WorldWideScience

Sample records for space optical interconnects

  1. Optical interconnects

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  2. Free-Space Optical Interconnect Employing VCSEL Diodes

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  3. Misalignment corrections in optical interconnects

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  4. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical

  5. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  6. Opto-VLSI-based reconfigurable free-space optical interconnects architecture

    Aljada, Muhsen; Alameh, Kamal; Chung, Il-Sug

    2007-01-01

    is the Opto-VLSI processor which can be driven by digital phase steering and multicasting holograms that reconfigure the optical interconnects between the input and output ports. The optical interconnects architecture is experimentally demonstrated at 2.5 Gbps using high-speed 1×3 VCSEL array and 1......×3 photoreceiver array in conjunction with two 1×4096 pixel Opto-VLSI processors. The minimisation of the crosstalk between the output ports is achieved by appropriately aligning the VCSEL and PD elements with respect to the Opto-VLSI processors and driving the latter with optimal steering phase holograms....

  7. Fabrication of a novel gigabit/second free-space optical interconnect - photodetector characterization and testing and system development

    Savich, Gregory R.

    2004-01-01

    The time when computing power is limited by the copper wire inherent in the computer system and not the speed of the microprocessor is rapidly approaching. With constant advances in computer technology, many researchers believe that in only a few years, optical interconnects will begin to replace copper wires in your Central Processing Unit (CPU). On a more macroscopic scale, the telecommunications industry has already made the switch to optical data transmission as, to date, fiber optic technology is the only reasonable method of reliable, long range data transmission. Within the span of a decade, we will see optical technologies move from the macroscopic world of the telecommunications industry to the microscopic world of the computer chip. Already, the communications industry is marketing commercially available optical links to connect two personal computers, thereby eliminating the need for standard and comparatively slow wired and wireless Ethernet transfers and greatly increasing the distance the computers can be separated. As processing demands continue to increase, the realm of optical communications will continue to move closer to the microprocessor and quite possibly onto the microprocessor itself. A day may come when copper connections are used only to supply power, not transfer data. This summer s work marks some of the beginning stages of a 5 to 10 year, long-term research project to create and study a free-space, 1 Gigabit/sec optical interconnect. The research will result in a novel fabricated, chip-to-chip interconnect consisting of a Vertical Cavity Surface Emitting Laser (VCSEL) Diode linked through free space to a Metal- Semiconductor-Metal (MSM) Photodetector with the possible integration of microlenses for signal focusing and Micro-Electromechanical Systems (MEMS) devices for optical signal steering. The advantages, disadvantages, and practicality of incorporating flip-chip mounting technologies will also be addressed. My work began with the

  8. Nanophotonic Devices for Optical Interconnect

    Van Thourhout, D.; Spuesens, T.; Selvaraja, S.K.

    2010-01-01

    We review recent progress in nanophotonic devices for compact optical interconnect networks. We focus on microdisk-laser-based transmitters and discuss improved design and advanced functionality including all-optical wavelength conversion and flip-flops. Next we discuss the fabrication uniformity...... of the passive routing circuits and their thermal tuning. Finally, we discuss the performance of a wavelength selective detector....

  9. Optical Interconnection Via Computer-Generated Holograms

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  10. Digital optical interconnects for photonic computing

    Guilfoyle, Peter S.; Stone, Richard V.; Zeise, Frederick F.

    1994-05-01

    A 32-bit digital optical computer (DOC II) has been implemented in hardware utilizing 8,192 free-space optical interconnects. The architecture exploits parallel interconnect technology by implementing microcode at the primitive level. A burst mode of 0.8192 X 1012 binary operations per sec has been reliably demonstrated. The prototype has been successful in demonstrating general purpose computation. In addition to emulating the RISC instruction set within the UNIX operating environment, relational database text search operations have been implemented on DOC II.

  11. Integrated Optical Interconnect Architectures for Embedded Systems

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  12. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.

    Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S

    1998-05-10

    We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.

  13. Approximate analytical method to evaluate diffraction crosstalk in free-space optical interconnects systems that use circular microlenses with finite uniform apertures

    Al-Ababneh, Nedal

    2014-07-01

    We propose an accurate analytical model to calculate the optical crosstalk of a first-order free space optical interconnects system that uses microlenses with circular apertures. The proposed model is derived by evaluating the resulted finite integral in terms of an infinite series of Bessel functions. Compared to the model that uses complex Gaussian functions to expand the aperture function, it is shown that the proposed model is superior in estimating the crosstalk and provides more accurate results. Moreover, it is shown that the proposed model gives results close to that of the numerical model with superior computational efficiency.

  14. Optical Interconnects for Future Data Center Networks

    Bergman, Keren; Tomkos, Ioannis

    2013-01-01

    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  15. Optical interconnect for large-scale systems

    Dress, William

    2013-02-01

    This paper presents a switchless, optical interconnect module that serves as a node in a network of identical distribution modules for large-scale systems. Thousands to millions of hosts or endpoints may be interconnected by a network of such modules, avoiding the need for multi-level switches. Several common network topologies are reviewed and their scaling properties assessed. The concept of message-flow routing is discussed in conjunction with the unique properties enabled by the optical distribution module where it is shown how top-down software control (global routing tables, spanning-tree algorithms) may be avoided.

  16. Electro-optic techniques for VLSI interconnect

    Neff, J. A.

    1985-03-01

    A major limitation to achieving significant speed increases in very large scale integration (VLSI) lies in the metallic interconnects. They are costly not only from the charge transport standpoint but also from capacitive loading effects. The Defense Advanced Research Projects Agency, in pursuit of the fifth generation supercomputer, is investigating alternatives to the VLSI metallic interconnects, especially the use of optical techniques to transport the information either inter or intrachip. As the on chip performance of VLSI continues to improve via the scale down of the logic elements, the problems associated with transferring data off and onto the chip become more severe. The use of optical carriers to transfer the information within the computer is very appealing from several viewpoints. Besides the potential for gigabit propagation rates, the conversion from electronics to optics conveniently provides a decoupling of the various circuits from one another. Significant gains will also be realized in reducing cross talk between the metallic routings, and the interconnects need no longer be constrained to the plane of a thin film on the VLSI chip. In addition, optics can offer an increased programming flexibility for restructuring the interconnect network.

  17. Si micro photonics for optical interconnection

    Wada, K.; Ahn, D.H.; Lim, D.R.; Michel, J.; Kimerling, L.C.

    2006-01-01

    This paper reviews current status of silicon microphotonics and the recent prototype of on-chip optical interconnection. Si microphotonics pursues complementary metal oxide semiconductor (CMOS)-compatibility of photonic devices to reduce the materials diversity eventually to integrate on Si chips. Fractal optical H-trees have been implemented on a chip and found to be a technology breakthrough beyond metal interconnection. It has shown that large RC time constants associated with metal can be eliminated at least long distant data communication on a chip, and eventually improve yield and power issues. This has become the world's first electronic and photonic integrated circuits (EPICs) and the possibility of at least 10 GHz clocking for personal computers has been demonstrated

  18. Towards energy aware optical networks and interconnects

    Glesk, Ivan; Osadola, Tolulope; Idris, Siti

    2013-10-01

    In a today's world, information technology has been identified as one of the major factors driving economic prosperity. Datacenters businesses have been growing significantly in the past few years. The equipments in these datacenters need to be efficiently connected to each other and also to the outside world in order to enable effective exchange of information. This is why there is need for highly scalable, energy savvy and reliable network connectivity infrastructure that is capable of accommodating the large volume of data being exchanged at any time within the datacenter network and the outside network in general. These devices that can ensure such effective connectivity currently require large amount of energy in order to meet up with these increasing demands. In this paper, an overview of works being done towards realizing energy aware optical networks and interconnects for datacenters is presented. Also an OCDMA approach is discussed as potential multiple access technique for future optical network interconnections. We also presented some challenges that might inhibit effective implementation of the OCDMA multiplexing scheme.

  19. 32 x 16 CMOS smart pixel array for optical interconnects

    Kim, Jongwoo; Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Choquette, Kent D.; Kiamilev, Fouad E.

    2000-05-01

    Free space optical interconnects can increase throughput capacities and eliminate much of the energy consumption required for `all electronic' systems. High speed optical interconnects can be achieved by integrating optoelectronic devices with conventional electronics. Smart pixel arrays have been developed which use optical interconnects. An individual smart pixel cell is composed of a vertical cavity surface emitting laser (VCSEL), a photodetector, an optical receiver, a laser driver, and digital logic circuitry. Oxide-confined VCSELs are being developed to operate at 850 nm with a threshold current of approximately 1 mA. Multiple quantum well photodetectors are being fabricated from AlGaAs for use with the 850 nm VCSELs. The VCSELs and photodetectors are being integrated with complementary metal oxide semiconductor (CMOS) circuitry using flip-chip bonding. CMOS circuitry is being integrated with a 32 X 16 smart pixel array. The 512 smart pixels are serially linked. Thus, an entire data stream may be clocked through the chip and output electrically by the last pixel. Electrical testing is being performed on the CMOS smart pixel array. Using an on-chip pseudo random number generator, a digital data sequence was cycled through the chip verifying operation of the digital circuitry. Although, the prototype chip was fabricated in 1.2 micrometers technology, simulations have demonstrated that the array can operate at 1 Gb/s per pixel using 0.5 micrometers technology.

  20. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  1. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  2. Reconfigurable Optical Interconnections Via Dynamic Computer-Generated Holograms

    Liu, Hua-Kuang (Inventor); Zhou, Shao-Min (Inventor)

    1996-01-01

    A system is presented for optically providing one-to-many irregular interconnections, and strength-adjustable many-to-many irregular interconnections which may be provided with strengths (weights) w(sub ij) using multiple laser beams which address multiple holograms and means for combining the beams modified by the holograms to form multiple interconnections, such as a cross-bar switching network. The optical means for interconnection is based on entering a series of complex computer-generated holograms on an electrically addressed spatial light modulator for real-time reconfigurations, thus providing flexibility for interconnection networks for large-scale practical use. By employing multiple sources and holograms, the number of interconnection patterns achieved is increased greatly.

  3. Optical backplane interconnect switch for data processors and computers

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  4. Multimode polymer waveguides for high-speed optical interconnects

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  5. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase-...

  6. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  7. Optical interconnect technologies for high-bandwidth ICT systems

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  8. Optical Computers and Space Technology

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  9. Next generation space interconnect research and development in space communications

    Collier, Charles Patrick

    2017-11-01

    Interconnect or "bus" is one of the critical technologies in design of spacecraft avionics systems that dictates its architecture and complexity. MIL-STD-1553B has long been used as the avionics backbone technology. As avionics systems become more and more capable and complex, however, limitations of MIL-STD-1553B such as insufficient 1 Mbps bandwidth and separability have forced current avionics architects and designers to use combination of different interconnect technologies in order to meet various requirements: CompactPCI is used for backplane interconnect; LVDS or RS422 is used for low and high-speed direct point-to-point interconnect; and some proprietary interconnect standards are designed for custom interfaces. This results in a very complicated system that consumes significant spacecraft mass and power and requires extensive resources in design, integration and testing of spacecraft systems.

  10. A reference model for space data system interconnection services

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  11. Next Generation Space Interconnect Standard (NGSIS): a modular open standards approach for high performance interconnects for space

    Collier, Charles Patrick

    2017-04-01

    The Next Generation Space Interconnect Standard (NGSIS) effort is a Government-Industry collaboration effort to define a set of standards for interconnects between space system components with the goal of cost effectively removing bandwidth as a constraint for future space systems. The NGSIS team has selected the ANSI/VITA 65 OpenVPXTM standard family for the physical baseline. The RapidIO protocol has been selected as the basis for the digital data transport. The NGSIS standards are developed to provide sufficient flexibility to enable users to implement a variety of system configurations, while meeting goals for interoperability and robustness for space. The NGSIS approach and effort represents a radical departure from past approaches to achieve a Modular Open System Architecture (MOSA) for space systems and serves as an exemplar for the civil, commercial, and military Space communities as well as a broader high reliability terrestrial market.

  12. Ring-array processor distribution topology for optical interconnects

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  13. Ultra-precision fabrication of high density micro-optical backbone interconnections for data center and mobile application

    Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.

    2012-10-01

    A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.

  14. Investigation and experimental validation of the contribution of optical interconnects in the SYMPHONIE massively parallel computer

    Scheer, Patrick

    1998-01-01

    Progress in microelectronics lead to electronic circuits which are increasingly integrated, with an operating frequency and an inputs/outputs count larger than the ones supported by printed circuit board and back-plane technologies. As a result, distributed systems with several boards cannot fully exploit the performance of integrated circuits. In synchronous parallel computers, the situation is worsen since the overall system performances rely on the efficiency of electrical interconnects between the integrated circuits which include the processing elements (PE). The study of a real parallel computer named SYMPHONIE shows for instance that the system operating frequency is far smaller than the capabilities of the microelectronics technology used for the PE implementation. Optical interconnections may cancel these limitations by providing more efficient connections between the PE. Especially, free-space optical interconnections based on vertical-cavity surface-emitting lasers (VCSEL), micro-lens and PIN photodiodes are compatible with the required features of the PE communications. Zero bias modulation of VCSEL with CMOS-compatible digital signals is studied and experimentally demonstrated. A model of the propagation of truncated gaussian beams through micro-lenses is developed. It is then used to optimise the geometry of the detection areas. A dedicated mechanical system is also proposed and implemented for integrating free-space optical interconnects in a standard electronic environment, representative of the one of parallel computer systems. A specially designed demonstrator provides the experimental validation of the above physical concepts. (author) [fr

  15. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d......B bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber....

  16. Optical interconnection networks for high-performance computing systems

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  17. Integrated optoelectronic materials and circuits for optical interconnects

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  18. Pappus in optical space

    Koenderink, Jan J.; van Doorn, Andrea J.; Kappers, Astrid M L; Todd, James T.

    Optical space differs from physical space. The structure of optical space has generally been assumed to be metrical. In contradistinction, we do not assume any metric, but only incidence relations (i.e., we assume that optical points and lines exist and that two points define a unique line, and two

  19. Pappus in optical space

    Koenderink, J.J.; Doorn, A.J. van; Kappers, A.M.L.; Todd, J.T.

    2002-01-01

    Optical space differs from physical space. The structure of optical space has generallybeen assumed to be metrical. In contradistinction,we do not assume anymetric, but only incidence relations (i.e., we assume that optical points and lines exist and that two points define a unique line, and two

  20. High-speed VCSEL-based optical interconnects

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  1. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  2. Crosstalk in dynamic optical interconnects in photorefractive crystals

    Andersen, Peter E.; Petersen, Paul Michael; Buchhave, Preben

    1994-01-01

    We have investigated the crosstalk between two neighboring gratings in photorefractive Bi12SiO20 optical interconnects. The gratings are induced by the interference between one reference beam and two object beams. By applying a suitable phase shift in one of the object beams, we can selectively...... switch off one of the gratings. The crosstalk between the two gratings is experimentally determined from the diffraction efficiency in the remaining grating before and after applying the phase shift. The magnitude of the crosstalk is determined by the intensity ratio between the reference beam intensity...... and the object beam intensity. Crosstalk can be avoided by choosing a certain intensity ratio between the reference and the object beams....

  3. Printed polymer photonic devices for optical interconnect systems

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  4. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection

    Qiu Chen; Hu Ting; Wang Wan-Jun; Yu Ping; Jiang Xiao-Qing; Yang Jian-Yi

    2012-01-01

    A channel-selectable optical link based on a silicon microring resonator is proposed and demonstrated. This optical link consists of the wavelength-tunable microring modulators and the filters, defined on a silicon-on-insulator (SOI) platform. With a p—i—n junction embedded in the microring modulator, light at the resonant wavelength of the ring resonator is modulated. The 2 nd -order microring add-drop filter routes the modulated light. The channel selectivity is demonstrated by heating the microrings. With a thermal tuning efficiency of 5.9 mW/nm, the filter drop port response was successfully tuned with 0.8 nm channel spacing. We also show that modulation can be achieved in these channels. This device aims to offer flexibility and increase the bandwidth usage efficiency in optical interconnection

  5. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  6. Holistic design in high-speed optical interconnects

    Saeedi, Saman

    Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The

  7. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  8. High-performance parallel processors based on star-coupled wavelength division multiplexing optical interconnects

    Deri, Robert J.; DeGroot, Anthony J.; Haigh, Ronald E.

    2002-01-01

    As the performance of individual elements within parallel processing systems increases, increased communication capability between distributed processor and memory elements is required. There is great interest in using fiber optics to improve interconnect communication beyond that attainable using electronic technology. Several groups have considered WDM, star-coupled optical interconnects. The invention uses a fiber optic transceiver to provide low latency, high bandwidth channels for such interconnects using a robust multimode fiber technology. Instruction-level simulation is used to quantify the bandwidth, latency, and concurrency required for such interconnects to scale to 256 nodes, each operating at 1 GFLOPS performance. Performance scales have been shown to .apprxeq.100 GFLOPS for scientific application kernels using a small number of wavelengths (8 to 32), only one wavelength received per node, and achievable optoelectronic bandwidth and latency.

  9. Free space optical communication

    Kaushal, Hemani; Kar, Subrat

    2017-01-01

    This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.

  10. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  11. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.

  12. Four-port mode-selective silicon optical router for on-chip optical interconnect.

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-04-16

    We propose and demonstrate a four-port mode-selective optical router on a silicon-on-insulator platform. The passive routing property ensures that the router consumes no power to establish the optical links. For each port, input signals with different modes are selectively routed to the target ports through the pre-designed architecture. In general, the device intrinsically supports broadcasting of multiplexed signals from one port to the other three ports through mode division multiplexing. In some applications, the input signal from one port would only be sent to another port as in reconfigurable optical routers. The prototype is constructed by mode multiplexers/de-multiplexers and single-mode interconnect waveguides between them. The insertion losses for all optical links are lower than 8.0 dB, and the largest optical crosstalk values are lower than -18.7 dB and -22.0 dB for the broadcasting and port-to-port routing modes, respectively, at the wavelength range of 1525-1565 nm. In order to verify the routing functionality, a 40-Gbps bidirectional data transmission experiment is performed. The device offers a promising building block for passive routing by utilizing the dimension of the modes.

  13. Production process for advanced space satellite system cables/interconnects.

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  14. Nonlinear optical properties of interconnected gold nanoparticles on silicon

    Lesuffleur, Antoine; Gogol, Philippe; Beauvillain, Pierre; Guizal, B.; Van Labeke, D.; Georges, P.

    2008-12-01

    We report second harmonic generation (SHG) measurements in reflectivity from chains of gold nanoparticles interconnected with metallic bridges. We measured more than 30 times a SHG enhancement when a surface plasmon resonance was excited in the chains of nanoparticles, which was influenced by coupling due to the electrical connectivity of the bridges. This enhancement was confirmed by rigorous coupled wave method calculations and came from high localization of the electric field at the bridge. The introduction of 10% random defects into the chains of nanoparticles dropped the SHG by a factor of 2 and was shown to be very sensitive to the fundamental wavelength.

  15. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  16. Low-cost and high-capacity short-range optical interconnects using graded-index plastic optical fiber

    Tangdiongga, E.; Yang, H.; Lee, S.C.J.; Okonkwo, C.M.; Boom, van den H.P.A.; Randel, S.; Koonen, A.M.J.

    2010-01-01

    We demonstrate a transmission rate of 51.8 Gb/s over 100-meters of perfluorinated multimode graded-index plastic optical fiber using discrete multitone modulation. The results prove suitability of plastic fibers for low-cost high-capacity optical interconnects.

  17. Indium phosphide (InP) for optical interconnects

    Lebby, M.; Ristic, S.; Calabretta, N.; Stabile, R.; Tekin, T.; Pitwon, R.; Håkansson, A.; Pleros, N.

    2016-01-01

    We present InP as the incumbent technology for data center transceiver and switching optics. We review the most popular InP monolithic integration approaches in light of photonic integration being recognized as an increasingly important technology for data center optics. We present Multi-Guide

  18. Survivable resource orchestration for optically interconnected data center networks.

    Zhang, Qiong; She, Qingya; Zhu, Yi; Wang, Xi; Palacharla, Paparao; Sekiya, Motoyoshi

    2014-01-13

    We propose resource orchestration schemes in overlay networks enabled by optical network virtualization. Based on the information from underlying optical networks, our proposed schemes provision the fewest data centers to guarantee K-connect survivability, thus maintaining resource availability for cloud applications under any failure.

  19. Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices

    Summitt, Christopher Ryan

    The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4-6]. These couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool's high NA optics. To overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality. The newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree

  20. Polymer-based optical interconnects using nanoimprint lithography

    Boersma, A.; Wiegersma, S.; Offrein, B.J.; Duis, J.; Delis, J.; Ortsiefer, M.; Steenberge, G. van; Karpinen, M.; Blaaderen, A. van; Corbett, B.

    2013-01-01

    The increasing request for higher data speeds in the information and communication technology leads to continuously increasing performance of microprocessors. This has led to the introduction of optical data transmission as a replacement of electronic data transmission in most transmission

  1. Scalability analysis methodology for passive optical interconnects in data center networks using PAM

    Lin, R.; Szczerba, Krzysztof; Agrell, Erik; Wosinska, Lena; Tang, M.; Liu, D.; Chen, J.

    2017-11-01

    A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.

  2. Multi-gigabit optical interconnects for next-generation on-board digital equipment

    Venet, Norbert; Favaro, Henri; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    Parallel optical interconnects are experimentally assessed as a technology that may offer the high-throughput data communication capabilities required to the next-generation on-board digital processing units. An optical backplane interconnect was breadboarded, on the basis of a digital transparent processor that provides flexible connectivity and variable bandwidth in telecom missions with multi-beam antenna coverage. The unit selected for the demonstration required that more than tens of Gbit/s be supported by the backplane. The demonstration made use of commercial parallel optical link modules at 850 nm wavelength, with 12 channels running at up to 2.5 Gbit/s. A flexible optical fibre circuit was developed so as to route board-to-board connections. It was plugged to the optical transmitter and receiver modules through 12-fibre MPO connectors. BER below 10-14 and optical link budgets in excess of 12 dB were measured, which would enable to integrate broadcasting. Integration of the optical backplane interconnect was successfully demonstrated by validating the overall digital processor functionality.

  3. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  4. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  5. CWDM for very-short-reach and optical-backplane interconnections

    Laha, Michael J.

    2002-06-01

    Course Wavelength Division Multiplexing (CWDM) provides access to next generation optical interconnect data rates by utilizing conventional electro-optical components that are widely available in the market today. This is achieved through the use of CWDM multiplexers and demultiplexers that integrate commodity type active components, lasers and photodiodes, into small optical subassemblies. In contrast to dense wavelength division multiplexing (DWDM), in which multiple serial data streams are combined to create aggregate data pipes perhaps 100s of gigabits wide, CWDM uses multiple laser sources contained in one module to create a serial equivalent data stream. For example, four 2.5 Gb/s lasers are multiplexed to create a 10 Gb/s data pipe. The advantages of CWDM over traditional serial optical interconnects include lower module power consumption, smaller packaging, and a superior electrical interface. This discussion will detail the concept of CWDM and design parameters that are considered when productizing a CWDM module into an industry standard optical interconnect. Additionally, a scalable parallel CWDM hybrid architecture will be described that allows the transport of large amounts of data from rack to rack in an economical fashion. This particular solution is targeted at solving optical backplane bottleneck problems predicted for the next generation terabit and petabit routers.

  6. The CERN Host Interface and the optical interconnect

    McLaren, R.A.; Berners Lee, T.J.; Burckhart, D.

    1988-01-01

    Interfaces between Digital Equipment Corporation's VAX series computers and VMEbus and FASTBUS have been designed as part of the CERN Host Interface (CHI) project. Both the VMEbus and the FASTBUS interface share a common architecture which includes a powerful MC680x0 central processing unit, large data memories and a link port to connect to different members of the VAX family. Software support allows user software to be split between the VAX and the CHI processors whilst an enhanced VAX/VMS driver reduces operating system overheads. In addition an optical link allows the FASTBUS or VMEbus crate to be up to 1 kilometer from the host computer. (author). 12 refs, 3 diagrams

  7. Optical space communication: An overview

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  8. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  9. Silicon photonic IC embedded optical-PCB for high-speed interconnect application

    Kallega, Rakshitha; Nambiar, Siddharth; Kumar, Abhai; Ranganath, Praveen; Selvaraja, Shankar Kumar

    2018-02-01

    Optical-Printed Circuit Board (PCB) is an emerging optical interconnect technology to bridge the gap between the board edge and the processing module. The technology so far has been used as a broadband transmitter using polymer waveguides in the PCB. In this paper, we report a Silicon Nitride based photonic IC embedded in the PCB along with the polymers as waveguides in the PCB. The motivation for such integration is to bring routing capability and to reduce the power loss due to broadcasting mode.

  10. Spectral space-time coding for optical communications through a multimode fiber

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  11. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  12. CATO: a CAD tool for intelligent design of optical networks and interconnects

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  13. Optical interconnects based on VCSELs and low-loss silicon photonics

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  14. 3 x 3 free-space optical router based on crossbar network and its control algorithm

    Hou, Peipei; Sun, Jianfeng; Yu, Zhou; Lu, Wei; Wang, Lijuan; Liu, Liren

    2015-08-01

    A 3 × 3 free-space optical router, which comprises optical switches and polarizing beam splitter (PBS) and based on crossbar network, is proposed in this paper. A control algorithm for the 3 × 3 free-space optical router is also developed to achieve rapid control without rearrangement. In order to test the performance of the network based on 3 × 3 free-space optical router and that of the algorithm developed for the optical router, experiments are designed. The experiment results show that the interconnection network based on the 3 × 3 free-space optical router has low cross talk, fast connection speed. Under the control of the algorithm developed, a non-block and real free interconnection network is obtained based on the 3 × 3 free-space optical router we proposed.

  15. Quantum Optics in Phase Space

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  16. 8-dimensional lattice optimized formats in 25-GBaud/s VCSEL based IM/DD optical interconnections

    Lu, Xiaofeng; Tafur Monroy, Idelfonso

    2015-01-01

    Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA.......Temporally combined 4- and 8-dimensional lattice grids optimized modulation formats for VCSEL based IM/DD short-reach optical inter-connections has been proposed and investigated numerically together with its conventional counterpart PAM-4. © 2015 OSA....

  17. Three Dimensionally Interconnected Silicon Nanomembranes for Optical Phased Array (OPA) and Optical True Time Delay (TTD) Applications

    2012-06-01

    Joshi, C. Batten, Y. Kwon, S . Beamer, I Shamim , K. Asanovic, and V. Stojanovic, in NOCS 󈧍 Proceedings of the 2009 3rd ACM/IEEE international...Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) University of Texas,Microelectronic Research Center, Nanophotonics and Optical Interconnects

  18. Optical interconnection for a polymeric PLC device using simple positional alignment.

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

  19. Physical-layer network coding for passive optical interconnect in datacenter networks.

    Lin, Rui; Cheng, Yuxin; Guan, Xun; Tang, Ming; Liu, Deming; Chan, Chun-Kit; Chen, Jiajia

    2017-07-24

    We introduce physical-layer network coding (PLNC) technique in a passive optical interconnect (POI) architecture for datacenter networks. The implementation of the PLNC in the POI at 2.5 Gb/s and 10Gb/s have been experimentally validated while the gains in terms of network layer performances have been investigated by simulation. The results reveal that in order to realize negligible packet drop, the wavelengths usage can be reduced by half while a significant improvement in packet delay especially under high traffic load can be achieved by employing PLNC over POI.

  20. A Monolithic Interconnected module with a tunnel Junction for Enhanced Electrical and Optical Performance

    Murray, Christopher Sean; Wilt, David Morgan

    1999-06-30

    An improved thermophotovoltaic (TPV) n/p/n device is provided. Monolithic Interconnected Modules (MIMs), semiconductor devices converting infrared radiation to electricity, have been developed with improved electrical and optical performance. The structure is an n-type emitter on a p-type base with an n-type lateral conduction layer. The incorporation of a tunnel junction and the reduction in the amount of p-type material used results in negligible parasitic absorption, decreased series resistance, increased voltage and increased active area. The novel use of a tunnel junction results in the potential for a TPV device with efficiency greater than 24%.

  1. MEMS Lens Scanners for Free-Space Optical Interconnects

    2011-12-15

    electrothermal linear micromotors ,” Journal of Micromechanics and Microengineering, vol. 14, no. 2, pp. 226– 234, 2004. [59] Hyuck Choo and R. S. Muller...84] Mei Lin Chan et al., “Low friction liquid bearing mems micromotor ,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical

  2. Time-division optical interconnects for local-area and micro-area networks

    Krol, Mark F.; Boncek, Raymond K.; Johns, Steven T.; Stacy, John L.

    1991-12-01

    This report describes the development of an optical Time-Division Multiple-Access (TDMA) interconnect suitable for applications in local-area and micro-area networks. The advantages of using time-division techniques instead of frequency-division, wavelength-division, or code-division techniques in a shared-medium environment are discussed in detail. Furthermore, a detailed description of the TDMA architecture is presented along with various experiments pertaining to the actual components needed to implement the system. Finally, experimental data is presented for an actual optical TDMA test bed. The experimental data demonstrates the feasibility of the architecture, and shows that currently the system has the capability to accommodate up to 50 channels. The bit-error-rate per channel was measured to be less than 10(exp -9) for pseudo-random bit-sequences.

  3. Cost-effective parallel optical interconnection module based on fully passive-alignment process

    Son, Dong Hoon; Heo, Young Soon; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Sung Chang

    2017-11-01

    In optical interconnection technology, high-speed and large data transitions with low error rate and cost reduction are key issues for the upcoming 8K media era. The researchers present notable types of optical manufacturing structures of a four-channel parallel optical module by fully passive alignment, which are able to reduce manufacturing time and cost. Each of the components, such as vertical-cavity surface laser/positive-intrinsic negative-photodiode array, microlens array, fiber array, and receiver (RX)/transmitter (TX) integrated circuit, is integrated successfully using flip-chip bonding, die bonding, and passive alignment with a microscope. Clear eye diagrams are obtained by 25.78-Gb/s (for TX) and 25.7-Gb/s (for RX) nonreturn-to-zero signals of pseudorandom binary sequence with a pattern length of 231 to 1. The measured responsivity and minimum sensitivity of the RX are about 0.5 A/W and ≤-6.5 dBm at a bit error rate (BER) of 10-12, respectively. The optical power margin at a BER of 10-12 is 7.5 dB, and cross talk by the adjacent channel is ≤1 dB.

  4. Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

    Sangirov Jamshid; Ukaegbu Ikechi Augustine; Lee Tae-Woo; Park Hyo-Hoon; Sangirov Gulomjon

    2013-01-01

    A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal–oxide–semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm 2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes. (semiconductor integrated circuits)

  5. A full-duplex working integrated optoelectronic device for optical interconnect

    Liu, Kai; Fan, Huize; Huang, Yongqing; Duan, Xiaofeng; Wang, Qi; Ren, Xiaomin; Wei, Qi; Cai, Shiwei

    2018-05-01

    In this paper, a full-duplex working integrated optoelectronic device is proposed. It is constructed by integrating a vertical cavity surface emitting laser (VCSEL) unit above a resonant cavity enhanced photodetector (RCE-PD) unit. Analysis shows that, the VCSEL unit has a threshold current of 1 mA and a slop efficiency of 0.66 W/A at 849.7 nm, the RCE-PD unit obtains its maximal absorption quantum efficiency of 90.24% at 811 nm with a FWHM of 4 nm. Moreover, the two units of the proposed integrated device can work independently from each other. So that the proposed integrated optoelectronic device can work full-duplex. It can be applied for single fiber bidirectional optical interconnects system.

  6. Classical optics and curved spaces

    Bailyn, M.; Ragusa, S.

    1976-01-01

    In the eikonal approximation of classical optics, the unit polarization 3-vector of light satisfies an equation that depends only on the index, n, of refraction. It is known that if the original 3-space line element is d sigma 2 , then this polarization direction propagates parallely in the fictitious space n 2 d sigma 2 . Since the equation depends only on n, it is possible to invent a fictitious curved 4-space in which the light performs a null geodesic, and the polarization 3-vector behaves as the 'shadow' of a parallely propagated 4-vector. The inverse, namely, the reduction of Maxwell's equation, on a curve 'dielectric free) space, to a classical space with dielectric constant n=(-g 00 ) -1 / 2 is well known, but in the latter the dielectric constant epsilon and permeability μ must also equal (-g 00 ) -1 / 2 . The rotation of polarization as light bends around the sun by utilizing the reduction to the classical space, is calculated. This (non-) rotation may then be interpreted as parallel transport in the 3-space n 2 d sigma 2 [pt

  7. Performance Evaluation of a SOA-based Rack-To-Rack Switch for Optical Interconnects Exploiting NRZ-DPSK

    Karinou, Fotini; Borkowski, Robert; Prince, Kamau

    2012-01-01

    We experimentally study the transmission performance of 10-Gb/s NRZ-DPSK through concatenated AWG MUX/DMUXs and SOAs employed in an optimized 64×64 optical supercomputer interconnect architecture. NRZ-DPSK offers 9-dB higher dynamic range compared to conventional IM/DD....

  8. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  9. Protocol and Topology Issues for Wide-Area Satellite Interconnection of Terrestrial Optical LANs

    Parraga, N.

    2002-01-01

    Apart from broadcasting, the satellite business is targeting niche markets. Wide area interconnection is considered as one of these niche markets, since it addresses operators and business LANs (B2B, business to business) in remote areas where terrestrial infrastructure is not available. These LANs - if high-speed - are typically based on optical networks such as SONET. One of the advantages of SONET is its architecture flexibility and capacity to transport all kind of applications including multimedia with a range of different transmission rates. The applications can be carried by different protocols among which the Internet Protocol (IP) or the Asynchronous Transfer Mode (ATM) are the most prominent ones. Thus, the question arises how these protocols can be interconnected via the satellite segment. The paper addresses several solutions for interworking with different protocols. For this investigation we distinguish first of all between the topology and the switching technology of the satellites. In case of a star network with transparent satellite, the satellite protocol consists of physical layer and data layer which can be directly interconnected with layer 2 interworking function to their terrestrial counterparts in the SONET backbone. For regenerative satellites the situation is more complex: here we need to distinguish the types of transport protocols being used in the terrestrial and satellite segment. Whereas IP, ATM, MPEG dominate in the terrestrial networks, satellite systems usually do not follow these standards. Some might employ minor additions (for instance, satellite specific packet headers), some might be completely proprietary. In general, interworking must be done for the data plane on top of layer 2 (data link layer), whereas for the signaling plane the interworking is on top of layer 3. In the paper we will discuss the protocol stacks for ATM, IP, and MPEG with a regenerative satellite system. As an example we will use the EuroSkyWay satellite

  10. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection

    Takasago, Kazuya; Takekawa, Makoto; Shirakawa, Atsushi; Kannari, Fumihiko

    2000-05-01

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M -sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M -sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of 5.

  11. Low-cost optical interconnect module for parallel optical data links

    Noddings, Chad; Hirsch, Tom J.; Olla, M.; Spooner, C.; Yu, Jason J.

    1995-04-01

    We have designed, fabricated, and tested a prototype parallel ten-channel unidirectional optical data link. When scaled to production, we project that this technology will satisfy the following market penetration requirements: (1) up to 70 meters transmission distance, (2) at least 1 gigabyte/second data rate, and (3) 0.35 to 0.50 MByte/second volume selling price. These goals can be achieved by means of the assembly innovations described in this paper: a novel alignment method that is integrated with low-cost, few chip module packaging techniques, yielding high coupling and reducing the component count. Furthermore, high coupling efficiency increases projected reliability reducing the driver's power requirements.

  12. Atmospheric free-space coherent optical communications with adaptive optics

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  13. Deep space optical communication via relay satellite

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  14. Real-time validation of receiver state information in optical space-time block code systems.

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  15. Development of a technology for fabricating low-cost parallel optical interconnects

    Van Steenberge, Geert; Hendrickx, Nina; Geerinck, Peter; Bosman, Erwin; Van Put, Steven; Van Daele, Peter

    2006-04-01

    We present a fabrication technology for integrating polymer waveguides and 45° micromirror couplers into standard electrical printed circuit boards (PCBs). The most critical point that is being addressed is the low-cost manufacturing and the compatibility with current PCB production. The latter refers to the processes as well as material compatibility. In the fist part the waveguide fabrication technology is discussed, both photo lithography and laser ablation are proposed. It is shown that a frequency tripled Nd-YAG laser (355 nm) offers a lot of potential for defining single mode interconnections. Emphasis is on multimode waveguides, defined by KrF excimer laser (248 nm) ablation using acrylate polymers. The first conclusion out of loss spectrum measurements is a 'yellowing effect' of laser ablated waveguides, leading to an increased loss at shorter wavelengths. The second important conclusion is a potential low loss at a wavelength of 850 nm, 980 nm and 1310 nm. This is verified at 850 nm by cut-back measurements on 10-cm-long waveguides showing an average propagation loss of 0.13 dB/cm. Photo lithographically defined waveguides using inorganic-organic hybrid polymers show an attenuation loss of 0.15 dB/cm at 850 nm. The generation of debris and the presence of microstructures are two main concerns for KrF excimer laser ablation of hybrid polymers. In the second part a process for embedding metal coated 45° micromirrors in optical waveguiding layers is described. Mirrors are selectively metallized using a lift-off process. Filling up the angled via without the presence of air bubbles and providing a flat surface above the mirror is only possible by enhancing the cladding deposition process with ultrasound agitation. Initial loss measurements indicate an excess mirror loss of 1.5 dB.

  16. Analysis of Free-Space Optics Development

    Mikołajczyk Janusz

    2017-12-01

    Full Text Available The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO. Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

  17. Optical interconnects for in-plane high-speed signal distribution at 10 Gb/s: Analysis and demonstration

    Chang, Yin-Jung

    With decreasing transistor size, increasing chip speed, and larger numbers of processors in a system, the performance of a module/system is being limited by the off-chip and off-module bandwidth-distance products. Optical links have moved from fiber-based long distance communications to the cabinet level of 1m--100m, and recently to the backplane-level (10cm--1m). Board-level inter-chip parallel optical interconnects have been demonstrated recently by researchers from Intel, IBM, Fujitsu, NTT and a few research groups in universities. However, the board-level signal/clock distribution function using optical interconnects, the lightwave circuits, the system design, a practically convenient integration scheme committed to the implementation of a system prototype have not been explored or carefully investigated. In this dissertation, the development of a board-level 1 x 4 optical-to-electrical signal distribution at 10Gb/s is presented. In contrast to other prototypes demonstrating board-level parallel optical interconnects that have been drawing much attention for the past decade, the optical link design for the high-speed signal broadcasting is even more complicated and the pitch between receivers could be varying as opposed to fixed-pitch design that has been widely-used in the parallel optical interconnects. New challenges for the board-level high-speed signal broadcasting include, but are not limited to, a new optical link design, a lightwave circuit as a distribution network, and a novel integration scheme that can be a complete radical departure from the traditional assembly method. One of the key building blocks in the lightwave circuit is the distribution network in which a 1 x 4 multimode interference (MMI) splitter is employed. MMI devices operating at high data rates are important in board-level optical interconnects and need to be characterized in the application of board-level signal broadcasting. To determine the speed limitations of MMI devices, the

  18. Low energy routing platforms for optical interconnects using active plasmonics integrated with Silicon Photonics

    Vyrsokinos, K.; Papaioannou, S.; Kalavrouziotis, D.

    2013-01-01

    technologies to cope with the massive amount of data moving across all hierarchical communication levels, namely rack-to-rack, backplane, chip-to-chip and even on-chip interconnections. Plasmonics comes indeed as a disruptive technology that enables seamless interoperability between light beams and electronic...

  19. Free Space Optical Communication for Tactical Operations

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  20. The LAM space active optics facility

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  1. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  2. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Van Erps, Jürgen, E-mail: jurgen.van.erps@vub.ac.be; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-15

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  3. Fibre optic gyroscopes for space use

    Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry

    2017-11-01

    Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.

  4. Analytical Model based on Green Criteria for Optical Backbone Network Interconnection

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Pedersen, Jens Myrup

    2011-01-01

    Key terms such as Global warming, Green House Gas emissions, or Energy efficiency are currently on the scope of scientific research. Regarding telecommunications networks, wireless applications, routing protocols, etc. are being designed following this new “Green” trend. This work contributes...... to the evaluation of the environmental impact of networks from physical interconnection point of view. Networks deployment, usage, and disposal are analyzed as contributing elements to ICT’s (Information and Communications Technology) CO2 emissions. This paper presents an analytical model for evaluating...

  5. From space qualified fiber optic gyroscope to generic fiber optic solutions available for space application

    Buret, Thomas; Ramecourt, David; Napolitano, Fabien

    2017-11-01

    The aim of this article is to present how the qualification of the Fiber Optic Gyroscope technology from IXSEA has been achieved through the qualification of a large range of optical devices and related manufacturing processes. These qualified optical devices and processes, that are now fully mastered by IXSEA through vertical integration of the technology, can be used for other space optical sensors. The example of the SWARM project will be discussed.

  6. Standard Hardware Acquisition and Reliability Program's (SHARP's) efforts in incorporating fiber optic interconnects into standard electronic module (SEM) connectors

    Riggs, William R.

    1994-05-01

    SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.

  7. IM/DD vs. 4-PAM Using a 1550-nm VCSEL over Short-Range SMF/MMF Links for Optical Interconnects

    Karinou, Fotini; Rodes Lopez, Roberto; Prince, Kamau

    2013-01-01

    We experimentally compare the performance of 10.9-Gb/s IM/DD and 5-GBd 4-PAM modulation formats over 5-km SMF and 1-km MMF links, employing a commercially-available 1550-nm VCSEL as an enabling technology for use in optical interconnects.......We experimentally compare the performance of 10.9-Gb/s IM/DD and 5-GBd 4-PAM modulation formats over 5-km SMF and 1-km MMF links, employing a commercially-available 1550-nm VCSEL as an enabling technology for use in optical interconnects....

  8. Preface to the special issue on ;Optical Communications Exploiting the Space Domain;

    Wang, Jian; Yu, Siyuan; Li, Guifang

    2018-02-01

    The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important

  9. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  10. Comparative study on stained InGaAs quantum wells for high-speed optical-interconnect VCSELs

    Li, Hui; Jia, Xiaowei

    2018-05-01

    The gain-carrier characteristics of InGaAs quantum well for 980 nm high-speed, energy-efficient vertical-cavity surface-emitting lasers are investigated. We specially studied the potentially InGaAs quantum well designs can be used for the active region of energy-efficient, temperature-stable 980-nm VCSEL, which introduced a quantum well gain peak wavelength-to-cavity resonance wavelength offset to improve the dynamic performance at high operation temperature. Several candidate quantum wells are being compared in theory and measurement. We found that ∼5 nm InGaAs QW with ∼6 nm barrier thickness is suitable for the active region of high-speed optical interconnect 980 nm VCSELs, and no significant improvement in the 20% range of In content of InGaAs QWs. The results are useful for next generation green photonic device design.

  11. Interconnection Guidelines

    The Interconnection Guidelines provide general guidance on the steps involved with connecting biogas recovery systems to the utility electrical power grid. Interconnection best practices including time and cost estimates are discussed.

  12. Phase space treatment of optical beams

    Nemes, G.; Teodorescu, I.E.; Nemes, M.

    1984-01-01

    The lecture reveals the possibility of treating optical beams and systems using the PS concept. In the first part some well-known concepts and results of charged particle optics are applied to optical beam and systems. Attention is paid to the PSE concept as to beina a beam invariant according to Liouville's theorem. In the second part some simple optical sources, their PSE and their transforms through simple optical elements are theoretically presented. An experimental method and a device for PSE measurements are presented in the third part. In the fourth part the main problems of the linear system theory which were applied to electrical circuits in the time (or freo.uency) domain and to optical systems in the bidimensional space of spatial coordinates (or spatial frequencies) are applied to stigmatic optical systems in the bidimensional PS (spatial coordinate, angle). Some examples of applying PS concepts in optics are presented in the fifth part. The lecture is mainly based on original results some of them being previously unpublished. (authors)

  13. Single event effect ground test results for a fiber optic data interconnect and associated electronics

    LaBel, K.A.; Hawkins, D.K.; Cooley, J.A.; Stassinopoulos, E.G.; Seidleck, C.M.; Marshall, P.; Dale, C.; Gates, M.M.; Kim, H.S.

    1994-01-01

    As spacecraft unlock the potential of fiber optics for spaceflight applications, system level bit error rates become of concern to the system designer. The authors present ground test data and analysis on candidate system components

  14. The Fiber Optic Subsystem Components on Express Logistics Carrier for International Space Station

    Ott, Melanie N.; Switzer, Robert; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; Day, Lance

    2009-01-01

    ISS SSP 50184 HRDL optical fiber communication subsystem, has system level requirements that were changed to accommodate large loss optical fiber links previously installed. SSQ22680 design is difficult to implement, no metal shell over socket/pin combination to protect the weak part of the pin. Additions to ISS are planned for the future. AVIM still used for interconnection in space flight applications without incident. Thermal cycling resulted in less than 0.25 dB max change in Insertion Loss for all types during cycling, nominal as compared to the AVIM. Vibration testing results conclusion; no significant changes, nominal as compared to AVIM.

  15. German activities in optical space instrumentation

    Hartmann, G.

    2018-04-01

    In the years of space exploration since the mid-sixties, a wide experience in optical space instrumentation has developed in Germany. This experience ranges from large telescopes in the 1 m and larger category with the accompanying focal plane detectors and spectrometers for all regimes of the electromagnetic spectrum (infrared, visible, ultraviolet, x-rays), to miniature cameras for cometary and planetary explorations. The technologies originally developed for space science. are now also utilized in the fields of earth observation and even optical telecommunication. The presentation will cover all these areas, with examples for specific technological or scientific highlights. Special emphasis will be given to the current state-of-the-art instrumentation technologies in scientific institutions and industry, and to the future perspective in approved and planned projects.

  16. SC-FDE for MMF short reach optical interconnects using directly modulated 850 nm VCSELs

    Teichmann, Victor S. C.; Barreto, Andre N.; Pham, Tien Thang

    2012-01-01

    We propose the use of single-carrier frequency-domain equalization (SC-FDE) for the compensation of modal dispersion in short distance optical links using multimode fibers and 850 nm VCSELs. By post-processing of experimental data, we demonstrate, at 7.9% overhead, the error-free transmission (ov...

  17. Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects

    Karinou, Fotini; Deng, Lei; Rodes Lopez, Roberto

    2013-01-01

    -shift keying (QPSK)/16-ary quadrature amplitude modulation (16QAM) with direct detection, over SMF (100m and 5km) and MMF (100m and 1km) short-range links, for their potential application in low-cost rack-to-rack optical interconnects. Moreover, we assess the performance of quaternary-pulse amplitude...

  18. Commercial Optics for Space Surveillance and Astronomy

    Ackermann, M.; Kopit, E.; McGraw, J.; Zimmer, P.

    Since the first days of the space program, there have been both amateur and government satellite watchers. Large, expensive government systems with custom optics are still the most capable, but with modern sensors and high speed computers, amateur trackers are easily pushing the limits of what government systems achieved only a decade ago. A very recent trend in the space world is the emergence of commercial space operations centers. Once the exclusive purview of governments, corporations are now providing orbital environment awareness services to the operators of commercial satellites. The requirement for synoptic satellite observations has led to corporations developing world-wide observing networks. A problem facing both amateur and corporate observers is the limited availability of suitable optical systems. Most observing efforts rely on long focus (f/8 or greater) optical systems with focal reducers, and a somewhat limited field of view. Often, the cameras in use are not ideally matched to the optical system. While there are a few exceptions, the choices are not many. Celestron recently introduced the C-11 RASA optical system, with an 11-inch aperture and an f/2.2 focal ratio. This optical system is designed for dedicated imaging and is ideally suited for both wide-field astronomy and the detection and tracking of satellites. The larger C-14 RASA, to be introduced later this year, was specifically designed for wide-field imaging with large commercial CCDs. It offers greater sensitivity and a wider field of view than the smaller C-11 RASA and should prove to be the instrument of choice for both amateur and corporate satellite observers. We present data from satellite observations with a production model C-11 RASA and estimated performance for the new C-14 RASA.

  19. SU-8 Lenses: Simple Methods of Fabrication and Application in Optical Interconnection Between Fiber/LED and Microstructures

    Nguyen, Minh-Hang; Nguyen, Hai-Binh; Nguyen, Tuan-Hung; Vu, Xuan-Manh; Lai, Jain-Ren; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang

    2016-05-01

    This paper presents two facile methods to fabricate off-plane lenses made of SU-8, an epoxy-based negative photoresist from MicroChem, on glass for optical interconnection. The methods allow the fabrication of lenses with flexible spot size and focal length depending on SU-8 well size and SU-8 drop volume and viscosity. In the first method, SU-8 drops were applied directly into patterned SU-8 wells with Teflon-coated micropipettes, and were baked to become (a)-spherical lenses. The lens shape and size were mainly determined by SU-8 viscosity, ratio of drop volume to well volume, and baking temperature and time. In the second method, a glass substrate with SU-8 patterned wells was emerged in diluted SU-8, then drawn up and baked to form lenses. The lens shapes and sizes were mainly determined by SU-8 viscosity and well volume. By the two methods, SU-8 lenses were successfully fabricated with spot sizes varying in range from micrometers to hundred micrometers, and focal lengths varying in range of several millimeters, depending on the lens rim diameters and aspheric sag height. Besides, on-plane SU-8 lenses were fabricated by photolithography to work in conjunction with the off-plane SU-8 lenses. The cascaded lenses produced light spots reduced to several micrometers, and they can be applied as a coupler for light coupling from fiber/Light-emitting diode (LED) to microstructures and nanostructures. The results open up the path for fabricating novel optical microsystems for optical communication and optical sensing applications.

  20. Design of a highly parallel board-level-interconnection with 320 Gbps capacity

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.; Bauer, H.

    2012-01-01

    A parallel board-level interconnection design is presented consisting of 32 channels, each operating at 10 Gbps. The hardware uses available optoelectronic components (VCSEL, TIA, pin-diodes) and a combination of planarintegrated free-space optics, fiber-bundles and available MEMS-components, like the DMD™ from Texas Instruments. As a specific feature, we present a new modular inter-board interconnect, realized by 3D fiber-matrix connectors. The performance of the interconnect is evaluated with regard to optical properties and power consumption. Finally, we discuss the application of the interconnect for strongly distributed system architectures, as, for example, in high performance embedded computing systems and data centers.

  1. NASA's current activities in free space optical communications

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  2. Wigner distribution, partial coherence, and phase-space optics

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  3. Graphical user interfaces for teaching and design of GRIN lenses in optical interconnections

    Gómez-Varela, A I; Bao-Varela, C

    2015-01-01

    The use of graphical user interfaces (GUIs) enables the implementation of practical teaching methodologies to make the comprehension of a given subject easier. GUIs have become common tools in science and engineering education, where very often, the practical implementation of experiences in a laboratory involves much equipment and many people; they are an efficient and inexpensive solution to the lack of resources. The aim of this work is to provide primarily physics and engineering students with a series of GUIs to teach some configurations in optical communications using gradient-index (GRIN) lenses. The reported GUIs are intended to perform a complementary role in education as part of a ‘virtual lab’ to supplement theoretical and practical sessions and to reinforce the knowledge acquired by the students. In this regard, a series of GUIs to teach and research the implementation of GRIN lenses in optical communications applications (including a GRIN light deflector and a beam-size controller, a GRIN fibre lens for fibre-coupling purposes, planar interconnectors, and an anamorphic self-focusing lens to correct astigmatism in laser diodes) was designed using the environment GUIDE developed by MATLAB. Numerical examples using available commercial GRIN lens parameter values are presented. (paper)

  4. 24-ch microlens-integrated no-polish connector for optical interconnection with polymer waveguides

    Shiraishi, Takashi; Yagisawa, Takatoshi; Ikeuchi, Tadashi; Daikuhara, Osamu; Tanaka, Kazuhiro

    2013-02-01

    We successfully developed a new 24-ch optical connector for polymer waveguides. The connector consists of a transparent thermoplastic resin that has two rectangular slits on one side for alignment of the waveguide films and integrated microlens arrays on the other side for coupling to the MT connector. Two 12-ch waveguide films were cut to a 3-mm width. The thickness of each waveguide film was controlled at 100 μm. The waveguide films were inserted into the slits until they touched the bottom face of the slit. Ultraviolet curing adhesive was used to achieve a short hardening process. The expanded beam in the transparent material is focused by the microlens arrays formed on the connector surface. This lens structure enables assembly without the need for a polishing process. We designed the lens for coupling between a step-index 40-μm rectangular waveguide and a graded-index 50-μm fiber. We achieved low-loss optical coupling by designing a method of providing asymmetric magnification between the horizontal and vertical directions in order to compensate for the asymmetric numerical aperture of the waveguide. The typical measured coupling losses from/to the waveguide to/from the fiber were 1.2 dB and 0.6 dB, respectively. The total coupling loss was as small as that of a physical contact connection.

  5. Integrated reconfigurable microring based silicon WDM receiver for on-chip optical interconnect

    Shen, Ao; Yang, Long-Zhi; Dai, Ting-Ge; Hao, Yin-Lei; Jiang, Xiao-Qing; Yang, Jian-Yi; Qiu, Chen

    2015-01-01

    We demonstrate an integrated reconfigurable wavelength division multiplexing receiver on the silicon-on-insulator (SOI) platform. The receiver is composed of a 1 × 8 thermally tunable microring resonator filter and Ge–Si photodetectors. With low thermal tuning powers the channel allocation of the receiver can be reconfigured with high accuracy and flexibility. The thermal tuning efficiency is approximately 8 mW nm −1 . We show eight-channel configurations with channel spacing of 100 GHz and 50 GHz and a configuration in which all eight channels cover an entire free spectral range of the ring with uniform channel spacing of 1.2 nm. Each channel can receive high-quality signals with a data rate of up to 13.5 Gb s −1 ; thus an aggregate data rate higher than 100 Gb s −1 can be achieved. (paper)

  6. Discovery deep space optical communications (DSOC) transceiver

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  7. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  8. Optical Axis Identification Technique for Free Space Optics Transmission

    Yuki Tashiro

    2017-07-01

    Full Text Available This paper describes optical axis adjustment technique for an active free space optics transmission system. This system precisely controls the direction of a collimated thin laser beam using a motor driven laser emitting mechanism and positioning photodiodes. Before beginning laser beam feedback control, it is required to guide the laser beam within the range of the positioning photodiodes for initial laser beam alignment. This paper proposes an arrival position presumption method of laser beam traveling along the long distance from transmitter. A positioning sensor containing several photodiodes measures laser luminescence distribution, and analytically calculates the optical axis of laser beam according to the modified Gaussian beam optics based on four or five distributed local intensity of laser luminescence. Experiments are conducted to evaluate the accuracy of the presumption, and results reveal that the method is effective in leading the laser beam onto a distant receiver.

  9. Add/drop filters based on SiC technology for optical interconnects

    Vieira, M; Vieira, M A; Louro, P; Fantoni, A; Silva, V

    2014-01-01

    In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions

  10. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  11. Optoelectronic interconnects for 3D wafer stacks

    Ludwig, David; Carson, John C.; Lome, Louis S.

    1996-01-01

    Wafer and chip stacking are envisioned as means of providing increased processing power within the small confines of a three-dimensional structure. Optoelectronic devices can play an important role in these dense 3-D processing electronic packages in two ways. In pure electronic processing, optoelectronics can provide a method for increasing the number of input/output communication channels within the layers of the 3-D chip stack. Non-free space communication links allow the density of highly parallel input/output ports to increase dramatically over typical edge bus connections. In hybrid processors, where electronics and optics play a role in defining the computational algorithm, free space communication links are typically utilized for, among other reasons, the increased network link complexity which can be achieved. Free space optical interconnections provide bandwidths and interconnection complexity unobtainable in pure electrical interconnections. Stacked 3-D architectures can provide the electronics real estate and structure to deal with the increased bandwidth and global information provided by free space optical communications. This paper will provide definitions and examples of 3-D stacked architectures in optoelectronics processors. The benefits and issues of these technologies will be discussed.

  12. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Rafael Gil-Otero

    2007-02-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  13. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Lim Theodore

    2007-01-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  14. Advanced lightweight optics development for space applications

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  15. Annotated Gene and Proteome Data Support Recognition of Interconnections Between the Results of Different Experiments in Space Research

    Bauer, Johann; Wehland, Markus; Pietsch, Jessica; Sickmann, Albert; Weber, Gerhard; Grimm, Daniela

    2016-06-01

    In a series of studies, human thyroid and endothelial cells exposed to real or simulated microgravity were analyzed in terms of changes in gene expression patterns or protein content. Due to the limitation of available cells in many space research experiments, comparative and control experiments had to be done in a serial manner. Therefore, detected genes or proteins were annotated with gene names and SwissProt numbers, in order to allow searches for interconnections between results obtained in different experiments by different methods. A crosscheck of several studies on the behavior of cytoskeletal genes and proteins suggested that clusters of cytoskeletal components change differently under the influence of microgravity and/or vibration in different cell types. The result that LOX and ISG15 gene expression were clearly altered during the Shenzhou-8 spaceflight mission could be estimated by comparison with the results of other experiments. The more than 100-fold down-regulation of LOX supports our hypothesis that the amount and stability of extracellular matrix have a great influence on the formation of three-dimensional aggregates under microgravity. The approximately 40-fold up-regulation of ISG15 cannot yet be explained in detail, but strongly suggests that ISGylation, an alternative form of posttranslational modification, plays a role in longterm cultures.

  16. Transurban interconnectivities

    Jørgensen, Claus Møller

    2012-01-01

    This essay discusses the interpretation of the revolutionary situations of 1848 in light of recent debates on interconnectivity in history. The concept of transurban interconnectivities is proposed as the most precise concept to capture the nature of interconnectivity in 1848. It is argued....... It is argued that circulating political communication accounts for similarities with respect to political agenda, organisational form and political repertoire evident in urban settings across Europe. This argument is supported by a series of examples of local organisation and local appropriations of liberalism...

  17. Space optical materials and space qualification of optics; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Hale, Robert R.

    1989-10-01

    The present conference on space optical materials discusses current metals and nonmetals-related processing R&D efforts, investigations of space optical effects, and the spaceborne qualification of optical components and systems. Attention is given to CVD SiC for optical applications, optical materials for space-based lasers, the high-efficiency acoustooptic and optoelectronic crystalline material Tl3AsSe3, HIPed Be for low-scatter cryogenic optics, durable solar-reflective surfacing for Be optics, thermal effects on Be mirrors, contamination effects on optical surfaces in the monolayer regime, and IR background signature survey experiment results. Also discussed are the contamination-control program for the EUE instrument, an optical multipass radiation system for the heating of levitated samples, optical sample-position sensing for electrostatic levitation, and the qualification of space lighting systems.

  18. Systems and methods for free space optical communication

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  19. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  20. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated....... The fabrication was based on electron beam lithography and lift-off processes. The measurements were performed with scattering scanning near-field microscope and allowed the retrieval of both amplitude and phase of the propagating plasmon. The obtained values agree very well with the theoretically predicted ones...

  1. Optical/Infrared Signatures for Space-Based Remote Sensing

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  2. Exotic Optical Beam Classes for Free-Space Communication

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  3. Free space optical networks for ultra-broad band services

    Kartalopoulos, Stamatios V

    2011-01-01

    "Free Space Optical Network is a next generation communication network which uses optical waves instead of microwaves, potentially offering faster communication with ultra band width, meaning more complex communication services can be simultaneously offered. This book describes the network concepts in simple language starting with point-to-point free space optics basics and discusses networking, interoperability with existing communication network, and security. An ideal resource for communication professionals just entering the free space optical communication field and graduate students majoring in optical communications"--Provided by publisher.

  4. Interconnected networks

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  5. Fuel cell system with interconnect

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  6. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  7. 3rd Symposium on Space Optical Instruments and Applications

    Zhang, Guangjun

    2017-01-01

    This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 – 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications. .

  8. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  9. High-speed highly temperature stable 980 nm VCSELs operating at 25 Gb/s at up to 85 °C for short reach optical interconnects

    Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter

    2011-03-01

    The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.

  10. Diffractive optical elements for space communication terminals

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  11. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  12. Two mode optical fiber in space optics communication

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  13. Fiber-Optic Sensing for In-Space Inspection

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  14. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  15. Research progress of free space coherent optical communication

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  16. Free-space wavelength-multiplexed optical scanner.

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  17. Silicon carbide optics for space and ground based astronomical telescopes

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  18. The JPL optical communications telescope laboratory (OCTL) test bed for the future optical Deep Space Network

    Wilson, K. E.; Page, N.; Wu, J.; Srinivasan, M.

    2003-01-01

    Relative to RF, the lower power-consumption and lower mass of high bandwidth optical telecommunications make this technology extremely attractive for returning data from future NASA/JPL deep space probes.

  19. Beaconless Pointing for Deep-Space Optical Communication

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  20. Space Surveillance Network (SSN) Optical Augmentation (SOA)

    1999-04-01

    physical characteristics, and the geocentric and topocentric positions of each satellite in the deep space object catalog. The SKYMAP propagator...maintains the geocentric and topocentric positions and recomputes the position of each object several times a minute. For each scheduling...AINTENANCE Mission Personnel ( Staffing ) Officers 0.0 0.0 0.0 0.0 $90K/person (0) Enlisted 0.0 0.0 0.0 0.0 $45K/person (0) Contractor 20.0

  1. Low power laser driver design in 28nm CMOS for on-chip and chip-to-chip optical interconnect

    Belfiore, Guido; Szilagyi, Laszlo; Henker, Ronny; Ellinger, Frank

    2015-09-01

    This paper discusses the challenges and the trade-offs in the design of laser drivers for very-short distance optical communications. A prototype integrated circuit is designed and fabricated in 28 nm super-low-power CMOS technology. The power consumption of the transmitter is 17.2 mW excluding the VCSEL that in our test has a DC power consumption of 10 mW. The active area of the driver is only 0.0045 mm2. The driver can achieve an error-free (BER < 10 -12) electrical data-rate of 25 Gbit/s using a pseudo random bit sequence of 27 -1. When the driver is connected to the VCSEL module an open optical eye is reported at 15 Gbit/s. In the tested bias point the VCSEL module has a measured bandwidth of 10.7 GHz.

  2. Universality in level spacing fluctuations of a chaotic optical billiard

    Laprise, J.F.; Hosseinizadeh, A.; Lamy-Poirier, J. [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada); Zomorrodi, R. [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada)] [Centre de Recherche Universite Laval Robert Giffard, Quebec, Quebec G1J 2G3 (Canada); Kroeger, J. [Physics Department and Center for Physics of Materials, McGill University, Montreal, Quebec H3A 2T8 (Canada)] [Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 (Canada); Kroeger, H., E-mail: hkroger@phy.ulaval.c [Departement de Physique, Universite Laval, Quebec, Quebec G1V 0A6 (Canada)] [Functional Neurobiology, University of Utrecht, 3584 CH Utrecht (Netherlands)

    2010-04-19

    We study chaotic behavior of a classical optical stadium billiard model. We construct a matrix of time-of-travel along trajectories corresponding to a set of boundary points. We carry out a level spacing fluctuation analysis and compute the Dyson-Mehta spectral rigidity. The distribution of time-of-travel is approximately described by a Gaussian. The results for level spacing distribution and spectral rigidity show universal behavior.

  3. Linear ray and wave optics in phase space bridging ray and wave optics via the Wigner phase-space picture

    Torre, Amalia

    2005-01-01

    Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f

  4. Optical overview and qualification of the LLCD space terminal

    DeVoe, C. E.; Pillsbury, A. D.; Khatri, F.; Burnside, J. M.; Raudenbush, A. C.; Petrilli, L. J.; Williams, T.

    2017-11-01

    In October 2013 the Lunar Laser Communications Demonstration (LLCD) made communications history by successfully demonstrating 622 megabits per second laser communication from the moon's orbit to earth. The LLCD consisted of the Lunar Laser Communication Space Terminal (LLST), developed by MIT Lincoln Laboratory, mounted on NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft and a primary ground terminal located in New Mexico, the Lunar Laser Communications Ground Terminal (LLGT), and two alternate ground terminals. This paper presents the optical layout of the LLST, the approach for testing the optical subsystems, and the results of the optical qualification of the LLST. Also described is the optical test set used to qualify the LLST. The architecture philosophy for the optics was to keep a small, simple optical backend that provided excellent boresighting and high isolation between the optical paths, high quality wavefront on axis, with minimal throughput losses on all paths. The front end large optics consisted of a Cassegrain 107mm telescope with an f/0.7 parabolic primary mirror and a solar window to reduce the thermal load on the telescope and to minimize background light received at the sensors.

  5. Effects of thermal deformation on optical instruments for space application

    Segato, E.; Da Deppo, V.; Debei, S.; Cremonese, G.

    2017-11-01

    Optical instruments for space missions work in hostile environment, it's thus necessary to accurately study the effects of ambient parameters variations on the equipment. In particular optical instruments are very sensitive to ambient conditions, especially temperature. This variable can cause dilatations and misalignments of the optical elements, and can also lead to rise of dangerous stresses in the optics. Their displacements and the deformations degrade the quality of the sampled images. In this work a method for studying the effects of the temperature variations on the performance of imaging instrument is presented. The optics and their mountings are modeled and processed by a thermo-mechanical Finite Element Model (FEM) analysis, then the output data, which describe the deformations of the optical element surfaces, are elaborated using an ad hoc MATLAB routine: a non-linear least square optimization algorithm is adopted to determine the surface equations (plane, spherical, nth polynomial) which best fit the data. The obtained mathematical surface representations are then directly imported into ZEMAX for sequential raytracing analysis. The results are the variations of the Spot Diagrams, of the MTF curves and of the Diffraction Ensquared Energy due to simulated thermal loads. This method has been successfully applied to the Stereo Camera for the BepiColombo mission reproducing expected operative conditions. The results help to design and compare different optical housing systems for a feasible solution and show that it is preferable to use kinematic constraints on prisms and lenses to minimize the variation of the optical performance of the Stereo Camera.

  6. In-memory interconnect protocol configuration registers

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  7. In-memory interconnect protocol configuration registers

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  8. Free Space Optics Communication for Mobile Military Platforms

    2003-12-01

    Federal Communications Commission FDA Food and Drug Administration FOV Field-of-View FSO Free Space Optics FWHM Full Width at Half Maximum Gbps...Physique et de Métrologie des Oscillateurs (LPMO) du CNRS UPR3203, associé à l’Université de Franche -Comté, 15 March 2002 [Schenk 2000] H. Schenk

  9. Replicated x-ray optics for space applications

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  10. Active x-ray optics for high resolution space telescopes

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  11. Overview of fiber optics in the natural space environment

    Barnes, C.; Dorsky, L.; Johnston, A.; Bergman, L.; Stassinopoulos, E.

    1991-01-01

    The potential applications of fiber-optic (FO) systems in spacecraft which will be exposed to the space radiation environment are discussed in view of tests conducted aboard the Long-Duration Exposure Facility and the Comet Rendezvous and Asteroid Flyby spacecraft. Attention is given to anticipated trends in the use of FO in spacecraft communications systems. The natural space radiation environment is noted to be far more benign than the military space environment, which encompasses displacement-damage effects due to significant neutron influences

  12. Holographic analysis of dispersive pupils in space--time optics

    Calatroni, J.; Vienot, J.C.

    1981-01-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented

  13. Holographic analysis of dispersive pupils in space--time optics

    Calatroni, J.; Vienot, J.C.

    1981-06-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented.

  14. Architectural Options for a Future Deep Space Optical Communications Network

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  15. Indoor Free Space Optic: a new prototype, realization and evaluation

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  16. Last results of MADRAS, a space active optics demonstrator

    Laslandes, Marie; Hourtoule, Claire; Hugot, Emmanuel; Ferrari, Marc; Devilliers, Christophe; Liotard, Arnaud; Lopez, Céline; Chazallet, Frédéric

    2017-11-01

    The goal of the MADRAS project (Mirror Active, Deformable and Regulated for Applications in Space) is to highlight the interest of Active Optics for the next generation of space telescope and instrumentation. Wave-front errors in future space telescopes will mainly come from thermal dilatation and zero gravity, inducing large lightweight primary mirrors deformation. To compensate for these effects, a 24 actuators, 100 mm diameter deformable mirror has been designed to be inserted in a pupil relay. Within the project, such a system has been optimized, integrated and experimentally characterized. The system is designed considering wave-front errors expected in 3m-class primary mirrors, and taking into account space constraints such as compactness, low weight, low power consumption and mechanical strength. Finite Element Analysis allowed an optimization of the system in order to reach a precision of correction better than 10 nm rms. A dedicated test-bed has been designed to fully characterize the integrated mirror performance in representative conditions. The test set up is made of three main parts: a telescope aberrations generator, a correction loop with the MADRAS mirror and a Shack-Hartman wave-front sensor, and PSF imaging. In addition, Fizeau interferometry monitors the optical surface shape. We have developed and characterized an active optics system with a limited number of actuators and a design fitting space requirements. All the conducted tests tend to demonstrate the efficiency of such a system for a real-time, in situ wave-front. It would allow a significant improvement for future space telescopes optical performance while relaxing the specifications on the others components.

  17. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  18. Research on Retro-reflecting Modulation in Space Optical Communication System

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  19. Research on optic antenna of space laser communication networking

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  20. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks

    Hui Zhou

    2015-08-01

    Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.

  1. Passive Optical Link Budget for LEO Space Surveillance

    Wagner, P.; Hasenohr, T.; Hampf, D.; Sproll, F.; Humbert, L.; Rodmann, J.; Riede, W.

    The rising space debris population is becoming an increasing risk for space assets. Even objects with the size of 10mm can cause major damages to active spacecraft. Especially the orbits around 800km high are densely populated with space debris objects. To assess the risk of collisions with active satellites, the Earth orbits need to be surveyed permanently. Space debris laser ranging systems for example can deliver highly accurate positional data for precise orbit determination. Therefor a priori information about the objects coarse trajectory is needed. Such initial orbit information can be provided by wide angle optical sensors. The Institute of Technical Physics at the German Aerospace Center in Stuttgart runs an observatory to perform passive as well as laser optical measurements to LEO objects. In order to detect unknown objects, a wide-angle imaging system with a field of view in the range of 5° to 15° equipped with an astronomical CCD camera and a commercial off the shelf (COTS) lens was designed to continuously observe the night sky for LEO objects. This paper presents the passive optical link budget for observing LEO objects to show the benefits and limits of the physical performance of an optical surveillance system. A compact COTS system is able to detect objects with a couple of decimeters in size while a large aperture telescope can detect objects with diameters below 10cm. Additionally, data captured by a passive optical staring system with a 10 cm aperture was analyzed. It is shown that 90% of all objects with a radar cross section larger than 2m² are detected with such a system during twilight conditions. The smallest detected LEO object with this system has a size of 0.32m x 0.32m x 0.26m. These measurements are compared to the developed link budget which allows an estimation of the performance of larger systems.

  2. Adhesive Bonding for Optical Metrology Systems in Space Applications

    Gohlke, Martin; Schuldt, Thilo; Braxmaier, Claus; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis

    2015-01-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10 -15 range for longer integration times. The EM setup was thermally cycled and vibration tested. (paper)

  3. Video semaphore decoding for free-space optical communication

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  4. Estimation of optical attenuation in reduced visibility conditions in different environments across free space optics link

    Dev, K.; Nebuloni, R.; Capsoni, C.; Fišer, Ondřej; Brázda, V.

    2017-01-01

    Roč. 11, č. 12 (2017), s. 1708-1713 ISSN 1751-8725 Institutional support: RVO:68378289 Keywords : light attenuation * optical sensors * free-space optical communication Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.187, year: 2016 http://digital-library.theiet.org/content/journals/10.1049/iet-map.2016.0872

  5. An Array of Optical Receivers for Deep-Space Communications

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  6. Optical Fiber Array Assemblies for Space Flight on the Lunar Reconnaissance Orbiter

    Ott, Jelanie; Matuszeski, Adam

    2011-01-01

    Custom fiber optic bundle array assemblies developed by the Photonics Group at NASA Goddard Space Flight Center were an enabling technology for both the Lunar Orbiter Laser Altimeter (LOLA) and the Laser Ranging (LR) Investigation on the Lunar Reconnaissance Orbiter (LRO) currently in operation. The unique assembly array designs provided considerable decrease in size and weight and met stringent system level requirements. This is the first time optical fiber array bundle assemblies were used in a high performance space flight application. This innovation was achieved using customized Diamond Switzerland AVIM optical connectors. For LOLA, a five fiber array was developed for the receiver telescope to maintain precise alignment for each of the 200/220 micron optical fibers collecting 1,064 nm wavelength light being reflected back from the moon. The array splits to five separate detectors replacing the need for multiple telescopes. An image illustration of the LOLA instrument can be found at the top of the figure. For the laser ranging, a seven-optical-fiber array of 400/440 micron fibers was developed to transmit light from behind the LR receiver telescope located on the end of the high gain antenna system (HGAS). The bundle was routed across two moving gimbals, down the HGAS boom arm, over a deployable mandrel and across the spacecraft to a detector on the LOLA instrument. The routing of the optical fiber bundle and its end locations is identified in the figure. The Laser Ranging array and bundle is currently accepting light at a wavelength of 532 nm sent to the moon from laser stations at Greenbelt MD and other stations around the world to gather precision ranging information from the Earth to the LRO spacecraft. The LR bundle assembly is capable of withstanding temperatures down to -55 C at the connectors, and 20,000 mechanical gimbal cycles at temperatures as cold as -20 C along the length of the seven-fiber bundle (that is packaged into the gimbals). The total

  7. Optical subnet concepts for the deep space network

    Shaik, K.; Wonica, D.; Wilhelm, M.

    1993-01-01

    This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.

  8. Initial alignment method for free space optics laser beam

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  9. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  10. Optical system for object detection and delineation in space

    Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran

    2018-01-01

    Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.

  11. Free space optics: a viable last-mile alternative

    Willebrand, Heinz A.; Clark, Gerald R.

    2001-10-01

    This paper explores Free Space Optics (FSO) as an access technology in the last mile of metropolitan area networks (MANs). These networks are based in part on fiber-optic telecommunications infrastructure, including network architectures of Synchronous Optical Network (commonly referred to as SONET), the North American standard for synchronous data transmission; and Synchronous Digital Hierarchy (commonly referred to as SDH), the international standard and equivalent of SONET. Several converging forces have moved FSO beyond a niche technology for use only in local area networks (LANs) as a bridge connecting two facilities. FSO now allows service providers to cost effectively provide optical bandwidth for access networks and accelerate the extension of metro optical networks bridging what has been termed by industry experts as the optical dead zone. The optical dead zone refers to both the slowdown in capital investment in the short-term future and the actual connectivity gap that exists today between core metro optical networks and the access optical networks. Service providers have built extensive core and minimal metro networks but have not yet provided optical bandwidth to the access market largely due to the non-compelling economics to bridge the dead zone with fiber. Historically, such infrastructure build-out slowdowns have been blamed on a combination of economics, time-to-market constraints and limited technology options. However, new technology developments and market acceptance of FSO give service providers a new cost-effective alternative to provide high-bandwidth services with optical bandwidth in the access networks. Merrill Lynch predicts FSO will grow into a $2 billion market by 2005. The drivers for this market are a mere 5%- 6% penetration of fiber to business buildings; cost effective solution versus RF or fiber; and significant capacity which can only be matched by a physical fiber link, Merrill Lynch reports. This paper will describe FSO

  12. Laser guide stars for optical free-space communications

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  13. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    Nam, Sung Sik; Alouini, Mohamed-Slim; Zhang, Lin; Ko, Young-Chai

    2017-01-01

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity

  14. Free-space wavelength-multiplexed optical scanner demonstration.

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  15. New trends in space x-ray optics

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface

  16. Optomechanical stability design of space optical mapping camera

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  17. A Methodology for Physical Interconnection Decisions of Next Generation Transport Networks

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Madsen, Ole Brun

    2011-01-01

    of possibilities when designing the physical network interconnection. This paper develops and presents a methodology in order to deal with aspects related to the interconnection problem of optical transport networks. This methodology is presented as independent puzzle pieces, covering diverse topics going from......The physical interconnection for optical transport networks has critical relevance in the overall network performance and deployment costs. As telecommunication services and technologies evolve, the provisioning of higher capacity and reliability levels is becoming essential for the proper...... development of Next Generation Networks. Currently, there is a lack of specific procedures that describe the basic guidelines to design such networks better than "best possible performance for the lowest investment". Therefore, the research from different points of view will allow a broader space...

  18. Optical design of transmitter lens for asymmetric distributed free space optical networks

    Wojtanowski, Jacek; Traczyk, Maciej

    2018-05-01

    We present a method of transmitter lens design dedicated for light distribution shaping on a curved and asymmetric target. In this context, target is understood as a surface determined by hypothetical optical detectors locations. In the proposed method, ribbon-like surfaces of arbitrary shape are considered. The designed lens has the task to transform collimated and generally non-uniform input beam into desired irradiance distribution on such irregular targets. Desired irradiance is associated with space-dependant efficiency of power flow between the source and receivers distributed on the target surface. This unconventional nonimaging task is different from most illumination or beam shaping objectives, where constant or prescribed irradiance has to be produced on a flat target screen. The discussed optical challenge comes from the applications where single transmitter cooperates with multitude of receivers located in various positions in space and oriented in various directions. The proposed approach is not limited to optical networks, but can be applied in a variety of other applications where nonconventional irradiance distribution has to be engineered. The described method of lens design is based on geometrical optics, radiometry and ray mapping philosophy. Rays are processed as a vector field, each of them carrying a certain amount of power. Having the target surface shape and orientation of receivers distribution, the rays-surface crossings map is calculated. It corresponds to the output rays vector field, which is referred to the calculated input rays spatial distribution on the designed optical surface. The application of Snell's law in a vector form allows one to obtain surface local normal vector and calculate lens profile. In the paper, we also present the case study dealing with exemplary optical network. The designed freeform lens is implemented in commercially available optical design software and irradiance three-dimensional spatial distribution is

  19. Superconducting Nanowire Single Photon Detectors for High-Data-Rate Deep-Space Optical Communication

    National Aeronautics and Space Administration — High data rate deep space optical communication (DSOC) links for manned and unmanned space exploration have been identified by NASA as a critical future capability,...

  20. Micro-satellite for space debris observation by optical sensors

    Thillot, Marc; Brenière, Xavier; Midavaine, Thierry

    2017-11-01

    The purpose of this theoretical study carried out under CNES contract is to analyze the feasibility of small space debris detection and classification with an optical sensor on-board micro-satellite. Technical solutions based on active and passive sensors are analyzed and compared. For the most appropriated concept an optimization was made and theoretical performances in terms of number of detection versus class of diameter were calculated. Finally we give some preliminary physical sensor features to illustrate the concept (weight, volume, consumption,…).

  1. Planets as background noise sources in free space optical communications

    Katz, J.

    1986-01-01

    Background noise generated by planets is the dominant noise source in most deep space direct detection optical communications systems. Earlier approximate analyses of this problem are based on simplified blackbody calculations and can yield results that may be inaccurate by up to an order of magnitude. Various other factors that need to be taken into consideration, such as the phase angle and the actual spectral dependence of the planet albedo, in order to obtain a more accurate estimate of the noise magnitude are examined.

  2. An Introduction to Free-space Optical Communications

    H. Henniger

    2010-06-01

    Full Text Available Over the last two decades free-space optical communication (FSO has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.

  3. Contamination control research activities for space optics in JAXA RANDD

    Kimoto, Y.

    2017-11-01

    Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.

  4. Interconnection network architectures based on integrated orbital angular momentum emitters

    Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella

    2018-02-01

    Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.

  5. Space imaging infrared optical guidance for autonomous ground vehicle

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  6. Improved optical ranging for space based gravitational wave detection

    Sutton, Andrew J; Shaddock, Daniel A; McKenzie, Kirk; Ware, Brent; De Vine, Glenn; Spero, Robert E; Klipstein, W

    2013-01-01

    The operation of 10 6  km scale laser interferometers in space will permit the detection of gravitational waves at previously unaccessible frequency regions. Multi-spacecraft missions, such as the Laser Interferometer Space Antenna (LISA), will use time delay interferometry to suppress the otherwise dominant laser frequency noise from their measurements. This is accomplished by performing sub-sample interpolation of the optical phase measurements recorded at each spacecraft for synchronization and cancellation of the otherwise dominant laser frequency noise. These sub-sample interpolation time shifts are dependent upon the inter-spacecraft range and will be measured using a pseudo-random noise ranging modulation upon the science laser. One limit to the ranging performance is mutual interference between the outgoing and incoming ranging signals upon each spacecraft. This paper reports on the demonstration of a noise cancellation algorithm which is shown to providing a factor of ∼8 suppression of the mutual interference noise. Demonstration of the algorithm in an optical test bed showed an rms ranging error of 0.06 m, improved from 0.19 m in previous results, surpassing the 1 m RMS LISA specification and potentially improving the cancellation of laser frequency noise. (paper)

  7. Quantum cascade lasers as metrological tools for space optics

    Bartalini, S.; Borri, S.; Galli, I.; Mazzotti, D.; Cancio Pastor, P.; Giusfredi, G.; De Natale, P.

    2017-11-01

    A distributed-feedback quantum-cascade laser working in the 4.3÷4.4 mm range has been frequency stabilized to the Lamb-dip center of a CO2 ro-vibrational transition by means of first-derivative locking to the saturated absorption signal, and its absolute frequency counted with a kHz-level precision and an overall uncertainty of 75 kHz. This has been made possible by an optical link between the QCL and a near-IR Optical Frequency Comb Synthesizer, thanks to a non-linear sum-frequency generation process with a fiber-amplified Nd:YAG laser. The implementation of a new spectroscopic technique, known as polarization spectroscopy, provides an improved signal for the locking loop, and will lead to a narrower laser emission and a drastic improvement in the frequency stability, that in principle is limited only by the stability of the optical frequency comb synthesizer (few parts in 1013). These results confirm quantum cascade lasers as reliable sources not only for high-sensitivity, but also for highprecision measurements, ranking them as optimal laser sources for space applications.

  8. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  9. Editorial: Special issue on smart optical instruments and systems for space applications

    XING; Fei

    2015-01-01

    Optical systems are playing more and more important roles for space applications,such as high accurate attitude determination and remote sensing systems etc.Innovations in optical systems have brought great advantages,some even revolutionary for the space applications.Accordingly,in this special issue of Smart Optical systems and instruments

  10. An ultra-stable optical frequency reference for space

    Schuldt, T.; Döringshoff, K.; Kovalchuk, E.; Pahl, J.; Gohlke, M.; Weise, D.; Johann, U.; Peters, A.; Braxmaier, C.

    2017-11-01

    We realized ultra-stable optical frequency references on elegant breadboard (EBB) and engineering model (EM) level utilizing Doppler-free spectroscopy of molecular iodine near 532nm. A frequency stability of about 1•10-14 at an integration time of 1 s and below 5•10-15 at integration times between 10 s and 100 s was achieved. These values are comparable to the currently best laboratory setups. Both setups use a baseplate made of glass material where the optical components are joint using a specific assembly-integration technology. Compared to the EBB setup, the EM setup is further developed with respect to compactness and mechanical and thermal stability. The EM setup uses a baseplate made of fused silica with dimensions of 380 x 180 x 40 mm3 and a specifically designed 100 x 100 x 30 mm3 rectangular iodine cell in nine-pass configuration with a specific robust cold finger design. The EM setup was subjected to thermal cycling and vibrational testing. Applications of such an optical frequency reference in space can be found in fundamental physics, geoscience, Earth observation, and navigation & ranging. One example is the proposed mSTAR (mini SpaceTime Asymmetry Research) mission, dedicated to perform a Kennedy-Thorndike experiment on a satellite in a sunsynchronous low-Earth orbit. By comparing an iodine standard to a cavity-based frequency reference and integration over 2 year mission lifetime, the Kennedy-Thorndike coefficient will be determined with up to two orders of magnitude higher accuracy than the current best ground experiment. In a current study, the compatibility of the payload with the SaudiSat-4 host vehicle is investigated.

  11. UniSat-5: a space-based optical system for space debris monitoring

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for

  12. Optical observations on critical ionization velocity experiments in space

    Stenbaek-Nielsen, H.C.

    1993-01-01

    A number of Critical Ionization Velocity (CIV) experiments have been performed in space. CIV has been observed in laboratory experiments, but experiments in space have been inconclusive. Most space experiments have used barium which ionizes easily, and with emission lines from both neutrals and ions in the visible optical observations can be made from the ground. Also other elements, such as xenon, strontium and calcium, have been used. High initial ionization in some barium release experiments has been claimed due to CIV. However, a number of reactions between barium and the ambient plasma have been suggested as more likely processes. Currently the most popular process in this debate is charge exchange with O + . This process has a large cross section, but is it large enough? The cross section for charge exchange with calcium should be even larger, but in a double release of barium and calcium (part of the NASA CRRES release experiments) most ionization was observed from the barium release. Moreover, if charge exchange is the dominant process, the amount of ionization should relate to the oxygen ion density, and that does not appear to be the case. Other processes, such as associative ionization, have also been proposed, but yields are uncertain because the reaction rates are very poorly known

  13. 1:N Space Division Switches for Optical Routing, Reconfigurable Interconnections, and Time and Wavelength-Division Switching Applications

    Shire, D

    1998-01-01

    ... of time-division multiplexing and demultiplexing operations. Hysteresis in the input-output transfer characteristics of the coupled in-plane lasers and VCSELs also leads to bistable operation over a range of bias conditions...

  14. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  15. Two-dimensional optoelectronic interconnect-processor and its operational bit error rate

    Liu, J. Jiang; Gollsneider, Brian; Chang, Wayne H.; Carhart, Gary W.; Vorontsov, Mikhail A.; Simonis, George J.; Shoop, Barry L.

    2004-10-01

    Two-dimensional (2-D) multi-channel 8x8 optical interconnect and processor system were designed and developed using complementary metal-oxide-semiconductor (CMOS) driven 850-nm vertical-cavity surface-emitting laser (VCSEL) arrays and the photodetector (PD) arrays with corresponding wavelengths. We performed operation and bit-error-rate (BER) analysis on this free-space integrated 8x8 VCSEL optical interconnects driven by silicon-on-sapphire (SOS) circuits. Pseudo-random bit stream (PRBS) data sequence was used in operation of the interconnects. Eye diagrams were measured from individual channels and analyzed using a digital oscilloscope at data rates from 155 Mb/s to 1.5 Gb/s. Using a statistical model of Gaussian distribution for the random noise in the transmission, we developed a method to compute the BER instantaneously with the digital eye-diagrams. Direct measurements on this interconnects were also taken on a standard BER tester for verification. We found that the results of two methods were in the same order and within 50% accuracy. The integrated interconnects were investigated in an optoelectronic processing architecture of digital halftoning image processor. Error diffusion networks implemented by the inherently parallel nature of photonics promise to provide high quality digital halftoned images.

  16. Capture into resonance and phase space dynamics in optical centrifuge

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  17. Advanced free space optics (FSO) a systems approach

    Majumdar, Arun K

    2015-01-01

    This book provides a comprehensive, unified tutorial covering the most recent advances in the technology of free-space optics (FSO). It is an all-inclusive source of information on the fundamentals of FSO as well as up-to-date information on the state-of-the-art in technologies available today. This text is intended for graduate students, and will also be useful for research scientists and engineers with an interest in the field. FSO communication is a practical solution for creating a three dimensional global broadband communications grid, offering bandwidths far beyond what is possible in the Radio Frequency (RF) range. However, the attributes of atmospheric turbulence and scattering impose perennial limitations on availability and reliability of FSO links. From a systems point-of-view, this groundbreaking book provides a thorough understanding of channel behavior, which can be used to design and evaluate optimum transmission techniques that operate under realistic atmospheric conditions. Topics addressed...

  18. Precision Optical Coatings for Large Space Telescope Mirrors

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  19. X-Ray Optics at NASA Marshall Space Flight Center

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  20. Analysis of large optical ground stations for deep-space optical communications

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  1. Robust free-space optical communication for indoor information environment

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  2. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  3. In-Space Distributed Fiber Optic Hydrogen Leak Sensor, Phase II

    National Aeronautics and Space Administration — Broadband Photonics Inc. proposes development of a patent-pending distributed fiber optic sensor for in-space hydrogen leak detection. Reliable and fast detection of...

  4. Catalogue Creation for Space Situational Awareness with Optical Sensors

    Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.

    2016-09-01

    In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to

  5. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  6. Brookhaven segment interconnect

    Morse, W.M.; Benenson, G.; Leipuner, L.B.

    1983-01-01

    We have performed a high energy physics experiment using a multisegment Brookhaven FASTBUS system. The system was composed of three crate segments and two cable segments. We discuss the segment interconnect module which permits communication between the various segments

  7. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  8. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Vaughn, J.A.; Linton, R.C.; Finckenor, M.M.; Kamenetzky, R.R.

    1995-02-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  9. Evaluation of space environmental effects on metals and optical thin films on EOIM-3

    Vaughn, Jason A.; Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Metals and optical thin films exposed to the space environment on the Third Flight of the Evaluation of Oxygen Interactions with Materials (EOIM-3) payload, onboard Space Shuttle mission STS-46 were evaluated. The materials effects described in this paper include the effects of space exposure on various pure metals, optical thin films, and optical thin film metals. The changes induced by exposure to the space environment in the material properties were evaluated using bidirectional reflectance distribution function (BRDF), specular reflectance (250 nm to 2500 nm), ESCA, VUV reflectance (120 nm to 200 nm), ellipsometry, FTIR and optical properties. Using these analysis techniques gold optically thin film metal mirrors with nickel undercoats were observed to darken due to nickel diffusion through the gold to the surface. Also, thin film nickel mirrors formed nickel oxide due to exposure to both the atmosphere and space.

  10. Quantum Limits of Space-to-Ground Optical Communications

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  11. Information Theoretical Limits of Free-Space Optical Links

    Ansari, Imran Shafique

    2016-08-25

    Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified ergodic capacity analysis of a free-space optical (FSO) link under both types of detection techniques (i.e., intensity modulation/direct detection (IM/DD) as well as heterodyne detection) over generalized atmospheric turbulence channels that account for generalized pointing errors is presented. Specifically, unified exact closed-form expressions for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented. Subsequently, capitalizing on these unified statistics, unified exact closed-form expressions for ergodic capacity performance metric of FSO link transmission systems is offered. Additionally, for scenarios wherein the exact closed-form solution is not possible to obtain, some asymptotic results are derived in the high SNR regime. All the presented results are verified via computer-based Monte-Carlo simulations.

  12. Space Density of Optically Selected Type 2 Quasars

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon T.; Anderson, Scott F.; Schneider, Donald P.

    2008-12-01

    Type 2 quasars are luminous active galactic nuclei whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey, selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is 6 times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [O III]5007 luminosity function (LF) for 108.3 L sun < L [O III] < 1010 L sun (corresponding to intrinsic luminosities up to M[2500 Å] ~= -28 mag or bolometric luminosities up to 4 × 1047 erg s-1). This LF provides robust lower limits to the actual space density of obscured quasars due to our selection criteria, the details of the spectroscopic target selection, and other effects. We derive the equivalent LF for the complete sample of type 1 (unobscured) quasars and determine the ratio of type 2 to type 1 quasar number densities. Our data constrain this ratio to be at least ~1.5:1 for 108.3 L sun < L [O III] < 109.5 L sun at z < 0.3, and at least ~1.2:1 for L [O III] ~ 1010 L sun at 0.3 < z < 0.83. Type 2 quasars are at least as abundant as type 1 quasars in the relatively nearby universe (z <~ 0.8) for the highest luminosities.

  13. Free Space Optics – Monitoring Setup for Experimental Link

    Ján Tóth

    2015-12-01

    Full Text Available This paper deals with advanced Free Space Optics communication technology. Two FSO nodes are needed in order to make a connection. Laser diodes are used as light sources. Simple OOK modulation is involved in this technology. FSO system offers multiple advantages indeed. However, a direct visibility is required in order to set up a communication link. This fact yields perhaps the most significant weakness of this technology. Obviously, there is no a chance to fight the weather phenomena like fog, heavy rain, dust and many other particles which are naturally present in the atmosphere. That’s why there is a key task to find a suitable solution to keep FSO link working with high reliability and availability. It turns out that it’s necessary to have knowledge about weather situation when FSO link operates (liquid water content - LWC, geographical location, particle size distribution, average particle diameter, temperature, humidity, wind conditions, pressure and many other variable weather parameters. It’s obvious that having most of mentioned parameter’s values stored in database (implicitly in charts would be really beneficial. This paper presents some of mentioned indicators continuously gathered from several sensors located close to one of FSO nodes.

  14. Free-space optical channel characterization in a coastal environment

    Alheadary, Wael Ghazy

    2017-12-28

    Recently, FSO (Free-Space Optical Communication) has received a lot of attention thanks to its high data-rate transmission via unbounded unlicensed bandwidth. However, some weather conditions lead to significant degradation of the FSO link performance. Based on this context and in order to have a better understanding of the capabilities of FSO communication in a coastal environment, the effects of temperature and humidity on an FSO system are investigated in this study. An experiment is conducted using an open source FSO system that achieves a transmission rate of 1 Gbit/s at a distance of 70 m. Two new mathematical models are proposed to represent the effects of temperature and humidity on our developed FSO system operating at a wavelength of 1 550 nm. The first model links the FSO attenuation coeffcient to the air temperature in coastal regions, while the second model links the FSO attenuation coeffcient to the humidity and the dew-point temperature. The key finding of this study is that FSO links can achieve maximum availability in a coastal city with normal variations in temperature and humidity.

  15. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  16. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-01-01

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C 60 . While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  17. Free Space Optical Communication in the Military Environment

    2014-09-01

    Charles River [6]. Even much earlier than Paul Revere’s ride, optical communication had developed into the semaphore or optical telegraph. The...forms of basic optical communication that are still commonplace today include semaphore flags and signal lamps utilized by navies around the world

  18. Free Space Optics for Next Generation Cellular Backhaul

    Zedini, Emna

    2016-11-01

    The exponential increase in the number of mobile users, coupled with the strong demand for high-speed data services results in a significant growth in the required cellular backhaul capacity. Optimizing the cost efficiency while increasing the capacity is becoming a key challenge to the cellular backhaul. It refers to connections between base stations and mobile switching nodes over a variety of transport technologies such as copper, optical fibers, and radio links. These traditional transmission technologies are either expensive, or cannot provide high data rates. This work is focused on the opportunities of free-space-optical (FSO) technology in next generation cellular back- haul. FSO is a cost effective and wide bandwidth solution as compared with the traditional radio-frequency (RF) transmission. Moreover, due to its ease of deployment, license-free operation, high transmission security, and insensitivity to interference, FSO links are becoming an attractive solution for next generation cellular networks. However, the widespread deployment of FSO links is hampered by the atmospheric turbulence-induced fading, weather conditions, and pointing errors. Increasing the reliability of FSO systems, while still exploiting their high data rate communications, is a key requirement in the deployment of an FSO-based backhaul. Therefore, the aim of this work is to provide different approaches to address these technical challenges. In this context, investigation of hybrid automatic repeat request (HARQ) protocols from an information-theoretic perspective is undertaken. Moreover, performance analysis of asymmetric RF/FSO dual-hop systems is studied. In such system models, multiple RF users can be multiplexed and sent over the FSO link. More specifically, the end-to-end performance metrics are presented in closed-form. This also has increased the interest to study the performance of dual-hop mixed FSO/RF systems, where the FSO link is used as a multicast channel that serves

  19. Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices

    Agrawal, Navik; Davis, Christopher C.

    2008-08-01

    Omnidirectional free space optical communication receivers can employ multiple non-imaging collectors, such as compound parabolic concentrators (CPCs), in an array-like fashion to increase the amount of possible light collection. CPCs can effectively channel light collected over a large aperture to a small area photodiode. The aperture to length ratio of such devices can increase the overall size of the transceiver unit, which may limit the practicality of such systems, especially when small size is desired. New non-imaging collector designs with smaller sizes, larger field of view (FOV), and comparable transmission curves to CPCs, offer alternative transceiver designs. This paper examines how transceiver performance is affected by the use of different non-imaging collector shapes that are designed for wide FOV with reduced efficiency compared with shapes such as the CPC that are designed for small FOV with optimal efficiency. Theoretical results provide evidence indicating that array-like transceiver designs using various non-imaging collector shapes with less efficient transmission curves, but a larger FOV will be an effective means for the design of omnidirectional optical transceiver units. The results also incorporate the effects of Fresnel loss at the collector exit aperture-photodiode interface, which is an important consideration for indoor omnidirectional FSO systems.

  20. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.

    Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang

    2018-01-18

    The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0  = 10, f G  = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB  = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

  1. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.

    Liu, Yichao; Sun, Fei; He, Sailing

    2018-01-11

    In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.

  2. Benefits of transmission interconnections

    Lyons, D.

    2006-01-01

    The benefits of new power transmission interconnections from Alberta were discussed with reference to the challenges and measures needed to move forward. Alberta's electricity system has had a long period of sustained growth in generation and demand and this trend is expected to continue. However, no new interconnections have been built since 1985 because the transmission network has not expanded in consequence with the growth in demand. As such, Alberta remains weakly interconnected with the rest of the western region. The benefits of stronger transmission interconnections include improved reliability, long-term generation capability, hydrothermal synergies, a more competitive market, system efficiencies and fuel diversity. It was noted that the more difficult challenges are not technical. Rather, the difficult challenges lie in finding an appropriate business model that recognizes different market structures. It was emphasized that additional interconnections are worthwhile and will require significant collaboration among market participants and governments. It was concluded that interties enable resource optimization between systems and their benefits far exceed their costs. tabs., figs

  3. Fast QC-LDPC code for free space optical communication

    Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong

    2017-02-01

    Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.

  4. Energy Pooling Upconversion in Free Space and Optical Cavities

    LaCount, Michael D.

    energy pooling rate efficiency of 99%. This demonstrates that the energy pooling rate can be made faster than its competing processes. Based on the results of this study, a set of design rules was developed to optimize the rate efficiency of energy pooling. Prior to this research, no attempt had been made to determine if energy pooling could be made to out-pace competing processes--i.e. whether or not a molecular system could be designed to utilize energy pooling as an efficient means of upconversion. This initial investigation was part of a larger effort involving a team of researchers at the University of Colorado, Boulder and at the National Renewable Energy Laboratory. After establishing our computational proof-of-concept, we collectively used the new design rules to select an improved system for energy pooling. This consisted of rhodamine 6G and stilbene-420. These molecules were fabricated into a thin film, and the maximum internal quantum yield was measured to be 36% under sufficiently high intensity light. To further increase the efficiency of energy pooling, encapsulation within optical cavities was considered as a way of changing the rate of processes characterized by electric dipole-dipole coupling. This was carried out using a combination of classical electromagnetism, quantum electrodynamics, and perturbation theory. It was found that, in the near field, if the distance of the energy transfer is smaller than the distance from the energy transfer site and the cavity wall, then the electric dipole-dipole coupling tensor is not influenced by the cavity environment and the rates of energy transfer processes are the same as those in free space. Any increase in energy transfer efficiencies that are experimentally measured must therefore be caused by changing the rate of light absorption and emission. This is an important finding because earlier, less rigorous studies had concluded otherwise. It has been previously demonstrated that an optical cavity can be used to

  5. Application of spinal code for performance improvement in free-space optical communications

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  6. Low power interconnect design

    Saini, Sandeep

    2015-01-01

    This book provides practical solutions for delay and power reduction for on-chip interconnects and buses.  It provides an in depth description of the problem of signal delay and extra power consumption, possible solutions for delay and glitch removal, while considering the power reduction of the total system.  Coverage focuses on use of the Schmitt Trigger as an alternative approach to buffer insertion for delay and power reduction in VLSI interconnects. In the last section of the book, various bus coding techniques are discussed to minimize delay and power in address and data buses.   ·         Provides practical solutions for delay and power reduction for on-chip interconnects and buses; ·         Focuses on Deep Sub micron technology devices and interconnects; ·         Offers in depth analysis of delay, including details regarding crosstalk and parasitics;  ·         Describes use of the Schmitt Trigger as a versatile alternative approach to buffer insertion for del...

  7. Interconnecting with VIPs

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  8. CAISSON: Interconnect Network Simulator

    Springer, Paul L.

    2006-01-01

    Cray response to HPCS initiative. Model future petaflop computer interconnect. Parallel discrete event simulation techniques for large scale network simulation. Built on WarpIV engine. Run on laptop and Altix 3000. Can be sized up to 1000 simulated nodes per host node. Good parallel scaling characteristics. Flexible: multiple injectors, arbitration strategies, queue iterators, network topologies.

  9. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  10. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  11. On the performance of free-space optical communication systems with multiuser diversity

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD

  12. Efficient characterization of phase space mapping in axially symmetric optical systems

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  13. High-Speed Fiber Optic Micromultiplexer for Space and Airborne Lidar, Phase I

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for high-speed fiber optic multiplexers for next generation lidar systems, Luminit proposes to develop a new Fiber...

  14. Resilient backhaul network design using hybrid radio/free-space optical technology

    Douik, Ahmed; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    The radio-frequency (RF) technology is a scalable solution for the backhaul planning. However, its performance is limited in terms of data rate and latency. Free Space Optical (FSO) backhaul, on the other hand, offers a higher data rate

  15. Stokes Space-Based Optical Modulation Format Recognition for Digital Coherent Receivers

    Borkowski, Robert; Zibar, Darko; Caballero Jambrina, Antonio

    2013-01-01

    We present a technique for modulation format recognition for heterogeneous reconfigurable optical networks. The method is based on Stokes space signal representation and uses a variational Bayesian expectation maximization machine learning algorithm. Differentiation between diverse common coheren...

  16. Ergodic Capacity Analysis of Free-Space Optical Links with Nonzero Boresight Pointing Errors

    Ansari, Imran Shafique; Alouini, Mohamed-Slim; Cheng, Julian

    2015-01-01

    A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. intensity modulation/ direct detection as well as heterodyne detection) is addressed

  17. Unified performance analysis of hybrid-ARQ with incremental redundancy over free-space optical channels

    Zedini, Emna; Chelli, Ali; Alouini, Mohamed-Slim

    2014-01-01

    In this paper, we carry out a unified performance analysis of hybrid automatic repeat request (HARQ) with incremental redundancy (IR) from an information theoretic perspective over a point-to-point free-space optical (FSO) system. First, we

  18. Correlation of free-space optics link attenuation with sonic temperature

    Chládová, Zuzana; Fišer, Ondřej; Brázda, Vladimír; Svoboda, Jaroslav

    2013-01-01

    Roč. 52, č. 3 (2013) ISSN 0091-3286 R&D Projects: GA ČR(CZ) GAP102/11/1376 Institutional support: RVO:68378289 Keywords : free-space optics * atmospheric attenuation * water vapor * free-space optics design Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.958, year: 2013 http://opticalengineering.spiedigitallibrary.org/article.aspx?articleid=1667062

  19. Role of transverse-momentum currents in the optical Magnus effect in free space

    Luo, Hailu; Wen, Shuangchun; Shu, Weixing; Fan, Dianyuan

    2010-01-01

    We establish a general vector field model to describe the role of transverse-momentum currents in the optical Magnus effect in free space. As an analogy of the mechanical Magnus effect, the circularly polarized wave packet in our model acts as the rotating ball, and its rotation direction depends on the polarization state. Based on this model, we demonstrate the existence of an optical polarization-dependent Magnus effect which is significantly different from the conventional optical Magnus e...

  20. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    Alouini, Mohamed-Slim

    2015-01-01

    in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing

  1. Photovoltaic sub-cell interconnects

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  2. Packaging and interconnection for superconductive circuitry

    Anacker, W.

    1976-01-01

    A three dimensional microelectronic module packaged for reduced signal propagation delay times including a plurality of circuit carrying means, which may comprise unbacked chips, with integrated superconductive circuitry thereon is described. The circuit carrying means are supported on their edges and have contact lands in the vicinity of, or at, the edges to provide for interconnecting circuitry. The circuit carrying means are supported by supporting means which include slots to provide a path for interconnection wiring to contact the lands of the circuit carrying means. Further interconnecting wiring may take the form of integrated circuit wiring on the reverse side of the supporting means. The low heat dissipation of the superconductive circuitry allows the circuit carrying means to be spaced approximately no less than 30 mils apart. The three dimensional arrangement provides lower random propagation delays than would a planar array of circuits

  3. Electromagnetism and interconnections

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  4. T-SDN architecture for space and ground integrated optical transport network

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  5. Optical asymmetric cryptography using a three-dimensional space-based model

    Chen, Wen; Chen, Xudong

    2011-01-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method

  6. Interconnectivity: Benefits and Challenges

    NONE

    2010-09-15

    Access to affordable and reliable electricity supplies is a basic prerequisite for economic and social development, prosperity, health, education and all other aspects of modern society. Electricity can be generated both near and far from the consumption areas as transmission lines, grid interconnections and distribution systems can transport it to the final consumer. In the vast majority of countries, the electricity sector used to be owned and run by the state. The wave of privatisation and market introduction in a number of countries and regions which started in the late 1980's has in many cases involved unbundling of generation from transmission and distribution (T and D). This has nearly everywhere exposed transmission bottlenecks limiting the development of well-functioning markets. Transmission on average accounts for about 10-15% of total final kWh cost paid by the end-user but it is becoming a key issue for effective operation of liberalised markets and for their further development. An integrated and adequate transmission infrastructure is of utmost importance for ensuring the delivery of the most competitively priced electricity, including externalities, to customers, both near and far from the power generating facilities. In this report, the role of interconnectivity in the development of energy systems is examined with the associated socio-economic, environmental, financial and regulatory aspects that must be taken into account for successful interconnection projects.

  7. Interconnection of Distributed Energy Resources

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  8. Aperture Averaging of Scintillation for Space-to-Ground Optical Communication Applications.

    1983-08-15

    SCINTILLATION FOR SPACE-TO-GROUND OPTICAL COMUNICATION APPLICATIONS ........................ 5 REFERENCES...theoretical investigations necessary for the evaluation and applica- tion of scientific advances to now military space systems. Versatility and flexibility...systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that con

  9. A study of ultra-stable optical clocks, frequency sources and standards for space applications

    Klein, H.A.; Knight, D.J.E.

    1999-01-01

    Optical or laser-based communication systems are expected to supplement microwave based systems for satellite-to-satellite and spacecraft-to-satellite communications early in the next millennium. Optical systems can carry far more traffic than microwave and address the need to increase communication bandwidths to meet the demands of commerce and the entertainment industry. There is already significant research and commercial interest in this area (now driven particularly by the multi-media and Internet services delivery sector) and there is a strong need to establish which are the best choices of optical sources to develop for space based optical communications. In addition to communication requirements there are strong arguments for developing ultra-stable optical frequency sources and detectors in space for at least two other purposes. At present the microwave radiation that is used for communications is also used for other purposes, for example navigation or tracking, and 'space science' experiments. With the switch from the microwave to the optical for communications it may well be convenient to switch to the optical for these and other functions. This study has examined the potential stable laser requirements for a range of space applications. An interim report was presented in the form of a conference paper summarising our initial findings (see Appendix 5). This final report gives our conclusions in more detail and recommends areas for further study

  10. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  11. Optical RISC computer

    Guilfoyle, Peter S.; Stone, Richard V.; Hessenbruch, John M.; Zeise, Frederick F.

    1993-07-01

    A second generation digital optical computer (DOC II) has been developed which utilizes a RISC based operating system as its host. This 32 bit, high performance (12.8 GByte/sec), computing platform demonstrates a number of basic principals that are inherent to parallel free space optical interconnects such as speed (up to 1012 bit operations per second) and low power 1.2 fJ per bit). Although DOC II is a general purpose machine, special purpose applications have been developed and are currently being evaluated on the optical platform.

  12. Optical Real-Time Space Radiation Monitor, Phase I

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  13. Identified state-space prediction model for aero-optical wavefronts

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  14. Interconnection policy: a theoretical survey

    César Mattos

    2003-01-01

    Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.

  15. Millimeter-wave interconnects for microwave-frequency quantum machines

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  16. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  17. LHC beampipe interconnection

    Particle beams circulate for around 10 hours in the Large Hadron Collider (LHC). During this time, the particles make four hundred million revolutions of the machine, travelling a distance equivalent to the diameter of the solar system. The beams must travel in a pipe which is emptied of air, to avoid collisions between the particles and air molecules (which are considerably bigger than protons). The beam pipes are pumped down to an air pressure similar to that on the surface of the moon. Much of the LHC runs at 1.9 degrees above absolute zero. When material is cooled, it contracts. The interconnections must absorb this contraction whilst maintaining electrical connectivity.

  18. Optical/Infrared Signatures for Space-Based Remote Sensing

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    ... (mesosphere and thermosphere) in terms of the structure of the underlying medium. Advances in non-LTE radiative transfer and atmospheric waves and localized excitations are detailed, as well as analysis and modeling of the databases resulting from two groundbreaking space infrared experiments, DoD MSX/SPIRIT III and NASA TIMED/SABER.

  19. Space-time reference with an optical link

    Berceau, P; Hollberg, L; Taylor, M; Kahn, J

    2016-01-01

    We describe a concept for realizing a high performance space-time reference using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic approach is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a ‘frequency-flywheel’ over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination. With a well-defined orbit and a synchronized clock, the satellite could serve as a high-accuracy space-time reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. Under reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination, and could serve as an enabling subsystem for other proposed space-gravity missions, which are briefly reviewed. (paper)

  20. Space density of optically-selected type 2 quasars

    Reyes, Reinabelle; Zakamska, Nadia L.; Strauss, Michael A.; Green, Joshua; Krolik, Julian H.; Shen, Yue; Richards, Gordon; Anderson, Scott; Schneider, Donald

    2008-01-01

    Type 2 quasars are luminous active galactic nuclei (AGN) whose central regions are obscured by large amounts of gas and dust. In this paper, we present a catalog of type 2 quasars from the Sloan Digital Sky Survey (SDSS), selected based on their optical emission lines. The catalog contains 887 objects with redshifts z < 0.83; this is six times larger than the previous version and is by far the largest sample of type 2 quasars in the literature. We derive the [OIII]5008 luminosity function for...

  1. From the Snell-Descartes refraction law, to the Hamilton equations in the phase space of geometrical optics

    Lopez Moreno, E.; Wolf, K.B.

    1989-01-01

    Starting from the Snell-Descartes' refraction law, we obtain in a brief and direct way the Hamilton equations of Geometrical Optics. We show the global structure of phase space and compare it with that used in paraxial optics. (Author)

  2. Optical Properties of Quantum Vacuum. Space-Time Engineering

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.

  3. The Enhanced Segment Interconnect for FASTBUS data communications

    Machen, D.R.; Downing, R.W.; Kirsten, F.A.; Nelson, R.O.

    1987-01-01

    The Enhanced Segment Interconnect concept (ESI) for improved FASTBUS data communications is a development supported by the U.S. Department of Energy under the Small Business Innovation Research (SBIR) program. The ESI will contain both the Segment Interconnect (SI) Tyhpe S-1 and an optional buffered interconnect for store-and-forward data communications; fiber-optic-coupled serial ports will provide optional data paths. The ESI can be applied in large FASTBUS-implemented physics experiments whose data-set or data-transmission distance requirements dictate alternate approaches to data communications. This paper describes the functions of the ESI and the status of its development, now 25% complete

  4. Multi-Element Free-Space Optical (FSO) Modules for Mobile-Opportunistic Networking

    2016-11-14

    due to license-free spectrum, containment of beams, inherent security, energy efficient communications, and high transmission rates. We leveraged the... wireless spectrum bands in both military and civilian settings. Recent research has shown that free- space-optical (FSO), a.k.a. optical wireless ...communications is a promising complementary approach to address the exploding mobile wireless traffic demand. The major impediment for using FSO in a

  5. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  6. Study of Lateral Misalignment Tolerance of a Symmetric Free-Space Optical Link for Intra International Space Station Communication

    Tedder, Sarah; Schoenholz, Bryan; Suddath, Shannon

    2016-01-01

    This paper describes the study of lateral misalignment tolerance of a symmetric high-rate free-space optical link (FSOL) for use between International Space Station (ISS) payload sites and the main cabin. The link will enable gigabit per second (Gbps) transmission of data, which is up to three orders of magnitude greater than the current capabilities. This application includes 10-20 meter links and requires minimum size, weight, and power (SWaP). The optical power must not present an eye hazard and must be easily integrated into the existing ISS infrastructure. On the ISS, rapid thermal changes and astronaut movement will cause flexure of the structure which will potentially misalign the free space transmit and receive optics 9 cm laterally and 0.2 degrees angularly. If this misalignment is not accounted for, a loss of the link or degradation of link performance will occur. Power measurements were collected to better understand the effect of various system design parameters on lateral misalignment. Parameters that were varied include: the type of small form pluggable (SFP) transceivers, type of fiber, and transmitted power level. A potential solution was identified that can reach the lateral misalignment tolerance (decenter span) required to create an FSOL on the ISS by using 105 m core fibers, a duplex SFP, two channels of light, and two fiber amplifiers.

  7. Space-qualified optical thin films by ion-beam-assisted deposition

    Hsiao, C.N.; Chen, H.P.; Chiu, P.K.; Lin, Y.W.; Chen, F.Z.; Tsai, D.P.

    2013-01-01

    Optical interference coatings designed for use in a space-grade multispectral assembly in a complementary metal-oxide‐semiconductor sensor were deposited on glass by ion-beam-assisted deposition for a Cassegrain-type space-based remote-sensing platform. The patterned multispectral assembly containing blue, green, red, near infrared, and panchromatic multilayer high/low alternated dielectric band-pass filter arrays in a single chip was fabricated by a mechanical mask and the photolithography process. The corresponding properties of the films were investigated by in situ optical monitoring and spectrometry. It was found that the optical properties were significantly improved by employing ion-beam-assisted deposition. The average transmittances were above 88% for the multispectral assembly, with a rejection transmittance of less than 1% in the spectral range 350–1100 nm. To estimate the optical stability of optical coatings for aerospace applications, a space environment assuming a satellite orbiting the Earth at an altitude of near 800 km was simulated by a Co 60 gamma (γ) radiation test. - Highlights: ►Parameters of optical filters were optimized by using admittance loci analysis. ►Higher index of refraction of films prepared by ion beam assisted deposition. ►The dielectric filters have acceptable resistance after γ radiation exposure

  8. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  9. Optical isolation based on space-time engineered asymmetric photonic band gaps

    Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe

    2017-10-01

    Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.

  10. Policy issues in interconnecting networks

    Leiner, Barry M.

    1989-01-01

    To support the activities of the Federal Research Coordinating Committee (FRICC) in creating an interconnected set of networks to serve the research community, two workshops were held to address the technical support of policy issues that arise when interconnecting such networks. The workshops addressed the required and feasible technologies and architectures that could be used to satisfy the desired policies for interconnection. The results of the workshop are documented.

  11. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    West, E. A.; Porter, J. G.; Davis, J. M.; Gary, G. A.; Adams, M.; Smith, S.; Hraba, J. F.

    2001-01-01

    This paper will describe the scientific objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirror and polarimeter.

  12. REFINED MODEL OF THE OPTICAL SYSTEM FOR SPACE MINI-VEHICLES WITH LASER PROPULSION

    M. S. Egorov

    2015-09-01

    Full Text Available Simulation results for on-board optical system of a space mini-vehicle with laser propulsion are presented. This system gives the possibility for receiving theremote laser radiation power independently of a system telescope mutual orientation to the vehicle orbiting direction. The on-board optical system is designed with the use of such optical elements as optical hinges and turrets. The system incorporates the optical switch that is a special optical system adapting optically both receiving telescope and laser propulsion engines. Modeling and numerical simulation of the system have been performed with the use of ZEMAX software (Radiant Ltd. The object matter of calculations lied in size definition of system optical elements, requirements to accuracy of their manufacturing and reciprocal adjusting to achieve an efficient radiation energy delivery to laser propulsion engine. Calculations have been performed with account to the limitations on the mini-vehicle mass, its overall dimensions, and radiation threshold density of the optical elements utilized. The requirements to the laser beam quality at the entrance aperture of laser propulsion engine have been considered too. State-of-the-art optical technologies make it possible to manufacture space reflectors made of CO-115M glassceramics with weight-reducing coefficient of 0.72 and the radiation threshold of 5 J/cm2 for the radiation with a 1.064 microns wavelength at 10-20 ns pulse duration. The optimal diameter of a receiving telescope primary mirror has been 0.5 m when a coordinated transmitting telescope diameter is equal to 1 m. This provides the reception of at least 84% of laser energy. The main losses of radiation energy are caused by improper installation of receiving telescope mirrors and by in-process errors arising at manufacturing the telescope mirrors with a parabolic surface. It is shown that requirements to the in-process admissible errors for the on-board optical system elements

  13. Design and simulation of a planar micro-optic free-space receiver

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  14. Spontaneous emergence of free-space optical and atomic patterns

    Schmittberger, Bonnie L; Gauthier, Daniel J

    2016-01-01

    The spontaneous formation of patterns in dynamical systems is a rich phenomenon that transcends scientific boundaries. Here, we report our observation of coupled optical–atomic pattern formation, which results in the creation of self-organized, multimode structures in free-space laser-driven cold atoms. We show that this process gives rise to spontaneous three-dimensional Sisyphus cooling even at very low light intensities and the emergence of self-organized structures on both sub- and super-wavelength scales. (paper)

  15. Retroreflector field tracker. [noncontact optical position sensor for space application

    Wargocki, F. E.; Ray, A. J.; Hall, G. E.

    1984-01-01

    An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.

  16. Modeling a space-based quantum link that includes an adaptive optics system

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  17. Epidemics on interconnected networks

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  18. Characterization of a Cobalt-Tungsten Interconnect

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...

  19. A review on channel models in free space optical communication systems

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  20. Holographic Optical Element-Based Laser Diode Source System for Direct Metal Deposition in Space, Phase II

    National Aeronautics and Space Administration — To meet the challenges of rapid prototyping, direct hardware fabrication, and on-the-spot repairs on the ground and on NASA space platforms, Physical Optics...

  1. Characterizing exoplanets atmospheres with space photometry at optical wavelengths

    Parmentier Vivien

    2015-01-01

    Full Text Available Space photometry such as performed by Kepler and CoRoT provides exoplanets radius and phase curves with an exquisite precision. The phase curve constrains the longitudinal variation of the albedo and shed light on the horizontal distribution of clouds. The planet radius constraints thermal evolution of the planet, potentially unveiling its atmospheric composition. We present how the atmospheric circulation can affect the cloud distribution of three different planets, HD209458b, Kepler-7b and HD189733b based on three-dimensional models and analytical calculations. Then we use an analytical atmospheric model coupled to a state-of-the-art interior evolution code to study the role of TiO in shaping the thermal evolution and final radius of the planet.

  2. PIPIT: a momentum space optical potential code for pions

    Eisenstein, R A [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA). Dept. of Physics; Tabakin, F [Pittsburgh Univ., Pa. (USA). Dept. of Physics

    1976-11-01

    Angular distributions for the elastic scattering of pions are generated by summing a partial wave series. The elastic T-matrix elements for each partial wave are obtained by solving a relativistic Lippmann-Schwinger equation in momentum space using a matrix inversion technique. Basically the Coulomb interaction is included exactly using the method of Vincent and Phatak. The ..pi..N amplitude is obtained from phase shift information on-shell and incorporates a separable off-shell form factor to ensure a physically reasonable off-shell extrapolation. The ..pi..N interaction is of finite range and a kinematic transformation procedure is used to express the ..pi..N amplitude in the ..pi.. nucleus frame. A maximum of 30 partial waves can be used in the present version of the program to calculate the cross section. The Lippmann-Schwinger equation is presently solved for each partial wave by inverting a 34x34 supermatrix. At very high energies, larger dimensions may be required. The present version of the code uses a separable non-local ..pi..N potential of finite range; other types of non-localities, or non-separable potentials, may be of physical interest.

  3. Optical transmission for the James Webb Space Telescope

    Lightsey, Paul A.; Gallagher, Benjamin B.; Nickles, Neal; Copp, Tracy

    2012-09-01

    The fabrication and coating of the mirrors for the James Webb Space Telescope has been completed. The spectral reflectivity of the protected gold coated beryllium mirrors has been measured. The predicted end-of-life transmission through the telescope builds from these values. The additional phenomena that have been analyzed are contamination effects and effects of the environment for the JWST operation about the Earth-Sun L2 Lagrange libration point. The L2 environment analysis has been based on radiation testing of mirror samples and hypervelocity testing to assess the micrometeoroid impact effects. The mirror showed no change in reflectance over the VIS-SWIR wavelengths after exposure to 6-9 Grad (Si) that simulated 6 years orbiting the L2 Lagrange point. The effects of hypervelocity particle impacts on the mirrors from test data has been extrapolated to the to the anticipated flux characteristics for micrometeoroids at the L2 environment. The results show that the micrometeoroid effects are orders of magnitude below the particulate contamination effects. The final end-of-life transmission for the mirrors including all of these phenomena will meet the performance requirements for JWST.

  4. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD

  5. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    2016-12-01

    492 DM. The quarter wave plates polarize the light so that as it reflects off the DM, the light is then redirected at the beam splitter to the one...1  II.  SPACE-BASED TELESCOPE DESIGN CONSIDERATIONS .......................3  A.  ADAPTIVE OPTICS...3  B.  DESIGN CONSTRAINTS

  6. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  7. All-optical two-way relaying free-space optical communications for HAP-based broadband backhaul networks

    Vu, Minh Q.; Nguyen, Nga T. T.; Pham, Hien T. T.; Dang, Ngoc T.

    2018-03-01

    High-altitude platforms (HAPs) are flexible, non-pollutant and cost-effective infrastructures compared to satellite or old terrestrial systems. They are being researched and developed widely in Europe, USA, Japan, Korea, and so on. However, the current limited data rates and the overload of radio frequency (RF) spectrum are problems which the developers for HAPs are confronting because most of them use RF links to communicate with the ground stations (GSs) or each other. In this paper, we propose an all-optical two-way half-duplex relaying free-space optical (FSO) communication for HAP-based backhaul networks, which connect the base transceiver station (BTS) to the core network (CN) via a single HAP. Our proposed backhaul solution can be deployed quickly and flexibly for disaster relief and for serving users in both urban environments and remote areas. The key subsystem of HAP is an optical regenerate-and-forward (ORF) equipped with an optical hard-limiter (OHL) and an optical XOR gate to perform all-optical processing and help mitigate the background noise. In addition, two-way half-duplex relaying can be provided thanks to the use of network coding scheme. The closed-form expression for the bit error rate (BER) of our proposed system under the effect of path loss, atmospheric turbulence, and noise induced by the background light is formulated. The numerical results are demonstrated to prove the feasibility of our proposed system with the verification by using Monte-Carlo (M-C) simulations.

  8. Analysis of the optical scattering characteristics of different types of space targets

    Han, Yi; Sun, Huayan; Feng, Jianguang; Li, Liang

    2014-01-01

    This paper mainly focused on the measurement, evaluation and potential identification methods of the unresolved space target's photometric characteristics. The bidirectional reflectance distribution function (BRDF) measurement system was introduced first, and then the measurement error of BRDF and its influence on target's optical cross section (OCS) and magnitude were analyzed. Then, different space targets’ OCS and magnitude changing with different factors, such as surface materials and shapes, flying conditions and working states, were analyzed respectively, and some general inclusions of variation laws were deduced. This research can provide references for future studies on space target classification and identification based on the photometric measurement data. (paper)

  9. Shared protection based virtual network mapping in space division multiplexing optical networks

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  10. Data transmission with twisted light through a free-space to fiber optical communication link

    Brüning, Robert; Duparré, Michael; Ndagano, Bienvenu; McLaren, Melanie; Forbes, Andrew; Schröter, Siegmund; Kobelke, Jens

    2016-01-01

    Mode division multiplexing (MDM), where information is transmitted in the spatial modes of light, is mooted as a future technology with which to transmit large bits of information. However, one of the key issues in optical communication lies in connecting free-space to optical fiber networks, otherwise known as the ‘last mile’ problem. This is particularly problematic for MDM as the eigenmodes of free-space and fibers are in general not the same. Here we demonstrate a data transmission scheme across a free-space and fiber link using twisted light in the form of Laguerre–Gaussian (LG) azimuthal modes. As a proof-of-principle we design and implement a custom fiber where the supported LG modes can be grouped into five non-degenerate sets, and successfully transmit a gray-scale image across the composite link using one mode from each group, thereby ensuring minimal crosstalk. (letter)

  11. Threshold-Based Multiple Optical Signal Selection Scheme for Free-Space Optical Wavelength Division Multiplexing Systems

    Nam, Sung Sik

    2017-11-13

    We propose a threshold-based multiple optical signal selection scheme (TMOS) for free-space optical wavelength division multiplexing systems. With this scheme, we can obtain higher spectral efficiency while reducing the possible complexity of implementation caused by the beam-selection scheme and without a considerable performance loss. To characterize the performance of our scheme, we statistically analyze the operation characteristics under conventional detection conditions (i.e., heterodyne detection and intensity modulation/direct detection techniques) with log-normal turbulence while taking into consideration the impact of pointing error. More specifically, we derive exact closed-form expressions for the outage probability, the average bit error rate, and the average spectral efficiency while adopting an adaptive modulation. Some selected results show that TMOS increases the average spectral efficiency while maintaining a minimum average bit error rate requirement.

  12. Location constrained resource interconnection

    Hawkins, D.

    2008-01-01

    This presentation discussed issues related to wind integration from the perspective of the California Independent System Operator (ISO). Issues related to transmission, reliability, and forecasting were reviewed. Renewable energy sources currently used by the ISO were listed, and details of a new transmission financing plan designed to address the location constraints of renewable energy sources and provide for new transmission infrastructure was presented. The financing mechanism will be financed by participating transmission owners through revenue requirements. New transmission interconnections will include network facilities and generator tie-lines. Tariff revisions have also been implemented to recover the costs of new facilities and generators. The new transmission project will permit wholesale transmission access to areas where there are significant energy resources that are not transportable. A rate impact cap of 15 per cent will be imposed on transmission owners to mitigate short-term costs to ratepayers. The presentation also outlined energy resource area designation plans, renewable energy forecasts, and new wind technologies. Ramping issues were also discussed. It was concluded that the ISO expects to ensure that 20 per cent of its energy will be derived from renewable energy sources. tabs., figs

  13. Area array interconnection handbook

    Totta, Paul A

    2012-01-01

    Microelectronic packaging has been recognized as an important "enabler" for the solid­ state revolution in electronics which we have witnessed in the last third of the twentieth century. Packaging has provided the necessary external wiring and interconnection capability for transistors and integrated circuits while they have gone through their own spectacular revolution from discrete device to gigascale integration. At IBM we are proud to have created the initial, simple concept of flip chip with solder bump connections at a time when a better way was needed to boost the reliability and improve the manufacturability of semiconductors. The basic design which was chosen for SLT (Solid Logic Technology) in the 1960s was easily extended to integrated circuits in the '70s and VLSI in the '80s and '90s. Three I/O bumps have grown to 3000 with even more anticipated for the future. The package families have evolved from thick-film (SLT) to thin-film (metallized ceramic) to co-fired multi-layer ceramic. A later famil...

  14. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  15. Interconnection of bundled solid oxide fuel cells

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  16. Analysing and modelling the interconnected cyber space

    Monsuur, H.; Kooij R.E.; Mieghem, P. van

    2012-01-01

    The security environment is rapidly changing. Due to increasing dependency on complex critical communication and information systems, society as a whole, but defence organisations in particular, have to rethink, redesign and adapt their Defences to be able to confront the challenges of cyberwarfare

  17. Space grating optical structure of the retina and RGB-color vision.

    Lauinger, Norbert

    2017-02-01

    Diffraction of light at the spatial cellular phase grating outer nuclear layer of the retina could produce Fresnel near-field interferences in three RGB diffraction orders accessible to photoreceptors (cones/rods). At perpendicular light incidence the wavelengths of the RGB diffraction orders in photopic vision-a fundamental R-wave with two G+B-harmonics-correspond to the peak wavelengths of the spectral brightness sensitivity curves of the cones at 559 nmR, 537 nmG, and 447 nmB. In scotopic vision the R+G diffraction orders optically fuse at 512 nm, the peak value of the rod's spectral brightness sensitivity curve. The diffractive-optical transmission system with sender (resonator), space waves, and receiver antennae converts the spectral light components involved in imaging into RGB space. The colors seen at objects are diffractive-optical products in the eye, as the German philosopher A. Schopenhauer predicted. They are second related to the overall illumination in object space. The RGB transmission system is the missing link optically managing the spectral tuning of the RGB photopigments.

  18. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space

    Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, Ch.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.

    2017-02-01

    We present the status of our efforts to develop very compact and robust diode laser modules specifically suited for quantum optics experiments in the field and in space. The paper describes why hybrid micro-integration and GaAs-diode laser technology is best suited to meet the needs of such applications. The electro-optical performance achieved with hybrid micro-integrated, medium linewidth, high power distributed-feedback master-oscillator-power-amplifier modules and with medium power, narrow linewidth extended cavity diode lasers emitting at 767 nm and 780 nm are briefly described and the status of space relevant stress tests and space heritage is summarized. We also describe the performance of an ECDL operating at 1070 nm. Further, a novel and versatile technology platform is introduced that allows for integration of any type of laser system or electro-optical module that can be constructed from two GaAs chips. This facilitates, for the first time, hybrid micro-integration, e.g. of extended cavity diode laser master-oscillator-poweramplifier modules, of dual-stage optical amplifiers, or of lasers with integrated, chip-based phase modulator. As an example we describe the implementation of an ECDL-MOPA designed for experiments on ultra-cold rubidium and potassium atoms on board a sounding rocket and give basic performance parameters.

  19. Role of transverse-momentum currents in the optical Magnus effect in free space

    Luo Hailu; Wen Shuangchun; Shu Weixing; Fan Dianyuan

    2010-01-01

    We establish a general vector field model to describe the role of transverse-momentum currents in the optical Magnus effect in free space. As an analogy of the mechanical Magnus effect, the circularly polarized wave packet in our model acts as the rotating ball, and its rotation direction depends on the polarization state. Based on this model, we demonstrate the existence of an optical polarization-dependent Magnus effect which is significantly different from the conventional optical Magnus effect in that light-matter interaction is not required. Further, we reveal the relation between transverse-momentum currents and the optical Magnus effect, and find that such a polarization-dependent rotation is unavoidable when the wave packet possesses transverse-momentum currents. The physics underlying this intriguing effect is the combined contributions of transverse spin and orbital currents. We predict that this effect may be observed experimentally even in the propagation direction. These findings provide further evidence for the optical Magnus effect in free space and can be extrapolated to other physical systems.

  20. PDSM characterization for fabrication of free-space OXC optical components

    Argueta, Victor; Fitzpatrick, Brianna

    2017-11-01

    In 2007 Dr Khine et al published a paper where they presented a technique using thermoplastics and PDMS to create microfluidic patterns1. Their technique involves printing a pattern in a polystyrene sheet using a laser printer. Once the pattern is transfer the polystyrene sheets they are heated to reduce their size. By printing the same pattern of the plastic sheets before heating, it is possible to control the height up to 80 μm and the width as thin as 65 μm1, 2. This technique is attractive to be used in optical fabrication due to its versatility, low cost and fast prototyping. However, in order to fabricate optical systems, we will need to control the refractive index of PDMS to allow design of basic optical components like waveguides, beam splitter, or diffuse reflectors; or more complex structures like interferometers, optical microfluidic lab-on-chip, micro-lens arrays. Several techniques exist to control the refractive index for PDMS either by controlling the curing temperature, the ratio between the base and curing agent, or by curing using UV light3-5. In this paper, we present the changes on refractive index by changing the curing temperature for different base/reaction agent ratios. We then apply these results to fabricate an optical component for a free-space optical cross-connect (OXC). Optical cross-connects are an important network element for constructing the next generation of optical networks, where provisioning (reconfiguration), scalability, and fast restoration will be needed6-8. The main attraction of all-optical switching is that it enables routing of optical data signals without the need for conversion to electrical signals, and therefore, is independent of data rate and data protocols. We have proposed previously9, 11 a new approach for an OXC. Our architecture is a free-space 3-D while still using digital MEMS. Our system is based on the optical White cell12, which consists of three spherical mirrors among which light can circulate. In

  1. Interconnecting heterogeneous database management systems

    Gligor, V. D.; Luckenbaugh, G. L.

    1984-01-01

    It is pointed out that there is still a great need for the development of improved communication between remote, heterogeneous database management systems (DBMS). Problems regarding the effective communication between distributed DBMSs are primarily related to significant differences between local data managers, local data models and representations, and local transaction managers. A system of interconnected DBMSs which exhibit such differences is called a network of distributed, heterogeneous DBMSs. In order to achieve effective interconnection of remote, heterogeneous DBMSs, the users must have uniform, integrated access to the different DBMs. The present investigation is mainly concerned with an analysis of the existing approaches to interconnecting heterogeneous DBMSs, taking into account four experimental DBMS projects.

  2. Space evaluation of optical modulators for microwave photonic on-board applications

    Le Kernec, A.; Sotom, M.; Bénazet, B.; Barbero, J.; Peñate, L.; Maignan, M.; Esquivias, I.; Lopez, F.; Karafolas, N.

    2017-11-01

    Since several years, perspectives and assets offered by photonic technologies compared with their traditional RF counterparts (mass and volume reduction, transparency to RF frequency, RF isolation), make them particularly attractive for space applications [1] and, in particular, telecommunication satellites [2]. However, the development of photonic payload concepts have concurrently risen and made the problem of the ability of optoelectronic components to withstand space environment more and more pressing. Indeed, photonic components used in such photonic payloads architectures come from terrestrial networks applications in order to benefit from research and development in this field. This paper presents some results obtained in the frame of an ESA-funded project, carried out by Thales Alenia Space France, as prime contractor, and Alter Technology Group Spain (ATG) and Universidad Politecnica de Madrid (UPM), as subcontractors, one objective of which was to assess commercial high frequency optical intensity modulators for space use through a functional and environmental test campaign. Their potential applications in microwave photonic sub-systems of telecom satellite payloads are identified and related requirements are presented. Optical modulator technologies are reviewed and compared through, but not limited to, a specific figure of merit, taking into account two key features of these components : optical insertion loss and RF half-wave voltage. Some conclusions on these different technologies are given, on the basis of the test results, and their suitability for the targeted applications and environment is highlighted.

  3. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  4. Recent developments of advanced structures for space optics at Astrium, Germany

    Stute, Thomas; Wulz, Georg; Scheulen, Dietmar

    2003-12-01

    The mechanical division of EADS Astrium GmbH, Friedrichshafen Germany, the former Dornier Satellitensystem GmbH is currently engaged with the development, manufacturing and testing of three different advanced dimensionally stable composite and ceramic material structures for satellite borne optics: -CFRP Camera Structure -Planck Telescope Reflectors -NIRSpec Optical Bench Breadboard for James Web Space Telescope The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  5. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  6. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  7. Hartmann wavefront sensing of the corrective optics for the Hubble Space Telescope

    Davila, Pam S.; Eichhorn, William L.; Wilson, Mark E.

    1994-06-01

    There is no doubt that astronomy with the `new, improved' Hubble Space Telescope will significantly advance our knowledge and understanding of the universe for years to come. The Corrective Optics Space Telescope Axial Replacement (COSTAR) was designed to restore the image quality to nearly diffraction limited performance for three of the first generation instruments; the faint object camera, the faint object spectrograph, and the Goddard high resolution spectrograph. Spectacular images have been obtained from the faint object camera after the installation of the corrective optics during the first servicing mission in December of 1993. About 85% of the light in the central core of the corrected image is contained within a circle with a diameter of 0.2 arcsec. This is a vast improvement over the previous 15 to 17% encircled energies obtained before COSTAR. Clearly COSTAR is a success. One reason for the overwhelming success of COSTAR was the ambitious and comprehensive test program conducted by various groups throughout the program. For optical testing of COSTAR on the ground, engineers at Ball Aerospace designed and built the refractive Hubble simulator to produce known amounts of spherical aberration and astigmatism at specific points in the field of view. The design goal for this refractive aberrated simulator (RAS) was to match the aberrations of the Hubble Space Telescope to within (lambda) /20 rms over the field at a wavelength of 632.8 nm. When the COSTAR optics were combined with the RAS optics, the corrected COSTAR output images were produced. These COSTAR images were recorded with a high resolution 1024 by 1024 array CCD camera, the Ball image analyzer (BIA). The image quality criteria used for assessment of COSTAR performance was encircled energy in the COSTAR focal plane. This test with the BIA was very important because it was a direct measurement of the point spread function. But it was difficult with this test to say anything quantitative about the

  8. Reflective and refractive optical materials for earth and space applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Riedl, Max J.; Hale, Robert R.; Parsonage, Thomas B.

    The present conference discusses beryllium mirror design and fabrication, production of aspheric beryllium optical surfaces by HIP consolidation, the control of thermally induced porosity for the fabrication of beryllium optics, fine-grained beryllium optical coatings, light-absorbing beryllium baffle materials, and advanced broadband baffle materials. Also discussed are radiation-resistant optical glasses, a catalog of IR and cryooptical properties of selected materials, durable metal-dielectric mirror coatings, the optical stability of diffuse reflectance materials, and optical filters for space applications.

  9. Modified optical fiber daylighting system with sunlight transportation in free space.

    Vu, Ngoc-Hai; Pham, Thanh-Tuan; Shin, Seoyong

    2016-12-26

    We present the design, optical simulation, and experiment of a modified optical fiber daylighting system (M-OFDS) for indoor lighting. The M-OFDS is comprised of three sub-systems: concentration, collimation, and distribution. The concentration part is formed by coupling a Fresnel lens with a large-core plastic optical fiber. The sunlight collected by the concentration sub-system is propagated in a plastic optical fiber and then collimated by the collimator, which is a combination of a parabolic mirror and a convex lens. The collimated beam of sunlight travels in free space and is guided to the interior by directing flat mirrors, where it is diffused uniformly by a distributor. All parameters of the system are calculated theoretically. Based on the designed system, our simulation results demonstrated a maximum optical efficiency of 71%. The simulation results also showed that sunlight could be delivered to the illumination destination at distance of 30 m. A prototype of the M-OFDS was fabricated, and preliminary experiments were performed outdoors. The simulation results and experimental results confirmed that the M-OFDS was designed effectively. A large-scale system constructed by several M-OFDSs is also proposed. The results showed that the presented optical fiber daylighting system is a strong candidate for an inexpensive and highly efficient application of solar energy in buildings.

  10. The Effects of Optical Illusions in Perception and Action in Peripersonal and Extrapersonal Space.

    Shim, Jaeho; van der Kamp, John

    2017-09-01

    While the two visual system hypothesis tells a fairly compelling story about perception and action in peripersonal space (i.e., within arm's reach), its validity for extrapersonal space is very limited and highly controversial. Hence, the present purpose was to assess whether perception and action differences in peripersonal space hold in extrapersonal space and are modulated by the same factors. To this end, the effects of an optic illusion in perception and action in both peripersonal and extrapersonal space were compared in three groups that threw balls toward a target at a distance under different target eccentricity (i.e., with the target fixated and in peripheral field), viewing (i.e., binocular and monocular viewing), and delay conditions (i.e., immediate and delayed action). The illusory bias was smaller in action than in perception in peripersonal space, but this difference was significantly reduced in extrapersonal space, primarily because of a weakening bias in perception. No systematic modulation of target eccentricity, viewing, and delay arose. The findings suggest that the two visual system hypothesis is also valid for extra personal space.

  11. Universal Interconnection Technology Workshop Proceedings

    Sheaffer, P.; Lemar, P.; Honton, E. J.; Kime, E.; Friedman, N. R.; Kroposki, B.; Galdo, J.

    2002-10-01

    The Universal Interconnection Technology (UIT) Workshop - sponsored by the U.S. Department of Energy, Distributed Energy and Electric Reliability (DEER) Program, and Distribution and Interconnection R&D - was held July 25-26, 2002, in Chicago, Ill., to: (1) Examine the need for a modular universal interconnection technology; (2) Identify UIT functional and technical requirements; (3) Assess the feasibility of and potential roadblocks to UIT; (4) Create an action plan for UIT development. These proceedings begin with an overview of the workshop. The body of the proceedings provides a series of industry representative-prepared papers on UIT functions and features, present interconnection technology, approaches to modularization and expandability, and technical issues in UIT development as well as detailed summaries of group discussions. Presentations, a list of participants, a copy of the agenda, and contact information are provided in the appendices of this document.

  12. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    van Howe, James William

    -speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.

  13. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  14. Optical method for mapping the transverse phase space of a charged particle beam

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  15. James Webb Space Telescope Optical Telescope Element Mirror Development History and Results

    Feinber, Lee D.; Clampin, Mark; Keski-Kuha, Ritva; Atkinson, Charlie; Texter, Scott; Bergeland, Mark; Gallagher, Benjamin B.

    2012-01-01

    In a little under a decade, the James Webb Space Telescope (JWST) program has designed, manufactured, assembled and tested 21 flight beryllium mirrors for the James Webb Space Telescope Optical Telescope Element. This paper will summarize the mirror development history starting with the selection of beryllium as the mirror material and ending with the final test results. It will provide an overview of the technological roadmap and schedules and the key challenges that were overcome. It will also provide a summary or the key tests that were performed and the results of these tests.

  16. Fiber-Coupled Wide Field of View Optical Receiver for High Speed Space Communication

    Suddath, Shannon N.

    Research groups at NASA Glenn Research Center are interested in improving data rates on the International Space Station (ISS) using a free-space optical (FSO) link. However, known flexure of the ISS structure is expected to cause misalignment of the FSO link. Passive-control designs for mitigating misalignment are under investigation, including using a fiber-bundle for improved field of view. The designs must overcome the obstacle of coupling directly to fiber, rather than a photodetector, as NASA will maintain the use of small form-factor pluggable optical transceivers (SFPs) in the ISS network. In this thesis, a bundle-based receiver capable of coupling directly to fiber is designed, simulated, and tested in lab. Two 3-lens systems were evaluated for power performance in the lab, one with a 20 mm focal length aspheric lens and the other with a 50 mm focal length aspheric lens. The maximum output power achieved was 8 muW.

  17. Optical authentication based on moiré effect of nonlinear gratings in phase space

    Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang

    2015-01-01

    An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme. (paper)

  18. Hodoscope read-out with space-time mapping through an optical pipeline

    Bamberger, A.; Boehler, E.; Kroeger, W.; Soeldner-Rembold, S.

    1993-09-01

    This note describes a new read-out scheme for fine grained hodoscopes with possible applications for a Small Angle Rear Tracking Detector (SRTD) or a pre-sampler in front of the ZEUS Uranium Calorimeter. Several hodoscope strips are read out by one phototube using optical fibres of different lengths. Optical delays of equal increments ensure a linear mapping of the space coordinate onto the time coordinate. A first prototype has been built and first test measurements are being presented. In addition, Monte Carlo simulations were performed to study the effects of showering electrons on the position resolution of the detector. The results of the test measurements, especially those related to the properties of the light guides, and the results of the simulation are of general importance for the SRTD design beyond the optical delay read-out scheme presented here. (orig.)

  19. Optical Performance of Breadboard Amon-Ra Imaging Channel Instrument for Deep Space Albedo Measurement

    Won Hyun Park

    2007-03-01

    Full Text Available The AmonRa instrument, the primary payload of the international EARTHSHINE mission, is designed for measurement of deep space albedo from L1 halo orbit. We report the optical design, tolerance analysis and the optical performance of the breadborad AmonRa imaging channel instrument optimized for the mission science requirements. In particular, an advanced wavefront feedback process control technique was used for the instrumentation process including part fabrication, system alignment and integration. The measured performances for the complete breadboard system are the RMS 0.091 wave(test wavelength: 632.8 nm in wavefront error, the ensquared energy of 61.7%(in 14 μ m and the MTF of 35.3%(Nyquist frequency: 35.7 mm^{-1} at the center field. These resulting optical system performances prove that the breadboard AmonRa instrument, as built, satisfies the science requirements of the EARTHSHINE mission.

  20. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  1. Optical monitoring of QSO in the framework of the Gaia space mission

    Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.

    2015-08-01

    The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.

  2. Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-01

    Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.

  3. Obstacle evasion in free-space optical communications utilizing Airy beams

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  4. Gaps of free-space optics beams with the Beer-Lambert law.

    Lacaze, Bernard

    2009-05-10

    Lasers used in free-space optics propagate a beam within a truncated cone. Because of this shape, the intensity cannot follow the Beer-Lambert law. In the case of a homogeneous atmosphere, we calculate the gap from the cylinder case. We will see that the gap exists but is generally very weak and, therefore, that the use of the Beer-Lambert law is a justified approximation.

  5. On the Performance Analysis of Free-Space Optical Links under Generalized Turbulence and Misalignment Models

    AlQuwaiee, Hessa

    2016-11-01

    One of the potential solutions to the radio frequency (RF) spectrum scarcity problem is optical wireless communications (OWC), which utilizes the unlicensed optical spectrum. Long-range outdoor OWC are usually referred to in the literature as free-space optical (FSO) communications. Unlike RF systems, FSO is immune to interference and multi-path fading. Also, the deployment of FSO systems is flexible and much faster than optical fibers. These attractive features make FSO applicable for broadband wireless transmission such as optical fiber backup, metropolitan area network, and last mile access. Although FSO communication is a promising technology, it is negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. These two critical issues have prompted intensive research in the last decade. To quantify the effect of these two factors on FSO system performance, we need effective mathematical models. In this work, we propose and study a generalized pointing error model based on the Beckmann distribution. Then, we aim to generalize the FSO channel model to span all turbulence conditions from weak to strong while taking pointing errors into consideration. Since scintillation in FSO is analogous to the fading phenomena in RF, diversity has been proposed too to overcome the effect of irradiance fluctuations. Thus, several combining techniques of not necessarily independent dual-branch free-space optical links were investigated over both weak and strong turbulence channels in the presence of pointing errors. On another front, improving the performance, enhancing the capacity and reducing the delay of the communication link has been the motivation of any newly developed schemes, especially for backhauling. Recently, there has been a growing interest in practical systems to integrate RF and FSO technologies to solve the last mile bottleneck. As such, we also study in this thesis asymmetric an RF-FSO dual-hop relay

  6. Architectural design of a ground-based deep-space optical reception antenna

    Kerr, E. L.

    1989-01-01

    An architectural design of a ground-based antenna (telescope) for receiving optical communications from deep space is presented. Physical and optical parameters, and their effect on the performance and cost considerations, are described. The channel capacity of the antenna is 100 kbits/s from Saturn and 5 Mbits/s from Mars. A novel sunshade is designed to permit optical communication even when the deep-space laser source is as close to the sun as 12 deg. Inserts in the tubes of the sunshade permit operations at solar elongations as small as 6 or 3 deg. The Nd:YAG source laser and the Fraunhofer filter (a narrow-band predetection optical filter) are tuned to match the Doppler shifts of the source and background. A typical Saturn-to-earth data link can reduce its source power requirement from 8.2 W to 2 W of laser output by employing a Fraunhofer filter instead of a conventional multilayer dielectric filter.

  7. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  8. Development of reaction-sintered SiC mirror for space-borne optics

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  9. High-dimensional free-space optical communications based on orbital angular momentum coding

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  10. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  11. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  12. ESCC standards, evaluation and qualification of optical fiber connectors for space application

    Taugwalder, Frédéric

    2017-11-01

    Optical fiber connectors have been used for the past fifteen years in space application. Reviewing the heritage left from past and current mission, the status of ESCC standards for these components and assemblies will help future use of fiber in space applications. In the frame of the ESA ECI program, Diamond has evaluated and is currently qualifying according to ESCC standards the AVIM and Mini-AVIM connectors. The configuration retained to qualify the connector sets is using a polarization maintaining fiber at 1550nm with a loose tube in PEEK as cable structure. The evaluation has been used to step-stress specific characteristics of the optical fiber connectors with a particular aim at possible failure modes to establish a safety factor for the qualification. The evaluation results presented can be used on a case by case to evaluate special applications that would require to extend the specification. The qualification components can be extended further and a structure for assemblies is proposed in order to simplify fiber optics implementation in space projects.

  13. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  14. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  15. Dobson space telescope: development of an optical payload of the next generation

    Segert, Tom; Danziger, Björn; Gork, Daniel; Lieder, Matthias

    2017-11-01

    The Dobson Space Telescope (DST) is a research project of the Department of Astronautics at the TUBerlin. For Development and commercialisation there is a close cooperation with the network of the Berlin Space Industry (RIBB). Major Partner is the Astro- und Feinwerktechnik Adlershof GmbH a specialist for space structures and head of the industry consortia which built the DLR BIRD micro satellite. The aim of the project is to develop a new type of deployable telescope that can overcome the mass and volume limitations of small satellites. With the DST payload micro satellites of the 100kg class will be able to carry 50cm main mirror diameter optics (→ 1m GSD). Basis of this technology is the fact that a telescope is mainly empty space between the optical elements. To fold down the telescope during launch and to undfold it after the satellite reached its orbit can save 70% of payload volume and 50% of payload mass. Since these advantages continue along the value added chain DST is of highest priority for the next generation of commercial EO micro satellites. Since 2002 the key technologies for DST have been developed in test benches in Labs of TU-Berlin and were tested on board a ESA parabolic flight campaign in 2005. The development team at TU-Berlin currently prepares the foundation of a start-up company for further development and commercialisation of DST.

  16. Simple and reusable fibre-to-chip interconnect with adjustable coupling eficiency

    Heideman, Rene; Lambeck, Paul; Parriaux, Olivier M.; Kley, Ernst-Bernhard

    1997-01-01

    A simple, efficient and reusable fiber-to-chip interconnect is presented. The interconnect is based on a V-groove (wet- chemically etched) in silicon, combined with a loose-mode Si3N4-channel waveguide. The loose-mode waveguide is adiabatically tapered to the integrated optical (sensor) circuitry.

  17. System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link.

    Nakamura, M; Kitayama, K

    1998-05-10

    Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.

  18. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  19. Adaptive matching of the iota ring linear optics for space charge compensation

    Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder

    2016-10-09

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters

  20. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  1. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  2. Performance Improvement of Near Earth Space Survey (NESS Wide-Field Telescope (NESS-2 Optics

    Sung-Yeol Yu

    2010-06-01

    Full Text Available We modified the optical system of 500 mm wide-field telescope of which point spread function showed an irregularity. The telescope has been operated for Near Earth Space Survey (NESS located at Siding Spring Observatory (SSO in Australia, and the optical system was brought back to Korea in January 2008. After performing a numerical simulation with the tested value of surface figure error of the primary mirror using optical design program, we found that the surface figure error of the mirror should be fabricated less than root mean square (RMS λ/10 in order to obtain a stellar full width at half maximum (FWHM below 28 μm. However, we started to figure the mirror for the target value of RMS λ/20, because system surface figure error would be increased by the error induced by the optical axis adjustment, mirror cell installation, and others. The radius of curvature of the primary mirror was 1,946 mm after the correction. Its measured surface figure error was less than RMS λ/20 on the table of polishing machine, and RMS λ/15 after installation in the primary mirror cell. A test observation performed at Daeduk Observatory at Korea Astronomy and Space Science Institute by utilizing the exiting mount, and resulted in 39.8 μm of stellar FWHM. It was larger than the value from numerical simulation, and showed wing-shaped stellar image. It turned out that the measured-curvature of the secondary mirror, 1,820 mm, was not the same as the designed one, 1,795.977 mm. We fabricated the secondary mirror to the designed value, and finally obtained a stellar FWHM of 27 μm after re-installation of the optical system into SSO NESS Observatory in Australia.

  3. Digital optical computer II

    Guilfoyle, Peter S.; Stone, Richard V.

    1991-12-01

    OptiComp is currently completing a 32-bit, fully programmable digital optical computer (DOC II) that is designed to operate in a UNIX environment running RISC microcode. OptiComp's DOC II architecture is focused toward parallel microcode implementation where data is input in a dual rail format. By exploiting the physical principals inherent to optics (speed and low power consumption), an architectural balance of optical interconnects and software code efficiency can be achieved including high fan-in and fan-out. OptiComp's DOC II program is jointly sponsored by the Office of Naval Research (ONR), the Strategic Defense Initiative Office (SDIO), NASA space station group and Rome Laboratory (USAF). This paper not only describes the motivational basis behind DOC II but also provides an optical overview and architectural summary of the device that allows the emulation of any digital instruction set.

  4. NASA Electronic Parts and Packaging (NEPP): Space Qualification Guidelines of Optoelectronic and Photonic Devices for Optical Communication Systems

    Kim, Quiesup

    2001-01-01

    Key elements of space qualification of opto-electric and photonic optical devices were overviewed. Efforts were concentrated on the reliability concerns of the devices needed for potential applications in space environments. The ultimate goal for this effort is to gradually establish enough data to develop a space qualification plan of newly developed specific photonic parts using empirical and numerical models to assess the life-time and degradation of the devices for potential long term space missions.

  5. Streak detection and analysis pipeline for space-debris optical images

    Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim

    2016-04-01

    We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for

  6. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  7. High Quality, Low-Scatter SiC Optics Suitable for Space-based UV & EUV Applications, Phase II

    National Aeronautics and Space Administration — SSG Precision Optronics proposes the development and demonstration of a new optical fabrication process for the production of EUV quality Silicon Carbide (SiC)...

  8. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  9. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  10. Manufacturing of planar ceramic interconnects

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  11. Realization of a free-space 2 × 4 90° optical hybrid based on the birefringence and electro-optic effects of crystals

    Wan, Lingyu; Zhou, Yu; Liu, Liren; Sun, Jianfeng

    2013-01-01

    A free-space 2 × 4 90° optical hybrid with electro-optic modulation is presented. The hybrid principally consists of two pairs of electro-optic crystal plates coated with gold electrodes and a polarization analyzer. The optical hybrid uses the birefringence effect of a crystal to split and combine a signal beam and a local oscillator beam, uses the electro-optic effect to introduce a phase modulation and produce a phase shift, and outputs four-channel signal/local oscillator mixed beams whose phase difference can be adjusted continuously. A LiNbO 3 crystal is used to design and manufacture the space optical hybrid, and an experimental system is used to verify its performance. The results show that the output phase of the hybrid is continuously adjustable, enabling the hybrid to function perfectly as a 2 × 4 90° space optical hybrid under an appropriate electric field, and that the phase error can be compensated for by an electric field adjustment. (paper)

  12. A metallic buried interconnect process for through-wafer interconnection

    Ji, Chang-Hyeon; Herrault, Florian; Allen, Mark G

    2008-01-01

    In this paper, we present the design, fabrication process and experimental results of electroplated metal interconnects buried at the bottom of deep silicon trenches with vertical sidewalls. A manual spray-coating process along with a unique trench-formation process has been developed for the electroplating of a metal interconnection structure at the bottom surface of the deep trenches. The silicon etch process combines the isotropic dry etch process and conventional Bosch process to fabricate a deep trench with angled top-side edges and vertical sidewalls. The resulting trench structure, in contrast to the trenches fabricated by wet anisotropic etching, enables spray-coated photoresist patterning with good sidewall and top-side edge coverage while maintaining the ability to form a high-density array of deep trenches without excessive widening of the trench opening. A photoresist spray-coating process was developed and optimized for the formation of electroplating mold at the bottom of 300 µm deep trenches having vertical sidewalls. A diluted positive tone photoresist with relatively high solid content and multiple coating with baking between coating steps has been experimentally proven to provide high quality sidewall and edge coverage. To validate the buried interconnect approach, a three-dimensional daisy chain structure having a buried interconnect as the bottom connector and traces on the wafer surface as the top conductor has been designed and fabricated

  13. Cellular structures with interconnected microchannels

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  14. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  15. Heating of large format filters in sub-mm and fir space optics

    Baccichet, N.; Savini, G.

    2017-11-01

    Most FIR and sub-mm space borne observatories use polymer-based quasi-optical elements like filters and lenses, due to their high transparency and low absorption in such wavelength ranges. Nevertheless, data from those missions have proven that thermal imbalances in the instrument (not caused by filters) can complicate the data analysis. Consequently, for future, higher precision instrumentation, further investigation is required on any thermal imbalances embedded in such polymer-based filters. Particularly, in this paper the heating of polymers when operating at cryogenic temperature in space will be studied. Such phenomenon is an important aspect of their functioning since the transient emission of unwanted thermal radiation may affect the scientific measurements. To assess this effect, a computer model was developed for polypropylene based filters and PTFE-based coatings. Specifically, a theoretical model of their thermal properties was created and used into a multi-physics simulation that accounts for conductive and radiative heating effects of large optical elements, the geometry of which was suggested by the large format array instruments designed for future space missions. It was found that in the simulated conditions, the filters temperature was characterized by a time-dependent behaviour, modulated by a small scale fluctuation. Moreover, it was noticed that thermalization was reached only when a low power input was present.

  16. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  17. Mobile free-space optical communications: a feasibility study of various battlefield scenarios

    Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.

    2012-06-01

    Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.

  18. Tests of lobster eye optics for small space X-ray telescope

    Tichy, Vladimir; Barbera, Marco; Collura, Alfonso; Hromcik, Martin; Hudec, Rene; Inneman, Adolf; Jakubek, Jan; Marsik, Jiri; Marsikova, Veronika; Pina, Ladislav; Varisco, Salvatore

    2011-01-01

    The Lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space all-sky X-ray monitors. We present preliminary results of tests of prototype lobster eye X-ray optics in quasi parallel beam full imaging mode conducted using the 35 m long X-ray beam-line of INAF-OAPA in Palermo (Italy). X-ray images at the focal plane have been taken with a microchannel plate (MCP) detector at several energy values from 0.3 to 8 keV. The gain, the field of view and the angular resolution have been measured and compared with theoretical values.

  19. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  20. An optical flow-based state-space model of the vocal folds

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A l...... to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters........ A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  1. Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space

    Liu, Ling; Xiao, Shilin; Zhang, Lu; Bi, Meihua; Zhang, Yunhao; Fang, Jiafei; Hu, Weisheng

    2017-09-01

    A digital chaos-masked optical encryption scheme is proposed and demonstrated. The transmitted signal is completely masked by interference chaotic noise in both bandwidth and amplitude with analog method via dual-drive Mach-Zehnder modulator (DDMZM), making the encrypted signal analog, noise-like and unrecoverable by post-processing techniques. The decryption process requires precise matches of both the amplitude and phase between the cancellation and interference chaotic noises, which provide a large two-dimensional key space with the help of optical interference cancellation technology. For 10-Gb/s 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal over the maximum transmission distance of 80 km without dispersion compensation or inline amplifier, the tolerable mismatch ranges of amplitude and phase/delay at the forward error correction (FEC) threshold of 3.8×10-3 are 0.44 dB and 0.08 ns respectively.

  2. Design of free-space optical transmission system in computer tomography equipment

    Liu, Min; Fu, Weiwei; Zhang, Tao

    2018-04-01

    Traditional computer tomography (CT) based on capacitive coupling cannot satisfy the high data rate transmission requirement. We design and experimentally demonstrate a free-space optical transmission system for CT equipment at a data rate of 10 Gb / s. Two interchangeable sections of 12 pieces of fiber with equal length is fabricated and tested by our designed laser phase distance measurement system. By locating the 12 collimators in the edge of the circle wheel evenly, the optical propagation characteristics for the 12 wired and wireless paths are similar, which can satisfy the requirement of high-speed CT transmission system. After bit error rate (BER) measurement in several conditions, the BER performances are below the value of 10 - 11, which has the potential in the future application scenario of CT equipment.

  3. An optical flow-based state-space model of the vocal folds.

    Granados, Alba; Brunskog, Jonas

    2017-06-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.

  4. Patulous Subarachnoid Space of the Optic Nerve Associated with X-Linked Hypophosphatemic Rickets.

    Galvez-Ruiz, Alberto; Chaudhry, Imtiaz

    2013-01-01

    Although the deficiency forms are the most common manifestations of rickets, there are other forms of rickets that are resistant to vitamin D. Of these, the most common is X-linked hypophosphatemic rickets. Rickets represents a group of multiple cranial bone disorders-craniosynostosis and the presence of Chari I malformation being the most notable-that explain the increase in intracranial pressure. We present a 4-year-old patient with an unusual association of X-linked hypophosphataemic rickets, bilateral proptosis, and prominent bilateral widening of the optic nerve sheaths. Although the association between intracranial hypertension and rickets is known, to the best of our knowledge, such a prominent distention of the subarachnoid space of the optic nerve without papilloedema has not been previously described.

  5. An efficient optical architecture for sparsely connected neural networks

    Hine, Butler P., III; Downie, John D.; Reid, Max B.

    1990-01-01

    An architecture for general-purpose optical neural network processor is presented in which the interconnections and weights are formed by directing coherent beams holographically, thereby making use of the space-bandwidth products of the recording medium for sparsely interconnected networks more efficiently that the commonly used vector-matrix multiplier, since all of the hologram area is in use. An investigation is made of the use of computer-generated holograms recorded on such updatable media as thermoplastic materials, in order to define the interconnections and weights of a neural network processor; attention is given to limits on interconnection densities, diffraction efficiencies, and weighing accuracies possible with such an updatable thin film holographic device.

  6. Radiation hardening of optical fibers and fiber sensors for space applications: recent advances

    Girard, S.; Ouerdane, Y.; Pinsard, E.; Laurent, A.; Ladaci, A.; Robin, T.; Cadier, B.; Mescia, L.; Boukenter, A.

    2017-11-01

    In these ICSO proceedings, we review recent advances from our group concerning the radiation hardening of optical fiber and fiber-based sensors for space applications and compare their benefits to state-of-the-art results. We focus on the various approaches we developed to enhance the radiation tolerance of two classes of optical fibers doped with rare-earths: the erbium (Er)-doped ones and the ytterbium/erbium (Er/Yb)-doped ones. As a first approach, we work at the component level, optimizing the fiber structure and composition to reduce their intrinsically high radiation sensitivities. For the Erbium-doped fibers, this has been achieved using a new structure for the fiber that is called Hole-Assisted Carbon Coated (HACC) optical fibers whereas for the Er/Ybdoped optical fibers, their hardening was successfully achieved adding to the fiber, the Cerium element, that prevents the formation of the radiation-induced point defects responsible for the radiation induced attenuation in the infrared part of the spectrum. These fibers are used as part of more complex systems like amplifiers (Erbium-doped Fiber Amplifier, EDFA or Yb-EDFA) or source (Erbium-doped Fiber Source, EDFS or Yb- EDFS), we discuss the impact of using radiation-hardened fibers on the system radiation vulnerability and demonstrate the resistance of these systems to radiation constraints associated with today and future space missions. Finally, we will discuss another radiation hardening approach build in our group and based on a hardening-by-system strategy in which the amplifier is optimized during its elaboration for its future mission considering the radiation effects and not in-lab.

  7. Theoretical Models of Optical Transients. I. A Broad Exploration of the Duration-Luminosity Phase Space

    Villar, V. Ashley; Berger, Edo; Metzger, Brian D.; Guillochon, James

    2017-11-01

    The duration-luminosity phase space (DLPS) of optical transients is used, mostly heuristically, to compare various classes of transient events, to explore the origin of new transients, and to influence optical survey observing strategies. For example, several observational searches have been guided by intriguing voids and gaps in this phase space. However, we should ask, do we expect to find transients in these voids given our understanding of the various heating sources operating in astrophysical transients? In this work, we explore a broad range of theoretical models and empirical relations to generate optical light curves and to populate the DLPS. We explore transients powered by adiabatic expansion, radioactive decay, magnetar spin-down, and circumstellar interaction. For each heating source, we provide a concise summary of the basic physical processes, a physically motivated choice of model parameter ranges, an overall summary of the resulting light curves and their occupied range in the DLPS, and how the various model input parameters affect the light curves. We specifically explore the key voids discussed in the literature: the intermediate-luminosity gap between classical novae and supernovae, and short-duration transients (≲ 10 days). We find that few physical models lead to transients that occupy these voids. Moreover, we find that only relativistic expansion can produce fast and luminous transients, while for all other heating sources events with durations ≲ 10 days are dim ({M}{{R}}≳ -15 mag). Finally, we explore the detection potential of optical surveys (e.g., Large Synoptic Survey Telescope) in the DLPS and quantify the notion that short-duration and dim transients are exponentially more difficult to discover in untargeted surveys.

  8. Dember effect photodetectors and the effects of turbulence on free-space optical communication systems

    Dikmelik, Yamac

    High-speed free-space optical communication systems have recently utilized components that have been developed for fiber-optic communication systems. The received laser beam in such a system must be coupled into a single-mode fiber at the input of a commercially available receiver module or a wavelength division demultiplexer. However, one effect of propagation through atmospheric turbulence is that the spatial coherence of a laser beam is degraded and the percentage of the available power that can be coupled into the single-mode fiber is limited. This dissertation presents a numerical evaluation of fiber coupling efficiency for laser light distorted by atmospheric turbulence. The results for weak fluctuation conditions provide the level of coupling efficiency that can be expected for a given turbulence strength. In addition, the results show that the link distance must be limited to 400 m under moderate turbulence conditions if the link budget requires a coupling efficiency of 0.1. We also investigate the use of a coherent fiber array as a receiver structure to improve the fiber coupling efficiency of a free-space optical communication system. Our numerical results show that a coherent fiber array that consists of seven subapertures would increase fiber coupling efficiency by a significant amount for representative turbulence conditions and link distances. The use of photo-emf detectors as elements of a wavefront sensor for an adaptive optics system is also considered as an alternative method of reducing the effects of turbulence on a free-space optical communication system. Dember and photo-emf currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Our results show that Dember photocurrents dominate the response of high-purity silicon samples with top surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes and Dember photocurrents appear

  9. Capture into resonance and phase-space dynamics in an optical centrifuge

    Armon, Tsafrir; Friedland, Lazar

    2016-04-01

    The process of capture of a molecular ensemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase-space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 ,2 characterizing the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.

  10. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  11. On the performance of free-space optical communication systems with multiuser diversity

    Yang, Liang

    2014-09-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over weak atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, and coverage are analyzed.

  12. Increased-accuracy numerical modeling of electron-optical systems with space-charge

    Sveshnikov, V.

    2011-01-01

    This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.

  13. Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions

    Ijaz, M.; Ghassemlooy, Z.; Pešek, J.; Fišer, Ondřej; Le Minh, H.; Bentley, E.

    2013-01-01

    Roč. 31, č. 11 (2013), s. 1720-1726 ISSN 0733-8724 R&D Projects: GA ČR(CZ) GAP102/11/1376 Institutional support: RVO:68378289 Keywords : Fog attenuation * free space optics * smoke attenuation * visibility Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.862, year: 2013 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6497447&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6497447

  14. Space radiation effects in high performance fiber optic data links for satellite data management

    Marshall, P.W.; Dale, C.J.; LaBel, K.A.

    1996-01-01

    Fiber optic based technologies are relatively new to satellite applications, and are receiving considerable attention for planned applications in NASA, DOD, and commercial space sectors. The authors review various activities in recent years aimed at understanding and mitigating radiation related risk in deploying fiber based data handling systems on orbit. Before concluding that there are no critical barriers to designing survivable and reliable systems, the authors analyze several possible types of radiation effects. Particular attention is given to the subject of particle-induced bit errors in InGaAs p-i-n photodiodes, including a discussion of error mitigation and upset rate prediction methods

  15. Bi cluster-assembled interconnects produced using SU8 templates

    Partridge, J G; Matthewson, T; Brown, S A

    2007-01-01

    Bi clusters with an average diameter of 25 nm have been deposited from an inert gas aggregation source and assembled into thin-film interconnects which are formed between planar electrical contacts and supported on Si substrates passivated with Si 3 N 4 or thermally grown oxide. A layer of SU8 (a negative photoresist based on EPON SU-8 epoxy resin) is patterned using optical or electron-beam lithography, and it defines the position and dimensions of the cluster film. The conduction between the contacts is monitored throughout the deposition/assembly process, and subsequent I(V) characterization is performed in situ. Bi cluster-assembled interconnects have been fabricated with nanoscale widths and with up to 1:1 thickness:width aspect ratios. The conductivity of these interconnects has been increased, post-deposition, using a simple thermal annealing process

  16. Fusion-bonded fluidic interconnects

    Fazal, I.; Elwenspoek, Michael Curt

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are

  17. Regulatory Issues Surrounding Merchant Interconnection

    Kuijlaars, Kees-Jan; Zwart, Gijsbert

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections

  18. Regulatory Issues Surrounding Merchant Interconnection

    Kuijlaars, Kees-Jan; Zwart, Gijsbert [Office for Energy Regulation (DTe), The Hague (Netherlands)

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections.

  19. Local Network Wideband Interconnection Alternatives.

    1984-01-01

    signal. 3.2.2 Limitations Although satellites offer the advantages of insensitivity to distance, point-to-multipoint communication capability and...Russell, the CATV franchisee for the town of Bedford, has not yit set rates for leasing channels on their network. If this network were interconnected

  20. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observ...

  1. Composite optical vortices in noncollinear Laguerre–Gaussian beams and their propagation in free space

    Chen Ke; Liu Pusheng; Lü Baida

    2008-01-01

    Taking two Laguerre—Gaussian beams with topological charge l = ± 1 as an example, this paper studies the composite optical vortices formed by two noncollinear Laguerre—Gaussian beams with different phases, amplitudes, waist widths, off-axis distances, and their propagation in free space. It is shown by detailed numerical illustrative examples that the number and location of composite vortices at the waist plane are variable by varying the relative phase β, amplitude ratio η, waist width ratio ζ, or off-axis distance ratio μ. The net topological charge l net is not always equal to the sum l sum of charges of the two component beams. The motion, creation and annihilation of composite vortices take place in the free-space propagation, and the net charge during the propagation remains unchanged and equals to the net charge at the waist plane

  2. Large motion high cycle high speed optical fibers for space based applications.

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  3. Reflected Sunlight Reduction and Characterization for a Deep-Space Optical Receiver Antenna (DSORA)

    Clymer, B. D.

    1990-01-01

    A baffle system for the elimination of first-order specular and diffuse reflection of sunlight from the sunshade of a deep-space optical receiver telescope is presented. This baffle system consists of rings of 0.5cm blades spaced 2.5 cm apart on the walls of GO hexagonal sunshade tubes that combine to form the telescope sunshade. The shadow cast by the blades, walls, and rims of the tubes prevent all first-order reflections of direct sunlight from reaching the primary mirror of the telescope. A reflection model of the sunshade without baffles is also presented for comparison. Since manufacturers of absorbing surfaces do not measure data near grazing incidence, the reflection properties at anticipated angles of incidence must be characterized. A description of reflection from matte surfaces in term of bidirectional reflection distribution function (BRDF) is presented along with a discussion of measuring BRDF near grazing incidence.

  4. StreakDet data processing and analysis pipeline for space debris optical observations

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the

  5. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  6. Eight-channel video broadcast feed service using free-space optical wireless technology at the Sydney 2000 Olympic Games

    Szajowski, Paul F.; Rigas, A. J.; Robinson, J. W.; Nykolak, Gerald; Paulson, Bruce D.; Tourgee, G. E.; Auborn, James J.

    2001-02-01

    12 Terrestrial 1550 nm WDM free-space optical communication systems have been demonstrated to provide a viable means to transport data, voice and video channels for point-to-point applications without the use of optical fiber. Key features of free-space optical transmission systems are their ability to utilize present day telecommunication components such as: laser diode transmitters, high-power optical amplifiers operating within the 1550 nm optical transmission window and high-sensitivity optical receivers designed for multi-Giga- bit data rates. In this paper, we report on details of the world's first field test, demonstrating real time video transmission of eight uncompressed standard-definition (SD) video channels operating at an aggregate data rate of 1.485 Gb/s over a 0.89 km terrestrial free-space link. This data link was used in support of the 2000 Olympic games held recently in Sydney, Australia. Results from this eight- channel SD terrestrial free-space laser communications systems are presented. The transmission system operated error-free continuously from September 14, 2000 until October 1, 2000, twenty-four hours a day, throughout the coverage of the games. Modeling results predict that free- space SD video transmission systems can be designed and operated over significant link distances under nominal visibility conditions.

  7. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    Sabourin, D; Snakenborg, D; Dufva, M

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic observation. The interconnection block method is scalable, flexible and supports high interconnection density. The average pressure limit of the interconnection block was near 5.5 bar and all individual results were well above the 2 bar threshold considered applicable to most microfluidic applications

  8. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  9. Analysis of compound parabolic concentrators and aperture averaging to mitigate fading on free-space optical links

    Wasiczko, Linda M.; Smolyaninov, Igor I.; Davis, Christopher C.

    2004-01-01

    Free space optics (FSO) is one solution to the bandwidth bottleneck resulting from increased demand for broadband access. It is well known that atmospheric turbulence distorts the wavefront of a laser beam propagating through the atmosphere. This research investigates methods of reducing the effects of intensity scintillation and beam wander on the performance of free space optical communication systems, by characterizing system enhancement using either aperture averaging techniques or nonimaging optics. Compound Parabolic Concentrators, nonimaging optics made famous by Winston and Welford, are inexpensive elements that may be easily integrated into intensity modulation-direct detection receivers to reduce fading caused by beam wander and spot breakup in the focal plane. Aperture averaging provides a methodology to show the improvement of a given receiver aperture diameter in averaging out the optical scintillations over the received wavefront.

  10. Cryptographic analysis on the key space of optical phase encryption algorithm based on the design of discrete random phase mask

    Lin, Chao; Shen, Xueju; Li, Zengyan

    2013-07-01

    The key space of phase encryption algorithm using discrete random phase mask is investigated by numerical simulation in this paper. Random phase mask with finite and discrete phase levels is considered as the core component in most practical optical encryption architectures. The key space analysis is based on the design criteria of discrete random phase mask. The role of random amplitude mask and random phase mask in optical encryption system is identified from the perspective of confusion and diffusion. The properties of discrete random phase mask in a practical double random phase encoding scheme working in both amplitude encoding (AE) and phase encoding (PE) modes are comparably analyzed. The key space of random phase encryption algorithm is evaluated considering both the encryption quality and the brute-force attack resistibility. A method for enlarging the key space of phase encryption algorithm is also proposed to enhance the security of optical phase encryption techniques.

  11. Energy efficient rateless codes for high speed data transfer over free space optical channels

    Prakash, Geetha; Kulkarni, Muralidhar; Acharya, U. S.

    2015-03-01

    Terrestrial Free Space Optical (FSO) links transmit information by using the atmosphere (free space) as a medium. In this paper, we have investigated the use of Luby Transform (LT) codes as a means to mitigate the effects of data corruption induced by imperfect channel which usually takes the form of lost or corrupted packets. LT codes, which are a class of Fountain codes, can be used independent of the channel rate and as many code words as required can be generated to recover all the message bits irrespective of the channel performance. Achieving error free high data rates with limited energy resources is possible with FSO systems if error correction codes with minimal overheads on the power can be used. We also employ a combination of Binary Phase Shift Keying (BPSK) with provision for modification of threshold and optimized LT codes with belief propagation for decoding. These techniques provide additional protection even under strong turbulence regimes. Automatic Repeat Request (ARQ) is another method of improving link reliability. Performance of ARQ is limited by the number of retransmissions and the corresponding time delay. We prove through theoretical computations and simulations that LT codes consume less energy per bit. We validate the feasibility of using energy efficient LT codes over ARQ for FSO links to be used in optical wireless sensor networks within the eye safety limits.

  12. Multilevel microvibration test for performance predictions of a space optical load platform

    Li, Shiqi; Zhang, Heng; Liu, Shiping; Wang, Yue

    2018-05-01

    This paper presents a framework for the multilevel microvibration analysis and test of a space optical load platform. The test framework is conducted on three levels, including instrument, subsystem, and system level. Disturbance source experimental investigations are performed to evaluate the vibration amplitude and study vibration mechanism. Transfer characteristics of space camera are validated by a subsystem test, which allows the calculation of transfer functions from various disturbance sources to optical performance outputs. In order to identify the influence of the source on the spacecraft performance, a system level microvibration measurement test has been performed on the ground. From the time domain analysis and spectrum analysis of multilevel microvibration tests, we concluded that the disturbance source has a significant effect on its installation position. After transmitted through mechanical links, the residual vibration reduces to a background noise level. In addition, the angular microvibration of the platform jitter is mainly concentrated in the rotation of y-axes. This work is applied to a real practical application involving the high resolution satellite camera system.

  13. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  14. Acousto-optic pointing and tracking systems for free-space laser communications

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  15. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  16. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  17. Multilayer four-flux model for the optical degradation of thermal control coatings in space

    Tonon, C.; Rozé, C.; Girasole, T.; Duvignacq, Carole

    2017-11-01

    The aim of this paper is to generalize the four-flux radiative transfer model to the case of a multilayer medium. An application is presented with the study of the optical degradation of a white paint in simulated space environment. This paint is constituted of a mixing a zinc oxide and a silicone resin. A sample was irradiated with 45 keV protons and reflectance measurements were achieved in situ after each step of irradiation in order to see the evolution of the thermo-optical properties of the coating. These tests were completed after irradiation by Scanning Electron Microscopy (SEM) in order to characterize the structure of the material and to detect possible structural changes due to the irradiation. This experimental investigation allowed us to define hypothesis to be introduced in the model. In particular, we assume that the optical degradation centered on 410 nm is due to a variation a-/+ of the imaginary part of the refractive index of zinc oxide in the damaged layer. The generalized four-flux model was validated by comparing numerical calculation with experiment.

  18. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  19. Compact models and performance investigations for subthreshold interconnects

    Dhiman, Rohit

    2014-01-01

    The book provides a detailed analysis of issues related to sub-threshold interconnect performance from the perspective of analytical approach and design techniques. Particular emphasis is laid on the performance analysis of coupling noise and variability issues in sub-threshold domain to develop efficient compact models. The proposed analytical approach gives physical insight of the parameters affecting the transient behavior of coupled interconnects. Remedial design techniques are also suggested to mitigate the effect of coupling noise. The effects of wire width, spacing between the wires, wi

  20. Monitoring of facial stress during space flight: Optical computer recognition combining discriminative and generative methods

    Dinges, David F.; Venkataraman, Sundara; McGlinchey, Eleanor L.; Metaxas, Dimitris N.

    2007-02-01

    Astronauts are required to perform mission-critical tasks at a high level of functional capability throughout spaceflight. Stressors can compromise their ability to do so, making early objective detection of neurobehavioral problems in spaceflight a priority. Computer optical approaches offer a completely unobtrusive way to detect distress during critical operations in space flight. A methodology was developed and a study completed to determine whether optical computer recognition algorithms could be used to discriminate facial expressions during stress induced by performance demands. Stress recognition from a facial image sequence is a subject that has not received much attention although it is an important problem for many applications beyond space flight (security, human-computer interaction, etc.). This paper proposes a comprehensive method to detect stress from facial image sequences by using a model-based tracker. The image sequences were captured as subjects underwent a battery of psychological tests under high- and low-stress conditions. A cue integration-based tracking system accurately captured the rigid and non-rigid parameters of different parts of the face (eyebrows, lips). The labeled sequences were used to train the recognition system, which consisted of generative (hidden Markov model) and discriminative (support vector machine) parts that yield results superior to using either approach individually. The current optical algorithm methods performed at a 68% accuracy rate in an experimental study of 60 healthy adults undergoing periods of high-stress versus low-stress performance demands. Accuracy and practical feasibility of the technique is being improved further with automatic multi-resolution selection for the discretization of the mask, and automated face detection and mask initialization algorithms.

  1. Analysis of optical properties behaviour of CLEARCERAM, fused silica and CaF2 glasses exposed to simulated space conditions

    Fernández-Rodríguez, M.; Alvarado, C. G.; Núñez, A.; Álvarez-Herrero, A.

    2017-11-01

    Optical instrumentation on-board satellites suffer degradation due to the hostile conditions of space environment. Space conditions produce instrumentation performances changes causing a decrease or a cancellation of their features. Particularly, space environment conditions have a significant influence on the optical properties of glasses which are part of space optical systems. Space environment characteristics which effects on the optical system have to be taken into account are: outgassing, volatile components, gas or water vapor which form part of the spacecraft materials, vacuum, microgravity, micrometeorites, space debris, thermal, mechanical and radiation environment and effects of the high atmosphere [1]. This work is focused on analyzing temperature variations and ultraviolet (UV) and gamma radiation effects on the optical properties of several glasses used on space applications. Thermal environment is composed of radiation from the Sun, the albedo and the Earth radiation and the radiation from the spacecraft to deep space. Flux and influence of temperature on satellite materials depend on factors as the period of year or the position of them on the space system. Taking into account that the transfer mechanisms of heat are limited by the conduction and the radiation, high gradients of temperature are obtained in system elements which can cause changes of their optical properties, birefringence… Also, these thermal cycles can introduce mechanical loads into material structure due to the expansion and the contraction of the material leading to mechanical performances degradation [2]. However, it is the radiation environment the main cause of damage on optical properties of materials used on space instrumentation. This environment consists of a wide range of energetic particles between keV and MeV which are trapped by the geomagnetic field or are flux of particles that cross the Earth environment from the external of the Solar System [3]. The damage

  2. 47 CFR 90.477 - Interconnected systems.

    2010-10-01

    ... part and medical emergency systems in the 450-470 MHz band, interconnection will be permitted only... operating on frequencies in the bands below 800 MHz are not subject to the interconnection provisions of...

  3. Channel modelling for free-space optical inter-HAP links using adaptive ARQ transmission

    Parthasarathy, S.; Giggenbach, D.; Kirstädter, A.

    2014-10-01

    Free-space optical (FSO) communication systems have seen significant developments in recent years due to growing need for very high data rates and tap-proof communication. The operation of an FSO link is suited to diverse variety of applications such as satellites, High Altitude Platforms (HAPs), Unmanned Aerial Vehicles (UAVs), aircrafts, ground stations and other areas involving both civil and military situations. FSO communication systems face challenges due to different effects of the atmospheric channel. FSO channel primarily suffers from scintillation effects due to Index of Refraction Turbulence (IRT). In addition, acquisition and pointing becomes more difficult because of the high directivity of the transmitted beam: Miss-pointing of the transmitted beam and tracking errors at the receiver generate additional fading of the optical signal. High Altitude Platforms (HAPs) are quasi-stationary vehicles operating in the stratosphere. The slowly varying but precisely determined time-of-flight of the Inter-HAP channel adds to its characteristics. To propose a suitable ARQ scheme, proper theoretical understanding of the optical atmospheric propagation and modeling of a specific scenario FSO channel is required. In this paper, a bi-directional symmetrical Inter-HAP link has been selected and modeled. The Inter-HAP channel model is then investigated via simulations in terms of optical scintillation induced by IRT and in presence of pointing error. The performance characteristic of the model is then quantified in terms of fading statistics from which the Packet Error Probability (PEP) is calculated. Based on the PEP characteristics, we propose suitable ARQ schemes.

  4. Design of a gigawatt space solar power satellite using optical concentrator system

    Dessanti, B.; Komerath, N.; Shah, S.

    A 1-gigawatt space solar power satellite using a large array of individually pointable optical elements is identified as the key mass element of a large scale space solar power architecture using the Space Power Grid concept. The proposed satellite design enables a significant increase in specific power. Placed in sun-synchronous dynamic orbits near 2000km altitude, these satellites can maintain the constant solar view requirement of GEO-based architectures, while greatly reducing the beaming distance required, decreasing the required antenna size and in turn the overall system mass. The satellite uses an array of individually pointable optical elements (which we call a Mirasol Concentrator Array) to concentrate solar energy to an intensified feed target that feeds into the main heater of the spacecraft, similar conceptually to heliostat arrays. The spacecraft then utilizes Brayton cycle conversion to take advantage of non-linear power level scaling in order to generate high specific power values. Using phase array antennas, the power is then beamed at a millimeter wave frequency of 220GHz down to Earth. The design of the Mirasol concentrator system will be described and a detailed mass estimation of the system is developed. The technical challenges of pointing the elements and maintaining constant solar view is investigated. An end-to-end efficiency analysis is performed. Subsystem designs for the spacecraft are outlined. A detailed mass budget is refined to reflect reductions in uncertainty of the spacecraft mass, particularly in the Mirasol system. One of the key mass drivers of the spacecraft is the active thermal control system. The design of a lightweight thermal control system utilizing graphene sheets is also detailed.

  5. Fusion-bonded fluidic interconnects

    Fazal, I; Elwenspoek, M C

    2008-01-01

    A new approach to realize fluidic interconnects based on the fusion bonding of glass tubes with silicon is presented. Fusion bond strength analyses have been carried out. Experiments with plain silicon wafers and coated with silicon oxide and silicon nitride are performed. The obtained results are discussed in terms of the homogeneity and strength of fusion bond. High pressure testing shows that the bond strength is large enough for most applications of fluidic interconnects. The bond strength for 525 µm thick silicon, with glass tubes having an outer diameter of 6 mm and with a wall thickness of 2 mm, is more than 60 bars after annealing at a temperature of 800 °C

  6. System interconnection studies using WASP

    Bayrak, Y [Turkish Electricity Generation and Transmission Corp., Ankara (Turkey)

    1997-09-01

    The aim of this paper is to describe the application of WASP as a modelling tool for determining the development of two electric systems with interconnections. A case study has been carried out to determine the possibilities of transfer of baseload energy between Turkey and a neighboring country. The objective of this case study is to determine the amount of energy that can be transferred, variations of Loss Probability (LOLP) and unserved energy, and the cost of additional generation with interconnection. The break-even cost will be determined to obtain the minimum charge rate at which TEAS (Turkish Electricity Generation-Transmission Corp.) needs to sell the energy in order to recover the costs. The minimum charge rate for both capacity and energy will be estimated without considering extra capacity additions, except for the ones needed by the Turkish system alone. (author). 2 figs, 3 tabs.

  7. Multilevel Dual Damascene copper interconnections

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  8. Driving Interconnected Networks to Supercriticality

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  9. 18 CFR 292.306 - Interconnection costs.

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any electric...

  10. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  11. ANALYSIS OF RADAR AND OPTICAL SPACE BORNE DATA FOR LARGE SCALE TOPOGRAPHICAL MAPPING

    W. Tampubolon

    2015-03-01

    Full Text Available Normally, in order to provide high resolution 3 Dimension (3D geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term “Rapid Mapping”. In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar or the usage of the GCPs in both, the optical and the

  12. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  13. Optical devices for proximity operations study and test report. [intensifying images for visual observation during space transportation system activities

    Smith, R. A.

    1979-01-01

    Operational and physical requirements were investigated for a low-light-level viewing device to be used as a window-mounted optical sight for crew use in the pointing, navigating, stationkeeping, and docking of space vehicles to support space station operations and the assembly of large structures in space. A suitable prototype, obtained from a commercial vendor, was subjected to limited tests to determine the potential effectiveness of a proximity optical device in spacecraft operations. The constructional features of the device are discussed as well as concepts for its use. Tests results show that a proximity optical device is capable of performing low-light-level viewing services and will enhance manned spacecraft operations.

  14. A coherent free space optical link for long distance clock comparison, navigation, and communication: The Mini-Doll project

    Djerroud, K.; Samain, E.; Clairon, A.; Acef, O.; Man, N.; Lemonde, P.; Wolf, P.

    2017-11-01

    We describe the realization of a 5 km free space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long distance frequency transfer.

  15. Free-Space Optical Communications: Capacity Bounds, Approximations, and a New Sphere-Packing Perspective

    Chaaban, Anas; Morvan, Jean-Marie; Alouini, Mohamed-Slim

    2016-01-01

    The capacity of the free-space optical channel is studied. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed. This approach leads to new capacity upper bounds for a channel with a peak intensity constraint or an average intensity constraint. Under an average constraint only, the derived bound is tighter than an existing sphere-packing bound derived earlier by Farid and Hranilovic. The achievable rate of a truncated-Gaussian input distribution is also derived. It is shown that under both average and peak constraints, this achievable rate and the sphere-packing bounds are within a small gap at high SNR, leading to a simple high-SNR capacity approximation. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions.

  16. Differential phase-shift keying and channel equalization in free space optical communication system

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  17. Ergodic Capacity Analysis of Free-Space Optical Links with Nonzero Boresight Pointing Errors

    Ansari, Imran Shafique

    2015-04-01

    A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. intensity modulation/ direct detection as well as heterodyne detection) is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system is presented in terms of well-known elementary functions. Capitalizing on these new moments expressions, we present approximate and simple closedform results for the ergodic capacity at high and low SNR regimes. All the presented results are verified via computer-based Monte-Carlo simulations.

  18. Unified performance analysis of hybrid-ARQ with incremental redundancy over free-space optical channels

    Zedini, Emna

    2014-09-01

    In this paper, we carry out a unified performance analysis of hybrid automatic repeat request (HARQ) with incremental redundancy (IR) from an information theoretic perspective over a point-to-point free-space optical (FSO) system. First, we introduce a novel unified expression for the distribution of a single FSO link modeled by the Gamma fading that accounts for pointing errors subject to both types of detection techniques at the receiver side (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). Then, we provide analytical expressions for the outage probability, the average number of transmissions, and the average transmission rate for HARQ with IR, assuming a maximum number of rounds for the HARQ protocol. In our study, the communication rate per HARQ round is constant. Our analysis demonstrates the importance of HARQ in improving the performance and reliability of FSO communication systems. All the given results are verified via computer-based Monte-Carlo simulations.

  19. Free-Space Optical Communications: Capacity Bounds, Approximations, and a New Sphere-Packing Perspective

    Chaaban, Anas

    2016-02-03

    The capacity of the free-space optical channel is studied. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed. This approach leads to new capacity upper bounds for a channel with a peak intensity constraint or an average intensity constraint. Under an average constraint only, the derived bound is tighter than an existing sphere-packing bound derived earlier by Farid and Hranilovic. The achievable rate of a truncated-Gaussian input distribution is also derived. It is shown that under both average and peak constraints, this achievable rate and the sphere-packing bounds are within a small gap at high SNR, leading to a simple high-SNR capacity approximation. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions.

  20. Technique of fiber optics used to localize epidural space in piglets.

    Ting, Chien-Kun; Chang, Yin

    2010-05-24

    Technique of loss-of-resistance in epidural block is commonly used for epidural anesthesia in humans with approximately 90% successful rate. However, it may be one of the most difficult procedures to learn for anesthesia residents in hospital. A two-wavelength (650 nm and 532 nm) fiber-optical method has been developed according to the characteristic reflectance spectra of ex-vivo porcine tissues, which are associated with the needle insertion to localize the epidural space (ES). In an in-vivo study in piglets showed that the reflected lights from ES and its surrounding tissue ligamentum flavum (LF) are highly distinguishable. This indicates that this technique has potential to localize the ES on the spot without the help of additional guiding assistance.

  1. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  2. Linear and nonlinear optical signals in probability and phase-space representations

    Man'ko, Margarita A

    2006-01-01

    Review of different representations of signals including the phase-space representations and tomographic representations is presented. The signals under consideration are either linear or nonlinear ones. The linear signals satisfy linear quantumlike Schroedinger and von Neumann equations. Nonlinear signals satisfy nonlinear Schroedinger equations as well as Gross-Pitaevskii equation describing solitons in Bose-Einstein condensate. The Ville-Wigner distributions for solitons are considered in comparison with tomographic-probability densities describing solitons completely. different kinds of tomographies - symplectic tomography, optical tomography and Fresnel tomography are reviewed. New kind of map of the signals onto probability distributions of discrete photon number-like variable is discussed. Mutual relations between different transformations of signal functions are established in explicit form. Such characteristics of the signal-probability distribution as entropy is discussed

  3. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  4. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    Yang, Liang

    2014-04-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over both weak and strong atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, average capacity, diversity order, and coverage are analyzed. Results show that the diversity order for the gamma-gamma fading is N min{α, β}/2, where N is the number of users, and α and β are the channel fading parameters related to the effective atmospheric conditions of the link.

  5. Switching Fabric Based on Multi-Level LVDS Compatible Interconnect, Phase II

    National Aeronautics and Space Administration — Switching fabric (SF) is the key component of the next generation of back plane interconnects. Low power, TID and SEU resistant and high bandwidth upgradeable...

  6. Superconducting Thin-Film Interconnects for Cryogenic Photon Detector Arrays, Phase I

    National Aeronautics and Space Administration — Advanced imaging spectrometers for x-ray astronomy will require significant improvements in the high density interconnects between the detector arrays and the first...

  7. Test and Evaluation of Fiber Optic Sensors for High-Radiation Space Nuclear Power Applications

    Klemer, Daniel; Fielder, Robert S.; Stinson-Bagby, Kelly L.

    2004-01-01

    Fiber optic sensors can be used to measure a number of parameters, including temperature, strain, pressure and flow, for instrumentation and control of space nuclear power systems. In the past, this technology has often been rejected for use in such a high-radiation environment based on early experiments that revealed a number of degradation phenomena, including radiation-induced fiber attenuation, or 'graying', and Fiber Bragg Grating (FBG) fading and wavelength shift. However, this paper reports the results of recent experimental testing that demonstrates readability of fiber optic sensors to extremely high levels of neutron and gamma radiation. Both distributed Fiber Bragg Grating (FBG) sensors and single-point Extrinsic Fabry Perot Interferometer (EFPI) sensors were continuously monitored over a 2-month period, during which they were exposed to combined neutron and gamma radiation in both in-core and ex-core positions within a nuclear reactor. Total exposure reached approximately 2 x 10 19 cm -2 fast neutron (E > 1 MeV) fluence and 8.7 x 10 8 Gy gamma for in-core sensors. FBG sensors were interrogated using a standard Luna Innovations FBG measurement system, which is based on optical frequency-domain reflectometer (OFDR) technology. Approximately 74% of the 19 FBG sensors located at the core centerline in the in-core position exhibited sufficient signal-to-noise ratio (SNR) to remain readable even after receiving the maximum dose. EFPI sensors were spectrally interrogated using a broadband probe source operating in the 830 nm wavelength region. While these single-point sensors failed early in the test, important additional fiber spectral transmission data was collected, which indicates that interrogation of EFPI sensors in alternate wavelength regions may allow significant improvement in sensor longevity for operation in high-radiation environments. This work was funded through a Small Business Innovative Research (SBIR) contract with the Nasa Glenn Research

  8. Combined effect of turbulence and aerosol on free-space optical links.

    Libich, Jiri; Perez, Joaquin; Zvanovec, Stanislav; Ghassemlooy, Zabih; Nebuloni, Roberto; Capsoni, Carlo

    2017-01-10

    Despite the benefits of free-space optical (FSO) communications, their full utilization is limited by the influence of atmospheric weather conditions, such as fog, turbulence, smoke, snow, etc. In urban environments, additional environmental factors such as smog and dust particles due to air pollution caused by industry and motor vehicles may affect FSO link performance, which has not been investigated in detail yet. Both smog and dust particles cause absorption and scattering of the propagating optical signal, thus resulting in high attenuation. This work investigates the joint impact of atmospheric turbulence and dust particle-imposed scattering on FSO link performance as part of the last-mile access network in urban areas. Propagation of an optical wave is at first analyzed based on the microphysic approach, and the extinction caused by small particles is determined. An experimental measurement campaign using a dedicated test chamber is carried out to assess FSO link performance operating wavelengths of 670 nm and 830 nm and under dust and turbulent conditions. The measured attenuation and the Q factor in terms of the velocity of particle flow and turbulence strength are analyzed. We show that for an airflow of 2 m/s, the Q factor is almost 3.5 higher at the wavelength of 830 nm than at 670 nm. However, for a wavelength of 670 nm, the FSO link is less affected by the increase in airflow compared to 830 nm. The Q factor reduces with turbulence. Under similar turbulence conditions, for ash particles, the Q factor is higher than that of sand particles.

  9. Resilient backhaul network design using hybrid radio/free-space optical technology

    Douik, Ahmed

    2016-07-26

    The radio-frequency (RF) technology is a scalable solution for the backhaul planning. However, its performance is limited in terms of data rate and latency. Free Space Optical (FSO) backhaul, on the other hand, offers a higher data rate but is sensitive to weather conditions. To combine the advantages of RF and FSO backhauls, this paper proposes a cost-efficient backhaul network using the hybrid RF/FSO technology. To ensure a resilient backhaul, the paper imposes a given degree of redundancy by connecting each node through K link-disjoint paths so as to cope with potential link failures. Hence, the network planning problem considered in this paper is the one of minimizing the total deployment cost by choosing the appropriate link type, i.e., either hybrid RF/FSO or optical fiber (OF), between each couple of base-stations while guaranteeing K link-disjoint connections, a data rate target, and a reliability threshold. The paper solves the problem using graph theory techniques. It reformulates the problem as a maximum weight clique problem in the planning graph, under a specified realistic assumption about the cost of OF and hybrid RF/FSO links. Simulation results show the cost of the different planning and suggest that the proposed heuristic solution has a close-to-optimal performance for a significant gain in computation complexity. © 2016 IEEE.

  10. Scanless nonlinear optical microscope for image reconstruction and space-time correlation analysis

    Ceffa, N. G.; Radaelli, F.; Pozzi, P.; Collini, M.; Sironi, L.; D'alfonso, L.; Chirico, G.

    2017-06-01

    Optical Microscopy has been applied to life science from its birth and reached widespread application due to its major advantages: limited perturbation of the biological tissue and the easy accessibility of the light sources. However, as the spatial and time resolution requirements and the time stability of the microscopes increase, researchers are struggling against some of its limitations: limited transparency and the refractivity of the living tissue to light and the field perturbations induced by the path in the tissue. We have developed a compact stand-alone, completely scan-less, optical setup that allows to acquire non-linear excitation images and to measure the sample dynamics simultaneously on an ensemble of arbitrary chosen regions of interests. The image is obtained by shining a square array of spots on the sample obtained by a spatial light modulator and by shifting it (10 ms refresh time) on the sample. The final image is computed from the superposition of (100-1000) images. Filtering procedures can be applied to the raw images of the excitation array before building the image. We discuss results that show how this setup can be used for the correction of wave front aberrations induced by turbid samples (such as living tissues) and for the computation of space-time cross-correlations in complex networks.

  11. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  12. Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems

    Douik, Ahmed

    2016-04-22

    The deluge of date rate in today\\'s networks imposes a cost burden on the backhaul network design. Developing cost-efficient backhaul solutions becomes an exciting, yet challenging, problem. Traditional technologies for backhaul networks, including either radio-frequency (RF) backhauls or optical fibers (OF). While RF is a cost-effective solution as compared with OF, it supports the lower data rate requirements. Another promising backhaul solution is the free-space optics (FSO) as it offers both a high data rate and a relatively low cost. The FSO, however, is sensitive to nature conditions, e.g., rain, fog, and line-of-sight. This paper combines both the RF and FSO advantages and proposes a hybrid RF/FSO backhaul solution. It considers the problem of minimizing the cost of the backhaul network by choosing either OF or hybrid RF/FSO backhaul links between the base stations, so as to satisfy data rate, connectivity, and reliability constraints. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that the proposed solution shows a close-to-optimal performance, especially for reasonable prices of the hybrid RF/FSO links. They further reveal that the hybrid RF/FSO is a cost-efficient solution and a good candidate for upgrading the existing backhaul networks. © 2016 IEEE.

  13. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    Alouini, Mohamed-Slim

    2015-01-07

    Rapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.

  14. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  15. Free-space optical channel characterization and experimental validation in a coastal environment

    Alheadary, Wael Ghazy

    2018-03-05

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  16. Photometric redshifts for weak lensing tomography from space: the role of optical and near infrared photometry

    Abdalla, F. B.; Amara, A.; Capak, P.; Cypriano, E. S.; Lahav, O.; Rhodes, J.

    2008-07-01

    We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the dark energy equation of state. In particular, we examine how ground-based photometry (u, g, r, i, z, y) can be complemented by space-based near-infrared (near-IR) photometry (J, H), e.g. onboard the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo-z method we evaluate the figure of merit for the dark energy parameters (w0, wa). We consider a DUNE-like broad optical filter supplemented with ground-based multiband optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the dark energy figure of merit would be improved by a factor of 1.3-1.7 if IR filters are added onboard DUNE. Furthermore we show that with IR data catastrophic photo-z outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limits and the removal of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g. the galaxy reddening. For example, very deep u-band data could be as effective as the IR. We also find that about 105-106 spectroscopic redshifts are needed for calibration of the full survey.

  17. Free-space optical code-division multiple-access system design

    Jeromin, Lori L.; Kaufmann, John E.; Bucher, Edward A.

    1993-08-01

    This paper describes an optical direct-detection multiple access communications system for free-space satellite networks utilizing code-division multiple-access (CDMA) and forward error correction (FEC) coding. System performance is characterized by how many simultaneous users operating at data rate R can be accommodated in a signaling bandwidth W. The performance of two CDMA schemes, optical orthogonal codes (OOC) with FEC and orthogonal convolutional codes (OCC), is calculated and compared to information-theoretic capacity bounds. The calculations include the effects of background and detector noise as well as nonzero transmitter extinction ratio and power imbalance among users. A system design for 10 kbps multiple-access communications between low-earth orbit satellites is given. With near- term receiver technology and representative system losses, a 15 W peak-power transmitter provides 10-6 BER performance with seven interfering users and full moon background in the receiver FOV. The receiver employs an array of discrete wide-area avalanche photodiodes (APD) for wide field of view coverage. Issues of user acquisition and synchronization, implementation technology, and system scalability are also discussed.

  18. Ethernet access network based on free-space optic deployment technology

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  19. Free-space optical channel characterization and experimental validation in a coastal environment

    Alheadary, Wael Ghazy; Park, Kihong; Alfaraj, Nasir; Guo, Yujian; Stegenburgs, Edgars; Ng, Tien Khee; Ooi, Boon S.; Alouini, Mohamed-Slim

    2018-01-01

    Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

  20. Epidemic spreading on interconnected networks.

    Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián

    2012-08-01

    Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.

  1. Darwin : the technical challenges of an optical nulling interferometer in space

    Viard, Thierry; Lund, Glenn; Thomas, Eric; Vacance, Michel

    2017-11-01

    Alcatel Space has been responsible for a feasibility study contract, awarded by the European Space Agency, and dedicated to the definition of preliminary interferometric concepts for the direct detection and characterisation of exo-planets associated with nearby stars. The retained concept is a six free-flyer-telescope interferometer, with a variable baseline ranging from 50 to 500 m. The collected wavefronts are combined on a 7th free-flying hub satellite at the centre of the array, and the observations are performed in the thermal Infra-Red spectral band. The latter choice is made for two reasons : firstly, the wavelength providing optimal contrast between the planetary and stellar (background) signals is approximately 10μm secondly, the spectral features of interest for the detection of life as we know it (CO2, H2O, O3 , CH4 ... ) lie in the band between 6 and 18 μm. The system requirements for such an instrument are very severe, owing to the physical nature of the mission concept; i.e. that of a coronographic stellar interferometer: in order to achieve satisfactory extinction of the unwanted flux generated by the central star, such a concept will impose the control of optical pathlength differences between telescopes to within a small fraction of a wavelength, milli-arcsec pointing stabilities, 10-3 amplitude equalisation, achromatic check-shifts of some beams with respect to the others, and the use of passively cooled cryogenic telescopes.

  2. Polarization demultiplexing in stokes space for coherent optical PDM-OFDM.

    Yu, Zhenming; Yi, Xingwen; Yang, Qi; Luo, Ming; Zhang, Jing; Chen, Lei; Qiu, Kun

    2013-02-11

    We propose a polarization demultiplexing method for coherent optical PDM-OFDM based on Stokes space, without inserting training symbols. The proposed approach performs well for different modulation formats of OFDM subcarrier, and shows comparable performances with that of conventional methods, but with a fast convergence speed and reduced overhead. The OFDM signal in the time domain cannot satisfy the conditions of SS-PDM accurately. Therefore, we first digitally convert the received OFDM signals to the frequency domain using fast Fourier transform (FFT). Each subcarrier of the OFDM signal has a much lower speed and narrower bandwidth, the polarization effects that it experiences can be treated as flat. Consequently, we can apply the polarization demultiplexing in Stokes space (SS-PDM) on per subcarrier basis. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960km SSMF respectively. We also compare the results with those of training symbols. Finally, we analyze of the convergence speed of this method.

  3. OCCAMS: Optically Controlled and Corrected Active Meta-material Space Structures (Ultra-Lightweight Photonic Muscle Space Structures Phase II)

    National Aeronautics and Space Administration — Photons weigh nothing. Why must even small space telescopes have high mass? Our team has demonstrated this is not the case using a completely novel approach to...

  4. Coherent lidar wind measurements from the Space Station base using 1.5 m all-reflective optics

    Bilbro, J. W.; Beranek, R. G.

    1987-01-01

    This paper discusses the space-based measurement of atmospheric winds from the point of view of the requirements of the optical system of a coherent CO2 lidar. A brief description of the measurement technique is given and a discussion of previous study results provided. The telescope requirements for a Space Station based lidar are arrived at through discussions of the desired system sensitivity and the need for lag angle compensation.

  5. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  6. Propagation and scattering of optical light beams in free space, in atmosphere and in biological media

    Sahin, Serkan

    With their first production implemented around 1960's, lasers have afterwards proven to be excellent light sources in building the technology. Subsequently, it has been shown that the extraordinary properties of lasers are related to their coherence properties. Recent developments in optics make it possible to synthesize partially coherent light beams from fully coherent ones. In the last several decades it was seen that using partially coherent light sources may be advantageous, in the areas such as laser surface processing, fiber and free-space optical communications, and medical diagnostics. In this thesis, I study extensively the generation, the propagation in different media, and the scattering of partially coherent light beams with respect to their spectral polarization and coherence states. For instance, I analyze the evolution of recently introduced degree of cross-polarization of light fields in free space; then develop a novel partially coherent light source which acquires and keeps a flat intensity profile around the axis at any distance in the far field; and investigate the interaction of electromagnetic random light with the human eye lens. A part of the thesis treats the effect of atmospheric turbulence on random light beams. Due to random variations in the refractive index, atmospheric turbulence modulates all physical and statistical properties of propagating beams. I have explored the possibility of employing the polarimetric domain of the beam for scintillation reduction, which positively affects the performance of free-space communication systems. I also discuss novel techniques for the sensing of rough targets in the turbulent atmosphere by polarization and coherence properties of light. The other contribution to the thesis is the investigation of light scattering from deterministic or random collections of particles, within the validity of first Born approximation. In the case of a random collection, I introduce and model the new quantity

  7. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-03-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  8. Optical design of visible emission line coronagraph on Indian space solar mission Aditya-L1

    Raj Kumar, N.; Raghavendra Prasad, B.; Singh, Jagdev; Venkata, Suresh

    2018-04-01

    The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India's Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.

  9. Power inverter with optical isolation

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  10. Fiber bundle probes for interconnecting miniaturized medical imaging devices

    Zamora, Vanessa; Hofmann, Jens; Marx, Sebastian; Herter, Jonas; Nguyen, Dennis; Arndt-Staufenbiel, Norbert; Schröder, Henning

    2017-02-01

    Miniaturization of medical imaging devices will significantly improve the workflow of physicians in hospitals. Photonic integrated circuit (PIC) technologies offer a high level of miniaturization. However, they need fiber optic interconnection solutions for their functional integration. As part of European funded project (InSPECT) we investigate fiber bundle probes (FBPs) to be used as multi-mode (MM) to single-mode (SM) interconnections for PIC modules. The FBP consists of a set of four or seven SM fibers hexagonally distributed and assembled into a holder that defines a multicore connection. Such a connection can be used to connect MM fibers, while each SM fiber is attached to the PIC module. The manufacturing of these probes is explored by using well-established fiber fusion, epoxy adhesive, innovative adhesive and polishing techniques in order to achieve reliable, low-cost and reproducible samples. An innovative hydrofluoric acid-free fiber etching technology has been recently investigated. The preliminary results show that the reduction of the fiber diameter shows a linear behavior as a function of etching time. Different etch rate values from 0.55 μm/min to 2.3 μm/min were found. Several FBPs with three different type of fibers have been optically interrogated at wavelengths of 630nm and 1550nm. Optical losses are found of approx. 35dB at 1550nm for FBPs composed by 80μm fibers. Although FBPs present moderate optical losses, they might be integrated using different optical fibers, covering a broad spectral range required for imaging applications. Finally, we show the use of FBPs as promising MM-to-SM interconnects for real-world interfacing to PIC's.

  11. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  12. Sentinel-2: next generation satellites for optical land observation from space

    Lautenschläger, G.; Gessner, R.; Gockel, W.; Haas, C.; Schweickert, G.; Bursch, S.; Welsch, M.; Sontag, H.

    2013-10-01

    The first Sentinel-2 satellites, which constitute the next generation of operational Earth observation satellites for optical land monitoring from space, are undergoing completion in the facilities at Astrium ready for launch end 2014. Sentinel-2 will feature a major breakthrough in the area of optical land observation since it will for the first time enable continuous and systematic acquisition of all land surfaces world-wide with the Multi-Spectral Instrument (MSI), thus providing the basis for a truly operational service. Flying in the same orbital plane and spaced at 180°, the constellation of two satellites, designed for an in-orbit nominal operational lifetime of 7 years each, will acquire all land surfaces in only 5 days at the equator. In order to support emergency operations, the satellites can further be operated in an extended observation mode allowing to image any point on Earth even on a daily basis. MSI acquires images in 13 spectral channels from Visible-to-Near Infrared (VNIR) to Short Wave Infrared (SWIR) with a swath of almost 300 km on ground and a spatial resolution up to 10 m. The data ensure continuity to the existing data sets produced by the series of Landsat and SPOT satellites, and will further provide detailed spectral information to enable derivation of biophysical or geophysical products. Excellent geometric image quality performances are achieved with geolocation better than 16 m, thanks to an innovative instrument design in conjunction with a high-performance satellite AOCS subsystem centered around a 2-band GPS receiver, high-performance star trackers and a fiberoptic gyro. To cope with the high data volume on-board, data are compressed using a state-of-the-art wavelet compression scheme. Thanks to a powerful mission data handling system built around a newly developed very large solid-state mass memory based on flash technology, on-board compression losses will be kept to a minimum. The Sentinel-2 satellite design features a highly

  13. Interconnect fatigue design for terrestrial photovoltaic modules

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-03-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  14. Multi-net optimization of VLSI interconnect

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  15. Cost-effective backhaul design using hybrid radio/free-space optical technology

    Douik, Ahmed S.

    2015-06-08

    The deluge of date rate in today\\'s networks poses a cost burden on the backhaul network design. Developing cost efficient backhaul solutions becomes an interesting, yet challenging, problem. Traditional technologies for backhaul networks include either radio-frequency backhauls (RF) or optical fibres (OF). While RF is a cost-effective solution as compared to OF, it supports lower data rate requirements. Another promising backhaul solution that may combine both a high data rate and a relatively low cost is the free-space optics (FSO). FSO, however, is sensitive to nature conditions (e.g., rain, fog, line-ofsight, etc.). A more reliable alternative is, therefore, to combine RF and FSO solutions through a hybrid structure called hybrid RF/FSO. Consider a backhaul network, where the base-stations (BS) can be connected to each other either via OF or hybrid RF/FSO backhaul links. The paper addresses the problem of minimizing the cost of backhaul planning under connectivity and data rates constraints, so as to choose the appropriate costeffective backhaul type between BSs (i.e., either OF or hybrid RF/FSO). The paper solves the problem using graph theory techniques by introducing the corresponding planning graph. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that our proposed solution shows a close-to-optimal performance, especially for practical prices of the hybrid RF/FSO.

  16. Cost-effective backhaul design using hybrid radio/free-space optical technology

    Douik, Ahmed S.; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    The deluge of date rate in today's networks poses a cost burden on the backhaul network design. Developing cost efficient backhaul solutions becomes an interesting, yet challenging, problem. Traditional technologies for backhaul networks include either radio-frequency backhauls (RF) or optical fibres (OF). While RF is a cost-effective solution as compared to OF, it supports lower data rate requirements. Another promising backhaul solution that may combine both a high data rate and a relatively low cost is the free-space optics (FSO). FSO, however, is sensitive to nature conditions (e.g., rain, fog, line-ofsight, etc.). A more reliable alternative is, therefore, to combine RF and FSO solutions through a hybrid structure called hybrid RF/FSO. Consider a backhaul network, where the base-stations (BS) can be connected to each other either via OF or hybrid RF/FSO backhaul links. The paper addresses the problem of minimizing the cost of backhaul planning under connectivity and data rates constraints, so as to choose the appropriate costeffective backhaul type between BSs (i.e., either OF or hybrid RF/FSO). The paper solves the problem using graph theory techniques by introducing the corresponding planning graph. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that our proposed solution shows a close-to-optimal performance, especially for practical prices of the hybrid RF/FSO.

  17. Free-Space Optical Communications: Capacity Bounds, Approximations, and a New Sphere-Packing Perspective

    Chaaban, Anas

    2015-04-01

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel is studied. It is shown that for an IM-DD channel with generally input-dependent noise, the worst noise at high SNR is input-independent Gaussian with variance dependent on the input cost. Based on this result, a Gaussian IM-DD channel model is proposed where the noise variance depends on the optical intensity constraints only. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed, which leads to a tighter bound than an existing sphere-packing bound for the channel with only an average intensity constraint. Under both average and peak constraints, it yields bounds that characterize the high SNR capacity within a negligible gap, where the achievability is proved by using a truncated Gaussian input distribution. This completes the high SNR capacity characterization of the channel, by closing the gap in the existing characterization for a small average-to-peak ratio. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of significant practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions. Finally, the capacity/SNR loss between heterodyne detection (HD) systems and IM-DD systems is bounded at high SNR, where it is shown that the loss grows as SNR increases for a complex-valued HD system, while it is bounded by 1.245 bits or 3.76 dB at most for a real-valued one.

  18. Free-Space Optical Communications: Capacity Bounds, Approximations, and a New Sphere-Packing Perspective

    Chaaban, Anas; Morvan, Jean-Marie; Alouini, Mohamed-Slim

    2015-01-01

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel is studied. It is shown that for an IM-DD channel with generally input-dependent noise, the worst noise at high SNR is input-independent Gaussian with variance dependent on the input cost. Based on this result, a Gaussian IM-DD channel model is proposed where the noise variance depends on the optical intensity constraints only. A new recursive approach for bounding the capacity of the channel based on sphere-packing is proposed, which leads to a tighter bound than an existing sphere-packing bound for the channel with only an average intensity constraint. Under both average and peak constraints, it yields bounds that characterize the high SNR capacity within a negligible gap, where the achievability is proved by using a truncated Gaussian input distribution. This completes the high SNR capacity characterization of the channel, by closing the gap in the existing characterization for a small average-to-peak ratio. Simple fitting functions that capture the best known achievable rate for the channel are provided. These functions can be of significant practical importance especially for the study of systems operating under atmospheric turbulence and misalignment conditions. Finally, the capacity/SNR loss between heterodyne detection (HD) systems and IM-DD systems is bounded at high SNR, where it is shown that the loss grows as SNR increases for a complex-valued HD system, while it is bounded by 1.245 bits or 3.76 dB at most for a real-valued one.

  19. Hybrid microtransmitter for free-space optical spacecraft communication: design, manufacturing, and characterization

    Lotfi, Sara; Palmer, Kristoffer; Kratz, Henrik; Thornell, Greger

    2009-02-01

    Optical intra-communication links are investigated by several currently operational qualification missions. Compared with RF communication systems, the optical domain obtains a wider bandwidth, enables miniaturized spacecraft and reduced power consumption. In this project, a microtransmitter is designed and manufactured for formation flying spacecraft with transmission rates of 1 Gbit/s. Simulations in Matlab and Simulink show that a BER of 10-9 can be achieved with aperture sizes of 1 cm and a transmitter output peak power of 12 mW for a distance of 10 km. The results show that the performance of the communication link decreases due to mechanical vibrations in the spacecraft together with a narrow laser beam. A dual-axis microactuator designed as a deflectable mirror has been developed for the laser beam steering where the fabrication is based on a double-sided, bulk micromachining process. The mirror actuates by joints consisting of v-grooves filled with SU-8 polymer. The deflection is controlled by integrated resistive heaters in the joints causing the polymer to expand thermally. Results show that the mirror actuates 20-30° in the temperature interval 25-250°C. Flat Fresnel lenses made of Pyrex 7740 are used to collimate the laser beam. These lenses are simulated in the Comsol software and optimized for a 670 nm red VCSEL. The lenses are manufactured using lithography and reactive ion etching. All tests are made in a normal laboratory environment, but the effect of the space environment is discussed.

  20. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points

    Kraft, S.; Puschmann, K. G.; Luntama, J. P.

    2017-09-01

    As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.

  1. Visualizing interconnections among climate risks

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  2. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC

  3. Aspects of scintillation modelling in LEO-ground free-space optical communications

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non

  4. Interconnect rise time in superconducting integrating circuits

    Preis, D.; Shlager, K.

    1988-01-01

    The influence of resistive losses on the voltage rise time of an integrated-circuit interconnection is reported. A distribution-circuit model is used to present the interconnect. Numerous parametric curves are presented based on numerical evaluation of the exact analytical expression for the model's transient response. For the superconducting case in which the series resistance of the interconnect approaches zero, the step-response rise time is longer but signal strength increases significantly

  5. Local multipoint distribution system (LDMS) versus free-space optical (FSO) networks

    Willebrand, Heinz A.; Clark, Gerald R.; Willson, Bryan; Andreu von Euw, Christian G.; Roy, Joe; Mayhew, Laurel M.

    2001-11-01

    This paper compares two emerging broadband access methodologies, Free Space Optics (FSO) and Local Multipoint Distribution System (LMDS) and the atmospheric propagation characteristics of each when exposed to a dynamically changing channel. The comparison focuses on bandwidth, availability, and distance requirements for the new broadband market and how LMDS and FSO can be used to meet these requirements. Possible network topologies and their associated costs are examined. This comparison takes into account the total cost of deployment, including equipment costs, installation fees, access fees, and spectrum licensing fees. LMDS and FSO are compared on speed of deployment, scalability, aggregate bandwidth, and bandwidth per customer. Present and projected capabilities of each technology are considered for their suitability in different locations in the network, from the Wide Area Network (WAN), to the Metropolitan Area Network (MAN), all the way to Last Mile Access. There is a discussion on the relative performance of LMDS and FSO, focusing on the different factors that can affect link availability. Since network design is a large factor in assuring overall reliability, the flexibility of each technology with regard to network design is compared. LMDS and FSO are both line of sight, space-propagated technologies, and as such, they are both susceptible to path impediments and atmospheric attenuation, dispersion, scattering, and absorption. LMDS and FSO are affected very differently by different meteorological phenomena. Problematic atmospheric conditions are, specifically scintillation, rainfall, and fog, are examined. In addition to a discussion of these conditions, various techniques for minimizing atmospheric and environmental effects are investigated. The paper concludes with a summary of findings and recommendations for a number of broadband wireless applications.

  6. Drone swarm with free-space optical communication to detect and make deep decisions about physical problems for area surveillance

    Mazher, Wamidh Jalil; Ibrahim, Hadeel T.; Ucan, Osman N.; Bayat, Oguz

    2018-03-01

    This paper aims to design a drone swarm network by employing free-space optical (FSO) communication for detecting and deep decision making of topological problems (e.g., oil pipeline leak), where deep decision making requires the highest image resolution. Drones have been widely used for monitoring and detecting problems in industrial applications during which the drone sends images from the on-air camera video stream using radio frequency (RF) signals. To obtain higher-resolution images, higher bandwidth (BW) is required. The current study proposed the use of the FSO communication system to facilitate higher BW for higher image resolution. Moreover, the number of drones required to survey a large physical area exceeded the capabilities of RF technologies. Our configuration of the drones is V-shaped swarm with one leading drone called mother drone (DM). The optical decode-and-forward (DF) technique is used to send the optical payloads of all drones in V-shaped swarm to the single ground station through DM. Furthermore, it is found that the transmitted optical power (Pt) is required for each drone based on the threshold outage probability of FSO link failure among the onboard optical-DF drones. The bit error rate of optical payload is calculated based on optical-DF onboard processing. Finally, the number of drones required for different image resolutions based on the size of the considered topological area is optimized.

  7. Optics

    Mathieu, Jean Paul

    1975-01-01

    Optics, Parts 1 and 2 covers electromagnetic optics and quantum optics. The first part of the book examines the various of the important properties common to all electromagnetic radiation. This part also studies electromagnetic waves; electromagnetic optics of transparent isotropic and anisotropic media; diffraction; and two-wave and multi-wave interference. The polarization states of light, the velocity of light, and the special theory of relativity are also examined in this part. The second part is devoted to quantum optics, specifically discussing the classical molecular theory of optical p

  8. Kinerja Sistem Komunikasi FSO (Free Space Optics Menggunakan Cell-site Diversity di Daerah Tropis

    Octiana Widyarena

    2012-09-01

    Full Text Available Kebutuhan masyarakat akan adanya layanan komunikasi multimedia seperti video conference, high speed internet, video streaming, dan lain sebagainya, saat ini terus meningkat. Untuk memenuhi kebutuhan tersebut, perlu adanya suatu sistem komunikasi nirkabel dengan kecepatan tinggi. Salah satunya yaitu dengan menggunakan FSO (Free Space Optics. FSO merupakan sistem komunikasi yang memungkinkan memiliki koneksi layaknya serat optik, namun media transmisi yang digunakan yaitu melalui atmosfer. Penggunaan FSO di daerah tropis memiliki kendala yang cukup serius yaitu tingginya intensitas curah hujan yang dapat mempengaruhi kinerja dari FSO. Semakin tinggi intensitas curah hujan, maka nilai redaman hujan juga semakin besar. Untuk mengatasi dampak redaman hujan tersebut, maka digunakan teknik cell-site diversity dengan selection combining. Penerapan teknik cell-site diversity pada sistem komunikasi FSO menggunakan variasi panjang lintasan 0,5 km, 1 km, 1,5 km, dan 2 km serta variasi sudut antar link sebesar 45°, 90°, 135°, dan 180°. Hasil dari penerapan teknik cell-site diversity menunjukkan bahwa adanya peningkatan kualitas sinyal FSO, dalam hal ini yaitu nilai SNR. Peningkatan nilai SNR terbesar didapatkan pada panjang lintasan 2 km dengan sudut antar link 180° serta pada link availability 99,9 %. Untuk konfigurasi cell-site diversity terbaik didapatkan pada sudut antar link sebesar 90° dan 180°.

  9. Positioning and tracking control system analysis for mobile free space optical network

    Li, Yushan; Refai, Hazem; Sluss, , James J., Jr.; Verma, Pramode; LoPresti, Peter

    2005-08-01

    Free Space Optical (FSO) communication has evolved to be applied to the mobile network, because it can provide up to 2.5Gbps or higher data rate wireless communication. One of the key challenges with FSO systems is to maintain the Line of Sight (LOS) between transmitter and receiver. In this paper, the feasibility and performance of applying the FSO technology to the mobile network is explored, and the design plan of the attitude positioning and tracking control system of the FSO transceiver is investigated. First, the system architecture is introduced, the requirements for the control system are analyzed, the involved reference frames and frame transformation are presented. Second, the control system bandwidth is used to evaluate the system performance in controlling a positioning system consisting of a gimbal and a steering mirror, some definitions to describe the positioning accuracy and tracking capacity are given. The attitude control of a FSO transceiver is split into 2 similar channels: pitch and yaw. Using an equivalent linear control system model, the simulations are carried out, with and without the presence of uncertainties that includes GPS data errors and sensor measurement errors. Finally, based on the simulation results in the pitch channel, the quantitative evaluation on the performance of the control system is given, including positioning accuracy, tracking capability and uncertainty tolerance.

  10. On the Performance of Free-Space Optical Communication Systems over Double Generalized Gamma Channel

    Al-Quwaiee, Hessa; Ansari, Imran Shafique; Alouini, Mohamed-Slim

    2015-01-01

    Starting with the double generalized Gamma (GG) model to describe turbulence-induced fading in free-space optical (FSO) systems, we propose a new unified model that accounts for the impact of pointing errors and type of receiver detector. More specifically, we present unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function, and the moments of the end-toend signal-to-noise ratio (SNR) of a single link FSO transmission system in terms of the Meijer’s G-function. We then use these unified expressions to evaluate performance measures such as the bit error rate, the outage probability, and the ergodic capacity of (i) a single FSO link operating over double GG fading model (ii) asymmetric RF-FSO dual-hop relay transmission system with fixed gain relay. Using an asymptotic expansion of the Meijer’s G-function at high SNR, we express all the expressions, derived earlier, in terms of elementary functions. All our analytical results are verified using computer based Monte-Carlo simulations.

  11. On the Performance of Free-Space Optical Communication Systems over Double Generalized Gamma Channel

    Al-Quwaiee, Hessa

    2015-05-13

    Starting with the double generalized Gamma (GG) model to describe turbulence-induced fading in free-space optical (FSO) systems, we propose a new unified model that accounts for the impact of pointing errors and type of receiver detector. More specifically, we present unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function, and the moments of the end-toend signal-to-noise ratio (SNR) of a single link FSO transmission system in terms of the Meijer’s G-function. We then use these unified expressions to evaluate performance measures such as the bit error rate, the outage probability, and the ergodic capacity of (i) a single FSO link operating over double GG fading model (ii) asymmetric RF-FSO dual-hop relay transmission system with fixed gain relay. Using an asymptotic expansion of the Meijer’s G-function at high SNR, we express all the expressions, derived earlier, in terms of elementary functions. All our analytical results are verified using computer based Monte-Carlo simulations.

  12. Discovery of an Unusual Optical Transient with the Hubble Space Telescope

    The Supernova Cosmology Project; Barbary, Kyle; Dawson, Kyle S.; Tokita, Kouichi; Aldering, Greg; Amanullah, Rahman; Connolly, Natalia V.; Doi, Mamoru; Faccioli, Lorenzo; Fadeyev, Vitaliy; Fruchter, Andrew S.; Goldhaber, Gerson; Goobar, Ariel; Gude, Alexander; Huang, Xiaosheng; Ihara, Yutaka; Konishi, Kohki; Kowalski, Marek; Lidman, Chris; Meyers, Josh; Morokuma, Tomoki; Nugent, Peter; Perlmutter, Saul; Rubin, David; Schlegel, David; Spadafora, Anthony L.; Suzuki, Nao; Swift, Hannah K.; Takanashi, Naohiro; Thomas, Rollin C.; Yasuda, Naoki

    2008-09-08

    We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.

  13. Performances of Free-Space Optical Communication System Over Strong Turbulence

    Ucuk Darusalam

    2014-08-01

    Full Text Available We report an experimental of free-space optical communication (FSOC system that use tube propagation simulator (TPS as the turbulence medium. The FSOC system usewavelength of 1550 nm at the rate transmission of 1000 Mbps and amplified with EDFA at the output of +23 dBm. Index structure of 10-15–10-13 as the representation of atmosphere index turbulences are used for simulation of intensity distribution model or scintillation. The simulation use gammagamma and K model as well. The beam wave propagation models used in simulation are plane wave, spherical wave and Gaussian wave. Spherical wave achieves highest performance via gamma-gamma in strong turbulence. While Gaussian wave achieves highest performance also via K model. We also found, characteristical FSOC system performance is calculated more accurately with gamma-gamma method for strong turbulence than K model. The performances from gamma-gamma for strong turbulenceare at 22.55 dB, at 5.33×10-4, and at 9.41 ×10-6. 

  14. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  15. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  16. Innovative on board payload optical architecture for high throughput satellites

    Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.

    2017-11-01

    For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.

  17. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution for interconn...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  18. Optical Characteristics of the Marshall Space Flight Center Solar Ultraviolet Magnetograph

    West, Edward; Porter, Jason; Davis, John; Gary, Allen; Adams, Mitzi; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This paper will describe the scientific objectives of the MSFC SUMI project and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed, This paper will describe the optical measurements that have been made on the SUMI telescope mirrors and polarization optics.

  19. Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices

    Sabourin, David; Snakenborg, Detlef; Dufva, Martin

    2010-01-01

    We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin s...

  20. Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space.

    Westheimer, Gerald

    2008-09-01

    Differences between the geometrical properties of simple configurations and their visual percept are called geometrical-optical illusions. They can be differentiated from illusions in the brightness or color domains, from ambiguous figures and impossible objects, from trompe l'oeil and perspective drawing with perfectly valid views, and from illusory contours. They were discovered independently by several scientists in a short time span in the 1850's. The clear distinction between object and visual space that they imply allows the question to be raised whether the transformation between the two spaces can be productively investigated in terms of differential geometry and metrical properties. Perceptual insight and psychophysical research prepares the ground for investigation of the neural representation of space but, because visual attributes are processed separately in parallel, one looks in vain for a neural map that is isomorphic with object space or even with individual forms it contains. Geometrical-optical illusions help reveal parsing rules for sensory signals by showing how conflicts are resolved when there is mismatch in the output of the processing modules for various primitives as a perceptual pattern's unitary structure is assembled. They point to a hierarchical ordering of spatial primitives: cardinal directions and explicit contours predominate over oblique orientation and implicit contours (Poggendorff illusion); rectilinearity yields to continuity (Hering illusion), point position and line length to contour orientation (Ponzo). Hence the geometrical-optical illusions show promise as analytical tools in unraveling neural processing in vision.