance program engagement by increasing ease of access and lowering the necessary level of commitment to participate. Unfortunately, web-based programs continue to struggle with engagement and less-than-ideal outcomes. One explanation for this discrepancy is that different intervention modalities may attract students with distinctive activity patterns, motivators, barriers, and program needs. However, no studies have formally evaluated intervention modality preference (e.g., web-based or in-person) among college students. The current study sought to examine the relationship between intervention modality preference and physical activity programming needs. Undergraduate students (n = 157) enrolled in psychology courses at an urban university were asked to complete an online survey regarding current activity patterns and physical activity program preferences. Participants preferring web-based physical activity programs exercised less (p = .05), were less confident in their abilities to exercise (p = .01), were less likely to endorse the maintenance stage of change (p web-based programming may require programs that enhance self-efficacy by fostering goal-setting and problem-solving skills. A user-centered design approach may enhance the engagement (and therefore effectiveness) of physical activity promotion programs for college students.

  17. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  18. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  19. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    Science.gov (United States)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  20. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  1. Innovative Partnerships Program Accomplishments: 2009-2010 at NASA's Kennedy Space Center

    Science.gov (United States)

    Makufka, David

    2010-01-01

    This document reports on the accomplishments of the Innovative Partnerships Program during the two years of 2009 and 2010. The mission of the Innovative Partnerships Program is to provide leveraged technology alternatives for mission directorates, programs, and projects through joint partnerships with industry, academia, government agencies, and national laboratories. As outlined in this accomplishments summary, the IPP at NASA's Kennedy Space Center achieves this mission via two interdependent goals: (1) Infusion: Bringing external technologies and expertise into Kennedy to benefit NASA missions, programs, and projects (2) Technology Transfer: Spinning out space program technologies to increase the benefits for the nation's economy and humanity

  2. The Physics Entrepreneurship Program at Case Western Reserve University

    Science.gov (United States)

    Taylor, Cyrus

    2001-10-01

    The Physics Entrepreneurship Program is a new, two-year Master's Program designed to empower physicists as entrepreneurs. Launched by the Dept. of Physics at Case Western Reserve University in close cooperation with the Weatherhead School of Management, the program is now in its second year. This innovative new program has already attracted important attention from the business community, including seed funding of a student launched venture, international press coverage, including an article in Business Week, and government interest, including an invitation to brief the Advisory Board of the Mathematical and Physical Sciences Division of the National Science Foundation. This talk will discuss the structure and content of the program, the lessons we are learning, and early indicators of success including a student-launched new business venture that has already secured more than $ 250,000 in seed funding.

  3. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    Science.gov (United States)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  4. Opinion polls and the U.S. civil space program

    Science.gov (United States)

    Kraemer, Sylvia K.

    1993-11-01

    The conclusions that can be drawn from public opinion polls depend a great deal on what usually does not appear on the newspaper page or television screen. Subtle biases can result from the population interviewed, the time of day individuals were called, how a particular question was asked, or how the answer was interpreted. Examples are the 1961 Gallop Poll, the survey done for Rockwell International by the firm of Yankelovich, Skelly and White/Clancy Shulman, and the one done by Jon D. Miller of the International Center for the Advancement of Scientific Literacy. There is more to learn from opinion polls than that a good proportion of adult Americans support the space program. We can learn that social and economic security are not competing goals with space, but interdependent goals. If we want to increase public support for space, we must increase the number of Americans who have the economic freedom to take an interest in something besides getting by, day after day. We can also learn that the majority of those who support the space program can distinguish between the bread and circuses of space travel. They are content to experience extraordinary adventures in the movie theaters; for their tax dollars they want real return in expended scientific knowledge and understanding. Finally, we can learn that we need to increase that return, not just for scientific careers, but for the ordinary people who pay our bills and for their children, our children. Ultimately, the space program is for them, as all investments in the future must be.

  5. Effect of a Sport Education Program on Motivation for Physical Education and Leisure-Time Physical Activity

    Science.gov (United States)

    Wallhead, Tristan L.; Garn, Alex C.; Vidoni, Carla

    2014-01-01

    Purpose: The purpose of this study was to examine the effect of a high school sport education curriculum program on students' motivation for physical education and leisure-time physical activity. Method: Participants were 568 high school students enrolled in the required physical education programs at 2 schools, 1 taught using sport education and…

  6. An Absolute Phase Space for the Physicality of Matter

    International Nuclear Information System (INIS)

    Valentine, John S.

    2010-01-01

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  7. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  8. Safety program considerations for space nuclear reactor systems

    International Nuclear Information System (INIS)

    Cropp, L.O.

    1984-08-01

    This report discusses the necessity for in-depth safety program planning for space nuclear reactor systems. The objectives of the safety program and a proposed task structure is presented for meeting those objectives. A proposed working relationship between the design and independent safety groups is suggested. Examples of safety-related design philosophies are given

  9. Space instrumentation: physics and astronomy in harmony?

    International Nuclear Information System (INIS)

    Aderin, M

    2008-01-01

    Surrey Satellite Technology Limited was formed as a company in 1985 and has been involved in 23 small satellite missions, making it the most successful and experienced small satellite supplier in the world. The challenge of getting a satellite into space takes a dedicated multidisciplinary team of physicists and engineers working together to achieve a common goal. In this paper the author will look at the breakdown of the teams for a number of space projects including NigeriaSAT1; one of the satellites that make up the Disaster Monitoring Constellation (DMC), which produces high quality commercial images for monitoring agriculture and the environment as well as dedicating a proportion of it's time to disaster monitoring. Commercial projects like this will be contrasted to instruments such as the Integral Field Unit (IFU) for the NIRSpec instrument on the James Webb Space Telescope (JWST is the replacement for the Hubble Space telescope). Although both projects have been running through commercial contracts at SSTL, how does the final goal of the instrument influence the synergy between the physics and the engineering needed to make it, and what, if any, economic differences are seen?

  10. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    Science.gov (United States)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  11. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  12. Space, Time, Matter, and Form Essays on Aristotle's Physics

    CERN Document Server

    Bostock, David

    2006-01-01

    Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time

  13. Geometric differential evolution for combinatorial and programs spaces.

    Science.gov (United States)

    Moraglio, A; Togelius, J; Silva, S

    2013-01-01

    Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind the GDE algorithm, then, we use this framework to formally derive specific GDE for search spaces associated with binary strings, permutations, vectors of permutations and genetic programs. The resulting algorithms are representation-specific differential evolution algorithms searching the target spaces by acting directly on their underlying representations. We present experimental results for each of the new algorithms on a number of well-known problems comprising NK-landscapes, TSP, and Sudoku, for binary strings, permutations, and vectors of permutations. We also present results for the regression, artificial ant, parity, and multiplexer problems within the genetic programming domain. Experiments show that overall the new DE algorithms are competitive with well-tuned standard search algorithms.

  14. Problem Space Matters: Evaluation of a German Enrichment Program for Gifted Children.

    Science.gov (United States)

    Welter, Marisete M; Jaarsveld, Saskia; Lachmann, Thomas

    2018-01-01

    We studied the development of cognitive abilities related to intelligence and creativity ( N = 48, 6-10 years old), using a longitudinal design (over one school year), in order to evaluate an Enrichment Program for gifted primary school children initiated by the government of the German federal state of Rhineland-Palatinate ( Entdeckertag Rheinland Pfalz , Germany; ET; Day of Discoverers). A group of German primary school children ( N = 24), identified earlier as intellectually gifted and selected to join the ET program was compared to a gender-, class- and IQ- matched group of control children that did not participate in this program. All participants performed the Standard Progressive Matrices (SPM) test, which measures intelligence in well-defined problem space; the Creative Reasoning Task (CRT), which measures intelligence in ill-defined problem space; and the test of creative thinking-drawing production (TCT-DP), which measures creativity, also in ill-defined problem space. Results revealed that problem space matters: the ET program is effective only for the improvement of intelligence operating in well-defined problem space. An effect was found for intelligence as measured by SPM only, but neither for intelligence operating in ill-defined problem space (CRT) nor for creativity (TCT-DP). This suggests that, depending on the type of problem spaces presented, different cognitive abilities are elicited in the same child. Therefore, enrichment programs for gifted, but also for children attending traditional schools, should provide opportunities to develop cognitive abilities related to intelligence, operating in both well- and ill-defined problem spaces, and to creativity in a parallel, using an interactive approach.

  15. Effectiveness of School-Initiated Physical Activity Program on Secondary School Students' Physical Activity Participation

    Science.gov (United States)

    Gråstén, Arto; Yli-Piipari, Sami; Watt, Anthony; Jaakkola, Timo; Liukkonen, Jarmo

    2015-01-01

    Background: The promotion of physical activity and health has become a universal challenge. The Sotkamo Physical Activity as Civil Skill Program was implemented to increase students' physical activity by promoting supportive psychological and physical school environment. The aim of this study was to evaluate the effectiveness of the…

  16. Novel reconfigurable wide-beam radio interferometer for space physics instrumentation

    Science.gov (United States)

    Dekoulis, George; Honary, Farideh

    2008-07-01

    This paper describes the instrumentation design of a novel wide-beam interferometer system for radio astronomy studies. The system measures the Earth's or another planet's atmospheric layers attenuation of the highly energetic galactic electron emissions superimposed on the Cosmic Microwave Background (CMB) and other last scattering surface galactic and extragalactic radio astronomical background emissions. Right ascension coordinates are surveyed in a unique manner in terms of digital signal processing flexibility, compared to existing wide-beam instrumentations, allowing higher resolution analysis of the captured Space Physics events. The system provides a prototyping platform for other Space Physics projects, since a modular software and hardware design approach has been followed. The system is reconfigurable to meet a variety of testing scenarios.

  17. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  18. Young engineers and scientists - a mentorship program emphasizing space education

    Science.gov (United States)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  19. Case Study of an Institutionalized Urban Comprehensive School Physical Activity Program

    Science.gov (United States)

    Doolittle, Sarah A.; Rukavina, Paul B.

    2014-01-01

    This single case study (Yin, 2009) compares an established urban physical education/ sport/physical activity program with two models: Comprehensive School Physical Activity Program/CSPAP (AAHPERD, 2013; CDC, 2013); and Lawson's propositions (2005) for sport, exercise and physical education for empowerment and community development to determine…

  20. Physical security technology base programs for physical security

    International Nuclear Information System (INIS)

    Jacobs, J.

    1986-01-01

    Sandia National Laboratories is the US Department of Energy's lead laboratory for physical security research and development (R and D). In support of this mission, Sandia has maintained for several years an R and D program in each of the following technology areas: Intrusion Detection, Entry Control, CCTV Assessment, Access Delay, Alarm Display, and Guard Equipment and Training. The purpose of the technology base programs is to maintain cognizance of the capabilities of the commercial market, identify improvements and transfer technology to industry and facilities. The output of these programs supports the development of new equipment and advanced system concepts, demonstrations of proof-of-principles and system implementation. This paper will review the status of current developments and discuss trends in new technologies which are being explored for future applications, i.e., artificial intelligence, expert systems, robotics, and more automated systems

  1. How does mental-physical multimorbidity express itself in lived time and space? A phenomenological analysis of encounters with depression and chronic physical illness.

    Science.gov (United States)

    Coventry, Peter A; Dickens, Chris; Todd, Chris

    2014-10-01

    Mental-physical multimorbidity (the co-existence of mental and physical ill health) is highly prevalent and associated with significant impairments and high healthcare costs. While the sociology of chronic illness has developed a mature discourse on coping with long term physical illness the impact of mental and physical health have remained analytically separated, highlighting the need for a better understanding of the day-to-day complexities encountered by people living with mental-physical multimorbidity. We used the phenomenological paradigm of the lived body to elucidate how the experience of mental-physical multimorbidity shapes people's lifeworlds. Nineteen people with chronic obstructive pulmonary disease (COPD) and depression (defined as a score ≥8 on depression scale of Hospital Anxiety and Depression Scale) were recruited from secondary NHS care and interviewed at their homes. Data were analysed phenomenologically using van Manen's lifeworld existential framework of the lived body, lived time, lived space, lived relations. Additionally, we re-analysed data (using the same framework) collected from 13 people recruited from secondary NHS care with either COPD, rheumatoid arthritis, heart disease, or type 1 or type 2 diabetes and depression. The phenomenology of mental-physical multimorbidity was articulated through embodied and emotional encounters with day-to-day life in four ways: [a] participants' perception of lived time and lived space contracted; [b] time and [c] space were experienced as liminal categories, enforcing negative mood and temporal and spatial contraction; and [d] time and space could also be customised to reinstate agency and self-determination. Mental-physical multimorbidity negatively impacts on individuals' perceptions of lived time and lived space, leading to a loss of agency, heightened uncertainty, and poor well-being. Harnessing people's capacity to modify their experience of time and space may be a novel way to support people

  2. Building Undergraduate Physics Programs for the 21st Century

    Science.gov (United States)

    Hilborn, Robert

    2001-04-01

    Undergraduate physics programs in the United States are under stress because of changes in the scientific and educational environment in which they operate. The number of undergraduate physics majors is declining nationwide; there is some evidence that the "best" undergraduate students are choosing majors other than physics, and funding agencies seem to be emphasizing K-12 education. How can physics departments respond creatively and constructively to these changes? After describing some of the details of the current environment, I will discuss the activities of the National Task Force on Undergraduate Physics, supported by the American Institute of Physics, the America Physical Society, the American Association of Physics Teachers and the ExxonMobil Foundation. I will also present some analysis of Task Force site visits to departments that have thriving undergraduate physics programs, pointing out the key features that seem to be necessary for success. Among these features are department-wide recruitment and retention efforts that are the theme of this session.

  3. Optimization of professional preparation of future teacher of physical culture in informatively-educational space

    Directory of Open Access Journals (Sweden)

    Dragnev Y. V.

    2012-06-01

    Full Text Available It is marked that reformation of higher education is an objective necessity. It is marked that the educational system of Ukraine answers the new requirements of informative society not fully. It is certain that optimization of professional education of future teacher of physical culture must be characterized the choice of the most favourable variant of terms and teaching facilities. It is set that transitions within the limits of one informative space have an influence on professional development of future teacher during his studies. The followings terms of optimization of professional education of teacher are selected: system use of active and interactive methods; bringing in to the advanced study; the increase of role is informative of communication technologies in an educational process. The concordance of maintenance of curriculum of education of teachers of physical culture with the programs of education of the European countries and standardization is recommended them within the limits of Ukraine.

  4. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  5. A True Middle School Physical Education Program

    Science.gov (United States)

    Tenoschok, Mike

    2016-01-01

    The purpose of this article is to describe the various ways in which the developmental needs of middle school students can be met in a physical education program. The themes of exploration and individualization appear throughout the article to emphasize the importance of providing a variety of sports, games and physical activity options for middle…

  6. International Thermonuclear Experimental Reactor: Physics issues, capabilities and physics program plans

    International Nuclear Information System (INIS)

    Wesley, J.C.

    1997-01-01

    Present status and understanding of the principal plasma-performance determining physics issues that affect the physics design and operational capabilities of the International Thermonuclear Experimental Reactor (ITER) [ITER EDA Agreement and Protocol 2 (International Atomic Energy Agency, Vienna, 1994)] are presented. Emphasis is placed on the five major physics-basis issues emdash energy confinement, beta limit, density limit, impurity dilution and radiation loss, and the feasibility of obtaining partial-detached divertor operation emdash that directly affect projections of ITER fusion power and burn duration performance. A summary of these projections is presented and the effect of uncertainties in the physics-basis issues is examined. ITER capabilities for experimental flexibility and plasma-performance optimization are also described, and how these capabilities may enter into the ITER physics program plan is discussed. copyright 1997 American Institute of Physics

  7. National Space Weather Program Releases Strategy for the New Decade

    Science.gov (United States)

    Williamson, Samuel P.; Babcock, Michael R.; Bonadonna, Michael F.

    2010-12-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency program established by the Office of the Federal Coordinator for Meteorology (OFCM) in 1995 to coordinate, collaborate, and leverage capabilities across stakeholder agencies, including space weather researchers, service providers, users, policy makers, and funding agencies, to improve the performance of the space weather enterprise for the United States and its international partners. Two important documents released in recent months have established a framework and the vision, goals, and strategy to move the enterprise forward in the next decade. The U.S. federal agency members of the NSWP include the departments of Commerce, Defense, Energy, Interior, State, and Transportation, plus NASA, the National Science Foundation, and observers from the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB). The OFCM is also working with the Department of Homeland Security's Federal Emergency Management Agency to formally join the program.

  8. A Proposal for the Common Safety Approach of Space Programs

    Science.gov (United States)

    Grimard, Max

    2002-01-01

    For all applications, business and systems related to Space programs, Quality is mandatory and is a key factor for the technical as well as the economical performances. Up to now the differences of applications (launchers, manned space-flight, sciences, telecommunications, Earth observation, planetary exploration, etc.) and the difference of technical culture and background of the leading countries (USA, Russia, Europe) have generally led to different approaches in terms of standards and processes for Quality. At a time where international cooperation is quite usual for the institutional programs and globalization is the key word for the commercial business, it is considered of prime importance to aim at common standards and approaches for Quality in Space Programs. For that reason, the International Academy of Astronautics has set up a Study Group which mandate is to "Make recommendations to improve the Quality, Reliability, Efficiency, and Safety of space programmes, taking into account the overall environment in which they operate : economical constraints, harsh environments, space weather, long life, no maintenance, autonomy, international co-operation, norms and standards, certification." The paper will introduce the activities of this Study Group, describing a first list of topics which should be addressed : Through this paper it is expected to open the discussion to update/enlarge this list of topics and to call for contributors to this Study Group.

  9. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  10. The nuclear physics program at SIS/ESR

    International Nuclear Information System (INIS)

    Henning, W.

    1991-01-01

    The present workshop discusses the physics program to be addressed with the new photon spectrometer TAPS. Part of this program will be carried out at the new accelerator facility SIS/ESR at GSI Darmstadt. To put the TAPS activities at SIS into perspective, an overview is given in the following discussing the new GSI facility, the research program under consideration and the various experimental facilities besides TAPS to carry out these studies. (orig.)

  11. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  12. Transitioning a Fundamental Research Program to Align with the NASA Exploration Initiative-Perspectives from Microgravity Combustion Science and Fluid Physics

    Science.gov (United States)

    Sutliff, Thomas J.; Kohl, Fred J.

    2004-01-01

    A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.

  13. Revisiting the Service Physical Education Program at the Tertiary Level: Basis For A Revitalized Program

    Directory of Open Access Journals (Sweden)

    Marilou M. Orlanda

    2015-12-01

    Full Text Available This study investigated the service Physical Education Program at Batangas State University system based on the assessments of the administrators, faculty and students on its implementation in consideration of its program components and attitudes of PE teachers towards the subject with the proposed revitalized Physical Education program as an output. Using descriptive research design of research and statistical tools such as percentage, weighted mean, and f-test, the result showed a great extent of the implementation of the service Physical Education program at BSU system in terms of attainment of objectives, curriculum, teaching effectiveness of faculty, and adequacy of facilities, equipment, supplies, and instructional materials. Positive attitudes towards PE except on the concerns on reducing the time allocation for the subject and that it should be mainly sports and play were among the findings. In addition, the objectives of the PE program are believed to be the best indicators while the least indicator is the facilities, equipment and supplies.

  14. Prevalence of Physical Disability and Accommodation Needs among Students in Physical Therapy Education Programs

    Science.gov (United States)

    Hinman, Martha R.; Peterson, Cathryn A.; Gibbs, Karen A.

    2015-01-01

    Most research on graduate students with disabilities (SWDs) has focused on medical education. The purposes of this study were to: (1) estimate the prevalence of students with physical disabilities (SWPDs) in physical therapy programs, (2) identify common types of physical disabilities, (3) document the types of accommodations requested by SWPDs,…

  15. U. Mississippi program ups physics interests

    CERN Multimedia

    Carrington, E

    2002-01-01

    The University of Mississippi is one of the 44 national sites taking part in QuarkNet, a national program that provides high school teachers with the opportunity to work with university researchers on physics research (1/2 page).

  16. UWALK: the development of a multi-strategy, community-wide physical activity program.

    Science.gov (United States)

    Jennings, Cally A; Berry, Tanya R; Carson, Valerie; Culos-Reed, S Nicole; Duncan, Mitch J; Loitz, Christina C; McCormack, Gavin R; McHugh, Tara-Leigh F; Spence, John C; Vallance, Jeff K; Mummery, W Kerry

    2017-03-01

    UWALK is a multi-strategy, multi-sector, theory-informed, community-wide approach using e and mHealth to promote physical activity in Alberta, Canada. The aim of UWALK is to promote physical activity, primarily via the accumulation of steps and flights of stairs, through a single over-arching brand. This paper describes the development of the UWALK program. A social ecological model and the social cognitive theory guided the development of key strategies, including the marketing and communication activities, establishing partnerships with key stakeholders, and e and mHealth programs. The program promotes the use of physical activity monitoring devices to self-monitor physical activity. This includes pedometers, electronic devices, and smartphone applications. In addition to entering physical activity data manually, the e and mHealth program provides the function for objective data to be automatically uploaded from select electronic devices (Fitbit®, Garmin and the smartphone application Moves) The RE-AIM framework is used to guide the evaluation of UWALK. Funding for the program commenced in February 2013. The UWALK brand was introduced on April 12, 2013 with the official launch, including the UWALK website on September 20, 2013. This paper describes the development and evaluation framework of a physical activity promotion program. This program has the potential for population level dissemination and uptake of an ecologically valid physical activity promotion program that is evidence-based and theoretically framed.

  17. Physical Training for Long-Duration Spaceflight.

    Science.gov (United States)

    Loehr, James A; Guilliams, Mark E; Petersen, Nora; Hirsch, Natalie; Kawashima, Shino; Ohshima, Hiroshi

    2015-12-01

    Physical training has been conducted on the International Space Station (ISS) for the past 10 yr as a countermeasure to physiological deconditioning during spaceflight. Each member space agency has developed its own approach to creating and implementing physical training protocols for their astronauts. We have divided physical training into three distinct phases (preflight, in-flight, and postflight) and provided a description of each phase with its constraints and limitations. We also discuss how each member agency (NASA, ESA, CSA, and JAXA) prescribed physical training for their crewmembers during the first 10 yr of ISS operations. It is important to understand the operational environment, the agency responsible for the physical training program, and the constraints and limitations associated with spaceflight to accurately design and implement exercise training or interpret the exercise data collected on ISS. As exploration missions move forward, resolving agency differences in physical training programs will become important to maximizing the effectiveness of exercise as a countermeasure and minimizing any mission impacts.

  18. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  19. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    Directory of Open Access Journals (Sweden)

    G.V. Korobeynikov

    2013-02-01

    Full Text Available The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results showed the improvement of psycho-emotional status and normalization of cardiovascular vegetative regulation after training prevention programs in Chernobyl disasters survivors. The studies show that the preventive programs for Chernobyl disaster survivors in lifestyle aspects had the high effect. This displays the decrease of tempo of aging and the improving of physical and psychological health status of Chernobyl disaster survivors during preventive course.

  20. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk.

  1. Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    International Nuclear Information System (INIS)

    Johnson, A.S.; Badhwar, G.D.; Golightly, M.J.; Hardy, A.C.; Konradi, A.; Yang, T.C.

    1993-12-01

    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

  2. Comparative Effectiveness of After-School Programs to Increase Physical Activity

    Directory of Open Access Journals (Sweden)

    Sabina B. Gesell

    2013-01-01

    Full Text Available Background. We conducted a comparative effectiveness analysis to evaluate the difference in the amount of physical activity children engaged in when enrolled in a physical activity-enhanced after-school program based in a community recreation center versus a standard school-based after-school program. Methods. The study was a natural experiment with 54 elementary school children attending the community ASP and 37 attending the school-based ASP. Accelerometry was used to measure physical activity. Data were collected at baseline, 6 weeks, and 12 weeks, with 91% retention. Results. At baseline, 43% of the multiethnic sample was overweight/obese, and the mean age was 7.9 years (SD = 1.7. Linear latent growth models suggested that the average difference between the two groups of children at Week 12 was 14.7 percentage points in moderate-vigorous physical activity (P<.001. Cost analysis suggested that children attending traditional school-based ASPs—at an average cost of $17.67 per day—would need an additional daily investment of $1.59 per child for 12 weeks to increase their moderate-vigorous physical activity by a model-implied 14.7 percentage points. Conclusions. A low-cost, alternative after-school program featuring adult-led physical activities in a community recreation center was associated with increased physical activity compared to standard-of-care school-based after-school program.

  3. THE PREVENTION PROGRAMS OF PHYSICAL REHABILITATION FOR CHERNOBYL DISASTER SURVIVORS

    OpenAIRE

    G.V. Korobeynikov; V.U. Drojjin

    2013-01-01

    The purpose of the study: approbation of the prevention program of physical rehabilitation for Chernobyl disaster survivors in lifestyle aspects. Sixty persons who were disaster survivors and workers of Chernobyl Nuclear Power Plant aged 32-60 have rehabilitation during 21 days. The complex of training prevention programs of physical and psycho-emotional rehabilitation methods was elaborated. The study of efficacy of training prevention programs among Chernobyl disaster survivors. The results...

  4. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  5. A kindergarten-based child health promotion program: the Adapted National Aeronautics and Space Administration (NASA) Mission X for improving physical fitness in South Korea.

    Science.gov (United States)

    Min, Jungwon; Kim, Gilsook; Lim, Hyunjung; Carvajal, Nubia A; Lloyd, Charles W; Wang, Youfa

    2018-03-01

    Effective and sustainable intervention programs are needed to promote physical activity (PA) in children. To adapt the NASA Mission X: Train Like an Astronaut program for use with South Korean children, and to evaluate its feasibility and effectiveness for promoting children's physical fitness. Children 5 years old ( n = 212) and their parents were recruited from three kindergartens in three cities to participate in a 6-week intervention program in fall 2014. We assessed the children's PA and related changes, and parental changes in attitude and beliefs, after participation in the intervention. Girls reported less PA than boys (40.7 vs. 59.0, p X program was feasible and effective in promoting PA in kindergarteners, and also improved their parents' attitude and beliefs about children's PA in South Korea. This study provided a model for promoting childhood health through child care and educational settings.

  6. Clinton P. Anderson Meson Physics Facility and its operational safety program

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1975-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory consists of/ (1) a medium-energy, high-intensity linear proton accelerator; (2) experimental areas designed to support a multidisciplined program of research and practical applications; and (3) support facilities for accelerator operations and the experimental program. The high-intensity primary and secondary beams at LAMPF and the varied research program create many interesting and challenging problems for the Health Physics staff. A brief overview of LAMPF is presented, and the Operational Safety Program is discussed, with emphasis on the radiological safety and health physics aspects

  7. Space Science at Los Alamos National Laboratory

    Science.gov (United States)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  8. The role of physicality in rich programming environments

    Science.gov (United States)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  9. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    Science.gov (United States)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  10. Proceedings of RIKEN BNL Research Center Workshop: Brookhaven Summer Program on Nucleon Spin Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, A.; Qiu, Jianwei; Vogelsang, W.; Yuan, F.

    2011-08-02

    Understanding the structure of the nucleon is of fundamental importance in sub-atomic physics. Already the experimental studies on the electro-magnetic form factors in the 1950s showed that the nucleon has a nontrivial internal structure, and the deep inelastic scattering experiments in the 1970s revealed the partonic substructure of the nucleon. Modern research focuses in particular on the spin and the gluonic structure of the nucleon. Experiments using deep inelastic scattering or polarized p-p collisions are carried out in the US at the CEBAF and RHIC facilities, respectively, and there are other experimental facilities around the world. More than twenty years ago, the European Muon Collaboration published their first experimental results on the proton spin structure as revealed in polarized deep inelastic lepton-nucleon scattering, and concluded that quarks contribute very little to the proton's spin. With additional experimental and theoretical investigations and progress in the following years, it is now established that, contrary to naive quark model expectations, quarks and anti-quarks carry only about 30% of the total spin of the proton. Twenty years later, the discovery from the polarized hadron collider at RHIC was equally surprising. For the phase space probed by existing RHIC experiments, gluons do not seem to contribute any to the proton's spin. To find out what carries the remaining part of proton's spin is a key focus in current hadronic physics and also a major driving force for the new generation of spin experiments at RHIC and Jefferson Lab and at a future Electron Ion Collider. It is therefore very important and timely to organize a series of annual spin physics meetings to summarize the status of proton spin physics, to focus the effort, and to layout the future perspectives. This summer program on 'Nucleon Spin Physics' held at Brookhaven National Laboratory (BNL) on July 14-27, 2010 [http://www.bnl.gov/spnsp/] is the

  11. EFFECTIVENESS OF DIFFERENT TRAINING PROGRAMS FOR PHYSICAL PERFORMANCE MAINTENANCE IN THE CONDITION OF LOW MOTOR ACTIVITY.

    Science.gov (United States)

    Fomina, E V; Uskov, K V

    Investigations made by the World Health Organization showed that lack. of physical activity and sedentary lifestyle are among ten major causes for death and disability. Typially, studies of the negative effects of reduced physical activity and their prevention face difficulties of providing standard conditions. These issues were obviated successfully in experiment MARS-500 on simulation of a space exploration mission. Human subjects were 6 men from Russia, France, Italy and China who spent 520 days in isolation. To prevent the negative effects of low physical activity, the volunteers performed resistive and cyclic exercises in different periods of isolation. The study was designed with two pauses in the training program. Physical performance was evaluated with an incremental loading test, maximal voluntary effort test (Russian-Austrian MDS resistive exercise system), and PWC-170 (bicycle ergometer). Level of physical performance of the subjects in this experiment never degraded to below baseline values. The proposed training system comprising different kinds of exercise ensured stability or improvement of subjects' physical performance as compared with baseline level.

  12. Physical activity as a possible mechanism behind the relationship between green space and health: A multilevel analysis

    Directory of Open Access Journals (Sweden)

    Spreeuwenberg Peter

    2008-06-01

    Full Text Available Abstract Background The aim of this study was to investigate whether physical activity (in general, and more specifically, walking and cycling during leisure time and for commuting purposes, sports and gardening is an underlying mechanism in the relationship between the amount of green space in people's direct living environment and self-perceived health. To study this, we first investigated whether the amount of green space in the living environment is related to the level of physical activity. When an association between green space and physical activity was found, we analysed whether this could explain the relationship between green space and health. Methods The study includes 4.899 Dutch people who were interviewed about physical activity, self-perceived health and demographic and socioeconomic background. The amount of green space within a one-kilometre and a three-kilometre radius around the postal code coordinates was calculated for each individual. Multivariate multilevel analyses and multilevel logistic regression analyses were performed at two levels and with controls for socio-demographic characteristics and urbanicity. Results No relationship was found between the amount of green space in the living environment and whether or not people meet the Dutch public health recommendations for physical activity, sports and walking for commuting purposes. People with more green space in their living environment walked and cycled less often and fewer minutes during leisure time; people with more green space garden more often and spend more time on gardening. Furthermore, if people cycle for commuting purposes they spend more time on this if they live in a greener living environment. Whether or not people garden, the time spent on gardening and time spent on cycling for commuting purposes did not explain the relationship between green space and health. Conclusion Our study indicates that the amount of green space in the living environment is

  13. Application of nuclear-physics methods in space materials science

    Science.gov (United States)

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  14. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  15. Crystal Growth and Other Materials Physical Researches in Space Environment

    Science.gov (United States)

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  16. Research in space science and technology. Semiannual progress report

    International Nuclear Information System (INIS)

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  17. Renormalization group in statistical physics - momentum and real spaces

    International Nuclear Information System (INIS)

    Yukalov, V.I.

    1988-01-01

    Two variants of the renormalization group approach in statistical physics are considered, the renormalization group in the momentum and the renormalization group in the real spaces. Common properties of these methods and their differences are cleared up. A simple model for investigating the crossover between different universality classes is suggested. 27 refs

  18. The Adopt-a-School Service-Learning Program: Igniting Comprehensive School Physical Activity Programs through School and University Partnerships

    Science.gov (United States)

    Linker, Jenny M.; Ford, Kristen M.; Knutson, Julie M.; Goplen, Hailey A.

    2018-01-01

    Physical educators have been identified as ideal school champions to lead comprehensive school physical activity program (CSPAP) efforts within their schools. As such, they should be adequately prepared to take on this role. Faculty from three physical and health education teacher education programs have collaboratively developed the…

  19. Space, Time, and Spacetime Physical and Philosophical Implications of Minkowski's Unification of Space and Time

    CERN Document Server

    Petkov, Vesselin

    2010-01-01

    This volume is dedicated to the centennial anniversary of Minkowski's discovery of spacetime. It contains selected papers by physicists and philosophers on the Nature and Ontology of Spacetime. The first six papers, comprising Part I of the book, provide examples of the impact of Minkowski's spacetime representation of special relativity on the twentieth century physics. Part II also contains six papers which deal with implications of Minkowski's ideas for the philosophy of space and time. The last part is represented by two papers which explore the influence of Minkowski's ideas beyond the philosophy of space and time.

  20. Predicting daily physical activity in a lifestyle intervention program

    NARCIS (Netherlands)

    Long, Xi; Pauws, S.C.; Pijl, M.; Lacroix, J.; Goris, A.H.C.; Aarts, R.M.; Gottfried, B.; Aghajan, H.

    2011-01-01

    The growing number of people adopting a sedentary lifestyle these days creates a serious need for effective physical activity promotion programs. Often, these programs monitor activity, provide feedback about activity and offer coaching to increase activity. Some programs rely on a human coach who

  1. Monte Carlo programs and other utilities for high energy physics

    International Nuclear Information System (INIS)

    Palounek, A.P.T.; Youssef, S.

    1990-05-01

    The Software Standards and Documentation Group of the Workshop on Physics and Detector Simulation for SSC Experiments has compiled a list of physics generators, detector simulations, and related programs. This is not meant to be an exhaustive compilation, nor is any judgment made about program quality; it is a starting point or a more complete bibliography. Where possible we have included an author and source for the code. References for most programs are in the final section

  2. Sustainability of a physical activity and nutrition program for seniors.

    Science.gov (United States)

    Pasalich, M; Lee, A H; Jancey, J; Burke, L; Howat, P

    2013-01-01

    This prospective cohort study aimed to determine the impact of a low cost, home-based physical activity and nutrition program for older adults at 6 months follow-up. A follow-up survey was conducted 6 months after program completion via computer-assisted telephone interviewing. The International Physical Activity Questionnaire and the Fat and Fibre Barometer were used to measure physical activity levels and dietary behaviours, respectively. Self-reported height, weight, waist and hip circumferences were obtained. Changes over three time points of data collection (baseline, post-program, follow-up) and differences between the intervention and control groups were assessed. The use of program materials was also evaluated. Community and home-based. Insufficiently active 60 to 70 year olds (n = 176, intervention and n = 198, control) residing in suburbs within the Perth metropolitan area. A sustained improvement was observed for the intervention group in terms of fat avoidance behaviours (p interaction = .007). Significant improvements were found for strength exercises, fibre intake, body mass index and waist-to-hip ratio at either post-program or follow-up, however the overall effect was not significant. At post-program, the intervention group increased time spent participating in moderate activity by 50 minutes (p > .05), which was followed by a significant decline at follow-up (p nutrition intervention resulted in a sustained improvement in fat avoidance behaviours and overall short-term gains in physical activity. Future studies for older adults are recommended to investigate gender-specific behavioural barriers as well as booster interventions which focus on physical activity.

  3. Impact of the Joint Task Force on Undergraduate Physics Programs for Innovation and Entrepreneurship Education in Physics

    Science.gov (United States)

    Arion, Douglas

    The Joint Task Force on Undergraduate Physics Programs has worked diligently to develop recommendations for what physics programs could and should be doing to prepare graduates for 21st century careers. While the `traditional' physics curriculum has served for many years, the demands of the new workforce, and the recognition that only a few percent of physics students actually become faculty - the vast majority entering the workforce and applying their skills to a very diverse range of problems, projects, and products - implies that a review of the education undergraduates receives is in order. The outcomes of this study point to the need to provide greater connection between the education process and the actual skills, knowledge, and abilities that the workplace demands. This presentation will summarize these considerations, and show how entrepreneurship and innovation programs and curricula are a particularly effective means of bringing these elements to physics students.

  4. Strategic Roadmap for the Development of an Interstellar Space Program

    Science.gov (United States)

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  5. NASA Goddard Space Flight Center Supply Chain Management Program

    Science.gov (United States)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  6. Appreciation of the 2015 JGR Space Physics Peer Reviewers

    Science.gov (United States)

    Liemohn, Michael W.; Balikhin, Michael; Kepko, Larry; Rodger, Alan; Wang, Yuming

    2016-01-01

    The Editors of the Journal of Geophysical Research Space Physics are deeply indebted to the many people among the research community that serve this journal through peer review. The journal could not exist without the time and effort invested by the community through this voluntary activity, providing expert evaluations and thoughtful assessments of the work of others. In 2015, the journal had 1506 scientists contribute to the process with at least one peer review, for a total of 3575 reviews completed, including additional reviews of resubmitted manuscripts. There were 277 reviewers that contributed four or more reports in 2015. The average number of reviews per referee in 2015 was, therefore, 2.4. Note that the total number of manuscript final decisions (i.e., accept or reject) for Journal of Geophysical Research (JGR) Space Physics was 1147 in 2015. Of this, 774 were accepted and 373 were declined, for an acceptance rate of 67% last year. If the 1334 "revision" decisions are included in the tally, then the total number of decisions made in 2015 was 2481. Working out the arithmetic, it means that on average, a manuscript gets about 1.2 revision decisions before a final accept-or-reject decision. This explains the 3.1 average number of reviews per manuscript throughout each paper's lifetime in the submission-revision editorial process. We are pleased and happy that the research community is willing and able to devote their resources toward this service endeavor. We appreciate each and every one of you that helped maintain the high quality of papers in JGR Space Physics last year. We look forward to another excellent year working with all of you through the year ahead.

  7. Augmentation of Virtual Space Physics Observatory Services to Expand Data Access Capabilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aquilent, Inc. proposes to support the effort of Virtual Space Physics Observatory (VSPO) by developing services to expand the VSPO search capabilities, developing...

  8. Project Physics Programmed Instruction, Waves 2.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    This is the second of two programmed instruction booklets on the topic of waves, developed by Harvard Project Physics. It covers the relationships among the frequency, period, wavelength, and speed of a periodic wave. For the first booklet in this series, see SE 015 552. (DT)

  9. Physical Disability on Children's Television Programming: A Content Analysis

    Science.gov (United States)

    Bond, Bradley J.

    2013-01-01

    Research Findings: Media representations of physical disability can influence the attitudes of child audiences. In the current study, the depiction of physical disability was analyzed in more than 400 episodes of children's television programming to better understand how media depict physical disability to children and, in turn, how exposure may…

  10. Return and profitability of space programs. Information - the main product of flights in space

    Science.gov (United States)

    Nikolova, Irena

    The basic branch providing global information, as a product on the market, is astronautics and in particular aero and space flights. Nowadays economic categories like profitability, return, and self-financing are added to space information. The activity in the space information service market niche is an opportunity for realization of high economic efficiency and profitability. The present report aims at examining the possibilities for return and profitability of space programs. Specialists in economics from different countries strive for defining the economic effect of implementing space technologies in the technical branches on earth. Still the priorities here belong to government and insufficient market organization and orientation is apparent. Attracting private investors and searching for new mechanisms of financing are the factors for increasing economic efficiency and return of capital invested in the mentioned sphere. Return of utilized means is an economically justified goal, a motive for a bigger enlargement of efforts and directions for implementing the achievements of astronautics in the branches of economy on earth.

  11. Physics of the sun

    International Nuclear Information System (INIS)

    1985-01-01

    The Space Science Board undertook the study of solar physics at the request of the National Aeronautics and Space Administration (NASA) to help guide the agency's future program. Specifically, the authors were asked to address the following questions: What is the scientific content of solar physics. What should be the future scientific directions. What should be the appropriate role of NASA in solar physics. A Study Panel was assembled, composed of members with broad scientific interests, and an Advocacy Panel, composed of practicing solar physicists and scientists with related interests. The purpose of the panel was to obtain an impartial assessment of the scientific content of the field, to identify the critical issues of solar physics, and to mobilize its practitioners to develop plans for future investigations

  12. A prehabilitation program for physically frail community-living older persons.

    Science.gov (United States)

    Gill, Thomas M; Baker, Dorothy I; Gottschalk, Margaret; Gahbauer, Evelyne A; Charpentier, Peter A; de Regt, Paul T; Wallace, Sarah J

    2003-03-01

    To describe the development and implementation of a preventive, home-based physical therapy program (PREHAB) and to provide evidence for the safety and interrater reliability of the PREHAB protocol. Demonstration study. General community. Ninety-four physically frail, community-living persons, aged 75 years or older, who were randomized to the PREHAB program in a clinical trial. The PREHAB program built on the physical therapy component of 2 previous home-based protocols. A total of 223 assessment items were linked to 28 possible interventions, including progressive balance and conditioning exercises, by using detailed algorithms and decisions rules that were automated on notebook computers. The percentages of participants who were eligible for and who completed each intervention, the extent of progress noted in the balance and conditioning exercises, adherence to the training program, and adverse events. Participants who completed the PREHAB program and those who ended it prematurely received an average of 9.7 and 7.2 interventions during an average of 14.9 and 9.5 home visits, respectively. With few exceptions, the completion rate and interrater reliability for the specific interventions were high. Despite high self-reported adherence to the training program, the majority of participants did not advance beyond the initial Thera-Band level for the upper- and lower-extremity conditioning exercises, and only about a third advanced to the highest 2 levels of the balance exercises. Adverse events were no more common in the PREHAB group than in the educational control group. Our results support the feasibility and safety of the PREHAB program, but also show the special challenges and pitfalls of such a strategy when it is implemented among persons of advanced age and physical frailty. Copyright 2003 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  13. Paying attention to working memory: Similarities in the spatial distribution of attention in mental and physical space.

    Science.gov (United States)

    Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim

    2016-08-01

    Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.

  14. Physical protection evaluation methodology program development and application

    International Nuclear Information System (INIS)

    Seo, Janghoon; Yoo, Hosik

    2015-01-01

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  15. Physical protection evaluation methodology program development and application

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Yoo, Hosik [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    It is essential to develop a reliable physical protection evaluation methodology for applying physical protection concept to the design stage. The methodology can be used to assess weak points and improve performance not only for the design stage but also for nuclear facilities in operation. Analyzing physical protection property of nuclear facilities is not a trivial work since there are many interconnected factors affecting overall performance. Therefore several international projects have been organized to develop a systematic physical protection evaluation methodology. INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles) and GIF PRPP (Generation IV International Forum Proliferation Resistance and Physical Protection) methodology are among the most well-known evaluation methodologies. INPRO adopts a checklist type of questionnaire and has a strong point in analyzing overall characteristic of facilities in a qualitative way. COMPRE program has been developed to help general users apply COMPRE methodology to nuclear facilities. In this work, COMPRE program development and a case study of the hypothetical nuclear facility are presented. The development of COMPRE program and a case study for hypothetic facility is presented in this work. The case study shows that COMPRE PP methodology can be a useful tool to assess the overall physical protection performance of nuclear facilities. To obtain meaningful results from COMPRE PP methodology, detailed information and comprehensive analysis are required. Especially, it is not trivial to calculate reliable values for PPSE (Physical Protection System Effectiveness) and C (Consequence), while it is relatively straightforward to evaluate LI (Legislative and Institutional framework), MC (Material Control) and HR (Human Resources). To obtain a reliable PPSE value, comprehensive information about physical protection system, vital area analysis and realistic threat scenario assessment are required. Like

  16. The Evolution of the Rendezvous Profile During the Space Shuttle Program

    Science.gov (United States)

    Summa, William R.

    2010-01-01

    The rendezvous and proximity operations approach design techniques for space shuttle missions has changed significantly during the life of the program in response to new requirements that were not part of the original mission design. The flexibility of the shuttle onboard systems design and the mission planning process has allowed the program to meet these requirements. The design of the space shuttle and the shift from docking to grappling with a robotic ann prevented use of legacy Apollo rendezvous techniques. Over the life of the shuttle program the rendezvous profile has evolved due to several factors, including lowering propellant consumption and increasing flexibility in mission planning. Many of the spacecraft that the shuttle rendezvoused with had unique requirements that drove the creation of mission-unique proximity operations. The dockings to the Russian Mir space station and International Space Station (ISS) required further evolution of rendezvous and proximity operations techniques and additional sensors to enhance crew situational awareness. After the Columbia accident, a Rendezvous Pitch Maneuver (RPM) was added to allow tile photography from ISS. Lessons learned from these rendezvous design changes are applicable to future vehicle designs and operations concepts.

  17. Mission Impossible? Physical Activity Programming for Individuals Experiencing Homelessness

    Science.gov (United States)

    Gregg, Melanie J.; Bedard, Andrea

    2016-01-01

    Purpose: A pilot study was conducted to describe the physical activity experiences and perceived benefits of and barriers to physical activity participation for patrons of a homeless shelter. The resulting pilot data may be used to inform the creation of and support for physical activity and sport programs for those experiencing homelessness.…

  18. A Status of the Advanced Space Transportation Program from Planning to Action

    Science.gov (United States)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and

  19. Effects of space-dependent cross sections on core physics parameters for compact fast spectrum space power reactors

    International Nuclear Information System (INIS)

    Lell, R.M.; Hanan, N.A.

    1987-01-01

    Effects of multigroup neutron cross section generation procedures on core physics parameters for compact fast spectrum reactors have been examined. Homogeneous and space-dependent multigroup cross section sets were generated in 11 and 27 groups for a representative fast reactor core. These cross sections were used to compute various reactor physics parameters for the reference core. Coarse group structure and neglect of space-dependence in the generation procedure resulted in inaccurate computations of reactor flux and power distributions and in significant errors regarding estimates of core reactivity and control system worth. Delayed neutron fraction was insensitive to cross section treatment, and computed reactivity coefficients were only slightly sensitive. However, neutron lifetime was found to be very sensitive to cross section treatment. Deficiencies in multigroup cross sections are reflected in core nuclear design and, consequently, in system mechanical design

  20. Status of NASA's Stirling Space Power Converter Program

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Program. This work is being conducted under NASA's Civil Space Technology Initiative. The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss Stirling experience in Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. This paper provides an update of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space

  1. Reference earth orbital research and applications investigations (blue book). Volume 3: Physics

    Science.gov (United States)

    1971-01-01

    The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.

  2. 48 CFR 1852.246-70 - Mission Critical Space System Personnel Reliability Program.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Mission Critical Space... CONTRACT CLAUSES Texts of Provisions and Clauses 1852.246-70 Mission Critical Space System Personnel Reliability Program. As prescribed in 1846.370(a), insert the following clause: Mission Critical Space System...

  3. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    Science.gov (United States)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  4. Implications of Public Opinion for Space Program Planning, 1980 - 2000

    Science.gov (United States)

    Overholt, W.; Wiener, A. J.; Yokelson, D.

    1975-01-01

    The effect of public opinion on future space programs is discussed in terms of direct support, apathy, or opposition, and concern about the tax burden, budgetary pressures, and national priorities. Factors considered include: the salience and visibility of NASA as compared with other issues, the sources of general pressure on the federal budget which could affect NASA, the public's opinions regarding the size and priority of NASA'S budget, the degree to which the executive can exercise leverage over NASA's budget through influencing or disregarding public opinion, the effects of linkages to other issues on space programs, and the public's general attitudes toward the progress of science.

  5. 77 FR 8801 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-02-15

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service, USDA. ACTION: Request for applications. SUMMARY: The..., requests applications for the Community Forest and Open Space Conservation Program (Community Forest...

  6. Keeping the dream alive: Managing the Space Station Program, 1982 to 1986

    Science.gov (United States)

    Lewin, Thomas J.; Narayanan, V. K.

    1990-01-01

    The management is described and analyzed of the formative years of the NASA Space Station Program (1982 to 1986), beginning with the successful initiative for program approval by Administrator James M. Beggs through to the decision to bring program management to Reston, Virginia. Emphasis is on internal management issues related to the implementation of the various phases of the program. Themes examined are the problem of bringing programmatic and institutional interests together and focusing them to forward the program; centralized versus decentralized control of the program; how the history of NASA and of the individual installations affected the decisions made; and the pressure from those outside NASA. The four sections are: (1) the decision to build the space station, (2) the design of the management experiment, (3) the experiment comes to life, and (4) the decision reversal.

  7. Fermilab Physics Program for the 1990's

    International Nuclear Information System (INIS)

    Stanfield, K.C.

    1990-01-01

    Following a brief introduction to Fermilab facilities and a review of the accelerator status and plans, the physics potential for the Fermilab III upgrade program is discussed for both the fixed target and collider modes

  8. Physical exercise program for children with bronchial asthma.

    Science.gov (United States)

    Szentágothai, K; Gyene, I; Szócska, M; Osváth, P

    1987-01-01

    A long-term physical exercise program was established for a large number of children with bronchial asthma. Asthmatic children were first taught to swim on their backs to prevent breathing problems customary for beginners using other strokes. They concurrently participated in gymnasium exercises, and the program was later completed with outdoor running. Program effectiveness was evaluated by monitoring asthmatic symptoms, changes in medication, and changes in the activity and physical fitness of the children. Data collected from 121 children showed that during the first year in the program the number of days with asthmatic symptoms decreased in a large majority of the patients while medication was decreased. School absenteeism and hospitalization dropped markedly. Parental evaluation of the children indicated much improvement in 51.2%, improvement in 40.5%, unchanged condition in 7.4%, and deterioration of general health was only reported in one child (0.8%). The same extent of improvement continued during the second year. The Cooper test was applied for the first time to such an exercise program and indicated that the participating asthmatic children performed as well as a control group of nonasthmatic children, and the cardiovascular efficiency of the asthmatics was actually better.

  9. A Scoping Review of Inclusive Out-of-School Time Physical Activity Programs for Children and Youth With Physical Disabilities.

    Science.gov (United States)

    Arbour-Nicitopoulos, Kelly P; Grassmann, Viviane; Orr, Krystn; McPherson, Amy C; Faulkner, Guy E; Wright, F Virginia

    2018-01-01

    The objective of this study was to comprehensively evaluate inclusive out-of-school time physical activity programs for children/youth with physical disabilities. A search of the published literature was conducted and augmented by international expertise. A quality appraisal was conducted; only studies with quality ratings ≥60% informed our best practice recommendations. Seventeen studies were included using qualitative (n = 9), quantitative (n = 5), or mixed (n = 3) designs. Programs had a diversity of age groups, group sizes, and durations. Most programs were recreational level, involving both genders. Rehabilitation staff were the most common leaders. Outcomes focused on social skills/relationships, physical skill development, and psychological well-being, with overall positive effects shown in these areas. The best practice recommendations are consistent with an abilities-based approach emphasizing common group goals and interests; cooperative activities; mastery-oriented, individualized instruction; and developmentally appropriate, challenging activities. Results indicate that inclusive out-of-school time physical activity programs are important for positive psychosocial and physical skill development of children/youth with physical disabilities.

  10. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  11. Audit program for physical security systems at nuclear power plants

    International Nuclear Information System (INIS)

    Minichino, C.

    1982-01-01

    Licensees of nuclear power plants conduct audits of their physical security systems to meet the requirements of 10 CFR 73, Physical Protection of Plants and Materials. Section 73.55, Requirements for physical Protection of Licensed Activities in Nuclear Power Reactors Against Radiological Sabotage, requires that the security programs be reviewed at least every 12 months, that the audit be conducted by individuals independent of both security management and security supervision, and that the audit program review all aspects of the physical security system: hardware, personnel, and operational and maintenance procedures. This report contains information for the Nuclear Regulatory Commission (NRC) and for the licensees of nuclear power reactors who carry out these comprehensive audits. Guidance on the overall management of the audit function includes organizational structure and issues concerning the auditors who perform the review: qualifications, independence, due professional care, and standards. Guidance in the audit program includes purpose and scope of the audit, planning, techniques, post-audit procedures, reporting, and follow-up

  12. Success Stories of Undergraduate Retention: A Pathways Study of Graduate Students in Solar and Space Physics

    Science.gov (United States)

    Morrow, C. A.; Stoll, W.; Moldwin, M.; Gross, N. A.

    2012-12-01

    This presentation describes results from an NSF-funded study of the pathways students in solar and space physics have taken to arrive in graduate school. Our Pathways study has documented results from structured interviews conducted with graduate students attending two, week-long, NSF-sponsored scientific workshops during the summer of 2011. Our research team interviewed 48 solar and space physics students (29 males and 19 females currently in graduate programs at US institutions,) in small group settings regarding what attracted and retained them along their pathways leading to grad school. This presentation addresses what these students revealed about the attributes and influences that supported completion of their undergraduate experience and focused their aspirations toward graduate school. In advance of the interview process, we collected 125 on-line survey responses from students at the two workshops. This 20-item survey included questions about high school and undergraduate education, as well as about research and graduate experience. A subset of the 125 students who completed this on-line survey volunteered to be interviewed. Two types of interview data were collected from the 48 interviewees: 1) written answers to a pre-interview questionnaire; and 2) detailed notes taken by researchers during group interviews. On the pre-interview questionnaire, we posed the question: "How did you come to be a graduate student in your field?" Our findings to date are based on an analysis of responses to this question, cross correlated with the corresponding on-line survey data. Our analysis reveals the importance of early research experiences. About 80% of the students participating in the Pathways study cited formative undergraduate research experiences. Moreover, about 50% of participants reported undergraduate research experiences that were in the field of their current graduate studies. Graduate students interviewed frequently cited a childhood interest in science

  13. 1984 Review of the Applied Plasma Physics Program

    International Nuclear Information System (INIS)

    1984-09-01

    This report describes the present and planned programs of the Division of Applied Plasma Physics (APP), Office of Fusion Energy. The major activities of the division include fusion theory, experimental plasma research, advanced fusion concepts, and the magnetic fusion energy computer network. The planned APP program is consistent with the recently issued Comprehensive Program Management Plan for Magnetic Fusion Energy, which describes the overall objectives and strategy for the development of fusion energy

  14. 1992 HEPAP subpanel on the US Program of High Energy Physics Research

    International Nuclear Information System (INIS)

    1992-04-01

    High energy physics seeks an understanding of the fundamental structure of matter and the laws that govern all physical phenomena. The US high energy physics community has many scientific opportunities before it. Discovering the top quark, exploring the origin of particle-antiparticle asymmetry, and elucidating the Higgs mechanism, the source of mass, are some of the most notable. We were charged with laying out programs for US high energy physics through this decade that would accord with three specific budgetary guidelines for the period FY 1994--FY 1997. This report details the scientific, technical, and resource issues involved, recommends a program for each guideline, and discusses the implications of each program. In all our plans we consider construction of the SSC to have the highest priority in the US particle physics program and to be absolutely essential for continued progress in our field into the 21st century

  15. The Harvard Project Physics Film Program

    Science.gov (United States)

    Bork, Alfred M.

    1970-01-01

    States the philosophy behind the Harvard Project Physics (HPP) film program. Describes the three long HPP films. Lists the 48 color film loops covering six broad topics, primarily motion and energy. The 8-mm silent loops are synchronized with the text materials. Explains some of the pedagogical possibilities of these film loops. (RR)

  16. Test calculations of physical parameters of the TRX,BETTIS and MIT critical assemblies according to the TRIFON program

    International Nuclear Information System (INIS)

    Kochurov, B.P.

    1980-01-01

    Results of calculations of physical parameters characterizing the TRX, MIT and BETTIS critical assemblies obtained according to the program TRIFON are presented. The program TRIFON permits to calculate the space-energy neutron distribution in the multigroup approximation in a multizone cylindrical cell. Results of comparison of the TRX, BETTIS and MIT crytical assembly parameters with experimental data and calculational results according to the Monte Carlo method are presented as well. Deviations of the parameters are in the range of 1.5-2 of experimental errors. Data on the interference of uranium 238 levels in the resonant neutron absorption in the cell are given [ru

  17. Extracurricular Physical Activity Programs in California Private Secondary Schools.

    Science.gov (United States)

    Kahan, David; McKenzie, Thomas L

    2017-12-01

    Interscholastic, intramural, and club physical activity (PA) programs can be important contributors to student PA accrual at schools. Few studies have assessed factors related to the provision of these extracurricular PA programs, especially in private schools. We used a 16-item questionnaire to assess the associations and influences of selected factors relative to extracurricular PA program policies and practices in 450 private California secondary schools. Associations were evaluated using contingency table analyses (i.e., chi-squared, effect size, and post-hoc analyses). Six factors were associated with schools providing extracurricular PA programs: school location, level, enrollment, and religious classification and whether the physical education (PE) program met state PE time standards and was taught by PE specialists. Both static factors (e.g., school location, level, enrollment, and religious affiliation) and modifiable factors (e.g., meeting PE standards and employing specialists) affect the provision of extracurricular PA programs. As education is state-mandated, additional study is recommended to assess the generalizability of these findings to other states and to public schools.

  18. Reflective Lesson Planning in Refresher Training Programs for Experienced Physics Teachers.

    Science.gov (United States)

    Chung, C. M.; And Others

    1995-01-01

    Reports on a refresher training program that introduces experienced physics teachers to a reflective lesson-planning model and a more constructivist approach to physics teaching. Three instructional strategies developed by participants in the program and the corresponding suggestions made by their peers are presented and analyzed. (29 references)…

  19. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  20. Physics program at SPEAR energies

    International Nuclear Information System (INIS)

    Seiden, A.

    1982-01-01

    The author presents below a partial review of the physics program remaining to be completed over the SPEAR energy range along with examples of the running time needed for selected topics. The topics discussed are: meson spectroscopy from the psi; details of production and decay for the n/sub c/; charmed hadron spectroscopy; weak decays of D and F; and mechanism of e/sup +/e/sup -/ → qq-bar → Hadron States

  1. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  2. An operational health physics quality assurance program

    International Nuclear Information System (INIS)

    Costigan, S.A.; McAtee, J.L. III; Somers, W.M.; Huchton, R.L.

    1996-01-01

    DOE Order 5700.6C, Quality Assurance, stipulates QA requirements for all DOE activities. This order is now codified as 10CFR830.120, Nuclear Safety Management, Quality Assurance Requirements, which is applicable to DOE nuclear facilities. A Quality Assurance Management Plan (QAMP) was developed by the Health Physics Operations Group (ESH-1) at Los Alamos National Laboratory (LANL). The goal of the ESH-1 QAMP is to ensure that operational radiation protection activities meet the criteria outlined in DOE Order 5700.6C, DOE-ER-STD-6001-92 and 10CFR830.120. The ten required elements are QA Program, Personal Training and Qualifications, Quality Improvement, Documents and Records, Work Processes, Design, Procurement, Inspection and Acceptance Testing, Management Assessment and Independent Assessment. The QAMP has been useful for the development of QAMPs at nuclear facilities and has helped ensure uniformity of institutional requirements where Health Physics services are deployed to facilities. To implement a subset of QAMP requirements, a Quality Assurance Self-Evaluation Program (QASE) was established. This program provides a novel self-audit mechanism for the formal identification and correction of non-conforming items related to Operational Health Physics. Additionally, the QASE is a useful management tool for Radiological Control Technician Supervisors and staff and provides a tracking mechanism for ongoing problem areas. Data have been Collected for two calendar years on a number of concerns that fall into four general categories: radiological posting and labeling, instrumentation, monitoring requirements, and radiological documents/records

  3. A 30-Minute Physical Education Program Improves Students' Executive Attention

    Science.gov (United States)

    Kubesch, Sabine; Walk, Laura; Spitzer, Manfred; Kammer, Thomas; Lainburg, Alyona; Heim, Rudiger; Hille, Katrin

    2009-01-01

    Physical activity is not only beneficial to physical health but also to cognitive functions. In particular, executive functions that are closely related to learning achievement can be improved by acute and recurring physical activity. We examined the effects of a single 30-min physical education program in contrast to a 5-min movement break on…

  4. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    Science.gov (United States)

    Pham, Thai; Seery, Bernard; Ganel, Opher

    2016-01-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies

  5. Physical and Social-Motivational Contextual Correlates of Youth Physical Activity in Underresourced Afterschool Programs

    Science.gov (United States)

    Zarrett, Nicole; Sorensen, Carl; Cook, Brittany Skiles

    2015-01-01

    Afterschool programs (ASPs) have become increasingly recognized as a key context to support youth daily physical activity (PA) accrual. The purpose of the present study was to assess the physical and social-motivational climate characteristics of ASPs associated with youth PA, and variations in contextual correlates of PA by youth sex. Systematic…

  6. Lessons Learned to Date in Developing the Virtual Space Physics Observatory

    Science.gov (United States)

    Cornwell, C.; Roberts, D. A.; King, J.; Smith, A.

    2005-12-01

    We now have an operational Virtual Space Physics Observatory that provides users the ability to search for and retrieve data from hundreds of space and solar physics data products based on specific terms or a Google-like interface. Lessons learned in building VSPO include: (a) A very close and highly interactive collaboration between scientists and information technologists in the definition and development of services is essential. (b) Constructing a Data Model acceptable to a broad community is very important but very difficult. Variations in usage are inevitable and must be dealt with through translations; this is especially true for the description of variables within data products. (c) Higher-order queries (searches based on events, positions, comparisons of measurements, etc.) are possible, and have been implemented in various systems; currently we see these as being separate from the basic data finding and retrieval services. (d) Building a Virtual Observatory is often more a matter of the tedious details of product descriptions than an exercise in implementing fancy middleware. Paying a knowledgeable third party to build registries can be more efficient than working directly with providers, and automated tools can help but do not solve all the problems. (e) The success of the VO effort in space and solar physics, as elsewhere, will depend on whether the scientific communities involved use and critique the services so that they will come to meet a real need for the integration of resources to solve new scientific problems of perceived importance.

  7. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) sounding-rocket program

    Science.gov (United States)

    Guidotti, J. G.

    1976-01-01

    An overall introduction to the NASA sounding rocket program as managed by the Goddard Space Flight Center is presented. The various sounding rockets, auxiliary systems (telemetry, guidance, etc.), launch sites, and services which NASA can provide are briefly described.

  8. Creative Funding Ideas for Your Physical Education Program

    Science.gov (United States)

    Bodie, Mark C.

    2014-01-01

    Physical educators often find it difficult to secure funding for their programs in these tough economic times. However, there is funding out there, if one knows where to look and how to ask for it. This article describes how physical education teachers can make a funding action plan, who to contact, where to write to, and how to get equipment for…

  9. Survey of the US materials processing and manufacturing in space program

    Science.gov (United States)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  10. Library of problem-oriented programs for solving problems of atomic and nuclear physics

    International Nuclear Information System (INIS)

    Kharitonov, Yu.I.

    1976-01-01

    The Data Centre of the Leningrad Institute of Nuclear Physics (LIYaF) is working on the establishment of a library of problem-oriented computer programs for solving problems of atomic and nuclear physics. This paper lists and describes briefly the programs presently available to the Data Centre. The descriptions include the program code numbers, the program language, the translator for which the program is designed, and the program scope

  11. Plasma physics program at TEXTOR-94

    International Nuclear Information System (INIS)

    Samm, U.

    1995-01-01

    After upgrading the transformer of the tokamak TEXTOR in order to obtain an enhanced magnetic flux swing, the experimental potential of the device, now called TEXTOR-94, increased significantly and, together with other measures and achievements, opens now a wide field of research. For the physics program coherent concepts for energy- and particle exhaust provide a guideline

  12. Effect of programmed physical activity on the physical fitness of adolescent students

    Directory of Open Access Journals (Sweden)

    Edson Dos Santos Farias

    2010-02-01

    Full Text Available The objective of this study was to determine the influence of programmed physical activity on the physical fitness of adolescent students over one school year. The sample consisted of 383 students (age range: 10 to 14 years divided into two groups: 186 cases (96 boys and 90 girls and 197 controls (108 boys and 89 girls. An intervention study with pre- and post-tests was conducted, in which the intervention group was submitted to programmed physical activity, while the control group underwent conventional classes of school physical education. Physical fitness was assessed by sit-and-reach (flexibility, muscle endurance (elbow flexion and extension and aerobic endurance (run/walk, 9 min tests. Motor performance observed in the three tests (flexibility, strength and endurance did not improve from pre-test to post-test in either group, but comparison of the intervention and control groups showed significant improvement in the strength and endurance tests for both genders in the intervention group. Boys of the two groups also showed dominance in the strength and endurance tests. In general, higher muscle strength and cardiorespiratory fitness and lower flexibility were observed for boys when compared to girls, and all parameters increased in the post-test and were higher in the intervention group compared to control A significant difference in flexibility was only observed between genders. With respect to muscle strength, a significant difference was observed between genders and between the intervention and control group after adjustment for age and socioeconomic level. Cardiorespiratory fitness differed significantly between genders and between the intervention and control group.

  13. The physics origin of the hierarchy of bodies in space

    Science.gov (United States)

    Bejan, A.; Wagstaff, R. W.

    2016-03-01

    Here we show that bodies of the same size suspended uniformly in space constitute a system (a "suspension") in a state of uniform volumetric tension because of mass-to-mass forces of attraction. The system "snaps" hierarchically, and evolves faster to a state of reduced tension when the bodies coalesce spontaneously nonuniformly, i.e., hierarchically, into few large and many small bodies suspended in the same space. Hierarchy, not uniformity, is the design that emerges, and it is in accord with the constructal law. The implications of this principle of physics in natural organization and evolution are discussed.

  14. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  15. Optimizing the Role of Physical Education in Promoting Physical Activity: A Social-Ecological Approach.

    Science.gov (United States)

    Solmon, Melinda A

    2015-01-01

    The benefits associated with being physically active are well documented, but a significant proportion of the population is insufficiently active. Physical inactivity is a major health risk factor in our society, and physical education programs are consistently identified as a means to address this concern. The purpose of this article is to use the social-ecological model as a framework to examine ways in which physical education programs can play an important role in promoting physical activity. Policies that require time allocations and resources for physical education and physical activity in schools and community designs that provide infrastructure that makes being physically active accessible and convenient are important factors in making schools and communities healthier spaces. It is clear, however, that policies alone are not sufficient to address concerns about physical inactivity. We must consider individual factors that influence decisions to be physically active in efforts to engage children in physical education programs that promote active lifestyles. The learning climate that teachers create determines what students do and learn in physical education classes. Ensuring that students see value in the content presented and structuring classes so that students believe they can experience success when they exert effort are key elements in an effective motivational climate. Efforts to address public health concerns about physical inactivity require a comprehensive approach including quality physical education. It is critical that kinesiology professionals emerge as leaders in these efforts to place physical education programs at the center of promoting children's physical activity.

  16. Concept of Draft International Standard for a Unified Approach to Space Program Quality Assurance

    Science.gov (United States)

    Stryzhak, Y.; Vasilina, V.; Kurbatov, V.

    2002-01-01

    For want of the unified approach to guaranteed space project and product quality assurance, implementation of many international space programs has become a challenge. Globalization of aerospace industry and participation of various international ventures with diverse quality assurance requirements in big international space programs requires for urgent generation of unified international standards related to this field. To ensure successful fulfillment of space missions, aerospace companies should design and process reliable and safe products with properties complying or bettering User's (or Customer's) requirements. Quality of the products designed or processed by subcontractors (or other suppliers) should also be in compliance with the main user (customer)'s requirements. Implementation of this involved set of unified requirements will be made possible by creating and approving a system (series) of international standards under a generic title Space Product Quality Assurance based on a system consensus principle. Conceptual features of the baseline standard in this system (series) should comprise: - Procedures for ISO 9000, CEN and ECSS requirements adaptation and introduction into space product creation, design, manufacture, testing and operation; - Procedures for quality assurance at initial (design) phases of space programs, with a decision on the end product made based on the principle of independence; - Procedures to arrange incoming inspection of products delivered by subcontractors (including testing, audit of supplier's procedures, review of supplier's documentation), and space product certification; - Procedures to identify materials and primary products applied; - Procedures for quality system audit at the component part, primary product and materials supplier facilities; - Unified procedures to form a list of basic performances to be under configuration management; - Unified procedures to form a list of critical space product components, and unified

  17. An Experimental and Theoretical High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Shipsey, Ian

    2012-07-31

    The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.

  18. Efficiency of Physical Exercise Programs on Chronic Psychiatry Patients: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Sefa Lok

    2016-12-01

    Full Text Available Physical activity and exercise have recently been used as an effective method for the treatment of several mental disorders. In this systematic review, the objective is to evaluate the efficiency of the physical activity programs which are applied on the chronic psychiatric patients. The review is made in direction with the Centre for Reviews and Dissemination 2009 guide which is developed by the York University, National Health Care Research Institute. Seven studies are included within the scope of this research. The patients with chronic mental disorders who participate in the physical activity programs experience positive outcomes like that they feel themselves mentally better, they are more compatible with the medical treatment and therapeutic interventions, the programs diminish the anxiety, their perceptions of physical self are strengthened, the social functionality is increased, the duration of morning sleep is decreased and the quality of night sleep is increased. Accordingly, personalized, planned and continuous physical activity programs should be developed for all the psychiatric patients and these programs should be applied on such patients. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(4.000: 354-366

  19. Introduction to Plasma Physics: With Space and Laboratory Applications

    International Nuclear Information System (INIS)

    Browning, P K

    2005-01-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, 'with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfven wave theory, observations of Alfven waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects - a large subject! - are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  20. Georgia Tech video-based MS program in health physics/radiological engineering

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Kahn, B.

    1991-01-01

    For the past several years, the health physics/radiation protection field has experienced a significant shortage of qualified professionals. The shortage is expected to continue for foreseeable future given the continued demand by both nuclear and medical facilities and the expected growth in the areas of waste management and environmental remediation. In response to such a shortage, beginning in the fall of 1984, Georgia Institute of Technology (Georgia Tech) established a video-based instruction program that enables professionals in the nuclear field to earn a master of science degree in health physics/radiological engineering while working at a distant nuclear facility. The admission criteria and curricular requirements for the program are identical to those for the resident (on-campus) students (except that weekly attendance at departmental seminars is excused). The program is designed for students with undergraduate degrees in health physics, engineering, or appropriate sciences such as physics, chemistry, or biology. A total of 50 quarter credit hours is required, so that a student who takes one course per quarter can complete the program in four years

  1. An overview of DARPA's advanced space technology program

    Science.gov (United States)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  2. 75 FR 12522 - Carol M. White Physical Education Program

    Science.gov (United States)

    2010-03-16

    ... project with the Coordinated School Health program, Team Nutrition Training Grant, Recovery Act... vision for (a) encouraging the development of lifelong healthy habits, and (b) improving nutrition and..., integrated physical activity and nutrition programs and policies that are reinforced in and by the community...

  3. The UNAM M. Sc. program in Medical Physics enters its teen years

    Science.gov (United States)

    Brandan, María-Ester

    2010-12-01

    The M.Sc. (Medical Physics) program at the National Autonomous University of Mexico UNAM, created in 1997, has graduated a substantial number of medical physicists who constitute today about 30% of the medical physics clinical workforce in the country. Up to present date (May 2010) more than 60 students have graduated, 60% of them hold clinical jobs, 20% have completed or study a Ph.D., and 15% perform activities related to this specialization. In addition to strengthening the clinical practice of medical physics, the program has served as an incentive for medical physics research in UNAM and other centers. We report the circumstances of the program origin, the evolution of its curriculum, the main achievements, and the next challenges.

  4. Space Launch System Base Heating Test: Environments and Base Flow Physics

    Science.gov (United States)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  5. Initiating and Strengthening College and University Instructional Physical Activity Programs

    Science.gov (United States)

    Sweeney, Michelle M.

    2011-01-01

    The National Association for Sport and Physical Education supports the offering of strong college and university instructional physical activity programs (C/UIPAPs). With a rapid decline in physical activity levels, high stress levels, and unhealthy weight-loss practices among college-age students, it is apparent that C/UIPAPs embedded in the…

  6. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    Science.gov (United States)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  7. Audiovisual Aids for Astronomy and Space Physics at an Urban College

    Science.gov (United States)

    Moche, Dinah L.

    1973-01-01

    Discusses the use of easily available audiovisual aids to teach a one semester course in astronomy and space physics to liberal arts students of both sexes at Queensborough Community College. Included is a list of teaching aids for use in astronomy instruction. (CC)

  8. The new Space Shuttle Transportation System (STS) - Problem, performance, supportability, and programmatic trending program

    Science.gov (United States)

    Crawford, J. L.; Rodney, G. A.

    1989-01-01

    This paper describes the NASA Space Shuttle Trend Analysis program. The four main areas of the program - problem/reliability, performance, supportability, and programmatic trending - are defined, along with motivation for these areas, the statistical methods used, and illustrative Space Shuttle applications. Also described is the NASA Safety, Reliability, Maintainability and Quality Assurance (SRM&QA) Management Information Center, used to focus management attention on key near-term launch concerns and long-range mission trend issues. Finally, the computer data bases used to support the program and future program enhancements are discussed.

  9. Effects of programmed physical activity on body composition in post-pubertal schoolchildren.

    Science.gov (United States)

    Farias, Edson Dos Santos; Gonçalves, Ezequiel Moreira; Morcillo, André Moreno; Guerra-Júnior, Gil; Amancio, Olga Maria Silverio

    2015-01-01

    To assess body composition modifications in post-pubertal schoolchildren after practice of a physical activity program during one school year. The sample consisted of 386 students aged between 15 and 17 years and divided into two groups: the study group (SG) comprised 195 students and the control group (CG), 191. The SG was submitted to a physical activity program and the CG attended conventional physical education classes. Body composition was assessed using body mass index (BMI), percentage of body fat (%BF), fat mass (FM), and lean mass (LM). A positive effect of the physical activity program on body composition in the SG (pgenders. A reduction in %BF (mean of differences = -5.58%) and waist circumference (-2.33 cm), as well as an increase in LM (+2.05 kg) were observed in the SG for both genders, whereas the opposite was observed in the CG. The practice of programmed physical activity promotes significant reduction of body fat in post-pubertal schoolchildren. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  10. Physics constraints on tokamak edge operational space and extrapolation to ITER

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Janeschitz, G.; Sugihara, M.; Pacher, H.D.; Post, D.E.; Pacher, G.W.; Pogutse, O.P.

    1998-01-01

    This paper emphasises the theoretical understanding of the physical processes in the edge tokamak plasma and their attendant uncertainties and constraints. The various operational boundaries are represented in the edge operational space (EOS) diagram, the space of edge density and temperature, defined at the top of the H-mode transport barrier. The EOS is governed by four boundaries representing physical constraints for the edge plasma parameters. The first boundary represents the onset of type I ELM instabilities in terms of a critical pressure gradient for MHD stability at the edge which defines the maximum pedestal temperature for a given density once the width of the H-mode transport barrier at the edge (pedestal width) is known. The ideal ballooning mode is a candidate for this instability. The second boundary defines the boundary between type III ELM's, which are probably resistive MHD modes, and the ELM-free region. (orig.)

  11. Challenges in Physical Characterization of Dim Space Objects: What Can We Learn from NEOs

    Science.gov (United States)

    Reddy, V.; Sanchez, J.; Thirouin, A.; Rivera-Valentin, E.; Ryan, W.; Ryan, E.; Mokovitz, N.; Tegler, S.

    2016-09-01

    Physical characterization of dim space objects in cis-lunar space can be a challenging task. Of particular interest to both natural and artificial space object behavior scientists are the properties beyond orbital parameters that can uniquely identify them. These properties include rotational state, size, shape, density and composition. A wide range of observational and non-observational factors affect our ability to characterize dim objects in cis-lunar space. For example, phase angle (angle between Sun-Target-Observer), temperature, rotational variations, temperature, and particle size (for natural dim objects). Over the last two decades, space object behavior scientists studying natural dim objects have attempted to quantify and correct for a majority of these factors to enhance our situational awareness. These efforts have been primarily focused on developing laboratory spectral calibrations in a space-like environment. Calibrations developed correcting spectral observations of natural dim objects could be applied to characterizing artificial objects, as the underlying physics is the same. The paper will summarize our current understanding of these observational and non-observational factors and present a case study showcasing the state of the art in characterization of natural dim objects.

  12. Involvement of scientists in the NASA Office of Space Science education and public outreach program

    International Nuclear Information System (INIS)

    Beck-Winchatz, Bernhard

    2005-01-01

    Since the mid-1990's NASA's Office of Space Science (OSS) has embarked on an astronomy and space science education and public outreach (E/PO) program. Its goals are to share the excitement of space science discoveries with the public, and to enhance the quality of science, mathematics and technology education, particularly at the precollege level. A key feature of the OSS program is the direct involvement of space scientists. The majority of the funding for E/PO is allocated to flight missions, which spend 1%-2% of their total budget on E/PO, and to individual research grants. This paper presents an overview of the program's goals, objectives, philosophy, and infrastructure

  13. Health physics program for the Edgemont Uranium Mill decommissioning project

    International Nuclear Information System (INIS)

    Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program

  14. UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model

    Science.gov (United States)

    Thorsen, D.

    2017-12-01

    Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.

  15. Early MIMD experience with a plasma physics simulation program on the CRAY X-MP

    International Nuclear Information System (INIS)

    Rhoades, C.E. Jr.

    1986-02-01

    This paper describes some early experience with converting a plasma physics simulation program to the CRAY X-MP, a current multiple instruction, multiple data (MIMD) computer consisting of two processors with architecture similar to that of the CRAY-1. The computer program used in this study is an all Fortran version of SELF, a two species, one space, two velocity, electromagnetic, Newtonian, particle in cell, plasma simulation code. The approach to converting SELF to use both processors of the CRAY X-MP is described in some detail. The resulting multiprocessor version of SELF is nearly a factor of two faster in real time than the single processor version. The multiprocessor version obtains 58.2+-.1 seconds of central processor time in 30+-.5 seconds of real time. For comparison, the CRAY-1 execution time if 74.5 seconds. For SELF, which is mostly scalar coding, the CRAY X-MP is about 2.5 times faster overall than the CRAY-1

  16. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  17. Fifteen-foot diameter modular space station Kennedy Space Center launch site support definition (space station program Phase B extension definition)

    Science.gov (United States)

    Bjorn, L. C.; Martin, M. L.; Murphy, C. W.; Niebla, J. F., V

    1971-01-01

    This document defines the facilities, equipment, and operational plans required to support the MSS Program at KSC. Included is an analysis of KSC operations, a definition of flow plans, facility utilization and modifications, test plans and concepts, activation, and tradeoff studies. Existing GSE and facilities that have a potential utilization are identified, and new items are defined where possible. The study concludes that the existing facilities are suitable for use in the space station program without major modification from the Saturn-Apollo configuration.

  18. Summary of particle bed reactor designs for the Space Nuclear Thermal Propulsion Program

    Science.gov (United States)

    Powell, J. R.; Ludewig, H.; Todosow, M.

    1993-09-01

    A summary report of the Particle Bed Reactor (PBR) designs considered for the space nuclear thermal propulsion program has been prepared. The first chapters outline the methods of analysis, and their validation. Monte Carlo methods are used for the physics analysis, several new algorithms are used for the fluid dynamics heat transfer and engine system analysis, and commercially available codes are used for the stress analysis. A critical experiment, prototypic of the PBR was used for the physics validation, and blowdown experiments using fuel beds of prototypic dimensions were used to validate the power extraction capabilities from particle beds. In all four different PBR rocket reactor designs were studied to varying degrees of detail. They varied in power from 400 MW to 2000 MW. These designs were all characterized by a negative prompt coefficient, due to Doppler feedback, and the feedback due to moderator heat up varied from slightly negative to slightly positive. In all practical cases, the coolant worth was positive, although core configurations with negative coolant worth could be designed. In all practical cases the thrust/weight ratio was greater than 20.

  19. Parental perception on the efficacy of a physical activity program for preschoolers.

    Science.gov (United States)

    Bellows, Laura; Silvernail, Sara; Caldwell, Lisa; Bryant, Angela; Kennedy, Cathy; Davies, Patricia; Anderson, Jennifer

    2011-04-01

    Childhood obesity is among the leading health concerns in the United States. The relationship between unmet physical activity needs in young children is of particular interest as the trend in childhood obesity continues to rise and unmet physical activity needs are identified. The preschool years are an influential time in promoting healthful lifestyle habits and early childhood interventions may help establish lifelong healthful behaviors which could help prevent obesity later in life. The Food Friends®: Get Movin' with Mighty Moves® is a preschool physical activity program which aims to improve children's gross motor skills and physical activity levels. The home environment and parental modeling are critical factors related to child physical activity in this population. The parent component, Mighty Moves®: Fun Ways to Keep Families Active and Healthy, was designed to address barriers in the home environment that lead to unmet physical activity needs in preschoolers and their families. The program and materials were designed based on Social Marketing tenets and Social Learning Theory principles. Four Colorado Head Start centers were assigned to an experimental group as part of the Mighty Moves® group randomized trial. Quantitative and qualitative evaluation methods were used to determine what messages and materials reached and motivated the target audience to increase physical activity levels. Results of the study indicated the program's materials helped families and children to be more physically active. Additionally, materials and material dissemination were revised to enhance program goals.

  20. CM Process Improvement and the International Space Station Program (ISSP)

    Science.gov (United States)

    Stephenson, Ginny

    2007-01-01

    This viewgraph presentation reviews the Configuration Management (CM) process improvements planned and undertaken for the International Space Station Program (ISSP). It reviews the 2004 findings and recommendations and the progress towards their implementation.

  1. Computer programs in accelerator physics

    International Nuclear Information System (INIS)

    Keil, E.

    1984-01-01

    Three areas of accelerator physics are discussed in which computer programs have been applied with much success: i) single-particle beam dynamics in circular machines, i.e. the design and matching of machine lattices; ii) computations of electromagnetic fields in RF cavities and similar objects, useful for the design of RF cavities and for the calculation of wake fields; iii) simulation of betatron and synchrotron oscillations in a machine with non-linear elements, e.g. sextupoles, and of bunch lengthening due to longitudinal wake fields. (orig.)

  2. The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science

    Science.gov (United States)

    McPhee, J. C.

    2017-12-01

    How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.

  3. Laboratory for Extraterrestrial Physics

    Science.gov (United States)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  4. Space orbits of collaboration. [international cooperation and the U.S.S.R. space program

    Science.gov (United States)

    Petrov, B.

    1978-01-01

    The U.S.S.R. cooperative space efforts with other Socialist countries dating back to 1957 are reviewed. The Interkosmos program, which is divided into three series of satellites (solar, ionospheric and magnetospheric), is discussed as well as the Prognoz, Kosmos, Soyuz, and Molniya spacecraft. Collaboration with France, India, Sweden, and the United States is mentioned.

  5. Basic physics program for a low energy antiproton source in North America

    International Nuclear Information System (INIS)

    Bonner, B.E.; Nieto, M.M.

    1987-01-01

    We summarize much of the important science that could be learned at a North American low energy antiproton source. It is striking that there is such a diverse and multidisciplinary program that would be amenable to exploration. Spanning the range from high energy particle physics to nuclear physics, atomic physics, and condensed matter physics, the program promises to offer many new insights into these disparate branches of science. It is abundantly clear that the scientific case for rapidly proceeding towards such a capability in North America is both alluring and strong. 38 refs., 2 tabs

  6. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  7. Spatial Analysis in Determining Physical Factors of Pedestrian Space Livability, Case Study: Pedestrian Space on Jalan Kemasan, Yogyakarta

    Science.gov (United States)

    Fauzi, A. F.; Aditianata, A.

    2018-02-01

    The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.

  8. Health Physics Innovations Developed During Cassini for Future Space Applications

    Science.gov (United States)

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  9. [Reduction of juvenile obesity by programmed physical exercise and controlled diet].

    Science.gov (United States)

    Sente, Jelena; Jakonić, Dragoslav; Smajić, Miroslav; Mihajlović, Ilona; Vasić, Goran; Romanov, Romana; Marić, Lela

    2012-01-01

    Obesity is the most common disease of nutrition and is the consequence of reduced movement. Unfortunately, this problem is increasingly present in juvenile age, so that the pediatric outpatient offices are dominated by obese young people. The aim of this study was to evaluate and quantify the effects of the reducing treatment for juvenile obesity conducted by programmed physical exercise and controlled diet. We tested a sample of 136 respondents of both sexes (76 girls and 60 boys) aged 13 +/- 0.6 years. This prospective study took 3 months in 2007 using the experimental methods of longitudinal weather precision. The data obtained after the measurement were processed by the use of statistical programs to calculate the basic and dispersion parameters. To determine the difference between the initial and final measurements we applied the univariate analysis of variance (ANOVA) and differences in the variables system in the space were determined by multivariate analysis of variance (MANOVA). The results of ANOVA in the form of F values indicated that the differences between the initial and final measurements in all parameters of circumference dimensionality and subcutaneous fat tissue are significant (p = 0.00). Also, differences in parameters of body constitution and indicators of alimentation showed a high statistical significance (p = 0.00). The results of multivariante analysis (MANOVA), using Wilk's Lambda test, also indicated that the differences between initial and final measurements in the area of anthropometric measures and indicators of alimentation and constitution, were statistically significant (p = 0.00). Application of physical exercise and controlled diet leads to a significant reduction of anthropometric parameters and anthropological indicators of alimentation.

  10. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  11. IMPETUS - Interactive MultiPhysics Environment for Unified Simulations.

    Science.gov (United States)

    Ha, Vi Q; Lykotrafitis, George

    2016-12-08

    We introduce IMPETUS - Interactive MultiPhysics Environment for Unified Simulations, an object oriented, easy-to-use, high performance, C++ program for three-dimensional simulations of complex physical systems that can benefit a large variety of research areas, especially in cell mechanics. The program implements cross-communication between locally interacting particles and continuum models residing in the same physical space while a network facilitates long-range particle interactions. Message Passing Interface is used for inter-processor communication for all simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparison of international guideline programs to evaluate and update the Dutch program for clinical guideline development in physical therapy.

    Science.gov (United States)

    Van der Wees, Philip J; Hendriks, Erik J M; Custers, Jan W H; Burgers, Jako S; Dekker, Joost; de Bie, Rob A

    2007-11-23

    Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF) produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. As a result of international developments and consensus, the described processes for developing clinical practice guidelines have much in common

  13. INSPIRE: Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Franzen, K. A.; Garcia, L. N.; Webb, P. A.; Green, J. L.

    2007-12-01

    The INSPIRE Project is a non-profit scientific and educational corporation whose objective is to bring the excitement of observing very low frequency (VLF) natural radio waves to high school students. Underlying this objective is the conviction that science and technology are the underpinnings of our modern society, and that only with an understanding of these disciplines can people make correct decisions in their lives. Since 1989, the INSPIRE Project has provided specially designed radio receiver kits to over 2,500 students and other groups to make observations of signals in the VLF frequency range. These kits provide an innovative and unique opportunity for students to actively gather data that can be used in a basic research project. Natural VLF emissions that can be studied with the INSPIRE receiver kits include sferics, tweeks, whistlers, and chorus, which originate from phenomena such as lightning. These emissions can either come from the local atmospheric environment within a few tens of kilometers of the receiver or from outer space thousands of kilometers from the Earth. VLF emissions are at such low frequencies that they can be received, amplified and turned into sound that we can hear, with each emission producing in a distinctive sound. In 2006 INSPIRE was re-branded and its mission has expanded to developing new partnerships with multiple science projects. Links to magnetospheric physics, astronomy, and meteorology are being identified. This presentation will introduce the INSPIRE project, display the INSPIRE receiver kits, show examples of the types of VLF emissions that can be collected and provide information on scholarship programs being offered.

  14. Effects of programmed physical activity on body composition in post-pubertal schoolchildren

    Directory of Open Access Journals (Sweden)

    Edson dos Santos Farias

    2015-04-01

    Full Text Available OBJECTIVE: To assess body composition modifications in post-pubertal schoolchildren after practice of a physical activity program during one school year. METHODS: The sample consisted of 386 students aged between 15 and 17 years and divided into two groups: the study group (SG comprised 195 students and the control group (CG, 191. The SG was submitted to a physical activity program and the CG attended conventional physical education classes. Body composition was assessed using body mass index (BMI, percentage of body fat (%BF, fat mass (FM, and lean mass (LM. RESULTS: A positive effect of the physical activity program on body composition in the SG (p < 0.001 was observed, as well as on the interaction time x group in all the variables analyzed in both genders. A reduction in %BF (mean of differences = -5.58% and waist circumference (-2.33 cm, as well as an increase in LM (+2.05 kg were observed in the SG for both genders, whereas the opposite was observed in the CG. CONCLUSION: The practice of programmed physical activity promotes significant reduction of body fat in post-pubertal schoolchildren.

  15. Need to plan for a full-scale lns-physics program at the SSC

    International Nuclear Information System (INIS)

    White, A.R.

    1984-03-01

    Arguments for a full lns physics program at the SSC are enumerated and elaborated on. They are: first - the inadequacy of data from a minimal program, second - the potential fundamental significance of a high-energy soft physics collective phenomenon and third - the possible diffractive production of much of the interesting new physics that will be searched for

  16. Adherence to a Videogame-Based Physical Activity Program for Older Adults with Schizophrenia.

    Science.gov (United States)

    Leutwyler, Heather; Hubbard, Erin M; Dowling, Glenna A

    2014-08-01

    Adults with schizophrenia are a growing segment of the older adult population. Evidence suggests that they engage in limited physical activity. Interventions are needed that are tailored around their unique limitations. An active videogame-based physical activity program that can be offered at a treatment facility can overcome these barriers and increase motivation to engage in physical activity. The purpose of this report is to describe the adherence to a videogame-based physical activity program using the Kinect(®) for Xbox(®) 360 game system (Microsoft(®), Redmond, WA) in older adults with schizophrenia. This was a descriptive longitudinal study among 34 older adults with schizophrenia to establish the adherence to an active videogame-based physical activity program. In our ongoing program, once a week for 6 weeks, participants played an active videogame, using the Kinect for Xbox 360 game system, for 30 minutes. Adherence was measured with a count of sessions attended and with the total minutes attended out of the possible total minutes of attendance (180 minutes). Thirty-four adults with schizophrenia enrolled in the study. The mean number of groups attended was five out of six total (standard deviation=2), and the mean total minutes attended were 139 out of 180 possible (standard deviation=55). Fifty percent had perfect attendance. Older adults with schizophrenia need effective physical activity programs. Adherence to our program suggests that videogames that use the Kinect for Xbox 360 game system are an innovative way to make physical activity accessible to this population.

  17. Adherence to a Videogame-Based Physical Activity Program for Older Adults with Schizophrenia

    Science.gov (United States)

    Hubbard, Erin M.; Dowling, Glenna A.

    2014-01-01

    Abstract Objectives: Adults with schizophrenia are a growing segment of the older adult population. Evidence suggests that they engage in limited physical activity. Interventions are needed that are tailored around their unique limitations. An active videogame-based physical activity program that can be offered at a treatment facility can overcome these barriers and increase motivation to engage in physical activity. The purpose of this report is to describe the adherence to a videogame-based physical activity program using the Kinect® for Xbox® 360 game system (Microsoft®, Redmond, WA) in older adults with schizophrenia. Materials and Methods: This was a descriptive longitudinal study among 34 older adults with schizophrenia to establish the adherence to an active videogame-based physical activity program. In our ongoing program, once a week for 6 weeks, participants played an active videogame, using the Kinect for Xbox 360 game system, for 30 minutes. Adherence was measured with a count of sessions attended and with the total minutes attended out of the possible total minutes of attendance (180 minutes). Results: Thirty-four adults with schizophrenia enrolled in the study. The mean number of groups attended was five out of six total (standard deviation=2), and the mean total minutes attended were 139 out of 180 possible (standard deviation=55). Fifty percent had perfect attendance. Conclusions: Older adults with schizophrenia need effective physical activity programs. Adherence to our program suggests that videogames that use the Kinect for Xbox 360 game system are an innovative way to make physical activity accessible to this population. PMID:26192371

  18. Managing NASA's International Space Station Logistics and Maintenance program

    Science.gov (United States)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  19. VNI 3.1 MC-simulation program to study high-energy particle collisions in QCD by space-time evolution of parton-cascades and parton-hadron conversion

    Science.gov (United States)

    Geiger, Klaus

    1997-08-01

    VNI is a general-purpose Monte Carlo event generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. On the basis of renormalization-group improved parton description and quantum-kinetic theory, it uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme that is governed by the dynamics itself. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position space, momentum space and color space. The parton evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi) hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. This article gives a brief review of the physics underlying VNI, which is followed by a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including a simple example), annotates input and control parameters, and discusses output data provided by it.

  20. Context Matters: Systematic Observation of Place-Based Physical Activity

    Science.gov (United States)

    McKenzie, Thomas L.

    2016-01-01

    Physical activity is place-based, and being able to assess the number of people and their characteristics in specific locations is important both for public health surveillance and for practitioners in their design of physical activity spaces and programs. Although physical activity measurement has improved recently, many investigators avoid or…

  1. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    Science.gov (United States)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  2. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  3. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  4. Assessing Program Learning Objectives to Improve Undergraduate Physics Education

    Science.gov (United States)

    Menke, Carrie

    2014-03-01

    Our physics undergraduate program has five program learning objectives (PLOs) focusing on (1) physical principles, (2) mathematical expertise, (3) experimental technique, (4) communication and teamwork, and (5) research proficiency. One PLO is assessed each year, with the results guiding modifications in our curriculum and future assessment practices; we have just completed our first cycle of assessing all PLOs. Our approach strives to maximize the ease and applicability of our assessment practices while maintaining faculty's flexibility in course design and delivery. Objectives are mapped onto our core curriculum with identified coursework collected as direct evidence. We've utilized mostly descriptive rubrics, applying them at the course and program levels as well as sharing them with the students. This has resulted in more efficient assessment that is also applicable to reaccreditation efforts, higher inter-rater reliability than with other rubric types, and higher quality capstone projects. We've also found that the varied quality of student writing can interfere with our assessment of other objectives. This poster outlines our processes, resources, and how we have used PLO assessment to strengthen our undergraduate program.

  5. Impact of an After-School Physical Activity Program on Youth's Physical Activity Correlates and Behavior

    Science.gov (United States)

    Huang, Chaoqun; Gao, Zan; Hannon, James C.; Schultz, Barry; Newton, Maria; Jenson, William

    2012-01-01

    The purpose of this investigation was to examine the effect of a sports-based, after-school physical activity (PA) program on youth's physical activity PA levels and PA correlates. After the pretest, 130 youth were assigned to the intervention group (i.e., after-school PA group) or the comparison (i.e., no after-school PA group) group.…

  6. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  7. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  8. Progress report on reactor physics research program, January 1963 - February 1964

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-15

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics.

  9. Progress report on reactor physics research program, January 1963 - February 1964

    International Nuclear Information System (INIS)

    1964-02-01

    This progress report is a part of the annual report of the department of reactor physics prepared for the Boris Kidric Institute of nuclear sciences. It is a review of research activities in the field of theoretical and experimental reactor physics in the year 1973. A part of this program was included in the NPY Cooperative program in reactor physics. The topics covered by this report are as follows: Calculations of the thermal neutron distribution and reaction rate in a reactor cell and comparison with experiments; buckling measurements; thermalization and slowing down of neutrons; pulsed neutron source techniques; and reactor kinetics

  10. Programs for low-energy nuclear physics data processing

    International Nuclear Information System (INIS)

    Antuf'ev, Yu.P.; Dejneko, A.S.; Ekhichev, O.I.; Kuz'menko, V.A.; Mashkarov, Yu.G.; Nemashkalo, B.A.; Skakun, E.A.; Storizhko, V.E.; Shlyakhov, N.A.

    1978-01-01

    Purpose of six computer programs developed in KhPTI of AN USSR for the processing of the experimental data on low energy nuclear physics ia friendly described. The programs are written in Algol-60 language. They are applied to some types of nuclear reactions and permit to process differential cross sections and γ spectra, to compute statistical tensors and excitation functions as well as to analyze some processes by means of theoretical models

  11. Introduction of computing in physics learning visual programing

    International Nuclear Information System (INIS)

    Kim, Cheung Seop

    1999-12-01

    This book introduces physics and programing, foundation of visual basic, grammar of visual basic, visual programing, solution of equation, calculation of matrix, solution of simultaneous equation, differentiation, differential equation, simultaneous differential equation and second-order differential equation, integration and solution of partial differential equation. It also covers basic language, terms of visual basic, usage of method, graphic method, step by step method, fails-position method, Gauss elimination method, difference method and Euler method.

  12. Space Power Program Semiannual Progress Report for period ending June 30, 1963

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    1963-10-11

    This is a report of progress on the Oak Ridge National Laboratory's research and development program on nuclear power plants for electrical power production in space vehicles. The work is carried out under AEG Reactor Experiments, Fuels, and Materials, and Reactor Component programs. Research and development work is under way on the stainless steel boiling-potassium reactor and the Medium Power Reactor Experiment, boiling alkali metal heat transfer, high-temperature and refractory alloys, fuel material, and space reactor shielding, particularly in connection with SNAP 2, 8, 10, and 50. Many of these OREL efforts are directed toward the development of a specific type of power plant, but they also furnish a significant contribution of scientific and engineering information needed in other programs on advanced SNAP systems. Progress on research and development directly related to the Medium Power Reactor Experiment (MPRE) is presented mostly in Part I of this report. Progress on the MPRE will, in the future, be reported on a quarterly basis. The form of the reporting will alternate from MPRE Quarterly Progress Reports to Space Power Semiannual Progress Reports.

  13. InfoGallery: Informative Arts Services for Physical Library Spaces

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Rohde, Anne; Sundararajah, Balasuthas

    2006-01-01

    Much focus in digital libraries research has been devoted to new online services rather than services for the visitors in the physical library. This paper describes InfoGallery, which is a web-based infrastructure for enriching the physical library space with informative art "exhibitions......" of digital library material and other relevant information, such as RSS news streams, event announcements etc. InfoGallery presents information in an aesthetically attractive manner on a variety of surfaces in the library, including cylindrical displays and floors. The infrastructure consists of a server...... structure, an editor application and a variety of display clients. The paper discusses the design of the infrastructure and its utilization of RSS, podcasts and manually edited news. Applications in the library domain are described and the experiences are discussed....

  14. HEPAP Subpanel on the US High Energy Physics Research Program for the 1990's

    International Nuclear Information System (INIS)

    1990-04-01

    The entire community of high energy physicists looks expectantly to the Superconducting Super Collider (SSC) era. The SSC is the highest priority in the US high energy physics (HEP) program, and physics at the SSC will increasingly become its focus. In this report, the High Energy Physics Advisory Panel (HEPAP) Subpanel on the US High Energy Physics Research Program for the 1990's examines how the National HEP program can go forward vigorously in the period of preparation for the SSC. The Subpanel concluded early that a viable and productive physics research program in the next decade on a range of promising fronts is essential for this field to continue to attract and educate scientists of great creativity. The Subpanel found that such a program requires both exploiting existing opportunities and undertaking some new initiatives. The recommendations are based on the ''constant budget scenario,'' which the Subpanel interprets as averaging the FY 1991 budget level over the next decade

  15. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    Science.gov (United States)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical

  16. Physical activity stimulation program for children with cerebral palsy did not improve physical activity: a randomised trial

    NARCIS (Netherlands)

    van Wely, L.; Balemans, A.C.J.; Becher, J.G.; Dallmeijer, A.J.

    2014-01-01

    Question: In children with cerebral palsy, does a 6-month physical activity stimulation program improve physical activity, mobility capacity, fitness, fatigue and attitude towards sports more than usual paediatric physiotherapy? Design: Multicentre randomised controlled trial with concealed

  17. Impacting Children’s Health and Academic Performance through Comprehensive School Physical Activity Programming

    Directory of Open Access Journals (Sweden)

    Timothy A. BRUSSEAU

    2015-06-01

    Full Text Available Physical activity is associated with numerous academic and health benefits. Furthermore, schools have been identified as an ideal location to promote physical activity as most youth attend school regularly from ages 5-18. Unfortunately, in an effort to increase academic learning time, schools have been eliminating traditional activity opportunities including physical education and recess. To combat physical inactivity in you, numerous organizations are promoting a Comprehensive School Physical Activity Program to encourage academic achievement and overall health. Comprehensive School Physical Activity Programs include five components and should be centered around 1 quality physical education, 2 physical activity before and after school, 3 physical activity during school (both recess and classroom activity, 4 staff involvement, and 5 family and community engagement.

  18. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Science.gov (United States)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  19. Assessing the Associations Between Types of Green Space, Physical Activity, and Health Indicators Using GIS and Participatory Survey

    Science.gov (United States)

    Akpinar, A.

    2017-11-01

    This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands) are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke). Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small), quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.

  20. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  1. Progress report of a research program in computational physics

    International Nuclear Information System (INIS)

    Guralnik, G.S.

    1990-01-01

    Task D's research is focused on the understanding of elementary particle physics through the techniques of quantum field theory. We make intensive use of computers to aid our research. During the last year we have made significant progress in understanding the weak interactions through the use of Monte Carlo methods as applied to the equations of quenched lattice QCD. We have launched a program to understand full (not quenched) lattice QCD on relatively large lattices using massively parallel computers. Because of our awareness that Monte Carlo methods might not be able to give a good solution to field theories with the computer power likely to be available to us for the forseeable future we have launched an entirely different numerical approach to study these problems. This ''Source Galerkin'' method is based on an algebraic approach to the field theoretic equations of motion and is (somewhat) related to variational and finite element techniques applied to a source rather than a coordinate space. The results for relatively simple problems are sensationally good. In particular, fermions can be treated in a way which allows them to retain their status as independent dynamical entities in the theory. 8 refs

  2. An intervention program to promote health-related physical fitness in nurses.

    Science.gov (United States)

    Yuan, Su-Chuan; Chou, Ming-Chih; Hwu, Lien-Jen; Chang, Yin-O; Hsu, Wen-Hsin; Kuo, Hsien-Wen

    2009-05-01

    To assess the effects of exercise intervention on nurses' health-related physical fitness. Regular exercise that includes gymnastics or aerobics has a positive effect on fitness. In Taiwan, there are not much data which assess the effects of exercise intervention on nurses' health-related physical fitness. Many studies have reported the high incidence of musculoskeletal disorders (MSDs) in nurses However, there has been limited research on intervention programs that are designed to improve the general physical fitness of nurses. A quasi-experimental study was conducted at a medical centre in central Taiwan. Ninety nurses from five different units of a hospital volunteered to participate in this study and participated in an experimental group and a control group. The experimental group engaged in a three-month intervention program consisting of treadmill exercise. Indicators of the health-related physical fitness of both groups were established and assessed before and after the intervention. Before intervention, the control group had significantly better grasp strength, flexibility and durability of abdominal muscles than the experimental group (p work duration, regular exercise and workload and found that the experimental group performed significantly better (p flexibility, durability of abdominal and back muscles and cardiopulmonary function. This study demonstrates that the development and implementation of an intervention program can promote and improve the health-related physical fitness of nurses. It is suggested that nurses engage in an exercise program while in the workplace to lower the risk of MSDs and to promote working efficiency.

  3. Physical Activity for Campus Employees: A University Worksite Wellness Program.

    Science.gov (United States)

    Butler, Carling E; Clark, B Ruth; Burlis, Tamara L; Castillo, Jacqueline C; Racette, Susan B

    2015-04-01

    Workplaces provide ideal environments for wellness programming. The purpose of this study was to explore exercise self-efficacy among university employees and the effects of a worksite wellness program on physical activity, cardiorespiratory fitness, and cardiovascular disease (CVD) risk factors. Participants included 121 university employees (85% female). The worksite wellness program included cardiovascular health assessments, personal health reports, 8 weeks of pedometer-based walking and tracking activities, and weekly wellness sessions. Daily step count was assessed at baseline, Week 4, and Week 8. Exercise self-efficacy and CVD risk factors were evaluated at baseline and follow-up. Daily step count increased from 6566 ± 258 (LSM ± SE) at baseline to 8605 ± 356 at Week 4 and 9107 ± 388 at Week 8 (P physical activity, cardiorespiratory fitness, and CVD risk factors among university employees. Exercise barriers and outcome expectations were identified and have implications for future worksite wellness programming.

  4. The effectiveness of the pilot program of differentiated correction of psycho-physical condition of students in physical education

    Directory of Open Access Journals (Sweden)

    A.V. Lukavenko

    2013-05-01

    Full Text Available Defined and justified the designing an algorithm for the formation and operation of the content of physical education students. The algorithm is aimed at correcting the mental and physical condition of students in the relevant classes in high school. In the experiment involved a group of boys and girls of 20 people 17-18 years of age.The program provides theoretical and methodological, practical training, and certain types of control. The basis of the program is a differentiated approach to students with the features of display, speakers, self-determination, the relationship between the change in indicators of mental and physical state in the first year of study. Project operations are focused on meeting the requirements of the principles of physical education, the provisions of the public education on maintaining a physically active lifestyle. It is recommended for theoretical and methodological training of the use of modern information tools. Showing the direction of correction of psycho-physical condition of students.

  5. Open-Access Physical Activity Programs for Older Adults: A Pragmatic and Systematic Review.

    Science.gov (United States)

    Balis, Laura E; Strayer, Thomas; Ramalingam, NithyaPriya; Wilson, Meghan; Harden, Samantha M

    2018-01-10

    Open-access, community-based programs are recommended to assist older adults in meeting physical activity guidelines, but the characteristics, impact, and scalability of these programs is less understood. The Land-Grant University Cooperative Extension System, an organization providing education through county-based educators, functions as a delivery system for these programs. A systematic review was conducted to determine characteristics of effective older adult physical activity programs and the extent to which programs delivered in Extension employ these characteristics. A systematic review of peer-reviewed and grey literature was conducted from August 2016 to February 2017. The review was limited to open-access (available to all), community-based physical activity interventions for older adults (≥65 years of age). The peer-reviewed literature search was conducted in PubMed and EBSCOhost; the grey literature search for Extension interventions was conducted through Extension websites, Land-Grant Impacts, and the Journal of Extension. Sixteen peer-reviewed studies and 17 grey literature sources met inclusion criteria and were analyzed. Peer-reviewed and Extension programs were similar in their limited use of behavioral theories and group-based strategies. Compared to Extension programs, those in the peer-reviewed literature were more likely to use a combination of physical activity components and be delivered by trained professionals. The results indicate notable differences between peer-reviewed literature and Extension programs and present an opportunity for Extension programs to more effectively use evidence-based program characteristics, including behavioral theories and group dynamics, a combination of physical activity components, and educator/agent-trained delivery agents. © The Author(s) 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    Science.gov (United States)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  7. Radiological/Health physics program assessement at Rocky Flats, the process

    International Nuclear Information System (INIS)

    Psomas, P.O.

    1996-01-01

    The Department of Energy, Rocky Flats Office, Safety and Health Group, Health Physics Team (HPT) is responsible for oversight of the Radiation Protection and Health Physics Program (RPHP) of the Integrating Management Contractor (IMC), Kaiser-Hill (K-H) operations at the Rocky Flats Environmental Technology Site (RFETS). As of 1 January 1996 the Rocky Flats Plant employed 300 DOE and 4,300 contractor personnel (K-H and their subcontractors). WSI is a subcontractor and provides plant security. To accomplish the RPHP program oversight HPT personnel developed a systematic methodology for performing a functional RPHP Assessment. The initial process included development of a flow diagram identifying all programmatic elements and assessment criteria documents. Formulation of plans for conducting interviews and performance of assessments constituted the second major effort. The generation of assessment reports was the final step, based on the results of this process. This assessment will be a 6 person-year effort, over the next three years. This process is the most comprehensive assessment of any Radiation Protection and Health Physics (RPHP) Program ever performed at Rocky Flats. The results of these efforts will establish a baseline for future RPHP Program assessments at RFETS. This methodology has been well-received by contractor personnel and creates no Privacy Act violations or other misunderstandings

  8. Comparison of international guideline programs to evaluate and update the Dutch program for clinical guideline development in physical therapy

    Directory of Open Access Journals (Sweden)

    Burgers Jako S

    2007-11-01

    Full Text Available Abstract Background Clinical guidelines are considered important instruments to improve quality in health care. Since 1998 the Royal Dutch Society for Physical Therapy (KNGF produced evidence-based clinical guidelines, based on a standardized program. New developments in the field of guideline research raised the need to evaluate and update the KNGF guideline program. Purpose of this study is to compare different guideline development programs and review the KNGF guideline program for physical therapy in the Netherlands, in order to update the program. Method Six international guideline development programs were selected, and the 23 criteria of the AGREE Instrument were used to evaluate the guideline programs. Information about the programs was retrieved from published handbooks of the organizations. Also, the Dutch program for guideline development in physical therapy was evaluated using the AGREE criteria. Further comparison the six guideline programs was carried out using the following elements of the guideline development processes: Structure and organization; Preparation and initiation; Development; Validation; Dissemination and implementation; Evaluation and update. Results Compliance with the AGREE criteria of the guideline programs was high. Four programs addressed 22 AGREE criteria, and two programs addressed 20 AGREE criteria. The previous Dutch program for guideline development in physical therapy lacked in compliance with the AGREE criteria, meeting only 13 criteria. Further comparison showed that all guideline programs perform systematic literature searches to identify the available evidence. Recommendations are formulated and graded, based on evidence and other relevant factors. It is not clear how decisions in the development process are made. In particular, the process of translating evidence into practice recommendations can be improved. Conclusion As a result of international developments and consensus, the described processes

  9. Influence of a 12-year supervised physical activity program for the elderly

    Directory of Open Access Journals (Sweden)

    José Rodrigo Pauli

    2009-06-01

    Full Text Available Aging is an inevitable process and is associated with declining physiological and functional capacity in humans. The objective of this study was to determine the effects of a 12-yearsupervised physical training program on functional fitness in the elderly. Ten women (mean age: 65 years participated in the study. The subjects were divided into two groups: a a trained group consisting of women who had been attending a supervised program including different types of physical activities of moderate intensity over the last 12 years; b an untrained group consisting of women who were not engaged in any supervised physical activity program over the last 12years. Functional fitness was assessed using the AAHPERD field-test battery which comprises five single motor tests: coordination, flexibility, strength endurance, agility and dynamic balance, and overall aerobic endurance. The results showed a better performance of elderly women whoparticipated in a physical activity program over the last 12 years. Thus, whereas elderly women who perform regular physical activities in a supervised program tend to show improvement of all functional fitness components even after a period of 12 years, a tendency towards a reduction in most of these components is observed in their non-active peers. These findings seem to predict an increasing gap in functional fitness between these two groups as they grow older, with opposite effects on the quality of life of these subjects.

  10. Physical fitness and health education program at NASA Headquarters

    Science.gov (United States)

    Angotti, Cathy

    1993-01-01

    The topics discussed include the following: policy procedures to enter the NASA Headquarters Physical Fitness and Health Program; eligibility; TDY eligibility; health promotions offered; and general facility management.

  11. Ideas Exchange: What Is the Role of Dance in the Secondary Physical Education Program?

    Science.gov (United States)

    Lorenzi, David G. (Comp.)

    2010-01-01

    This article presents ideas and views of educators regarding the role of dance in the secondary physical education program. One educator believes that dance education is an excellent complement to the traditional physical education program at the secondary level. Another educator defines physical education as the "art and science of human…

  12. Recent Activities on the Embrace Space Weather Regional Warning Center: the New Space Weather Data Center

    Science.gov (United States)

    Denardini, Clezio Marcos; Dal Lago, Alisson; Mendes, Odim; Batista, Inez S.; SantAnna, Nilson; Gatto, Rubens; Takahashi, Hisao; Costa, D. Joaquim; Banik Padua, Marcelo; Campos Velho, Haroldo

    2016-07-01

    On August 2007 the National Institute for Space Research started a task force to develop and operate a space weather program, which is known by the acronyms Embrace that stands for the Portuguese statement "Estudo e Monitoramento BRAasileiro de Clima Espacial" Program (Brazilian Space Weather Study and Monitoring program). The mission of the Embrace/INPE program is to monitor the Solar-Terrestrial environment, the magnetosphere, the upper atmosphere and the ground induced currents to prevent effects on technological and economic activities. The Embrace/INPE system monitors the physical parameters of the Sun-Earth environment, such as Active Regions (AR) in the Sun and solar radiation by using radio telescope, Coronal Mass Ejection (CME) information by satellite and ground-based cosmic ray monitoring, geomagnetic activity by the magnetometer network, and ionospheric disturbance by ionospheric sounders and using data collected by four GPS receiver network, geomagnetic activity by a magnetometer network, and provides a forecasting for Total Electronic Content (TEC) - 24 hours ahead - using a version of the SUPIM model which assimilates the two latter data using nudging approach. Most of these physical parameters are daily published on the Brazilian space weather program web portal, related to the entire network sensors available. Regarding outreach, it has being published a daily bulletin in Portuguese and English with the status of the space weather environment on the Sun, the Interplanetary Medium and close to the Earth. Since December 2011, all these activities are carried out at the Embrace Headquarter, a building located at the INPE's main campus. Recently, a comprehensive data bank and an interface layer are under commissioning to allow an easy and direct access to all the space weather data collected by Embrace through the Embrace web Portal. The information being released encompasses data from: (a) the Embrace Digisonde Network (Embrace DigiNet) that monitors

  13. Experimental program to study the physical vacuum: high-energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Willis, W.

    1981-01-01

    Quarks and gluons exist; they are nearly massless, but it is very hard or even impossible to knock them out of the proton. It is now widely believed that this strange state of affairs is due to the properties of the physical vacuum state as it now exists in our part of the Universe. On this view, the ground state of the vacuum is not that familiar in quantum electrodynamics (QED). That state is basically empty space, perturbed by fluctuations which occasionally give rise to a virtual electron-positron pair. In the quantum chromodynamic (QCD) theory of quarks and gluons, the stronger and more complicated forces give rise to a state which cannot be described as a perturbation on empty space. Instead, the physical vacuum has properties which resemble those of a physical medium. For example, the color field is completely excluded, or at least strongly repelled, from a macroscopic volume of physical vacuum. This effect confines the quarks and gluons which carry color, inside the hadrons. On the scale of hadrons, quantum fluctuations make the phenomena more complex, but a simple picture postulates that the strong color fields inside the hadron create a local volume of space more like the perturbative vacuum state, reverting to the physical vacuum state outside. This concept has been quantitatively expressed by the bag model, with some success. It seems that the physical vacuum has acquired properties reminiscent of Maxwell's ether. At least, so we are asked to believe. Maxwell introduced his ether for plausible reasons, but crucial experimental tests were found, and the theory was found wanting. In this talk, experiments for testing the idea that the physical vacuum is not identical to the perturbative one are discussed

  14. Status and plans of NASA's Materials Science and Manufacturing in Space (MS/MS) program

    Science.gov (United States)

    Armstrong, W. O.; Bredt, J. H.

    1972-01-01

    A description is given of a research and development program on the space shuttle mission designed to prepare the way for possible commercial manufacturing operations on permanently orbiting space stations.

  15. Learning physical space

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2002-01-01

    The article argues that cultural learning is a useful concept in analysing how neophytes learn from reactions and other forms of social designation. Through the newcomers learning process a concrete physical place takes on new cultural meaning. The specific example deals with first year students...... who have to learn that certain physical places, acts and objects are imbued with a cultural significance as the act of sitting on a chair or wearing a short dress takes on a new symbolic meaning in a cultural context where inclusion and exclusion are a constant concern. By following and analysing what...... is involved in the process of becoming ? in this case the becoming of physicist students ? the moral cultural logic behind in- and exclusion from physical places are established....

  16. Guide to accelerator physics program SYNCH: VAX version 1987.2

    International Nuclear Information System (INIS)

    Parsa, Z.; Courant, E.

    1987-01-01

    This guide is written to accommodate users of Accelerator Physics Data Base BNLDAG::DUAO:[PARSA1]. It describes the contents of the on line Accelerator Physics data base DUAO:[PARSA1.SYNCH]. SYNCH is a computer program used for the design and analysis of synchrotrons, storage rings and beamlines

  17. Physical Fitness Programs in the Workplace. WBGH Worksite Wellness Series.

    Science.gov (United States)

    Knadler, Gary F.; And Others

    Because sedentary living creates health consequences that ultimately affect employees' productivity, many companies are sponsoring worksite physical fitness programs for their employees. The cost-effectiveness of such programs and the resulting reduction in employees' absenteeism rates and medical and health care costs have been well documented.…

  18. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    Science.gov (United States)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  19. Preserving the nuclear option: The AIAA position paper on space nuclear power

    International Nuclear Information System (INIS)

    Allen, D.M.; Bennett, G.L.; El-Genk, M.S.; Newhouse, A.R.; Rose, M.F.; Rovang, R.D.

    1996-01-01

    In response to published reports about the decline in funding for space nuclear power, the Board of Directors of the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper in March 1995 that recommends (1) development and support of an integrated space nuclear power program by DOE, NASA and DoD; (2) Congressional support for the program; (3) advocacy of the program by government and industry leaders; and (4) continuation of cooperation between the U.S. and other countries to advance nuclear power source technology and to promote safety. This position paper has been distributed to various people having oversight of the U.S. space nuclear power program. copyright 1996 American Institute of Physics

  20. Space education in Kiruna, Northern Sweden

    Directory of Open Access Journals (Sweden)

    I. Sandahl

    2005-01-01

    Full Text Available The town of Kiruna in the north of Sweden has a concentration of space activities and space research with, for example, the Swedish Institute of Space Physics, Esrange, the ESA Salmijärvi satellite station, and EISCAT (European Incoherent Scatter Radar Scientific Association. The Department of Space Science is a joint department between the two most northern universities in Sweden, Luleå University of Technology and Umeå University in collaboration with the Swedish Institute of Space Physics. It offers a range of education programmes in the space field. There are bachelor and master programmes in space engineering, and a bridging programme for students without a science background from secondary school. The Department also contributes to courses for teachers, Ph.D. courses and secondary school level courses. One master´s program and a three week summer course are given entirely in English and welcome international students. Thanks to good cooperation with Esrange students can build and fly experiments on high altitude balloons and sounding rockets and also take a large responsibility for the management of the projects. Close interaction with research and industry is an important part of the education.

  1. The Space Puppets

    Science.gov (United States)

    Lago, M. Miguel; Esteban Berea, J.; Miñambres Fernández, M.; Rufino, M.

    2002-01-01

    travels in Space driving the dance artist on its tail. On the journey, they discover the alphabet letters, letters that make words, words which are concepts of physics, physics which is on the stage this stage being space. The teacher before, during and after the performance, will analyse, review and discuss through this simple tool "an alphabet", space vocabulary and also the meaning of communication and teaching. They will relate to the present situation of physics and science education in general and Space in particular and how to address this problem through our language. Instructions Name of Conference to which this abstract is53rd IAC submitted FirstFirst Submission Subrnission/Update/Correction/Withdrawal Title of Contribution in plain ASCII.The Space Puppets Author(s): a) Last Name, Initial(s) - b) LastMIGUEL LAGO., M. Name, lnitial(s) - c) etc. Number and Title or Abbreviation of SessionP. Space and Education Symposium to which this abstract is submitted.P.3. Educational and Outreach Name of Chairs of that SessionFrank Friedlaender and Dennis Stone Indicate any equipment you need in addition to the standard equipment: One overhead projector and screen will be available in ail IAC sessions. A limited number of LCD and 35mm slide projectors will be provided in sessions based on advance notice of need and availability of projectors. All presenters should bring copies of their computer presentations in overhead format in case LCD projection is not available for a specific session. Type of abstract file added/attached/sentWord file sent by e-mail separately Address of Main Author:Miguel Lago NameMónica. First Name Dept. Company/University: PO Box/Street:P.O. Box ZIP Code:D-22415 City: Country: Telephone: E-mail:+31 71 565 36 84 E-mail:+31 71 565 55 90 Have you obtained or will you obtain approval to attend the Congress? Yes Are you willing to present this paper at the IAC Public Outreach Program: Yes

  2. ASSESSING THE ASSOCIATIONS BETWEEN TYPES OF GREEN SPACE, PHYSICAL ACTIVITY, AND HEALTH INDICATORS USING GIS AND PARTICIPATORY SURVEY

    Directory of Open Access Journals (Sweden)

    A. Akpinar

    2017-11-01

    Full Text Available This study explores whether specific types of green spaces (i.e. urban green spaces, forests, agricultural lands, rangelands, and wetlands are associated with physical activity, quality of life, and cardiovascular disease prevalence. A sample of 8,976 respondents from the Behavioral Risk Factor Surveillance System, conducted in 2006 in Washington State across 291 zip-codes, was analyzed. Measures included physical activity status, quality of life, and cardiovascular disease prevalence (i.e. heart attack, angina, and stroke. Percentage of green spaces was derived from the National Land Cover Dataset and measured with Geographical Information System. Multilevel regression analyses were conducted to analyze the data while controlling for age, sex, race, weight, marital status, occupation, income, education level, and zip-code population and socio-economic situation. Regression results reveal that no green space types were associated with physical activity, quality of life, and cardiovascular disease prevalence. On the other hand, the analysis shows that physical activity was associated with general health, quality of life, and cardiovascular disease prevalence. The findings suggest that other factors such as size, structure and distribution (sprawled or concentrated, large or small, quality, and characteristics of green space might be important in general health, quality of life, and cardiovascular disease prevalence rather than green space types. Therefore, further investigations are needed.

  3. Impact of trained champions of comprehensive school physical activity programs on school physical activity offerings, youth physical activity and sedentary behaviors.

    Science.gov (United States)

    Carson, Russell L; Castelli, Darla M; Pulling Kuhn, Ann C; Moore, Justin B; Beets, Michael W; Beighle, Aaron; Aija, Rahma; Calvert, Hannah G; Glowacki, Elizabeth M

    2014-12-01

    A quasi-experimental cluster-controlled design was used to test the impact of comprehensive school physical activity program (CSPAP) professional development on changes in school physical activity (PA) offerings, moderate-to-vigorous physical activity (MVPA) and sedentary behaviors of 9-14 year-old children during school. Two groups of Louisiana elementary and middle school physical education teachers (N=129) attended a CSPAP summer workshop (95 in 2012=intervention, 34 in 2013=control) and were assessed on school PA offerings (teacher-reported; pre, mid, and post). During the 2012-2013 school year, intervention teachers received CSPAP support while implementing new school PA programs. MVPA and sedentary behaviors were assessed (accelerometry; baseline and post) on a sample of 231 intervention, 120 control students from 16 different schools. Multivariate analysis of covariance indicated that intervention teachers reported significantly more PA offerings during school (3.35 vs. 2.37) and that involve staff (1.43 vs. 0.90). Three-level, mixed model regressions (stratified by sex) indicated that students overall spent less time in MVPA and more time being sedentary during school, but the effects were significantly blunted among intervention students, especially boys. This study provides preliminary evidence for CSPAP professional development programs to influence school-level PA offerings and offset student-level declines in MVPA and increases in sedentary behavior. Published by Elsevier Inc.

  4. The undergraduate physics tutorial program at CSU Los Angeles assessment of utility and areas of interest

    Science.gov (United States)

    Avetyan, Smbat

    The Physics Education Research (PER) group at the University of Washington have researched traditional teaching methods and found that students in introductory physics are lacking a conceptual understanding of the physics material. The solution they put forth is an interactive tutorial program designed to meet the lack of conceptual understanding. Since the tutorial programs inception at CSU Los Angeles in Fall 2006 no evaluation has been successfully undertaken therefore the effect of the tutorial program in the physics 200 series is deeply obscure to the department. The research has shed light on the tutorial program and brought into context its effectiveness on the overall physics 200 series courses at CSU Los Angeles. The researcher has addressed the following research questions, what overall effect does the tutorial program have on the Physics 200 series curriculum? What is the size and significance of gains attributable to the undergraduate calculus based Physics 200 series tutorial program at CSU Los Angeles? What can we learn from gains about individual weekly lessons from the Physics 200 series tutorial courses? What is the correlation of tutorial gains with student final course grades? Are the gains from the tutorial program different for genders? Is there a difference in gains based on the different students' colleges?

  5. Third Space Strategists: International Students Negotiating the Transition from Pathway Program to Postgraduate Coursework Degree

    Science.gov (United States)

    Benzie, Helen

    2015-01-01

    Pathway programs exist to prepare students for progression into university degrees but the transition experience for many students may not be as smooth as is suggested by the notion of the pathway. While attending a pathway program and at the beginning of their university degree, students may be in a third space, a liminal space where they engage…

  6. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  7. Entertainment, Engagement and Education: Foundations and Developments in Digital and Physical Spaces to Support Learning through Making

    DEFF Research Database (Denmark)

    Giannakos, Michail N.; Divitini, Monica; Iversen, Ole Sejer

    2017-01-01

    like problem solving, design thinking, collaboration, and innovation, to mention few. Contemporary technical and infrastructural developments, like Hackerspaces, Makerspaces, TechShops, FabLabs and the appearance of tools such as wearable computing, robotics, 3D printing, microprocessors, and intuitive......Making is a relatively new concept applied to describe the increasing attention on constructing activities to enable entertaining, engaging and efficient learning. Making focuses on the process that occurs in digital and/or physical spaces that is not always learning oriented, but enables qualities...... programming languages; posit making as a very promising research area to support the learning processes, especially towards the acquisition of 21st Century learning competences. Collecting learning evidence via rigorous multidimensional and multidisciplinary case studies will allow us to better understand...

  8. The role of physical space in labour–management cooperation

    DEFF Research Database (Denmark)

    Ilsøe, Anna; Felbo-Kolding, Jonas

    2018-01-01

    Many studies on labour–management relations have focused on formal cooperation in manufacturing. This calls for further research and theory development on labour–management interactions in private service companies, where cooperation practices appear to be less formal. In this article, a typology...... of cooperation between managers and employees is developed, based on a microsociological study conducted in the Danish retail trade in 2013. Drawing on six indepth case studies, the article identifies four different physical spaces of labour–management cooperation: open collective, closed collective, open...

  9. The History of the Animal Care Program at NASA Johnson Space Center

    Science.gov (United States)

    Khan-Mayberry, Noreen; Bassett, Stephanie

    2010-01-01

    This slide presentation reviews the work of the Animal Care Program (ACP). Animals have been used early in space exploration to ascertain if it were possible to launch a manned spacecraft. The program is currently involved in many studies that assist in enhancing the scientific knowledge of the effect of space travel. The responsibilities of the ACP are: (1) Organize and supervise animal care operations & activities (research, testing & demonstration). (2) Maintain full accreditation by the International Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC) (3) Ensure protocol compliance with IACUC recommendations (4) Training astronauts for in-flight animal experiments (5) Maintain accurate & timely records for all animal research testing approved by JSC IACUC (6) Organize IACUC meetings and assist IACUC members (7) Coordinate IACUC review of the Institutional Program for Humane Care and Use of Animals (every 6 mos)

  10. Proposal of a Methodology of Stakeholder Analysis for the Brazilian Satellite Space Program

    Directory of Open Access Journals (Sweden)

    Mônica Elizabeth Rocha de Oliveira

    2012-03-01

    Full Text Available To ensure the continuity and growth of space activities in Brazil, it is fundamental to persuade the Brazilian society and its representatives in Government about the importance of investments in space activities. Also, it is important to convince talented professionals to place space activities as an object of their interest; the best schools should also be convinced to offer courses related to the space sector; finally, innovative companies should be convinced to take part in space sector activities, looking to returns, mainly in terms of market differentiation and qualification, as a path to take part in high-technology and high-complexity projects. On the one hand, this process of convincing or, more importantly, committing these actors to space activities, implies a thorough understanding of their expectations and needs, in order to plan how the system/organization can meet them. On the other hand, if stakeholders understand how much they can benefit from this relationship, their consequent commitment will very much strengthen the action of the system/organization. With this framework in perspective, this paper proposes a methodology of stakeholder analysis for the Brazilian satellite space program. In the exercise developed in the article, stakeholders have been identified from a study of the legal framework of the Brazilian space program. Subsequently, the proposed methodology has been applied to the planning of actions by a public organization.

  11. A rule-learning program in high energy physics event classification

    International Nuclear Information System (INIS)

    Clearwater, S.H.; Stern, E.G.

    1991-01-01

    We have applied a rule-learning program to the problem of event classification in high energy physics. The program searches for event classifications, i.e. rules, and effectively allows an exploration of many more possible classifications than is practical by a physicist. The program, RL4, is particularly useful because it can easily explore multi-dimensional rules as well as rules that may seem non-intuitive at first to the physicist. RL4 is also contrasted with other learning programs. (orig.)

  12. Promoting physical activity through the shared use of school recreational spaces: a policy statement from the American Heart Association.

    Science.gov (United States)

    Young, Deborah R; Spengler, John O; Frost, Natasha; Evenson, Kelly R; Vincent, Jeffrey M; Whitsel, Laurie

    2014-09-01

    Most Americans are not sufficiently physically active, even though regular physical activity improves health and reduces the risk of many chronic diseases. Those living in rural, non-White, and lower-income communities often have insufficient access to places to be active, which can contribute to their lower level of physical activity. The shared use of school recreational facilities can provide safe and affordable places for communities. Studies suggest that challenges to shared use include additional cost, liability protection, communication among constituencies interested in sharing space, and decision-making about scheduling and space allocation. This American Heart Association policy statement has provided recommendations for federal, state, and local decision-makers to support and expand opportunities for physical activity in communities through the shared use of school spaces.

  13. Deep Space Network equipment performance, reliability, and operations management information system

    Science.gov (United States)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  14. The Context for Food Service and Nutrition in the Space Station

    Science.gov (United States)

    Glaser, P. E.

    1985-01-01

    Commercial activities in space represent diverse markets where international competitors will be motivated by economic, technical and political considerations. These considerations are given and discussed. The space station program, industrial participation and the potential benefits of commercial activities in space are described. How food service and nutrition affects habitability, effects on physical condition, dietary goals, food preparation and meal service are detailed.

  15. Procedures and reasoning for skill proficiency testing in physical education teacher education programs

    Directory of Open Access Journals (Sweden)

    Timothy Baghurst

    2015-12-01

    Full Text Available This study sought to determine how the testing of skill proficiency is being conducted in physical education teacher education (PETE programs in the USA and how fitness or skill proficiencies, as attributes of a physical educator, are perceived. Participants were 312 college PETE program coordinators who completed an online survey about skill testing in their program. The eligible respondents yielded a 52.7% total response rate. Most participants believed that skill proficiency for PETE students was important, but only 46% of programs reported testing within their program. Many participants stated it was possible for their students to graduate without demonstrating proficiency in skill technique, yet were confident their students would pass an independent skill test. Only 46.2% of respondents indicated their students needed to demonstrate proper skill technique in order to graduate, and there was no consistent method of assessment. Responses were evenly split regarding the importance of a physical educator being able to demonstrate proper skill technique or be physically fit. The lack of skill testing in programs, combined with the variation in assessment, is concerning, and the development of a standardized skill-based test may provide more rigor to this important area of teacher credibility and effectiveness.

  16. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  17. Online space physics data services at SINP MSU

    Science.gov (United States)

    Kalegaev, V.; Bobrovnikov, S.; Alexeev, I.

    A WWW-based online space physics data services are developed at Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU). These services provide fast access to data, images and information on the Earth's environment collected at SINP MSU. Data available on the Internet using anonymous ftp (dbserv.sinp.msu.ru) and WWW (http://alpha.sinp.msu.ru/datasets.html is the data archive, and http://alpha.sinp.msu.ru/dataintr.html is data retrieval forms). All the data have been loaded into the Oracle database. They were carefully organized for the fastest access and search capabilities. WWW interface is based on the Apache Webserver software and PHP scripting language. PHP-based scripts have the direct access to the tables of data in the Oracle database. HTML-based self-explanatory forms provide a simple mechanism of data selection for an appropriate period of time. They enable unified access to all datasets independent on the structure of the data. Using available tools user can browse and download data.

  18. Configuration space Faddeev calculations

    International Nuclear Information System (INIS)

    Payne, G.L.; Klink, W.H.; Ployzou, W.N.

    1991-01-01

    The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research

  19. Curricular intersections of university extension and teaching in Physical Therapy programs

    Directory of Open Access Journals (Sweden)

    Shamyr Sulyvan de Castro

    Full Text Available Introduction University extension can be a vehicle for social change and aid in the education of university students; however, it is important to study how it is inserted in university programs so that educational actions and policies can be planned more adequately. Objectives To study the insertion of extension activities in undergraduate physical therapy curricula in Brazilian federal universities. Method Documentary research conducted by accessing files available on the Internet. Data were analyzed quantitatively in the form of numbers and percentages. We examined documents from 22 of the 29 federal universities that offered physical therapy programs. Results University extension takes the form of complementary academic activities together with other options such as participating in conferences, specific training courses and working as a teaching assistant. Undergraduate physical therapy courses have a 4,000h to 4,925h course load, of which 0.72% to 8.9% are dedicated to extension activities. Conclusion The data indicate that the insertion of extension activities in undergraduate physical therapy programs offered by Brazilian federal universities needs to be reassessed according to recommended policies and guidelines.

  20. Fuzzy preference based interactive fuzzy physical programming and its application in multi-objective optimization

    International Nuclear Information System (INIS)

    Zhang, Xu; Huang, Hong Zhong; Yu, Lanfeng

    2006-01-01

    Interactive Fuzzy Physical Programming (IFPP) developed in this paper is a new efficient multi-objective optimization method, which retains the advantages of physical programming while considering the fuzziness of the designer's preferences. The fuzzy preference function is introduced based on the model of linear physical programming, which is used to guide the search for improved solutions by interactive decision analysis. The example of multi-objective optimization design of the spindle of internal grinder demonstrates that the improved preference conforms to the subjective desires of the designer

  1. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  2. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  3. Recursion Of Binary Space As A Foundation Of Repeatable Programs

    Directory of Open Access Journals (Sweden)

    Jeremy Horne

    2006-10-01

    Full Text Available Every computation, including recursion, is based on natural philosophy. Our world may be expressed in terms of a binary logical space that contains functions that act simultaneously as objects and processes (operands and operators. This paper presents an outline of the results of research about that space and suggests routes for further inquiry. Binary logical space is generated sequentially from an origin in a standard coordinate system. At least one method exists to show that each of the resulting 16 functions repeats itself by repeatedly forward-feeding outputs of a function operating over two others as new operands of the original function until the original function appears as an output, thus behaving as an apparent homeostatic automaton. As any space of any dimension is composed of one or more of these functions, so the space is recursive, as well. Semantics gives meaning to recursive structures, computer programs and fundamental constituents of our universe being two examples. Such thoughts open inquiry into larger philosophical issues as free will and determinism.

  4. The reactor physics computer programs in PC's era

    International Nuclear Information System (INIS)

    Nainer, O.; Serghiuta, D.

    1995-01-01

    The main objective of reactor physics analysis is the evaluation of flux and power distribution over the reactor core. For CANDU reactors sophisticated computer programs, such as FMDP and RFSP, were developed 20 years ago for mainframe computers. These programs were adapted to work on workstations with UNIX or DOS, but they lack a feature that could improve their use and that is 'user friendly'. For using these programs the users need to deal with a great amount of information contained in sophisticated files. To modify a model is a great challenge. First of all, it is necessary to bear in mind all the geometrical dimensions and accordingly, to modify the core model to match the new requirements. All this must be done in a line input file. For a DOS platform, using an average performance PC system, could it be possible: to represent and modify all the geometrical and physical parameters in a meaningful way, on screen, using an intuitive graphic user interface; to reduce the real time elapsed in order to perform complex fuel-management analysis 'at home'; to avoid the rewrite of the mainframe version of the program? The author's answer is a fuel-management computer package operating on PC, 3 time faster than on a CDC-Cyber 830 mainframe one (486DX/33MHz/8MbRAM) or 20 time faster (Pentium-PC), respectively. (author). 5 refs., 1 tab., 5 figs

  5. Center for Theoretical Underground Physics and Related Areas – CETUP*2016 Summer Program

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbinska, Barbara [Texas A& M University Corpus Christi, Madison, SD (United States)

    2017-02-15

    For last six years Center for Theoretical Underground Physics and Related Areas (CETUP*) successfully provided a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities in dynamic atmosphere of intense scientific interactions. Ongoing and proposed Neutrino and Dark Matter experiments are expected to unveil the answers to fundamental questions about the Universe. CETUP*2016 was focused exactly on these subjects bringing together experts in dark matter, neutrino physics, particle and nuclear physics, astrophysics and cosmology from around the world. Scientists invited to participate in the program not only provided theoretical support to the underground science, but they also examined core questions including: What is the nature of dark matter?, What is the origin of the neutrino masses?, How well do we know the neutrino parameters?, How have neutrinos shaped the evolution of the universe?, , What are the fundamental underlying symmetries of the Universe? Is there a Grand Unified Theory of the Universe? and many others. The 2016 CETUP* summer program consisted of three sessions (June 6 – July 16, 2016) covering various aspects of theoretical and experimental neutrino physics, unification and dark matter. The two week long session on Physics and Instrumentation of the Near Detector for the Long-Baseline Neutrino Experiments (June 6 – June 16) was followed by the two week long Neutrino Physics/Unification session: “From Grand Unification to String Theory and Back” (June 20 – July 2). The program ended with two week long session on Dark Matter Physics (July 4 – July 16). This six-week long program allowed for thorough discussions and an effective and comprehensive analysis of topics related to Dark Matter, Dark Energy, Neutrino Physics including astrophysical neutrinos, near and far detector physics, neutrino interactions, Higgs Boson, Inflation, Leptogenesis and many others that will advance

  6. Challenges to Evaluating Physical Activity Programs in American Indian/Alaska Native Communities

    Science.gov (United States)

    Roberts, Erica Blue; Butler, James; Green, Kerry M.

    2018-01-01

    Despite the importance of evaluation to successful programming, a lack of physical activity program (PAP) evaluation for American Indian/Alaska Native (AI/AN) programs exists, which is significant given the high rates of obesity and diabetes in this population. While evaluation barriers have been identified broadly among AI/AN programs, challenges…

  7. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Science.gov (United States)

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  8. The PANDA detector and its physics program at FAIR

    International Nuclear Information System (INIS)

    Brinkmann, K.

    2005-01-01

    The PANDA detector will make use of the antiprotons produced in the FAIR complex and stored in the High-Energy Storage Ring HESR for the study of strong interactions in antiproton collisions with protons and heavy targets. The detector features a 4π design for charged particles with a solenoidal magnetic field and full coverage of photons by means of an advanced electromagnetic calorimeter. In addition, a dipole spectrometer will allow high-resolution detection of leading particles characteristic for fixed-target experiments. The physics program of PANDA covers a wide range of topics which address central issues of QCD at low and moderate energies. Spectroscopy of hidden charm in the ccbar level scheme is still a very interesting issue, in particular when states are involved which cannot directly be formed in e + e - reactions. Open charm in the D meson section has recently received renewed interest when states were discovered that are not easily explained in conventional qqbar models. Exotic hadrons and glueballs have been predicted by theory within the energy range covered by PANDA. The search for these and the eventual study of their properties is central to the physics program. Using heavy targets, PANDA intends to study the properties of charm quarks in the hadronic medium. The copious production of baryon-antibaryon pairs at HESR will allow studies using secondary targets for the formation of hypernuclei. Each of these physics topics will be touched while the detector properties needed in order to cover the broad physics program are described. Technical developments and the status of the various detector components will be summarized

  9. A Fortran Program for Deep Space Sensor Analysis.

    Science.gov (United States)

    1984-12-14

    used to help p maintain currency to the deep space satellite catelog? Research Question Can a Fortran program be designed to evaluate the effectiveness ...Range ( AFETR ) Range p Measurements Laboratory (RML) is located in Malibar, .- Florida. Like GEODSS, Malibar uses a 48 inch telescope with a...phased out. This mode will evaluate the effect of the loss of the 3 Baker-Nunn sites to mode 3 Mode 5 through Mode 8 Modes 5 through 8 are identical to

  10. In Memoriam: Jules Aarons (1921-2008): Space Weather Pioneer

    Science.gov (United States)

    Mendillo, Michael

    2009-05-01

    Prior to the use of the phrase “space weather” to summarize all possible effects of solar-terrestrial physics upon technological systems, the U.S. Department of Defense (DOD) created and maintained active programs in the application aspects of space physics. The person arguably most associated with those efforts was Jules Aarons, who died on 21 November 2008 at age 87 at his home in Newton, Mass. Jules was a research professor of astronomy and space physics at Boston University from 1981 to 2005, but it was as a civilian scientist at the Air Force Cambridge Research Laboratory (AFCRL) from 1946 to 1981 that Jules emerged as a true leader in studies of how the ionosphere can affect radio communications. He specialized in scintillations, those serious fluctuations of radio signal amplitudes and phases that cause dropouts in otherwise reliable communications links.

  11. Training programs in medical physics in the United States

    International Nuclear Information System (INIS)

    Lanzl, L.H.

    1977-01-01

    The history of the field of medical physics in the United States is reviewed; the importance of the development of the nuclear reactor and particle accelerators to medical physics is pointed out. Conclusions and recommendations of an IAEA/WHO seminar on the training of medical physicists (in 1972) are given and compared with existing programs in the US. It is concluded that the recommendations of the IAEA are, for the most part, followed. 1 table

  12. Social and Physical Environmental Factors Influencing Adolescents’ Physical Activity in Urban Public Open Spaces: A Qualitative Study Using Walk-Along Interviews

    Science.gov (United States)

    Van Hecke, Linde; Deforche, Benedicte; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Veitch, Jenny; Van Cauwenberg, Jelle

    2016-01-01

    Most previous studies examining physical activity in Public Open Spaces (POS) focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents’ visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12–16 years, 64% boys) were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium). Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active) friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people), the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents’ behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents’ home or school may

  13. Social and Physical Environmental Factors Influencing Adolescents' Physical Activity in Urban Public Open Spaces: A Qualitative Study Using Walk-Along Interviews.

    Directory of Open Access Journals (Sweden)

    Linde Van Hecke

    Full Text Available Most previous studies examining physical activity in Public Open Spaces (POS focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents' visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12-16 years, 64% boys were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium. Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people, the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents' behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents' home or school

  14. Social and Physical Environmental Factors Influencing Adolescents' Physical Activity in Urban Public Open Spaces: A Qualitative Study Using Walk-Along Interviews.

    Science.gov (United States)

    Van Hecke, Linde; Deforche, Benedicte; Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Veitch, Jenny; Van Cauwenberg, Jelle

    2016-01-01

    Most previous studies examining physical activity in Public Open Spaces (POS) focused solely on the physical environment. However, according to socio-ecological models the social environment is important as well. The aim of this study was to determine which social and physical environmental factors affect adolescents' visitation and physical activity in POS in low-income neighbourhoods. Since current knowledge on this topic is limited, especially in Europe, qualitative walk-along interviews were used to obtain detailed and context-specific information. Participants (n = 30, aged 12-16 years, 64% boys) were recruited in POS in low-income neighbourhoods in Brussels, Ghent and Antwerp (Belgium). Participants were interviewed while walking in the POS with the interviewer. Using this method, the interviewer could observe and ask questions while the participant was actually experiencing the environment. All audio-recorded interviews were transcribed and analysed using Nvivo 10 software and thematic analysis was used to derive categories and subcategories using a grounded theory approach. The most important subcategories that were supportive of visiting POS and performing physical activity in POS were; accessibility by foot/bicycle/public transport, located close to home/school, presence of (active) friends and family, cleanliness of the POS and features, availability of sport and play facilities, large open spaces and beautiful sceneries. The most important subcategories that were unsupportive of visiting POS and physical activity in POS were; presence of undesirable users (drug users, gangs and homeless people), the behaviour of other users and the cleanliness of the POS and features. Social factors appeared often more influential than physical factors, however, it was the combination of social and physical factors that affected adolescents' behaviour in POS. Easily accessible POS with high quality features in the proximity of adolescents' home or school may stimulate

  15. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  16. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  17. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  18. Managing NASA's International Space Station Logistics and Maintenance Program

    Science.gov (United States)

    Butina, Anthony

    2001-01-01

    The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.

  19. Novel Approaches to Cellular Transplantation from the US Space Program

    Science.gov (United States)

    Pellis, Neal R.; Homick, Jerry L. (Technical Monitor)

    1999-01-01

    Research in the treatment of type I diabetes is entering a new era that takes advantage of our knowledge in an ever increasing variety of scientific disciplines. Some may originate from very diverse sources, one of which is the Space Program at National Aeronautics and Space Administration (NASA). The Space Program contributes to diabetes-related research in several treatment modalities. As an ongoing effort for medical monitoring of personnel involved in space exploration activities NASA and the extramural scientific community investigate strategies for noninvasive estimation of blood glucose levels. Part of the effort in the space protein crystal growth program is high-resolution structural analysis insulin as a means to better understand the interaction with its receptor and with host immune components and as a basis for rational design of a "better" insulin molecule. The Space Program is also developing laser technology for potential early cataract detection as well as a noninvasive analyses for addressing preclinical diabetic retinopathy. Finally, NASA developed an exciting cell culture system that affords some unique advantages in the propagation and maintenance of mammalian cells in vitro. The cell culture system was originally designed to maintain cell suspensions with a minimum of hydrodynamic and mechanical sheer while awaiting launch into microgravity. Currently the commercially available NASA bioreactor (Synthecon, Inc., Houston, TX) is used as a research tool in basic and applied cell biology. In recent years there is continued strong interest in cellular transplantation as treatment for type I diabetes. The advantages are the potential for successful long-term amelioration and a minimum risk for morbidity in the event of rejection of the transplanted cells. The pathway to successful application of this strategy is accompanied by several substantial hurdles: (1) isolation and propagation of a suitable uniform donor cell population; (2) management of

  20. Status of the CNES-CEA joint program on space nuclear Brayton systems

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Chaudourne, S.; Keirle, P.; Tilliette, Z.; Vrillon, B.

    1989-01-01

    A cooperative program between the French Centre National d'Etudes Spatiales (CNES) and the Commissariat a l'Energie Atomique (CEA) was initiated in 1983, to investigate the possible development of 20 to 200 kWe space nuclear power systems to be launched by the next version of the European launcher, Ariane V. After completion in 1986 of preliminary conceptual studies of a reference 200 kWe turbo-electric power system, an additional 3 year study phase was decided, with the double objective of assessing the potential advantage of nuclear power systems versus solar photovoltaic or dynamic systems in the 20 kWe power range, and comparing various reactor candidate technologies and system options for 20 kWe space nuclear power systems, likely to meet the projected energy needs of future European space missions. A comprehensive program including conceptual design studies, operating transient analyses and technology base assessment, is currently applied to a few reference concepts of 20 kWe nuclear Brayton and thermoelectric systems, in order to establish sound technical and economical bases for selecting the design options and the development strategy of a first space nuclear power system in Europe

  1. Effectiveness of group-mediated lifestyle physical activity (glpa) program for health benefit in physical activity among elderly people at rural thailand

    International Nuclear Information System (INIS)

    Ethisan, P.; Chapman, R.

    2015-01-01

    Elderly population is considered as a vulnerable group and prone to develop multiple medical problems. This aging population is rapidly increasing in developing countries especially in Thailand. Methods: This study was a quasi-experimental study to evaluate the effectiveness of Group-Mediated Lifestyle Physical Activity program on change health benefit in physical activity among elderly people by using validated and reliable Global Physical Activity Questionnaire-GPAQv2. The study was conducted in Phranakhonsiayutthaya district, Ayutthaya province due to its population being the second highest elderly in the Central Region of Thailand. A total of 102 persons of age 60 and over who could read and write Thai language were selected purposively. However, 52 elderly were enrolled in the intervention group and 50 were enrolled for the control group. General Linear Model repeated-measures ANOVA was used to evaluate the effects of Group-Mediated Lifestyle Physical Activity (GLPA) program on change health benefit in physical activity among elderly. Results: Overall health benefit at baseline were similar between intervention and control group and found statistically non-significant with p-value 0.638 (>0.05). However, the mean score of health benefit was 23.21 ± 29.23 in intervention group and 20.74 ± 23.18 in control group. One third of participants of intervention group had not found health benefit due to physical activity while in control group this number was more than half. After elderly received Group-Mediated Lifestyle Physical Activity program intervention for 6 month found significant statistical differences as compared with mean score at baseline (health benefit 6 month, intervention group =40.7 ± 34.28 and control group =4.56 ± 8.79). Conclusion: The effect of Group-Mediated Lifestyle Physical Activity program change intervention was statistically significant in health benefit after intervention program between intervention and control group. Our study

  2. An urban area minority outreach program for K-6 children in space science

    Science.gov (United States)

    Morris, P.; Garza, O.; Lindstrom, M.; Allen, J.; Wooten, J.; Sumners, C.; Obot, V.

    The Houston area has minority populations with significant school dropout rates. This is similar to other major cities in the United States and elsewhere in the world where there are significant minority populations from rural areas. The student dropout rates are associated in many instances with the absence of educational support opportuni- ties either from the school and/or from the family. This is exacerbated if the student has poor English language skills. To address this issue, a NASA minority university initiative enabled us to develop a broad-based outreach program that includes younger children and their parents at a primarily Hispanic inner city charter school. The pro- gram at the charter school was initiated by teaching computer skills to the older chil- dren, who in turn taught parents. The older children were subsequently asked to help teach a computer literacy class for mothers with 4-5 year old children. The computers initially intimidated the mothers as most had limited educational backgrounds and En- glish language skills. To practice their newly acquired computer skills and learn about space science, the mothers and their children were asked to pick a space project and investigate it using their computer skills. The mothers and their children decided to learn about black holes. The project included designing space suits for their children so that they could travel through space and observe black holes from a closer proxim- ity. The children and their mothers learned about computers and how to use them for educational purposes. In addition, they learned about black holes and the importance of space suits in protecting astronauts as they investigated space. The parents are proud of their children and their achievements. By including the parents in the program, they have a greater understanding of the importance of their children staying in school and the opportunities for careers in space science and technology. For more information on our overall

  3. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  4. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  5. Preparing Students for Careers in Science and Industry with Computational Physics

    Science.gov (United States)

    Florinski, V. A.

    2011-12-01

    Funded by NSF CAREER grant, the University of Alabama (UAH) in Huntsville has launched a new graduate program in Computational Physics. It is universally accepted that today's physics is done on a computer. The program blends the boundary between physics and computer science by teaching student modern, practical techniques of solving difficult physics problems using diverse computational platforms. Currently consisting of two courses first offered in the Fall of 2011, the program will eventually include 5 courses covering methods for fluid dynamics, particle transport via stochastic methods, and hybrid and PIC plasma simulations. The UAH's unique location allows courses to be shaped through discussions with faculty, NASA/MSFC researchers and local R&D business representatives, i.e., potential employers of the program's graduates. Students currently participating in the program have all begun their research careers in space and plasma physics; many are presenting their research at this meeting.

  6. WORKSHOP: Inner space - outer space

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology

  7. WORKSHOP: Inner space - outer space

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-09-15

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology.

  8. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  9. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  10. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  11. Physical activity programs for promoting bone mineralization and growth in preterm infants.

    Science.gov (United States)

    Schulzke, Sven M; Kaempfen, Siree; Trachsel, Daniel; Patole, Sanjay K

    2014-04-22

    Lack of physical stimulation may contribute to metabolic bone disease of preterm infants, resulting in poor bone mineralization and growth. Physical activity programs combined with adequate nutrition might help to promote bone mineralization and growth. The primary objective was to assess whether physical activity programs in preterm infants improve bone mineralization and growth and reduce the risk of fracture.The secondary objectives included other potential benefits in terms of length of hospital stay, skeletal deformities and neurodevelopmental outcomes, and adverse events.Subgroup analysis:• Given that the smallest infants are most vulnerable for developing osteopenia (Bishop 1999), a subgroup analysis was planned for infants with birth weight affect an infant's ability to increase bone mineral content (Kuschel 2004). Therefore, an additional subgroup analysis was planned for infants receiving different amounts of calcium and phosphorus, along with full enteral feeds as follows. ∘ Below 100 mg/60 mg calcium/phosphorus or equal to/above 100 mg/60 mg calcium/phosphorus per 100 mL milk. ∘ Supplementation of calcium without phosphorus. ∘ Supplementation of phosphorus without calcium. The standard search strategy of the Cochrane Neonatal Review Group (CNRG) was used. The search included the Cochrane Central Register of Controlled Trials (CENTRAL) (2012, Issue 9), MEDLINE, EMBASE, CINAHL (1966 to March 2013), and cross-references, as well as handsearching of abstracts of the Society for Pediatric Research and the International Journal of Sports Medicine. Randomized and quasi-randomized controlled trials comparing physical activity programs (extension and flexion, range-of-motion exercises) versus no organized physical activity programs in preterm infants. Data collection, study selection, and data analysis were performed according to the methods of the CNRG. Eleven trials enrolling 324 preterm infants (gestational age 26 to 34 weeks) were included in this

  12. High-Performance, Space-Storable, Bi-Propellant Program Status

    Science.gov (United States)

    Schneider, Steven J.

    2002-01-01

    Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.

  13. Using observational methods to evaluate public open spaces and physical activity in Brazil.

    Science.gov (United States)

    Hino A A, F; Reis, Rodrigo S; Ribeiro, Isabela C; Parra, Diana C; Brownson, Ross C; Fermino, Rogerio C

    2010-07-01

    Open public spaces have been identified as important facilities to promote physical activity (PA) at the community level. The main goals of this study are to describe open public spaces user's characteristics and to explore to what extent these characteristics are associated with PA behavior. A system of direct observation was used to evaluate the PA levels on parks and squares (smaller parks) and users's characteristics (gender and age). The 4 parks and 4 squares observed were selected from neighborhoods with different socioeconomic status and environmental characteristics. The settings were observed 3 times a day, 6 days per week, during 2 weeks. More men than women were observed in parks (63.1%) and squares (70.0%) as well as more adults and adolescents than older adults and children. Users were more physically active in parks (men = 34.1%, women = 36.1%) than in squares (men = 25.5%, women 22.8%). The characteristics of public open spaces may affect PA in the observed places. Initiatives to improve PA levels in community settings should consider users' characteristics and preferences to be more effective and reach a larger number of people.

  14. Robust online belief space planning in changing environments: Application to physical mobile robots

    KAUST Repository

    Agha-mohammadi, Ali-akbar; Agarwal, Saurav; Mahadevan, Aditya; Chakravorty, Suman; Tomkins, Daniel; Denny, Jory; Amato, Nancy M.

    2014-01-01

    , such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes

  15. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  16. The geometry of higher-order Lagrange spaces applications to mechanics and physics

    CERN Document Server

    Miron, Radu

    1997-01-01

    This monograph is devoted to the problem of the geometrizing of Lagrangians which depend on higher-order accelerations It presents a construction of the geometry of the total space of the bundle of the accelerations of order k>=1 A geometrical study of the notion of the higher-order Lagrange space is conducted, and the old problem of prolongation of Riemannian spaces to k-osculator manifolds is solved Also, the geometrical ground for variational calculus on the integral of actions involving higher-order Lagrangians is dealt with Applications to higher-order analytical mechanics and theoretical physics are included as well Audience This volume will be of interest to scientists whose work involves differential geometry, mechanics of particles and systems, calculus of variation and optimal control, optimization, optics, electromagnetic theory, and biology

  17. Packaging a successful NASA mission to reach a large audience within a small budget. Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission

    Science.gov (United States)

    Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.

    2004-12-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  18. Deep Space Network Radiometric Remote Sensing Program

    Science.gov (United States)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  19. A program in medium-energy nuclear physics

    International Nuclear Information System (INIS)

    Berman, B.L.; Dhuga, K.S.

    1992-01-01

    This report reviews progress on our nuclear-physics program for the last year, and includes as well copies of our publications and other reports for that time period. The structure of this report follows that of our 1991 Renewal Proposal and Progress Report: Sec. II outlines our research activities aimed at future experiments at CEBAF, NIKHEF, and Bates; Sec. III gives results of our recent research activities at NIKHEF, LAMPF, and elsewhere; Sec. IV provides an update of our laboratory activities at GWU, including the acquisition of our new Nuclear Detector Laboratory at our new Virginia Campus; and Sec. V is a list of our publications, proposals, and other reports. copies of those on medium-energy nuclear physics are reproduced in the Appendix

  20. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  1. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  2. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  3. Fusion programs in applied plasma physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the progress made in theoretical and experimental research funded by US Department of Energy Grant No. DE-FG03-92ER54150, during the period July 11, 1992 through May 31, 1993. Four main tasks are reported: applied plasma physics theory, alpha particle diagnostic, edge and current density diagnostic, and plasma rotation drive. The report also discusses the research plans for the theory and experimental programs for the next grant year. Reports and publications supported by the grant during this period are listed in the final section

  4. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    Science.gov (United States)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  5. Nuclear engineering, health physics, and radioactive waste management fellowship program: Summary of program activities: Nuclear engineering and health physics fellowship, 1985-1986

    International Nuclear Information System (INIS)

    1986-01-01

    Progress is reported in the nuclear engineering and health physics elements of the fellowship program. Statistics are given on numbers of student applications and new appointments, the degree areas of applicants, GPA and GRE score averages of the fellows, and employment of completed fellows

  6. The Development and Assessment of Particle Physics Summer Program for High School Students

    Science.gov (United States)

    Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.

    2017-01-01

    A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.

  7. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    Science.gov (United States)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  8. Second AIAA/NASA USAF Symposium on Automation, Robotics and Advanced Computing for the National Space Program

    Science.gov (United States)

    Myers, Dale

    1987-01-01

    An introduction is given to NASA goals in the development of automation (expert systems) and robotics technologies in the Space Station program. Artificial intelligence (AI) has been identified as a means to lowering ground support costs. Telerobotics will enhance space assembly, servicing and repair capabilities, and will be used for an estimated half of the necessary EVA tasks. The general principles guiding NASA in the design, development, ground-testing, interactions with industry and construction of the Space Station component systems are summarized. The telerobotics program has progressed to a point where a telerobot servicer is a firm component of the first Space Station element launch, to support assembly, maintenance and servicing of the Station. The University of Wisconsin has been selected for the establishment of a Center for the Commercial Development of Space, specializing in space automation and robotics.

  9. Towards augmented reality: The dialectics of physical and virtual space

    Directory of Open Access Journals (Sweden)

    Guga Jelena

    2015-01-01

    Full Text Available Spaces generated by new media technologies, no matter how abstract they may be, represent a qualitatively new form of the media environment. Moreover, they are integrated into everyday life in a way that they have become the constituents of social reality. Based on dualistic Cartesian understanding of real and virtual space, virtuality still carries a connotation of 'other' world, which is ontologically and phenomenologically different from 'reality'. However, virtuality as a characteristic of new media technologies should neither be equated with illusion, deception or fiction nor set in opposition to reality, given that it embodies real interactions. Instead, we could say that there are different types or levels of reality and that the virtual exists as reality qualitatively different from that of physical reality. Today, when every place on the planet, as well as social, political, and cultural activities, have their digital manifestations, can we still talk about virtual space as an isolated phenomenon? The ubiquitous use of new media technologies such as smartphones or wearables has profoundly transformed the experience of modern man. It is more and more determined by technologically mediated reality, i.e. augmented reality. In this regard, the key issues that will be addressed in this article are the ways technologically mediated spaces redefine not only the social relationships, but also the notions of identity, embodiment, and the self.

  10. An Evaluation of the Effectiveness of the National Aeronautics and Space Administration Mission-X Child Health Promotion Program in the United States.

    Science.gov (United States)

    Min, Jungwon; Tan, Zhengqi; Abadie, Laurie; Townsend, Scott; Xue, Hong; Wang, Youfa

    2017-01-01

    To examine the effects of the National Aeronautics and Space Administration Mission-X: Train Like an Astronaut program (MX) on children's health-related knowledge and behaviors of a sample of US participants. A nonexperimental pilot intervention study in 5 cities with a pre-post comparison of children's health-related knowledge and behaviors in the United States in 2014 and 2015. Children (n = 409) with a mean age (standard deviation) of 10.1 (1.7) years. Children answered pre- and postintervention questionnaires. We measured the differences in children's health knowledge on nutrition and physical fitness and behaviors on diet and physical activity as scores. A 6-week web- and school-based intervention for a healthier lifestyle by introducing physical fitness and science activities based on actual astronaut training under a teacher's supervision. Nonparametric analysis and logistic regression models. Participants significantly improved both of their health behaviors on physical activity ( P < .001) and diet ( P = .06) and their health knowledge regarding nutrition ( P < .001) and physical fitness ( P < .001) after the intervention. The improvement in children's behaviors ( P < .001), knowledge ( P < .001), and the total score ( P < .001) after intervention did not significantly vary by sex or age, after adjusting for year of participation and state of residency. The MX seems effective in improving health behaviors and health knowledge of participating children, which may serve as a model for sustainable global child health promotion program. Further research is needed to test its long-term effects on child health.

  11. Opened athletic-educational space - the condition of professional development of future teacher of physical culture is needed

    Directory of Open Access Journals (Sweden)

    Dragnev Y.V.

    2012-04-01

    Full Text Available It is shown that the opening of the sports and educational space is determined by the whole space, where the interaction of the activity of the pedagogical university with different educational institutions on the basis of integration, continuity of the educational process, aimed at physical education, the development of children and young people take place. It is revealed the importance of awareness of such concepts as the world educational space, the international educational space, the European higher education area, European space of higher education and educational space of the CIS countries.

  12. Programming of employments physical exercises for the improvement of bodily condition of children of midchildhood.

    Directory of Open Access Journals (Sweden)

    Sljusarchuk V.V.

    2011-12-01

    Full Text Available Approaches are considered on forming and realization of maintenance of physical education of students of initial school. The algorithm of programming of maintenance of lessons of physical culture is developed. The program foresees implementation of requirements of general and methodical principles of physical education, positions of theory of adaptation, requirements of the operating program. It is marked that employments must provide for: differentiated going near students, account of interests and to the wishes, motivation to independent employments by physical exercises, to providing of motor high-density. It is recommended to take into account the features of dynamics of indexes of bodily condition of children of different somatotype.

  13. A Million Steps: Developing a Health Promotion Program at the Workplace to Enhance Physical Activity.

    Science.gov (United States)

    González-Dominguez, María Eugenia; Romero-Sánchez, José Manuel; Ares-Camerino, Antonio; Marchena-Aparicio, Jose Carlos; Flores-Muñoz, Manuel; Infantes-Guzmán, Inés; León-Asuero, José Manuel; Casals-Martín, Fernando

    2017-11-01

    The workplace is a key setting for the prevention of occupational risks and for promoting healthy activities such as physical activity. Developing a physically active lifestyle results in many health benefits, improving both well-being and quality of life. This article details the experience of two Spanish companies that implemented a program to promote physical exercise in the workplace, called "A Million Steps." This program aimed to increase the physical activity of participants, challenging them to reach at least a million steps in a month through group walks. Participant workers reached the set goal and highlighted the motivational and interpersonal functions of the program.

  14. High energy physics program at Texas A&M University. Final report, April 1, 1990--March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Texas A&M experimental high energy physics program has been supported since its inception by DOE Contract DE-AS05-81ER40039. During that period we established a viable experimental program at a university which before this time had no program in high energy physics. In 1990, the experimental program was augmented with a program in particle theory. In the accompanying final report, we outline the research work accomplished during the final year of this contract and the program being proposed for consideration by the Department of Energy for future grant support. Some of the particular areas covered are: Collider detector at Fermilab program; the TAMU MACRO program; SSC R&D program; SSC experimental program; and theoretical physics program.

  15. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  16. Panel discussion: Roles of space program in the Asia Pacific region

    Science.gov (United States)

    Nomura, Tamiya

    1992-03-01

    A panel discussion on the subject 'Roles played by space development in Asia Pacific region' was held chaired by Space Activities Commission member and attended by the representatives of the participating countries, special attendance and observers. Opinions were expressed by each representative on three subjects, that is, social effects and benefits obtained by remote sensing data, observation data desired to augment the effect, and expectation for developed countries in space development. President of NASDA (National Space Development Agency of Japan) expressed his intension to promote international cooperation for the Japanese Earth Resources Satellite-1 (JERS-1) verification program, utilization augmentation of Japanese earth observing satellites and human resource training and education. Deputy Director-General for Science and Technology Agency (STA) outlined ASCA (Association for Science Cooperation in Asia) seminar and STA fellowship in relation to human resource development. Chairman of the Japan International Space Year (ISY) Association cited the necessity of closer and extensive communication networks free from the existing commercial communication. Deputy-Minister for Posts and Telecommunications outlined the PARTNERS project (Post-operational utilization of the Engineering Test Satellite-5 (ETS-5)) for international cooperation in space activities in Asia Pacific region. President of the Institute of Space and Astronautical Science (ISAS) outlined Japan's present status of and international cooperation in space science.

  17. 'Physical activity at home (PAAH)', evaluation of a group versus home based physical activity program in community dwelling middle aged adults: rationale and study design.

    Science.gov (United States)

    Freene, Nicole; Waddington, Gordon; Chesworth, Wendy; Davey, Rachel; Goss, John

    2011-11-24

    It is well recognised that the adoption and longer term adherence to physical activity by adults to reduce the risk of chronic disease is a challenge. Interventions, such as group and home based physical activity programs, have been widely reported upon. However few studies have directly compared these interventions over the longer term to determine their adherence and effectiveness. Participant preference for home based or group interventions is important. Some evidence suggests that home based physical activity programs are preferred by middle aged adults and provide better long term physical activity adherence. Physiotherapists may also be useful in increasing physical activity adherence, with limited research on their impact. 'Physical Activity at Home' is a 2 year pragmatic randomised control trial, with a non-randomised comparison to group exercise. Middle-aged adults not interested in, or unable to attend, a group exercise program will be targeted. Sedentary community dwelling 50-65 year olds with no serious medical conditions or functional impairments will be recruited via two mail outs using the Australian federal electoral roll. The first mail out will invite participants to a 6 month community group exercise program. The second mail out will be sent to those not interested in the group exercise program inviting them to take part in a home based intervention. Eligible home based participants will be randomised into a 6 month physiotherapy-led home based physical activity program or usual care. Outcome measures will be taken at baseline, 6, 12, 18 and 24 months. The primary outcome is physical activity adherence via exercise diaries. Secondary outcomes include the Active Australia Survey, accelerometry, aerobic capacity (step test), quality of life (SF-12v2), blood pressure, waist circumference, waist-to-hip ratio and body mass index. Costs will be recorded prospectively and qualitative data will be collected. The planned 18 month follow-up post

  18. Report of the 1985 High Energy Physics Advisory Panel Study of the US High Energy Physics Program, 1985-1995

    International Nuclear Information System (INIS)

    1985-09-01

    The present study was motivated by the desire to examine the US High Energy Physics Program in depth, to reassess the Superconducting Super Collider (SSC) goal in light of recent scientific and technical developments, and to understand how this project would affect and interact with the US high energy program in the period before it becomes operational. It is recommended that the SSC research and development be given highest priority in the US High Energy Physics Program so that the project can proceed to an early construction start and rapid completion. A limited number of programs are identified as ''forefront programs'' - those which enter a new experimental regime in such a way as to have clear promise for new fundamental discoveries - and it is recommended that these proceed with priority. Research opportunities available during the next ten years are explored, including proton-antiproton colliders, electron-proton collider, electron-positron colliders, fixed-target experiments, and non-accelerator experiments

  19. Identifying Strategies Programs Adopt to Meet Healthy Eating and Physical Activity Standards in Afterschool Programs.

    Science.gov (United States)

    Weaver, Robert G; Moore, Justin B; Turner-McGrievy, Brie; Saunders, Ruth; Beighle, Aaron; Khan, M Mahmud; Chandler, Jessica; Brazendale, Keith; Randell, Allison; Webster, Collin; Beets, Michael W

    2017-08-01

    The YMCA of USA has adopted Healthy Eating and Physical Activity (HEPA) Standards for its afterschool programs (ASPs). Little is known about strategies YMCA ASPs are implementing to achieve Standards and these strategies' effectiveness. (1) Identify strategies implemented in YMCA ASPs and (2) evaluate the relationship between strategy implementation and meeting Standards. HEPA was measured via accelerometer (moderate-to-vigorous-physical-activity [MVPA]) and direct observation (snacks served) in 20 ASPs. Strategies were identified and mapped onto a capacity building framework ( Strategies To Enhance Practice [STEPs]). Mixed-effects regression estimated increases in HEPA outcomes as implementation increased. Model-implied estimates were calculated for high (i.e., highest implementation score achieved), moderate (median implementation score across programs), and low (lowest implementation score achieved) implementation for both HEPA separately. Programs implemented a variety of strategies identified in STEPs. For every 1-point increase in implementation score 1.45% (95% confidence interval = 0.33% to 2.55%, p ≤ .001) more girls accumulated 30 min/day of MVPA and fruits and/or vegetables were served on 0.11 more days (95% confidence interval = 0.11-0.45, p ≤ .01). Relationships between implementation and other HEPA outcomes did not reach statistical significance. Still regression estimates indicated that desserts are served on 1.94 fewer days (i.e., 0.40 vs. 2.34) in the highest implementing program than the lowest implementing program and water is served 0.73 more days (i.e., 2.37 vs. 1.64). Adopting HEPA Standards at the national level does not lead to changes in routine practice in all programs. Practical strategies that programs could adopt to more fully comply with the HEPA Standards are identified.

  20. Organizational aspects of an experimental program for physical education with a strengthened course in professional and applied physical training of future electrical engineers in the railway sector

    Directory of Open Access Journals (Sweden)

    Anzhelika Yefremova

    2017-06-01

    Full Text Available Purpose: to develop an optimized program for physical education with a strengthened course in professional and applied physical training (PAPT for students of railway universities. Material & Methods: analysis and generalization of scientific sources and program-normative documentation on physical education of the higher educational institution of railway transport, survey. Results: the results of the survey of railroad specialists are given. Pilot studies have determined the nature and conditions of professional activity of electrical engineers of railway transport. The experimental program on physical education with the strengthened course of the PAPT of students of railway universities was developed and theoretically justified. Conclusion: structure of the experimental program on physical education with the strengthened course of the PAPT included a theoretical section (8 hours, methodical and practical exercises (6 hours, a practical section (114 hours and a control section (12 hours. The program focuses on improving professionally important physical and psycho-physiological qualities and functions, psychomotor skills and physical performance. The basis of the practical section was the physical exercises from different sections of the current basic curriculum.