WorldWideScience

Sample records for space operations committee

  1. 75 FR 16197 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-03-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-036)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council Space Operations Committee. DATES: Tuesday, April 13, 2010, 3-5 p.m. CDT. ADDRESSES: NASA Johnson Space...

  2. 75 FR 39974 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-074)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, July 28, 2010, 2-5 p.m. EDT. ADDRESSES: Doubletree..., Washington, DC 20546, 202/358-1507, [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The agenda for the...

  3. 75 FR 5630 - NASA Advisory Council; Space Operations Committee; Meeting

    Science.gov (United States)

    2010-02-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-017)] NASA Advisory Council; Space... Committee of the NASA Advisory Council. DATES: Wednesday, February 17, 2010, 9 a.m.-12 p.m. EST. ADDRESSES: NASA Headquarters, 300 E Street, SW., Washington, DC 20456, Room 2U22. FOR FURTHER INFORMATION CONTACT...

  4. 76 FR 20717 - NASA Advisory Council; Space Operations Committee; Meeting.

    Science.gov (United States)

    2011-04-13

    ...: Doubletree Hotel, 2080 North Atlantic Ave, Cocoa Beach, FL 32931. FOR FURTHER INFORMATION CONTACT: Mr. Jacob... for the meeting includes the following topics: --Space Operations Mission Directorate FY2012 Budget...

  5. 76 FR 3673 - NASA Advisory Council; Space Operations Committee; Meeting.

    Science.gov (United States)

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-005)] NASA Advisory Council; Space..., the National Aeronautics and Space Administration announces a meeting of the NASA Advisory Council.... ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 7C61, Washington, DC 20546. FOR FURTHER INFORMATION...

  6. Consultative Committee for Space Data Systems recommendation for space data system standards: Telecommand. Part 2.1: Command operation procedures

    Science.gov (United States)

    1991-01-01

    This recommendation contains the detailed specification of the logic required to carry out the Command Operations Procedures of the Transfer Layer. The Recommendation for Telecommand--Part 2, Data Routing Service contains the standard data structures and data communication procedures used by the intermediate telecommand system layers (the Transfer and Segmentation Layers). In particular, it contains a brief description of the Command Operations Procedures (COP) within the Transfer Layer. This recommendation contains the detailed definition of the COP's in the form of state tables, along with definitions of the terms used. It is assumed that the reader of this document is familiar with the data structures and terminology of part 2. In case of conflict between the description of the COP's in part 2 and in this recommendation, the definition in this recommendation will take precedence. In particular, this document supersedes section 4.3.3.1 through 4.3.3.4 of part 2.

  7. Space station operations management

    Science.gov (United States)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  8. 76 FR 42160 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Space Transportation Operations Working Group of the Commercial Space Transportation Advisory...

  9. 78 FR 20696 - NASA Advisory Council; Human Exploration and Operations Committee; Research Subcommittee; Meeting

    Science.gov (United States)

    2013-04-05

    ... topics: --Overview of Research in Space Life and Physical Sciences --Space Station and Future Exploration... Exploration and Operations Committee; Research Subcommittee; Meeting AGENCY: National Aeronautics and Space... of the Research Subcommittee of the Human Exploration and Operations Committee (HEOC) of the NASA...

  10. 76 FR 64122 - NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter

    Science.gov (United States)

    2011-10-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-095)] NASA Advisory Committee; Renewal of NASA's International Space Station Advisory Committee Charter AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the Charter of the International...

  11. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  12. 77 FR 52108 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2012-08-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  13. 76 FR 78329 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  14. 78 FR 18416 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  15. 76 FR 82031 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Risk Management Working Group Teleconference...

  16. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  17. 78 FR 14401 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-03-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  18. 77 FR 35102 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2012-06-12

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  19. 78 FR 77502 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-154)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the NASA International Space...

  20. Advisory Committee on the Redesign of the Space Station

    Science.gov (United States)

    1993-06-01

    The Space Station Program was initiated in 1984 to provide for permanent human presence in an orbiting laboratory. This program evolved into Space Station Freedom, later identified as a component to facilitate a return of astronauts to the Moon, followed by the exploration of Mars. In March 1993 the Clinton Administration directed NASA to undertake an intense effort to redesign the space station at a substantial cost savings relative to Space Station Freedom. The Advisory Committee on the Redesign of the Space Station was established in March 1993 to provide independent assessment of the advantages and disadvantages of the redesign options. The results of the Committee's work is described. Discussion describes the mission that the Administration has articulated for the Space Station Program and the scientific and technical characteristics that a redesigned station must possess to fulfill those objectives. A description of recommended management, operations, and acquisition strategies for the redesigned program is provided. The Committee's assessment of the redesign options against five criteria are presented. The five criteria are technical capabilities, research capabilities, schedule, cost, and risk. A discussion of general mission risk is included.

  1. 77 FR 41203 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-07-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-057] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  2. 77 FR 2765 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-003)] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  3. 77 FR 66082 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2012-11-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-090] NASA International Space Station Advisory Committee; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of..., the National Aeronautics and Space Administration announces an open meeting of the NASA International...

  4. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  5. Space Operations Learning Center

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  6. 75 FR 70347 - Commercial Space Transportation Advisory Committee; Renewal

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Regulations, notice is hereby given that the Commercial Space Transportation Advisory Committee (COMSTAC) has... matters concerning the U.S. commercial space transportation industry. The [[Page 70348

  7. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  8. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  9. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  10. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  11. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-080)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  12. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  13. 78 FR 63279 - Third Meeting: RTCA Tactical Operations Committee (TOC)

    Science.gov (United States)

    2013-10-23

    ... Operations Committee (TOC) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation... hereby given for a meeting of the Tactical Operations Committee (TOC). The agenda will include the following: November 19, 2013 Opening of Meeting/Introduction of TOC Members Official Statement of Designated...

  14. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-01-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-006)] NASA Advisory Council; Commercial... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  15. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-027)] NASA Advisory Council; Commercial... Meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended, the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  16. Space Station Freedom operations costs

    Science.gov (United States)

    Accola, Anne L.; Williams, Gregory J.

    1988-01-01

    Measures to reduce the operation costs of the Space Station which can be implemented in the design and development stages are discussed. Operational functions are described in the context of an overall operations concept. The provisions for operations cost responsibilities among the partners in the Space Station program are presented. Cost estimating methodologies and the way in which operations costs affect the design and development process are examined.

  17. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  18. Composition operators on function spaces

    CERN Document Server

    Singh, RK

    1993-01-01

    This volume of the Mathematics Studies presents work done on composition operators during the last 25 years. Composition operators form a simple but interesting class of operators having interactions with different branches of mathematics and mathematical physics. After an introduction, the book deals with these operators on Lp-spaces. This study is useful in measurable dynamics, ergodic theory, classical mechanics and Markov process. The composition operators on functional Banach spaces (including Hardy spaces) are studied in chapter III. This chapter makes contact with the theory of analytic functions of complex variables. Chapter IV presents a study of these operators on locally convex spaces of continuous functions making contact with topological dynamics. In the last chapter of the book some applications of composition operators in isometries, ergodic theory and dynamical systems are presented. An interesting interplay of algebra, topology, and analysis is displayed. This comprehensive and up-to-date stu...

  19. 78 FR 49296 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2013-08-13

    .... Greg Mann, Office of International and Interagency Relations, (202) 358-5140, NASA Headquarters... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-091] NASA International Space Station... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended...

  20. 75 FR 51852 - NASA International Space Station Advisory Committee; Meeting

    Science.gov (United States)

    2010-08-23

    .... Donald Miller, Office of International and Interagency Relations, (202) 358-1527, National Aeronautics... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-090)] NASA International Space Station... meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, Public Law 92-463, as amended...

  1. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-05-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-060)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Thursday, June 17, 2010, 1 p.m.-4 p.m., EDST. ADDRESSES: NASA... Space Administration, Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa...

  2. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  3. Spear operators between Banach spaces

    CERN Document Server

    Kadets, Vladimir; Merí, Javier; Pérez, Antonio

    2018-01-01

    This monograph is devoted to the study of spear operators, that is, bounded linear operators $G$ between Banach spaces $X$ and $Y$ satisfying that for every other bounded linear operator $T:X\\longrightarrow Y$ there exists a modulus-one scalar $\\omega$ such that $\\|G + \\omega\\,T\\|=1+ \\|T\\|$. This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on $L_1$. The relationships with the Radon-Nikodým property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.

  4. Introduction to operator space theory

    CERN Document Server

    Pisier, Gilles

    2003-01-01

    An introduction to the theory of operator spaces, emphasising examples that illustrate the theory and applications to C*-algebras, and applications to non self-adjoint operator algebras, and similarity problems. Postgraduate and professional mathematicians interested in functional analysis, operator algebras and theoretical physics will find the book has much to offer.

  5. 78 FR 16757 - First Meeting: RTCA Tactical Operations Committee (TOC)

    Science.gov (United States)

    2013-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration First Meeting: RTCA Tactical Operations Committee (TOC) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation... FAA Task Groups Discussion Anticipated Issues for TOC consideration and action at the next meeting...

  6. 78 FR 40264 - First Meeting: RTCA Tactical Operations Committee (TOC)

    Science.gov (United States)

    2013-07-03

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration First Meeting: RTCA Tactical Operations Committee (TOC) AGENCY: Federal Aviation Administration (FAA), U.S. Department of Transportation..., Leadership Anticipated Issues for TOC consideration and action at the next meeting. Any Other Business...

  7. 76 FR 17474 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2011-03-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  8. 76 FR 621 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  9. 77 FR 16891 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  10. 76 FR 41323 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  11. 76 FR 51461 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2011-08-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee open meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  12. 78 FR 69742 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2013-11-20

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  13. 76 FR 4988 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  14. 75 FR 54002 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  15. 76 FR 4412 - Commercial Space Transportation Advisory Committee-Closed Session

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a... Commercial Space Transportation Advisory Committee (COMSTAC). The special closed session will be an...

  16. 75 FR 16901 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open meeting. SUMMARY: Pursuant to section 10(a)(2) of the... of the Commercial Space Transportation Advisory Committee (COMSTAC). The meetings will take place on...

  17. Structure of Hilbert space operators

    CERN Document Server

    Jiang, Chunlan

    2006-01-01

    This book exposes the internal structure of non-self-adjoint operators acting on complex separable infinite dimensional Hilbert space, by analyzing and studying the commutant of operators. A unique presentation of the theorem of Cowen-Douglas operators is given. The authors take the strongly irreducible operator as a basic model, and find complete similarity invariants of Cowen-Douglas operators by using K -theory, complex geometry and operator algebra tools. Sample Chapter(s). Chapter 1: Background (153 KB). Contents: Jordan Standard Theorem and K 0 -Group; Approximate Jordan Theorem of Opera

  18. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-03-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-025)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday, March 30, 2010, 1 p.m.-5 p.m., EST. ADDRESSES: NASA... Administration, Washington, DC, 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  19. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-098)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday September 14, 8 a.m. to 12 noon CDT. ADDRESSES: NASA..., Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa.gov . SUPPLEMENTARY...

  20. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-076)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Thursday, July 29, 2010, 9 a.m.-12 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E Street, SW., PRC/Room 9H40, Washington, DC 20546. FOR FURTHER INFORMATION...

  1. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...

  2. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  3. 75 FR 68008 - Business and Operations Advisory Committee

    Science.gov (United States)

    2010-11-04

    ... NATIONAL SCIENCE FOUNDATION Business and Operations Advisory Committee ACTION: Change in Notice of Meeting. SUMMARY: The National Science Foundation published a Notice of Meeting in the Federal Register on... business operations. Agenda November 16, 2010 Welcome/Introductions; BFA Update; The Changing Workplace...

  4. 76 FR 4743 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  5. 75 FR 51332 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  6. 77 FR 48585 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-08-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  7. 76 FR 15041 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  8. 76 FR 12211 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-04

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference (COMSTAC). SUMMARY: Pursuant...

  9. 76 FR 67018 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  10. 75 FR 38866 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  11. 75 FR 52058 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee-Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section 10...

  12. 77 FR 65443 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-10-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  13. Automating Space Station operations planning

    Science.gov (United States)

    Ziemer, Kathleen A.

    1989-01-01

    The development and implementation of the operations planning processes for the Space Station are discussed. A three level planning process, consisting of strategic, tactical, and execution level planning, is being developed. The integration of the planning procedures into a tactical planning system is examined and the planning phases are illustrated.

  14. Minimal and Maximal Operator Space Structures on Banach Spaces

    OpenAIRE

    P., Vinod Kumar; Balasubramani, M. S.

    2014-01-01

    Given a Banach space $X$, there are many operator space structures possible on $X$, which all have $X$ as their first matrix level. Blecher and Paulsen identified two extreme operator space structures on $X$, namely $Min(X)$ and $Max(X)$ which represents respectively, the smallest and the largest operator space structures admissible on $X$. In this note, we consider the subspace and the quotient space structure of minimal and maximal operator spaces.

  15. Means of Hilbert space operators

    CERN Document Server

    Hiai, Fumio

    2003-01-01

    The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.

  16. Spacelab shaping space operations planning

    Science.gov (United States)

    Steven, F. R.; Reinhold, C.

    1976-01-01

    An up-to-date picture is presented of the organizational structure, the key management personnel, and management relationships of the Spacelab program. Attention is also given to Spacelab's development status and plans for its operations. A number of charts are provided to illustrate the organizational relations. It is pointed out that the parties involved in Spacelab activities must yet resolve questions about ownership of transportation-system elements, payloads, ground support facilities, and data obtained from space missions.

  17. Space station operating system study

    Science.gov (United States)

    Horn, Albert E.; Harwell, Morris C.

    1988-01-01

    The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.

  18. 76 FR 52016 - NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-08-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-074)] NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the NASA International Space Station Advisory Committee and the Aerospace Safety Advisory Panel...

  19. Space Station Freedom operations planning

    Science.gov (United States)

    Accola, Anne L.; Keith, Bryant

    1989-01-01

    The Space Station Freedom program is developing an operations planning structure which assigns responsibility for planning activities to three tiers of management. The strategic level develops the policy, goals and requirements for the program over a five-year horizon. Planning at the tactical level emphasizes program integration and planning for a two-year horizon. The tactical planning process, architecture, and products have been documented and discussed with the international partners. Tactical planning includes the assignment of user and system hardware as well as significant operational events to a time increment (the period of time from the arrival of one Shuttle to the manned base to the arrival of the next). Execution-level planning emphasizes implementation, and each organization produces detailed plans, by increment, that are specific to its function.

  20. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  1. Pseudodifferential operators on alpha-modulation spaces

    DEFF Research Database (Denmark)

    Borup, Lasse

    2004-01-01

    We study expansions of pseudodifferential operators from the Hörmander class in a special family of functions called brushlets. We prove that such operators have a sparse representation in a brushlet system. Using this sparsity, we show that a pseudodifferential operator extends to a bounded oper...... operator between $alpha$-modulation spaces. These spaces were introduced by Gröbner in [15]. They are, in some sense, intermediate spaces between the classical Besov and Modulation spaces....

  2. 78 FR 70093 - Commercial Space Transportation Advisory Committee-Closed Session

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  3. 77 FR 44707 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-07-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of three teleconferences of the Systems Working Group of the Commercial Space Transportation...

  4. Space Station overall management approach for operations

    Science.gov (United States)

    Paules, G.

    1986-01-01

    An Operations Management Concept developed by NASA for its Space Station Program is discussed. The operational goals, themes, and design principles established during program development are summarized. The major operations functions are described, including: space systems operations, user support operations, prelaunch/postlanding operations, logistics support operations, market research, and cost/financial management. Strategic, tactical, and execution levels of operational decision-making are defined.

  5. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  6. Elements of Hilbert spaces and operator theory

    CERN Document Server

    Vasudeva, Harkrishan Lal

    2017-01-01

    The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compressio...

  7. Space shuttle operations integration plan

    Science.gov (United States)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  8. Report of the committee on a commercially developed space facility

    Science.gov (United States)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  9. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  10. Space station automation and robotics study. Operator-systems interface

    Science.gov (United States)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  11. The French Space Operation Act: Technical Regulations

    Science.gov (United States)

    Trinchero, J. P.; Lazare, B.

    2010-09-01

    The French Space Operation Act(FSOA) stipulates that a prime objective of the National technical regulations is to protect people, property, public health and the environment. Compliance with these technical regulations is mandatory as of 10 December 2010 for space operations by French space operators and for space operations from French territory. The space safety requirements and regulations governing procedures are based on national and international best practices and experience. A critical design review of the space system and procedures shall be carried out by the applicant, in order to verify compliance with the Technical Regulations. An independent technical assessment of the operation is delegated to CNES. The principles applied when drafting technical regulations are as follows: requirements must as far as possible establish the rules according to the objective to be obtained, rather than how it is to be achieved; requirements must give preference to international standards recognised as being the state of the art; requirements must take previous experience into account. Technical regulations are divided into three sections covering common requirements for the launch, control and return of a space object. A dedicated section will cover specific rules to be applied at the Guiana Space Centre. The main topics addressed by the technical regulations are: operator safety management system; study of risks to people, property, public health and the Earth’s environment; impact study on the outer space environment: space debris generated by the operation; planetary protection.

  12. Weighted local Hardy spaces associated with operators

    Indian Academy of Sciences (India)

    RUMING GONG

    2018-04-24

    5 days ago ... Studies 116 (1985) (Amsterdam: North Holland). [12] Gong R M and Yan L X, Littlewood–Paley and spectral multipliers on weighted L p spaces, J. Geom. Anal. 24 (2014) 873–900. [13] Gong R M, Li J and Yan L X, A local version of Hardy spaces associated with operators on metric spaces, Sci. China Math.

  13. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    Science.gov (United States)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  14. Dirac operators on coset spaces

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Immirzi, Giorgio; Lee, Joohan; Presnajder, Peter

    2003-01-01

    The Dirac operator for a manifold Q, and its chirality operator when Q is even dimensional, have a central role in noncommutative geometry. We systematically develop the theory of this operator when Q=G/H, where G and H are compact connected Lie groups and G is simple. An elementary discussion of the differential geometric and bundle theoretic aspects of G/H, including its projective modules and complex, Kaehler and Riemannian structures, is presented for this purpose. An attractive feature of our approach is that it transparently shows obstructions to spin- and spin c -structures. When a manifold is spin c and not spin, U(1) gauge fields have to be introduced in a particular way to define spinors, as shown by Avis, Isham, Cahen, and Gutt. Likewise, for manifolds like SU(3)/SO(3), which are not even spin c , we show that SU(2) and higher rank gauge fields have to be introduced to define spinors. This result has potential consequences for string theories if such manifolds occur as D-branes. The spectra and eigenstates of the Dirac operator on spheres S n =SO(n+1)/SO(n), invariant under SO(n+1), are explicitly found. Aspects of our work overlap with the earlier research of Cahen et al

  15. 75 FR 21678 - Business and Operations Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-26

    ... Management/Leadership Development. May 19, 2010 NSF Strategic Plan Update--2010-2015; Future NSF-2013 Lease... NATIONAL SCIENCE FOUNDATION Business and Operations Advisory Committee; Notice of Meeting In... announces the following meeting: Name: Business and Operations Advisory Committee (9556). Date/Time: May 18...

  16. 76 FR 19355 - Notice of Staff Attendance at Southwest Power Pool Markets Operations Policy Committee Meeting

    Science.gov (United States)

    2011-04-07

    ...) Markets Operations Policy Committee (MOPC), as noted below. Their attendance is part of the Commission's... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Staff Attendance at Southwest Power Pool Markets Operations Policy Committee Meeting The Federal Energy Regulatory Commission hereby...

  17. 75 FR 6656 - SFIREG Pesticide Operations and Management Working Committee Meeting

    Science.gov (United States)

    2010-02-10

    ... Evaluation Group (SFIREG), Pesticide Operations and Management (POM) Working Committee will hold a 2-day... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0001; FRL-8811-3] SFIREG Pesticide Operations and Management Working Committee Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY...

  18. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS... National Laboratory Advisory Committee is in the public interest in connection with the performance of...

  19. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  20. Theory of linear operators in Hilbert space

    CERN Document Server

    Akhiezer, N I

    1993-01-01

    This classic textbook by two mathematicians from the USSR's prestigious Kharkov Mathematics Institute introduces linear operators in Hilbert space, and presents in detail the geometry of Hilbert space and the spectral theory of unitary and self-adjoint operators. It is directed to students at graduate and advanced undergraduate levels, but because of the exceptional clarity of its theoretical presentation and the inclusion of results obtained by Soviet mathematicians, it should prove invaluable for every mathematician and physicist. 1961, 1963 edition.

  1. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  2. 76 FR 76712 - Notice of Staff Attendance at Southwest Power Pool Markets and Operations Policy Committee Meeting

    Science.gov (United States)

    2011-12-08

    .... Markets and Operations Policy Committee. Their attendance is part of the Commission's ongoing outreach... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Staff Attendance at Southwest Power Pool Markets and Operations Policy Committee Meeting The Federal Energy Regulatory Commission...

  3. A coronagraph for operational space weather predication

    Science.gov (United States)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  4. Spectral Theory of Operators on Hilbert Spaces

    CERN Document Server

    Kubrusly, Carlos S

    2012-01-01

    This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Space is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathemat

  5. Frame Decoder for Consultative Committee for Space Data Systems (CCSDS)

    Science.gov (United States)

    Reyes, Miguel A. De Jesus

    2014-01-01

    GNU Radio is a free and open source development toolkit that provides signal processing to implement software radios. It can be used with low-cost external RF hardware to create software defined radios, or without hardware in a simulation-like environment. GNU Radio applications are primarily written in Python and C++. The Universal Software Radio Peripheral (USRP) is a computer-hosted software radio designed by Ettus Research. The USRP connects to a host computer via high-speed Gigabit Ethernet. Using the open source Universal Hardware Driver (UHD), we can run GNU Radio applications using the USRP. An SDR is a "radio in which some or all physical layer functions are software defined"(IEEE Definition). A radio is any kind of device that wirelessly transmits or receives radio frequency (RF) signals in the radio frequency. An SDR is a radio communication system where components that have been typically implemented in hardware are implemented in software. GNU Radio has a generic packet decoder block that is not optimized for CCSDS frames. Using this generic packet decoder will add bytes to the CCSDS frames and will not permit for bit error correction using Reed-Solomon. The CCSDS frames consist of 256 bytes, including a 32-bit sync marker (0x1ACFFC1D). This frames are generated by the Space Data Processor and GNU Radio will perform the modulation and framing operations, including frame synchronization.

  6. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  7. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  8. Automation of Hubble Space Telescope Mission Operations

    Science.gov (United States)

    Burley, Richard; Goulet, Gregory; Slater, Mark; Huey, William; Bassford, Lynn; Dunham, Larry

    2012-01-01

    On June 13, 2011, after more than 21 years, 115 thousand orbits, and nearly 1 million exposures taken, the operation of the Hubble Space Telescope successfully transitioned from 24x7x365 staffing to 815 staffing. This required the automation of routine mission operations including telemetry and forward link acquisition, data dumping and solid-state recorder management, stored command loading, and health and safety monitoring of both the observatory and the HST Ground System. These changes were driven by budget reductions, and required ground system and onboard spacecraft enhancements across the entire operations spectrum, from planning and scheduling systems to payload flight software. Changes in personnel and staffing were required in order to adapt to the new roles and responsibilities required in the new automated operations era. This paper will provide a high level overview of the obstacles to automating nominal HST mission operations, both technical and cultural, and how those obstacles were overcome.

  9. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Science.gov (United States)

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  10. Technical and operational assessment of molecular nanotechnology for space operations

    Science.gov (United States)

    McKendree, Thomas Lawrence

    2001-07-01

    This study assesses the performance of conventional technology and three levels of molecular nanotechnology (MNT) for space operations. The measures of effectiveness are technical performance parameters for five space transportation architectures, and the total logistics cost for an evaluation scenario with mining, market and factory locations on the Moon, Mars and asteroids. On these measures of effectiveness, improvements of 2--4 orders of magnitude are seen in chemical rockets, solar electric ion engines, solar sail accelerations (but not transit times), and in structural masses for planetary skyhooks and towers. Improvements in tether performance and logistics costs are nearer to 1 order of magnitude. Appendices suggest additional improvements may be possible in space mining, closed-environment life support, flexible operations, and with other space transportation architectures. In order to assess logistics cost, this research extends the facility location problem of location theory to orbital space. This extension supports optimal siting of a single facility serving circular, coplanar orbits, locations in elliptic planetary and moon orbits, and heuristic siting of multiple facilities. It focuses on conventional rocket transportation, and on high performance rockets supplying at least 1 m/s2 acceleration and 500,000 m/s exhaust velocity. Mathematica implementations are provided in appendices. Simple MNT allows diamond and buckytube construction. The main benefits are in chemical rocket performance, solar panel specific power, solar electric ion engine performance, and skyhook and tower structural masses. Complex MNT allows very small machinery, permitting large increases in solar panel specific power, which enables solar electric ion engines that are high performance rockets, and thus reduces total logistics costs an order of magnitude. Most Advance MNT allows molecular manufacturing, which enables self-repair, provides at least marginal improvements in nearly

  11. 76 FR 2369 - Notice of Staff Attendance at Southwest Power Pool Markets and Operation Policy Committee and...

    Science.gov (United States)

    2011-01-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Notice of Staff Attendance at Southwest Power Pool Markets and Operation Policy Committee and Strategic Planning Committee Meetings January 5... the meetings of the Southwest Power Pool, Inc. (SPP) Markets and Operations Policy Committee (MOPC...

  12. Space weather impact on radio device operation

    Directory of Open Access Journals (Sweden)

    Berngardt O.I.

    2017-09-01

    Full Text Available This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  13. Space weather impact on radio device operation

    Science.gov (United States)

    Berngardt, Oleg

    2017-09-01

    This paper reviews the space weather impact on operation of radio devices. The review is based on recently published papers, books, and strategic scientific plans of space weather investigations. The main attention is paid to ionospheric effects on propagation of radiowaves, basically short ones. Some examples of such effects are based on 2012–2016 ISTP SB RAS EKB radar data: attenuation of ground backscatter signals during solar flares, effects of traveling ionospheric disturbances of different scales in ground backscatter signals, effects of magnetospheric waves in ionospheric scatter signals.

  14. Tribal Geographic Area (RTOC) Polygons with Representative Information, US EPA Region 9, 2015, Regional Tribal Operations Committee

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Regional Tribal Operations Committee (RTOC) is a working committee of EPA and Tribal personnel co-chaired by an EPA representative and a Tribal representative....

  15. Advanced Autonomous Systems for Space Operations

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  16. Operator space approach to steering inequality

    International Nuclear Information System (INIS)

    Yin, Zhi; Marciniak, Marcin; Horodecki, Michał

    2015-01-01

    In Junge and Palazuelos (2011 Commun. Math. Phys. 306 695–746) and Junge et al (2010 Commun. Math. Phys. 300 715–39) the operator space theory was applied to study bipartite Bell inequalities. The aim of the paper is to follow this line of research and use the operator space technique to analyze the steering scenario. We obtain a bipartite steering functional with unbounded largest violation of steering inequality, as well as constructing all ingredients explicitly. It turns out that the unbounded largest violation is obtained by a non maximally entangled state. Moreover, we focus on the bipartite dichotomic case where we construct a steering functional with unbounded largest violation of steering inequality. This phenomenon is different to the Bell scenario where only the bounded largest violation can be obtained by any bipartite dichotomic Bell functional. (paper)

  17. Operations Data Files, driving force behind International Space Station operations

    Science.gov (United States)

    Hoppenbrouwers, Tom; Ferra, Lionel; Markus, Michael; Wolff, Mikael

    2017-09-01

    Almost all tasks performed by the astronauts on-board the International Space Station (ISS) and by ground controllers in Mission Control Centre, from operation and maintenance of station systems to the execution of scientific experiments or high risk visiting vehicles docking manoeuvres, would not be possible without Operations Data Files (ODF). ODFs are the User Manuals of the Space Station and have multiple faces, going from traditional step-by-step procedures, scripts, cue cards, over displays, to software which guides the crew through the execution of certain tasks. Those key operational documents are standardized as they are used on-board the Space Station by an international crew constantly changing every 3 months. Furthermore this harmonization effort is paramount for consistency as the crew moves from one element to another in a matter of seconds, and from one activity to another. On ground, a significant large group of experts from all International Partners drafts, prepares reviews and approves on a daily basis all Operations Data Files, ensuring their timely availability on-board the ISS for all activities. Unavailability of these operational documents will halt the conduct of experiments or cancel milestone events. This paper will give an insight in the ground preparation work for the ODFs (with a focus on ESA ODF processes) and will present an overview on ODF formats and their usage within the ISS environment today and show how vital they are. Furthermore the focus will be on the recently implemented ODF features, which significantly ease the use of this documentation and improve the efficiency of the astronauts performing the tasks. Examples are short video demonstrations, interactive 3D animations, Execute Tailored Procedures (XTP-versions), tablet products, etc.

  18. SPACE MEDICINE and Medical Operations Overview

    Science.gov (United States)

    Dervay, Joe

    2009-01-01

    This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.

  19. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  20. 78 FR 72718 - NASA Advisory Council; Information Technology Infrastructure Committee; Meeting

    Science.gov (United States)

    2013-12-03

    ...; Information Technology Infrastructure Committee; Meeting AGENCY: National Aeronautics and Space Administration... Information Technology Infrastructure Committee (ITIC) of the NASA Advisory Council (NAC). DATES: Tuesday... Chief Information Officer Space Launch System Kennedy Space Center Operations and Technology Issues...

  1. Operational Space Weather Products at IPS

    Science.gov (United States)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  2. 77 FR 23766 - Business and Operations Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-20

    ... of NSF's business operations. Agenda May 8, 2012 Welcome/Introductions; BFA/OIRM Overview; Challenges to Reduce Costs and Identify Efficiencies--Introduction, Panel/Discussion; Change Management/Effect... NATIONAL SCIENCE FOUNDATION Business and Operations Advisory Committee; Notice of Meeting In...

  3. Weighted composition operators from Bergman-type spaces into ...

    Indian Academy of Sciences (India)

    Weighted composition operators from Bergman-type spaces into Bloch spaces and little. Bloch spaces are characterized by function theoretic properties of their inducing maps. Keywords. Weighted composition operator; Bergman-type space; Bloch space. 1. Introduction. Let D be the open unit disk in the complex plane C.

  4. Space Flight Operations Center local area network

    Science.gov (United States)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  5. Space Telescope Control System science user operations

    Science.gov (United States)

    Dougherty, H. J.; Rossini, R.; Simcox, D.; Bennett, N.

    1984-01-01

    The Space Telescope science users will have a flexible and efficient means of accessing the capabilities provided by the ST Pointing Control System, particularly with respect to managing the overal acquisition and pointing functions. To permit user control of these system functions - such as vehicle scanning, tracking, offset pointing, high gain antenna pointing, solar array pointing and momentum management - a set of special instructions called 'constructs' is used in conjuction with command data packets. This paper discusses the user-vehicle interface and introduces typical operational scenarios.

  6. Dirac operator on spaces with conical singularities

    International Nuclear Information System (INIS)

    Chou, A.W.

    1982-01-01

    The Dirac operator on compact spaces with conical singularities is studied via the separation of variables formula and the functional calculus of the Dirac Laplacian on the cone. A Bochner type vanishing theorem which gives topological obstructions to the existence of non-negative scalar curvature k greater than or equal to 0 in the singular case is proved. An index formula relating the index of the Dirac operator to the A-genus and Eta-invariant similar to that of Atiyah-Patodi-Singer is obtained. In an appendix, manifolds with boundary with non-negative scalar curvature k greater than or equal to 0 are studied, and several new results on constructing complete metrics with k greater than or equal to on them are obtained

  7. Report on Defense Business Operations to the Congressional Defense Committees

    Science.gov (United States)

    2009-03-15

    Department’s strategic framework for planning and decision-making, and acknowledged the need to establish clear, actionable strategic goals and...Business Operations Department of Defense Business Transformation 5 2. Business Enterprise Priorities Six Business Enterprise Priorities ( BEPs ... framework products that facilitate the interoperability and integration of the operational activities, processes, data, information exchanges

  8. Advancing Autonomous Operations for Deep Space Vehicles

    Science.gov (United States)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  9. Committees

    Science.gov (United States)

    2012-11-01

    Leadership Team of the IAHR Committee for Hydraulic Machinery and Systems Eduard EGUSQUIZA, UPC Barcelona, Spain, Chair François AVELLAN, EPFL-LMH, Switzerland, Past Chair Richard K FISHER, Voith Hydro Inc., USA, Past Chair Fidel ARZOLA, Edelca, Venezuela Michel COUSTON, Alstom Hydro, France Niklas DAHLBÄCKCK, Vatenfall, Sweden Normand DESY, Andritz VA TECH Hydro Ltd., Canada Chisachi KATO, University of Tokyo, Japan Andrei LIPEJ, Turboinstitut, Slovenija Torbjørn NIELSEN, NTNU, Norway Romeo SUSAN-RESIGA, 'Politehnica' University Timisoara, Romania Stefan RIEDELBAUCH, Stuggart University, Germany Albert RUPRECHT, Stuttgart University, Germany Qing-Hua SHI, Dong Fang Electrical Machinery Co., China Geraldo TIAGO, Universidade Federal de Itajubá, Brazil International Advisory Committee Shouqi YUAN (principal) Jiangsu University China QingHua SHI (principal) Dong Fang Electrical Machinery Co. China Fidel ARZOLA EDELCA Venezuela Thomas ASCHENBRENNER Voith Hydro GmbH & Co. KG Germany Anton BERGANT Litostroj Power doo Slovenia B C BHAOYAL Research & Technology Centre India Hermod BREKKE NTNU Norway Stuart COULSON Voith Hydro Inc. USA Paul COOPER Fluid Machinery Research Inc USA V A DEMIANOV Power Machines OJSC Russia Bart van ESCH Technische Universiteit Eindhoven Netherland Arno GEHRER Andritz Hydro Graz Austria Akira GOTO Ebara Corporation Japan Adiel GUINZBURG The Boeing Company USA D-H HELLMANN KSB AG Germany Ashvin HOSANGADI Combustion Research and Flow Technology USA Byung-Sun HWANG Korea Institute of Material Science Korea Toshiaki KANEMOTO Kyushu Institute of Technology Japan Mann-Eung KIM Korean Register of Shipping Korea Jiri KOUTNIK Voith Hydro GmbH & Co. KG Germany Jinkook LEE Eaton Corporation USA Young-Ho LEE Korea Maritime University Korea Woo-Seop LIM Hyosung Goodsprings Inc Korea Jun MATSUI Yokohama National University Japan Kazuyoshi Mitsubishi H I Ltd, Japan MIYAGAWA Christophe NICOLET Power Vision Engineering Srl Switzerland Maryse PAGE Hydro

  10. Composition operators between Bloch type spaces and Zygmund ...

    Indian Academy of Sciences (India)

    MS received 1 September 2009; revised 31 March 2011. Abstract. The boundedness and compactness of composition operators between. Bloch type spaces and Zygmund spaces of holomorphic functions in the unit ball are characterized in the paper. Keywords. Composition operator; Bloch type space; Zygmund space. 1.

  11. Space Station Initial Operational Concept (IOC) operations and safety view - Automation and robotics for Space Station

    Science.gov (United States)

    Bates, William V., Jr.

    1989-01-01

    The automation and robotics requirements for the Space Station Initial Operational Concept (IOC) are discussed. The amount of tasks to be performed by an eight-person crew, the need for an automated or directed fault analysis capability, and ground support requirements are considered. Issues important in determining the role of automation for the IOC are listed.

  12. Convexity Of Inversion For Positive Operators On A Hilbert Space

    International Nuclear Information System (INIS)

    Sangadji

    2001-01-01

    This paper discusses and proves three theorems for positive invertible operators on a Hilbert space. The first theorem gives a comparison of the generalized arithmetic mean, generalized geometric mean, and generalized harmonic mean for positive invertible operators on a Hilbert space. For the second and third theorems each gives three inequalities for positive invertible operators on a Hilbert space that are mutually equivalent

  13. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities

    Science.gov (United States)

    1963-01-01

    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  14. JPL Space Telecommunications Radio System Operating Environment

    Science.gov (United States)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.; Duncan, Courtney B.; Orozco, David S.; Stern, Ryan A.; Ahten, Earl R.; Girard, Mike

    2013-01-01

    A flight-qualified implementation of a Software Defined Radio (SDR) Operating Environment for the JPL-SDR built for the CoNNeCT Project has been developed. It is compliant with the NASA Space Telecommunications Radio System (STRS) Architecture Standard, and provides the software infrastructure for STRS compliant waveform applications. This software provides a standards-compliant abstracted view of the JPL-SDR hardware platform. It uses industry standard POSIX interfaces for most functions, as well as exposing the STRS API (Application Programming In terface) required by the standard. This software includes a standardized interface for IP components instantiated within a Xilinx FPGA (Field Programmable Gate Array). The software provides a standardized abstracted interface to platform resources such as data converters, file system, etc., which can be used by STRS standards conformant waveform applications. It provides a generic SDR operating environment with a much smaller resource footprint than similar products such as SCA (Software Communications Architecture) compliant implementations, or the DoD Joint Tactical Radio Systems (JTRS).

  15. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  16. on differential operators on w 1,2 space and fredholm operators

    African Journals Online (AJOL)

    A selfadjoint differential operator defined over a closed and bounded interval on Sobolev space which is a dense linear subspace of a Hilbert space over the same interval is considered and shown to be a Fredholm operator with index zero. KEY WORDS: Sobolev space, Hilbert space, dense subspace, Fredholm operator

  17. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  18. 75 FR 71791 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-11-24

    ... debris questions asked by the FAA; continuing the group's review of the Concept of Operation for Global Space Vehicle Debris Threat Management Report, and updating the list of top issues that should require... given of a teleconference of the Space Transportation Operations Working Group (STOWG) of the Commercial...

  19. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    DEFF Research Database (Denmark)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  20. Economic consequences of commercial space operations

    Science.gov (United States)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  1. Operator Arithmetic-Harmonic Mean Inequality on Krein Spaces

    Directory of Open Access Journals (Sweden)

    M. Dehghani

    2014-03-01

    Full Text Available We prove an operator arithmetic-harmonic mean type inequality in Krein space setting, by using some block matrix techniques of indefinite type. We also give an example which shows that the operator arithmetic-geometric-harmonic mean inequality for two invertible selfadjoint operators on Krein spaces is not valid, in general.

  2. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  3. AGU Committees

    Science.gov (United States)

    Administrative Committees are responsible for those functions required for the overall performance or well-being of AGU as an organization. These committees are Audit and Legal Affairs, Budget and Finance*, Development, Nominations*, Planning, Statutes and Bylaws*, Tellers.Operating Committees are responsible for the policy direction and operational oversight of AGU's primary programs. The Operating Committees are Education and Human Resources, Fellows*, Information Technology, International Participation*, Meetings, Public Affairs, Public Information, Publications*.

  4. Self-Adjointness Criterion for Operators in Fock Spaces

    International Nuclear Information System (INIS)

    Falconi, Marco

    2015-01-01

    In this paper we provide a criterion of essential self-adjointness for operators in the tensor product of a separable Hilbert space and a Fock space. The class of operators we consider may contain a self-adjoint part, a part that preserves the number of Fock space particles and a non-diagonal part that is at most quadratic with respect to the creation and annihilation operators. The hypotheses of the criterion are satisfied in several interesting applications

  5. Space Operations Learning Center Facebook Application

    Science.gov (United States)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  6. A note on supercyclic operators in locally convex spaces

    OpenAIRE

    Albanese, Angela A.; Jornet, David

    2018-01-01

    We treat some questions related to supercyclicity of continuous linear operators when acting in locally convex spaces. We extend results of Ansari and Bourdon and consider doubly power bounded operators in this general setting. Some examples are given.

  7. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  8. Spectral decomposition of model operators in de Branges spaces

    International Nuclear Information System (INIS)

    Gubreev, Gennady M; Tarasenko, Anna A

    2011-01-01

    The paper is devoted to studying a class of completely continuous nonselfadjoint operators in de Branges spaces of entire functions. Among other results, a class of unconditional bases of de Branges spaces consisting of values of their reproducing kernels is constructed. The operators that are studied are model operators in the class of completely continuous non-dissipative operators with two-dimensional imaginary parts. Bibliography: 22 titles.

  9. A distributed planning concept for Space Station payload operations

    Science.gov (United States)

    Hagopian, Jeff; Maxwell, Theresa; Reed, Tracey

    1994-01-01

    The complex and diverse nature of the payload operations to be performed on the Space Station requires a robust and flexible planning approach. The planning approach for Space Station payload operations must support the phased development of the Space Station, as well as the geographically distributed users of the Space Station. To date, the planning approach for manned operations in space has been one of centralized planning to the n-th degree of detail. This approach, while valid for short duration flights, incurs high operations costs and is not conducive to long duration Space Station operations. The Space Station payload operations planning concept must reduce operations costs, accommodate phased station development, support distributed users, and provide flexibility. One way to meet these objectives is to distribute the planning functions across a hierarchy of payload planning organizations based on their particular needs and expertise. This paper presents a planning concept which satisfies all phases of the development of the Space Station (manned Shuttle flights, unmanned Station operations, and permanent manned operations), and the migration from centralized to distributed planning functions. Identified in this paper are the payload planning functions which can be distributed and the process by which these functions are performed.

  10. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  11. Operations space diagram for ECRH and ECCD

    International Nuclear Information System (INIS)

    Bindslev, Henrik

    2004-01-01

    A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non-experts. JET and ITER like plasmas are used, but the method is generic. (author)

  12. Operations space diagram for ECRH and ECCD

    DEFF Research Database (Denmark)

    Bindslev, H.

    2004-01-01

    at the design phase. At the operations phase it may also prove useful in setting up experimental scenarios by showing operational possibilities, avoiding the need for survey type ray-tracing at the initial planning stages. The diagram may also serve the purpose of communicating operational possibilities to non......A Clemmov-Mullaly-Allis (CMA) type diagram, the ECW-CMA diagram, for representing the operational possibilities of electron cyclotron heating and current drive (ECRH/ECCD) systems for fusion plasmas is presented. In this diagram, with normalized density and normalized magnetic field coordinates......, the parameter range in which it is possible to achieve a given task (e.g. O-mode current drive for stabilizing a neoclassical tearing mode) appears as a region. With also the Greenwald density limit shown, this diagram condenses the information on operational possibilities, facilitating the overview required...

  13. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  14. Sobolev type spaces associated with the q-Rubin's operator

    Directory of Open Access Journals (Sweden)

    Neji Bettaibi

    2014-05-01

    Full Text Available In this paper we introduce and   study   some $q$-Sobolev type spaces by using the harmonic analysis associated with the q-Rubin operator. In particular, embedding theorems for these spaces are established.  Next, we introduce the q-Rubin potential spaces and study some of its properties.

  15. Revitalizing Space Operations through Total Quality Management

    Science.gov (United States)

    Baylis, William T.

    1995-01-01

    The purpose of this paper is to show the reader what total quality management (TQM) is and how to apply TQM in the space systems and management arena. TQM is easily understood, can be implemented in any type of business organization, and works.

  16. Unusual occurrences during LMFR operation. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-10-01

    Design of liquid metal cooled fast reactors (LMFRs) is still in evolution, and only a small number of LMFRs are in operation around the world. Specialists operating these LMFRs have gained valuable experience from incidents, failures, and other events that took place in the reactors. These unusual occurrences, lessons learned and measures undertaken to prevent recurrences are often either not reported in the literature, or reported only briefly and without sufficient detail. Hence there is a need for specialists designing and operating LMFRs to share their knowledge on unusual occurrences. Considerable experimental and theoretical knowledge in this field were collected by several Member states over the past decades. The needs in generalisation, review and documentation of fundamental knowledge in liquid metal cooled reactor technology were a major consideration in the recommendation by the International Working group on fast reactors for the IAEA to convene this Technical Committee meeting on the subject of unusual occurrences during LMFR operation and the consequences for reactor systems

  17. 76 FR 17143 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2011-03-28

    ... Data System 5. Enhancing Air Cargo Security 6. National Strategy Global Supply Chain Security and the...: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Advisory Committee on...

  18. 76 FR 58030 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2011-09-19

    ... steps and formulate recommendations on the following four issues: The work of the Global Supply Chain...: Committee Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Advisory Committee on...

  19. (s, μ)-similar operators in the Banach spaces

    International Nuclear Information System (INIS)

    Samarskij, V.G.

    1978-01-01

    The theory of the operator ideals formed by means of S function is developed. The problem of the construction of the operator acting from one Banach space to another whose S numbers are near to the given ones, is solved. Several conditions, sufficient for that any wholly continuous operator in the Gilbert space were transferred to the given pair of the Banach spaces without distorting too much the values of its S-numbers, are given. All the considered operators are assumed to be linear and continuous ones

  20. Expert systems and advanced automation for space missions operations

    Science.gov (United States)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  1. Operations planning for Space Station Freedom - And beyond

    Science.gov (United States)

    Gibson, Stephen S.; Martin, Thomas E.; Durham, H. J.

    1992-01-01

    The potential of automated planning and electronic execution systems for enhancing operations on board Space Station Freedom (SSF) are discussed. To exploit this potential the Operations Planning and Scheduling Subsystem is being developed at the NASA Johnson Space Center. Such systems may also make valuable contributions to the operation of resource-constrained, long-duration space habitats of the future. Points that should be considered during the design of future long-duration manned space missions are discussed. Early development of a detailed operations concept as an end-to-end mission description offers a basis for iterative design evaluation, refinement, and option comparison, particularly when used with an advanced operations planning system capable of modeling the operations and resource constraints of the proposed designs.

  2. Coordinate, Momentum and Dispersion operators in Phase space representation

    International Nuclear Information System (INIS)

    Rakotoson, H.; Raoelina Andriambololona; Ranaivoson, R.T.R.; Raboanary, R.

    2017-07-01

    The aim of this paper is to present a study on the representations of coordinate, momentum and dispersion operators in the framework of a phase space representation of quantum mechanics that we have introduced and studied in previous works. We begin in the introduction section with a recall about the concept of representation of operators on wave function spaces. Then, we show that in the case of the phase space representation the coordinate and momentum operators can be represented either with differential operators or with matrices. The explicit expressions of both the differential operators and matrices representations are established. Multidimensional generalization of the obtained results are performed and phase space representation of dispersion operators are given.

  3. A common fixed point for operators in probabilistic normed spaces

    International Nuclear Information System (INIS)

    Ghaemi, M.B.; Lafuerza-Guillen, Bernardo; Razani, A.

    2009-01-01

    Probabilistic Metric spaces was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [Alsina C, Schweizer B, Sklar A. On the definition of a probabilistic normed spaces. Aequationes Math 1993;46:91-8]. Here, we consider the equicontinuity of a class of linear operators in probabilistic normed spaces and finally, a common fixed point theorem is proved. Application to quantum Mechanic is considered.

  4. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  5. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  6. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  7. A regulator's perspective on NRC's participation in the operations ampersand maintenance committees

    International Nuclear Information System (INIS)

    Wessman, R.H.

    1996-01-01

    As a regulator fairly new to the American Society of Mechanical Engineers (ASME) Operations and Maintenance (O ampersand M) Committee process, the author does not have a personal historical perspective as do many of the longer-term, and highly respected, members of the O ampersand M Committee. However, as Branch Chief of the Mechanical Engineering Branch, Division of Engineering, in the Office of Nuclear Reactor Regulation at the NRC for just over two years, he has responsibility for the regulatory agency's review of licensee actions involving the products that come from the efforts of the O ampersand M Committee, as well as responsibility for portions of the activities of interest to other ASME Code groups such as Section III, Section XI, and Qualification of Mechanical Equipment. As a result, the author has learned a great deal about the code process in a short time. Here he gives his perspectives on the process and provides a few thoughts on the direction for the future

  8. A regulator`s perspective on NRC`s participation in the operations & maintenance committees

    Energy Technology Data Exchange (ETDEWEB)

    Wessman, R.H.

    1996-12-01

    As a regulator fairly new to the American Society of Mechanical Engineers (ASME) Operations and Maintenance (O&M) Committee process, the author does not have a personal historical perspective as do many of the longer-term, and highly respected, members of the O&M Committee. However, as Branch Chief of the Mechanical Engineering Branch, Division of Engineering, in the Office of Nuclear Reactor Regulation at the NRC for just over two years, he has responsibility for the regulatory agency`s review of licensee actions involving the products that come from the efforts of the O&M Committee, as well as responsibility for portions of the activities of interest to other ASME Code groups such as Section III, Section XI, and Qualification of Mechanical Equipment. As a result, the author has learned a great deal about the code process in a short time. Here he gives his perspectives on the process and provides a few thoughts on the direction for the future.

  9. 78 FR 70963 - NASA Advisory Council; Human Exploration and Operations Committee; Meeting

    Science.gov (United States)

    2013-11-27

    ....m. to 2:00 p.m., Local Time. ADDRESSES: NASA Kennedy Space Center, Headquarters Building, Room 2229... Operations Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-2245, or [email protected] meeting at the NASA Kennedy Space Center must provide their full name, company affiliation (if applicable...

  10. Performance Support Tools for Space Medical Operations

    Science.gov (United States)

    Byrne, Vicky E.; Schmidt, Josef; Barshi, Immanuel

    2009-01-01

    The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Human factors personnel at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground. This area of research involved the feasibility of Just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1, preliminary feasibility data was gathered for two types of prototype display technologies: a hand-held PDA, and a Head Mounted Display (HMD). The PDA and HMD were compared while performing a simulated medical procedure using ISS flight-like medical equipment. Based on the outcome of Phase 1, including data on user preferences, further testing was completed using the PDA only. Phase 2 explored a wrist-mounted PDA, and compared it to a paper cue card. For each phase, time to complete procedures, errors, and user satisfaction were captured. Information needed by the FS during ISS mission support, especially for an emergency situation (e.g. fire onboard ISS), may be located in many different places around the FS s console. A performance support tool prototype is being developed to address this issue by bringing all of the relevant information together in one place. The tool is designed to include procedures and other information needed by a FS

  11. Diagonalization of Bounded Linear Operators on Separable Quaternionic Hilbert Space

    International Nuclear Information System (INIS)

    Feng Youling; Cao, Yang; Wang Haijun

    2012-01-01

    By using the representation of its complex-conjugate pairs, we have investigated the diagonalization of a bounded linear operator on separable infinite-dimensional right quaternionic Hilbert space. The sufficient condition for diagonalizability of quaternionic operators is derived. The result is applied to anti-Hermitian operators, which is essential for solving Schroedinger equation in quaternionic quantum mechanics.

  12. TAMU: A New Space Mission Operations Paradigm

    Science.gov (United States)

    Meshkat, Leila; Ruszkowski, James; Haensly, Jean; Pennington, Granvil A.; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a model-centric System of System (SoS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically diverse locations, to develop the architecture and associated workflow processes for a broad range of mission operations. Further, TAMU FPP envisions the simulation, automatic execution and re-planning of orchestrated workflow processes as they become operational. This paper provides the vision for the TAMU FPP paradigm. This includes a complete, coherent technique, process and tool set that result in an infrastructure that can be used for full lifecycle design and decision making during any flight production process. A flight production process is the process of developing all products that are necessary for flight.

  13. A universal operator on the Gurarii space

    Czech Academy of Sciences Publication Activity Database

    Garbulińska-Węgrzyn, J.; Kubiś, Wieslaw

    2015-01-01

    Roč. 73, č. 1 (2015), s. 143-158 ISSN 0379-4024 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : almost isometry * Gurariî * isometrically universal operator Subject RIV: BA - General Mathematics Impact factor: 0.464, year: 2015 http://www.mathjournals.org/jot/2015-073-001/2015-073-001-007.html

  14. U.S. Army Space Operational Narrative

    Science.gov (United States)

    2012-03-20

    fire, and effects ( MFE ), the operational support (OS), and the functional support division (FSD); it is further divided into many more specialties...cyberspace expertise at the highest levels is a must for the Army. Both ARCYBERCOM and USASMDC/ARSTRAT commands are key positions filled by MFE officers... MFE officers with the majority from infantry and armor (31). The FA, AD, and EN branches will round out the top five.47 Half of the Army branches are

  15. Wiener-Hopf operators on spaces of functions on R+ with values in a Hilbert space

    OpenAIRE

    Petkova, Violeta

    2006-01-01

    A Wiener-Hopf operator on a Banach space of functions on R+ is a bounded operator T such that P^+S_{-a}TS_a=T, for every positive a, where S_a is the operator of translation by a. We obtain a representation theorem for the Wiener-Hopf operators on a large class of functions on R+ with values in a separable Hilbert space.

  16. NASA deep space network operations planning and preparation

    Science.gov (United States)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  17. Beyond Safe Operating Space: Finding Chemical Footprinting Feasible

    DEFF Research Database (Denmark)

    Posthuma, Leo; Bjørn, Anders; Zijp, Michiel C.

    2014-01-01

    undefined boundary in their selection of planetary boundaries delineating the “safe operating space for humanity”. Can we use the well-known concept of “ecological footprints” to express a chemical pollution boundary aimed at preventing the overshoot of the Earth’s capacity to assimilate environmental...... scenarios that allow us to avoid “chemical overshoot” beyond the Earth’s safe operating space....

  18. Quantized fields and operators on a partial inner product space

    International Nuclear Information System (INIS)

    Shabani, J.

    1985-11-01

    We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)

  19. Steady state operation of tokamaks. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-10-01

    The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition

  20. An Operations Management System for the Space Station

    Science.gov (United States)

    Rosenthal, H. G.

    1986-09-01

    This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.

  1. Committee on the safety of nuclear installations - Operating plan (2006 - 2009)

    International Nuclear Information System (INIS)

    2007-01-01

    In 2004, NEA issued its Strategic Plan covering the period 2005-2009, addressing the NEA activities associated with nuclear safety and regulation. Committee on the Safety of Nuclear Installations (CSNI) and Committee on Nuclear Regulatory Activities (CNRA), which have the primary responsibility for activities in this area, have developed and issued a joint strategic plan covering this same time period. As requested in the Joint Strategic Plan, each committee is to prepare an operating plan which describes in more detail the committee's organisation, planned activities, priorities and operating procedures to be used to implement the Joint Strategic Plan. In effect, the Joint Strategic Plan defines what type of work CSNI should do, whereas the Operating Plan describes the overall work scope and how to accomplish it to meet the joint CSNI/CNRA Strategic Plan objectives and mission. The present Operating Plan follows and takes into account the outcome of a CSNI assessment group, which has evaluated the CSNI activities. The assessment group expressed appreciation for the CSNI role and activity, while making recommendations with regards to scope of work and way to operate in order to further improve efficiency. The main objectives of CSNI are to: - Keep all member countries involved in and abreast of developments in safety technology. - Review operating experience with the objective to identify safety issues that need to be addressed by new research. - Review the state-of-knowledge on selected topics of nuclear safety technology and safety assessment. - Promote training and research projects that serve to maintain competence in nuclear safety matters. - Promote research as needed to reach consensus on nuclear safety issues of common interest. - Consider the safety implications of scientific and technical developments. To accomplish these objectives, CSNI is organised into six permanent working groups (as described in Section II), each covering a different set of

  2. How the Station will operate. [operation, management, and maintenance in space

    Science.gov (United States)

    Cox, John T.

    1988-01-01

    Aspects of the upcoming operational phase of the Space Station (SS) are examined. What the crew members will do with their time in their specialized roles is addressed. SS maintenance and servicing and the interaction of the SS Control Center with Johnson Space Center is discussed. The planning of payload operations and strategic planning for the SS are examined.

  3. Survey on nonlocal games and operator space theory

    International Nuclear Information System (INIS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states

  4. Survey on nonlocal games and operator space theory

    Energy Technology Data Exchange (ETDEWEB)

    Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-15

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  5. A gap analysis of meteorological requirements for commercial space operators

    Science.gov (United States)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  6. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  7. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  8. Particles and Dirac-type operators on curved spaces

    International Nuclear Information System (INIS)

    Visinescu, Mihai

    2003-01-01

    We review the geodesic motion of pseudo-classical particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing-Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing-Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub-Newman-Unti-Tamburino space. From the covariantly constant Killing-Yano tensors of this space we construct three new Dirac-type operators which are equivalent with the standard Dirac operator. Finally the Runge-Lenz operator for the Dirac equation in this background is expressed in terms of the fourth Killing-Yano tensor which is not covariantly constant. As a rule the covariantly constant Killing-Yano tensors realize certain square roots of the metric tensor. Such a Killing-Yano tensor produces simultaneously a Dirac-type operator and the generator of a one-parameter Lie group connecting this operator with the standard Dirac one. On the other hand, the not covariantly constant Killing-Yano tensors are important in generating hidden symmetries. The presence of not covariantly constant Killing-Yano tensors implies the existence of non-standard supersymmetries in point particle theories on curved background. (author)

  9. The Role of the United Nations Committee on the Peaceful Uses of Outer Space in Building Capacity

    Science.gov (United States)

    Haubold, Hans

    The Office for Outer Space Affairs (OOSA) will provide an overview of achievements of UN- COPUOS, UNISPACE Conferences, particularly the establishment of the Programme on Space Applications and its priority thematic areas, UN-affiliated Regional Centres for Space Science and Technology Education, the International Committee on Global Navigation Satellite Systems (ICG), the UN Platform for Space-based Information for Disaster Management and Emergency Response (UN-Spider), and legal framework governing space activities of UN Member States. OOSA will review results of the United Nations Basic Space Science Initiative, particularly the development of networks of astronomical telescope facilities, planetariums, and instrument arrays for space research in developing nations. The mission of OOSA, implemented through on-going programmes developed for the International Heliophysical Year 2007 (IHY2007) and the International Year of Astronomy 2009 (IYA2009) will be highlighted.

  10. (Ln-bar, g)-spaces. Variation operator

    International Nuclear Information System (INIS)

    Manoff, S.; Dimitrov, B.

    1998-01-01

    A variation operator is determined over (L n bar, g)-spaces as a linear differential operator, acting on tensor fields in a given basis. Its commutation relations with the Lie differential operator, with the covariant differential operator and with the contraction operator are imposed. The corollaries from using the different commutation relations in a Lagrangian formalism are found and two types of variation methods are distinguished: the common (canonical) method of Lagrangians with partial derivatives (MLPD) and the method of Lagrangians with covariant derivatives (MLCD)

  11. 76 FR 46312 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2011-08-02

    ... DEPARTMENT OF HOMELAND SECURITY [Docket No. USCBP-2011-0024] Advisory Committee on Commercial... Homeland Security (DHS). ACTION: Committee management; notice of Federal Advisory Committee meeting...-of-business on August 12, 2011. ADDRESSES: The meeting will be held at the Westin Long Beach Hotel...

  12. Air operations language for military space ground systems

    Science.gov (United States)

    Davis, P.

    The trends in military space ground system architecture is toward large amounts of software and more widely distributed processors. At the same time, life cycle cost considerations dictate that fewer personnel with minimized skill levels and knowledge operate and support these systems. This squeeze necessitates more human engineering and operational planning into the design of these systems. Several techniques have been developed to satisfy these requirements. An operations language is one of these techniques. It involves a specially defined syntax for control of the system. Individual directives are able to be grouped into operations language procedures. These procedures can be prepared offline ahead of time by more skilled personnel and then used to ensure repeatability of operational sequences and reduce operator errors. The use of an operations language also provides benefits for the handling of contingency operations as well as in the system testing and validation programs.

  13. Geospace monitoring for space weather research and operation

    Directory of Open Access Journals (Sweden)

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  14. Geospace monitoring for space weather research and operation

    Science.gov (United States)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  15. Frechet differentiation of nonlinear operators between fuzzy normed spaces

    International Nuclear Information System (INIS)

    Yilmaz, Yilmaz

    2009-01-01

    By the rapid advances in linear theory of fuzzy normed spaces and fuzzy bounded linear operators it is natural idea to set and improve its nonlinear peer. We aimed in this work to realize this idea by introducing fuzzy Frechet derivative based on the fuzzy norm definition in Bag and Samanta [Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. J Fuzzy Math 2003;11(3):687-705]. The definition is divided into two part as strong and weak fuzzy Frechet derivative so that it is compatible with strong and weak fuzzy continuity of operators. Also we restate fuzzy compact operator definition of Lael and Nouroizi [Lael F, Nouroizi K. Fuzzy compact linear operators. Chaos, Solitons and Fractals 2007;34(5):1584-89] as strongly and weakly fuzzy compact by taking into account the compatibility. We prove also that weak Frechet derivative of a nonlinear weakly fuzzy compact operator is also weakly fuzzy compact.

  16. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  17. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  18. System security in the space flight operations center

    Science.gov (United States)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  19. Unbounded weighted composition operators in L²-spaces

    CERN Document Server

    Budzyński, Piotr; Jung, Il Bong; Stochel, Jan

    2018-01-01

    This book establishes the foundations of the theory of bounded and unbounded weighted composition operators in L²-spaces. It develops the theory in full generality, meaning that the weighted composition operators under consideration are not regarded as products of multiplication and composition operators. A variety of seminormality properties are characterized and the first-ever criteria for subnormality of unbounded weighted composition operators is provided. The subtle interplay between the classical moment problem, graph theory and the injectivity problem is revealed and there is an investigation of the relationships between weighted composition operators and the corresponding multiplication and composition operators. The optimality of the obtained results is illustrated by a variety of examples, including those of discrete and continuous types. The book is primarily aimed at researchers in single or multivariable operator theory.

  20. Spectral analysis of difference and differential operators in weighted spaces

    International Nuclear Information System (INIS)

    Bichegkuev, M S

    2013-01-01

    This paper is concerned with describing the spectrum of the difference operator K:l α p (Z,X)→l α p (Z......athscrKx)(n)=Bx(n−1),  n∈Z,  x∈l α p (Z,X), with a constant operator coefficient B, which is a bounded linear operator in a Banach space X. It is assumed that K acts in the weighted space l α p (Z,X), 1≤p≤∞, of two-sided sequences of vectors from X. The main results are obtained in terms of the spectrum σ(B) of the operator coefficient B and properties of the weight function. Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given. Bibliography: 23 titles

  1. Weighted Differentiation Composition Operator from Logarithmic Bloch Spaces to Zygmund-Type Spaces

    Directory of Open Access Journals (Sweden)

    Huiying Qu

    2014-01-01

    Full Text Available Let H( denote the space of all holomorphic functions on the unit disk of ℂ, u∈H( and let  n be a positive integer, φ a holomorphic self-map of , and μ a weight. In this paper, we investigate the boundedness and compactness of a weighted differentiation composition operator φ,unf(z=u(zf(n(φ(z,f∈H(, from the logarithmic Bloch spaces to the Zygmund-type spaces.

  2. Analysis of remote operating systems for space-based servicing operations, volume 1

    Science.gov (United States)

    1985-01-01

    A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.

  3. Integral-Type Operators from Bloch-Type Spaces to QK Spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2011-01-01

    Full Text Available The boundedness and compactness of the integral-type operator Iφ,g(nf(z=∫0zf(n(φ(ζg(ζdζ, where n∈N0, φ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on D, from α-Bloch spaces to QK spaces are characterized.

  4. Why advanced computing? The key to space-based operations

    Science.gov (United States)

    Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack

    2000-11-01

    The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'

  5. Secure, Network-Centric Operations of a Space-Based Asset: Cisco Router in Low Earth Orbit (CLEO) and Virtual Mission Operations Center (VMOC)

    Science.gov (United States)

    Ivancic, William; Stewart, Dave; Shell, Dan; Wood, Lloyd; Paulsen, Phil; Jackson, Chris; Hodgson, Dave; Notham, James; Bean, Neville; Miller, Eric

    2005-01-01

    This report documents the design of network infrastructure to support operations demonstrating the concept of network-centric operations and command and control of space-based assets. These demonstrations showcase major elements of the Transformal Communication Architecture (TCA), using Internet Protocol (IP) technology. These demonstrations also rely on IP technology to perform the functions outlined in the Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) document. A key element of these demonstrations was the ability to securely use networks and infrastructure owned and/or controlled by various parties. This is a sanitized technical report for public release. There is a companion report available to a limited audience. The companion report contains detailed networking addresses and other sensitive material and is available directly from William Ivancic at Glenn Research Center.

  6. The energy-momentum operator in curved space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.

    1983-01-01

    It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)

  7. Integrating Space Systems Operations at the Marine Expeditionary Force Level

    Science.gov (United States)

    2015-06-01

    Operation ARSST Army Space Support Team BCT Brigade Combat Team BDA Battle Damage Assessment BLOS Beyond Line of Site C2 Command and Control CMCC-CP...accurate imagery of known target locations. Additionally, ISR systems provide a convenient battle damage assessment ( BDA ) option necessary to determine

  8. Hilbert-type inequalities for Hilbert space operators | Krnic ...

    African Journals Online (AJOL)

    In this paper we establish a general form of the Hilbert inequality for positive invertible operators on a Hilbert space. Special emphasis is given to such inequalities with homogeneous kernels. In some general cases the best possible constant factors are also derived. Finally, we obtain the improvement of previously deduced ...

  9. On convergence of nuclear and correlation operators in Hilbert space

    International Nuclear Information System (INIS)

    Kubrusly, C.S.

    1985-01-01

    The convergence of sequences of nuclear operators on a separable Hilbert space is studied. Emphasis is given to trace-norm convergence, which is a basic property in stochastic systems theory. Obviously trace-norm convergence implies uniform convergence. The central theme of the paper focus the opposite way, by investigating when convergence in a weaker topology turns out to imply convergence in a stronger topology. The analysis carried out here is exhaustive in the following sense. All possible implications within a selected set of asymptotic properties for sequences of nuclear operators are established. The special case of correlation operators is also considered in detail. (Author) [pt

  10. Selfadjoint operators in spaces of functions of infinitely many variables

    CERN Document Server

    Berezanskiĭ, Yu M

    1986-01-01

    Questions in the spectral theory of selfadjoint and normal operators acting in spaces of functions of infinitely many variables are studied in this book, and, in particular, the theory of expansions in generalized eigenfunctions of such operators. Both individual operators and arbitrary commuting families of them are considered. A theory of generalized functions of infinitely many variables is constructed. The circle of questions presented has evolved in recent years, especially in connection with problems in quantum field theory. This book will be useful to mathematicians and physicists interested in the indicated questions, as well as to graduate students and students in advanced university courses.

  11. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  12. Generalized space and linear momentum operators in quantum mechanics

    International Nuclear Information System (INIS)

    Costa, Bruno G. da; Borges, Ernesto P.

    2014-01-01

    We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p ^ q , and its canonically conjugate deformed position operator x ^ q . A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed

  13. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  14. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    Science.gov (United States)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  15. Operationally efficient propulsion system study (OEPSS) data book. Volume 6; Space Transfer Propulsion Operational Efficiency Study Task of OEPSS

    Science.gov (United States)

    Harmon, Timothy J.

    1992-01-01

    This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.

  16. Joint Space Operations Center (JSpOC) Mission System (JMS)

    Science.gov (United States)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  17. Maintaining US Space Weather Capabilities after DMSP: Research to Operations

    Science.gov (United States)

    Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.

  18. Constraint and Flight Rule Management for Space Mission Operations

    Science.gov (United States)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  19. Impact of three years training on operations capacities of research ethics committees in Nigeria.

    Science.gov (United States)

    Folayan, Morenike Oluwatoyin; Adaranijo, Aisha; Durueke, Florita; Ajuwon, Ademola; Adejumo, Adebayo; Ezechi, Oliver; Oyedeji, Kola; Akanni, Olayide

    2014-04-01

    This paper describes a three-year project designed to build the capacity of members of research ethics committes to perform their roles and responsibilities efficiently and effectively. The project participants were made up of a cross-section of the membership of 13 Research Ethics Committees (RECs) functioning in Nigeria. They received training to develop their capacity to evaluate research protocols, monitor trial implementation, provide constructive input to trial staff, and assess the trial's success in promoting community engagement in the research. Following the training, technical assistance was provided to participants on an ongoing basis and the project's impacts were assessed quantitatively and qualitatively. Results indicate that sustained investment in capacity building efforts (including training, ongoing technical assistance, and the provision of multiple tools) improved the participants' knowledge of both the ethical principles relevant to biomedical research and how effective REC should function. Such investment was also shown to have a positive impact on the knowledge levels of other RECs members (those who did not receive training) and the overall operations of the RECs to which the participants belonged. Building the capacity of REC members to fulfill their roles effectively requires sustained effort and investment and pays off by enabling RECs to fulfill their essential mission of ensuring that trials are conducted safely and ethically. © 2012 John Wiley & Sons Ltd.

  20. Behavioral Health and Performance Operations During the Space Shuttle Program

    Science.gov (United States)

    Beven, G.; Holland, A.; Moomaw, R.; Sipes, W.; Vander Ark, S.

    2011-01-01

    Prior to the Columbia STS 107 disaster in 2003, the Johnson Space Center s Behavioral Health and Performance Group (BHP) became involved in Space Shuttle Operations on an as needed basis, occasionally acting as a consultant and primarily addressing crew-crew personality conflicts. The BHP group also assisted with astronaut selection at every selection cycle beginning in 1991. Following STS 107, an event that spawned an increased need of behavioral health support to STS crew members and their dependents, BHP services to the Space Shuttle Program were enhanced beginning with the STS 114 Return to Flight mission in 2005. These services included the presence of BHP personnel at STS launches and landings for contingency support, a BHP briefing to the entire STS crew at L-11 months, a private preflight meeting with the STS Commander at L-9 months, and the presence of a BHP consultant at the L-1.5 month Family Support Office briefing to crew and family members. The later development of an annual behavioral health assessment of all active astronauts also augmented BHP s Space Shuttle Program specific services, allowing for private meetings with all STS crew members before and after each mission. The components of each facet of these BHP Space Shuttle Program support services will be presented, along with valuable lessons learned, and with recommendations for BHP involvement in future short duration space missions

  1. The Race Toward Becoming Operationally Responsive in Space

    Science.gov (United States)

    Nagy, J.; Hernandez, V.; Strunce, R.

    The US Air Force Research Laboratory (AFRL) is currently supporting the joint Operationally Responsive Space (ORS) program with two aggressive research space programs. The goal of the ORS program is to improve the responsiveness of space capabilities to meet national security requirements. ORS systems aim to provide operational space capabilities as well as flexibility and responsiveness to the theater that do not exist today. ORS communication, navigation, and Intelligence, Surveillance and Reconnaissance (ISR) satellites are being designed to rapidly meet near term space needs of in-theater tactical forces by supporting contingency operations, such as increased communication bandwidth, and ISR imagery over the theater for a limited period to support air, ground, and naval force missions. This paper will discuss how AFRL/RHA is supporting the ORS effort and describe the hardware and software being developed with a particular focus on the Satellite Design Tool for plug-n-play satellites (SDT). AFRLs Space Vehicles Directorate together with the Scientific Simulation, Inc. was the first to create the Plug-and-play (PnP) satellite design for rapid construction through modular components that encompass the structural panels, as well as the guidance and health/status components. Expansion of the PnP technology is currently being led by AFRL's Human Effectiveness Directorate and Star Technologies Corp. by pushing the boundaries of mobile hardware and software technology through the development of the teams "Training and Tactical ORS Operations (TATOO) Laboratory located in Great Falls, VA. The TATOO Laboratory provides a computer-based simulation environment directed at improving Warfighters space capability responsiveness by delivering the means to create and exercise methods of in-theater tactical satellite tasking for and by the Warfighter. In an effort to further support the evolution of ORS technologies with Warfighters involvement, Star recently started

  2. Spaces of fractional quotients, discrete operators, and their applications. II

    International Nuclear Information System (INIS)

    Lifanov, I K; Poltavskii, L N

    1999-01-01

    The theory of discrete operators in spaces of fractional quotients is developed. A theorem on the stability of discrete operators under smooth perturbations is proved. On this basis, using special quadrature formulae of rectangular kind, the convergence of approximate solutions of hypersingular integral equations to their exact solutions is demonstrated and a mathematical substantiation of the method of closed discrete vortex frameworks is obtained. The same line of argument is also applied to difference equations arising in the solution of the homogeneous Dirichlet problem for a general second-order elliptic equation with variable coefficients

  3. Organizing for low cost space operations - Status and plans

    Science.gov (United States)

    Lee, C.

    1976-01-01

    Design features of the Space Transportation System (vehicle reuse, low cost expendable components, simple payload interfaces, standard support systems) must be matched by economical operational methods to achieve low operating and payload costs. Users will be responsible for their own payloads and will be charged according to the services they require. Efficient use of manpower, simple documentation, simplified test, checkout, and flight planning are firm goals, together with flexibility for quick response to varying user needs. Status of the Shuttle hardware, plans for establishing low cost procedures, and the policy for user charges are discussed.

  4. Automated space vehicle control for rendezvous proximity operations

    Science.gov (United States)

    Lea, Robert N.

    1988-01-01

    Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.

  5. Convex analysis and monotone operator theory in Hilbert spaces

    CERN Document Server

    Bauschke, Heinz H

    2017-01-01

    This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, ma...

  6. Applying AI tools to operational space environmental analysis

    Science.gov (United States)

    Krajnak, Mike; Jesse, Lisa; Mucks, John

    1995-01-01

    The U.S. Air Force and National Oceanic Atmospheric Agency (NOAA) space environmental operations centers are facing increasingly complex challenges meeting the needs of their growing user community. These centers provide current space environmental information and short term forecasts of geomagnetic activity. Recent advances in modeling and data access have provided sophisticated tools for making accurate and timely forecasts, but have introduced new problems associated with handling and analyzing large quantities of complex data. AI (Artificial Intelligence) techniques have been considered as potential solutions to some of these problems. Fielding AI systems has proven more difficult than expected, in part because of operational constraints. Using systems which have been demonstrated successfully in the operational environment will provide a basis for a useful data fusion and analysis capability. Our approach uses a general purpose AI system already in operational use within the military intelligence community, called the Temporal Analysis System (TAS). TAS is an operational suite of tools supporting data processing, data visualization, historical analysis, situation assessment and predictive analysis. TAS includes expert system tools to analyze incoming events for indications of particular situations and predicts future activity. The expert system operates on a knowledge base of temporal patterns encoded using a knowledge representation called Temporal Transition Models (TTM's) and an event database maintained by the other TAS tools. The system also includes a robust knowledge acquisition and maintenance tool for creating TTM's using a graphical specification language. The ability to manipulate TTM's in a graphical format gives non-computer specialists an intuitive way of accessing and editing the knowledge base. To support space environmental analyses, we used TAS's ability to define domain specific event analysis abstractions. The prototype system defines

  7. Manifold learning to interpret JET high-dimensional operational space

    International Nuclear Information System (INIS)

    Cannas, B; Fanni, A; Pau, A; Sias, G; Murari, A

    2013-01-01

    In this paper, the problem of visualization and exploration of JET high-dimensional operational space is considered. The data come from plasma discharges selected from JET campaigns from C15 (year 2005) up to C27 (year 2009). The aim is to learn the possible manifold structure embedded in the data and to create some representations of the plasma parameters on low-dimensional maps, which are understandable and which preserve the essential properties owned by the original data. A crucial issue for the design of such mappings is the quality of the dataset. This paper reports the details of the criteria used to properly select suitable signals downloaded from JET databases in order to obtain a dataset of reliable observations. Moreover, a statistical analysis is performed to recognize the presence of outliers. Finally data reduction, based on clustering methods, is performed to select a limited and representative number of samples for the operational space mapping. The high-dimensional operational space of JET is mapped using a widely used manifold learning method, the self-organizing maps. The results are compared with other data visualization methods. The obtained maps can be used to identify characteristic regions of the plasma scenario, allowing to discriminate between regions with high risk of disruption and those with low risk of disruption. (paper)

  8. Operationalizing safe operating space for regional social-ecological systems.

    Science.gov (United States)

    Hossain, Md Sarwar; Dearing, John A; Eigenbrod, Felix; Johnson, Fiifi Amoako

    2017-04-15

    This study makes a first attempt to operationalize the safe operating space concept at a regional scale by considering the complex dynamics (e.g. non-linearity, feedbacks, and interactions) within a systems dynamic model (SD). We employ the model to explore eight 'what if' scenarios based on well-known challenges (e.g. climate change) and current policy debates (e.g. subsidy withdrawal). The findings show that the social-ecological system in the Bangladesh delta may move beyond a safe operating space when a withdrawal of a 50% subsidy for agriculture is combined with the effects of a 2°C temperature increase and sea level rise. Further reductions in upstream river discharge in the Ganges would push the system towards a dangerous zone once a 3.5°C temperature increase was reached. The social-ecological system in Bangladesh delta may be operated within a safe space by: 1) managing feedback (e.g. by reducing production costs) and the slow biophysical variables (e.g. temperature, rainfall) to increase the long-term resilience, 2) negotiating for transboundary water resources, and 3) revising global policies (e.g. withdrawal of subsidy) that negatively impact at regional scales. This study demonstrates how the concepts of tipping points, limits to adaptations, and boundaries for sustainable development may be defined in real world social-ecological systems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. ESSC-ESF Position Paper-Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    Science.gov (United States)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John

    2009-02-01

    In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice

  10. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    Science.gov (United States)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  11. Radioactive Operations Committee Review of the Intermediate-Level Waste Evaporator Facility, Building 2531 February 17, 1972

    International Nuclear Information System (INIS)

    Liberman, B.; Brooksbank, R.E.

    1972-01-01

    A subcommittee of the Radioactive Operations Committee met with the Operators of the Intermediate Level Waste Evaporator Facility on February 17, 1972, to discuss the status of the facility and its operations since the review of October 7, 1970, and reported in ORNL-CF-70-11-12. This review was made to determine the status of the ILWEF since the last review, to discuss compliance with previously recommended changes, and to review any new items of safety significance. Several recommendations were made.

  12. 78 FR 11671 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2013-02-19

    ... Term. 5. Discuss the Statement of Work and Next Steps regarding the Global Supply Chain Subcommittee... and Border Protection, Department of Homeland Security (DHS). ACTION: Committee Management; Notice of...

  13. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems. SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  14. Operational space weather service for GNSS precise positioning

    Directory of Open Access Journals (Sweden)

    N. Jakowski

    2005-11-01

    Full Text Available The ionospheric plasma can significantly influence the propagation of radio waves and the ionospheric disturbances are capable of causing range errors, rapid phase and amplitude fluctuations (radio scintillations of satellite signals that may lead to degradation of the system performance, its accuracy and reliability. The cause of such disturbances should be sought in the processes originating in the Sun. Numerous studies on these phenomena have been already carried out at a broad international level, in order to measure/estimate these space weather induced effects, to forecast them, and to understand and mitigate their impact on present-day technological systems.

    SWIPPA (Space Weather Impact on Precise Positioning Applications is a pilot project jointly supported by the German Aerospace Centre (DLR and the European Space Agency (ESA. The project aims at establishing, operating, and evaluating a specific space-weather monitoring service that can possibly lead to improving current positioning applications based on Global Navigation Satellite Systems (GNSS. This space weather service provides GNSS users with essential expert information delivered in the form of several products - maps of TEC values, TEC spatial and temporal gradients, alerts for ongoing/oncoming ionosphere disturbances, etc.

  15. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  16. Performance of operating and advanced light water reactor designs. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-10-01

    Nuclear power can provide security of energy supply, stable energy costs, and can contribute to greenhouse gas reduction. To fully realize these benefits, a continued and strong focus must be maintained on means for assuring the economic competitiveness of nuclear power relative to alternatives. Over the past several years, considerable improvements have been achieved in nuclear plant performance. Worldwide, the average energy availability factor has increased from 66 per cent in 1980 to 81 per cent in 1999, with some utilities achieving significantly higher values. This is being achieved through integrated programmes including personnel training and quality assurance, improvements in plant system and component design and plant operation, by various means to reduce outage duration for maintenance and refuelling and other scheduled shutdowns, and by reducing the number of forced outages. Application of technical means for achieving high performance of nuclear power plants is an important element for assuring their economic competitiveness. For the current plants, proper management includes development and application of better technologies for inspection, maintenance and repair. For future plants, the opportunity exists during the design phase to incorporate design features and technologies for achieving high performance. This IAEA Technical Committee meeting (TCM) provided a forum for information exchange on design features and technologies incorporated into LWR plants commissioned within the last 15-20 years, and into evolutionary LWR designs still under development, for achieving performance improvements with due regard to stringent safety requirements and objectives. It also addressed on-going technology development expected to achieve further improvements and/or significant cost reductions. The TCM was attended by 32 participants from 14 Member States: Argentina, Bulgaria, Czech Republic, Finland, France, Germany, Hungary, Japan, Republic of Korea, Mexico

  17. International Cooperation of Payload Operations on the International Space Station

    Science.gov (United States)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  18. CO2 on the International Space Station: An Operations Update

    Science.gov (United States)

    Law, Jennifer; Alexander, David

    2016-01-01

    PROBLEM STATEMENT: We describe CO2 symptoms that have been reported recently by crewmembers on the International Space Station and our continuing efforts to control CO2 to lower levels than historically accepted. BACKGROUND: Throughout the International Space Station (ISS) program, anecdotal reports have suggested that crewmembers develop CO2-related symptoms at lower CO2 levels than would be expected terrestrially. Since 2010, operational limits have controlled the 24-hour average CO2 to 4.0 mm Hg, or below as driven by crew symptomatology. In recent years, largely due to increasing awareness by crew and ground team, there have been increased reports of crew symptoms. The aim of this presentation is to discuss recent observations and operational impacts to lower CO2 levels on the ISS. CASE PRESENTATION: Crewmembers are routinely asked about CO2 symptoms in their weekly private medical conferences with their crew surgeons. In recent ISS expeditions, crewmembers have noted symptoms attributable to CO2 starting at 2.3 mmHg. Between 2.3 - 2.7 mm Hg, fatigue and full-headedness have been reported. Between 2.7 - 3.0 mm Hg, there have been self-reports of procedure missed steps or procedures going long. Above 3.0 - 3.4 mm Hg, headaches have been reported. A wide range of inter- and intra-individual variability in sensitivity to CO2 have been noted. OPERATIONAL / CLINICAL RELEVANCE: These preliminary data provide semi-quantitative ranges that have been used to inform a new operational limit of 3.0 mmHg as a compromise between systems capabilities and the recognition that there are human health and performance impacts at recent ISS CO2 levels. Current evidence would suggest that an operational limit between 0.5 and 2.0 mm Hg may maintain health and performance. Future work is needed to establish long-term ISS and future vehicle operational limits.

  19. Generalized Fractional Integral Operators on Generalized Local Morrey Spaces

    Directory of Open Access Journals (Sweden)

    V. S. Guliyev

    2015-01-01

    Full Text Available We study the continuity properties of the generalized fractional integral operator Iρ on the generalized local Morrey spaces LMp,φ{x0} and generalized Morrey spaces Mp,φ. We find conditions on the triple (φ1,φ2,ρ which ensure the Spanne-type boundedness of Iρ from one generalized local Morrey space LMp,φ1{x0} to another LMq,φ2{x0}, 1space WLMq,φ2{x0}, 1

  20. Soldier-Warfighter Operationally Responsive Deployer for Space

    Science.gov (United States)

    Davis, Benny; Huebner, Larry; Kuhns, Richard

    2015-01-01

    The Soldier-Warfighter Operationally Responsive Deployer for Space (SWORDS) project was a joint project between the U.S. Army Space & Missile Defense Command (SMDC) and NASA. The effort, lead by SMDC, was intended to develop a three-stage liquid bipropellant (liquid oxygen/liquid methane), pressure-fed launch vehicle capable of inserting a payload of at least 25 kg to a 750-km circular orbit. The vehicle design was driven by low cost instead of high performance. SWORDS leveraged commercial industry standards to utilize standard hardware and technologies over customized unique aerospace designs. SWORDS identified broadly based global industries that have achieved adequate levels of quality control and reliability in their products and then designed around their expertise and business motivations.

  1. Space platforms - A cost effective evolution of Spacelab operation

    Science.gov (United States)

    Stofan, A. J.

    1981-01-01

    The capabilities added to the Shuttle/Spacelab configuration by the addition of the Power Extension Package (PEP), the Power System (PS), and the Science and Applications Space Platforms (SASP) are reviewed with an emphasis on SASP. SASP are intended for placement in orbit by the Shuttle to test new instruments and systems, for clustering of instrumentation, and for servicing, refurbishment, repair, or augmentation by the Shuttle. The PEP permits extended stays in orbit (30 days), and the PS is an orbital solar array and energy storage system acting as a free flying spacecraft. The Shuttle can deliver payloads to the PS or attach to it for extension of the Spacelab operations. Applications of SASP for long term space-based biological experiments are outlined, and the fact that SASP do not increase the required Shuttle in-orbit time is stressed.

  2. The Efforts of the American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee to Use NASA Research in Education and Outreach

    Science.gov (United States)

    Bering, E. A., III; Dusenbery, P.; Gross, N. A.; Johnson, R.; Lopez, R. E.; Lysak, R. L.; Moldwin, M.; Morrow, C. A.; Nichols-Yehling, M.; Peticolas, L. M.; Reiff, P. H.; Scherrer, D. K.; Thieman, J.; Wawro, M.; Wood, E. L.

    2017-12-01

    The American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee (AGU SPA-EPO Committee) was established in 1990 to foster the growth of a culture of outreach and community engagement within the SPA Section of the AGU. The SPA was the first AGU Section to establish an EPO Committee. The Committee has initiated several key Section EPO programs that have grown to become Union programs. NASA sponsored research is central to the mission of the SPE-EPO. Programs highlighting NASA research include the Student Paper Competition, Exploration Station, a precursor to the GIFT workshops, the Student mixer, and more. The Committee played a key role in coordinating the AGU's outreach activities relating to the International Heliophysical Year in 2007-2008. This paper will review the triumphs, the failures, and the lessons learned about recruiting colleagues to join with us from the last quarter century of effort.

  3. Learning strategies of public health nursing students: conquering operational space.

    Science.gov (United States)

    Hjälmhult, Esther

    2009-11-01

    To develop understanding of how public health nursing students learn in clinical practice and explore the main concern for the students and how they acted to resolve this main concern. How professionals perform their work directly affects individuals, but knowledge is lacking in understanding how learning is connected to clinical practice in public health nursing and in other professions. Grounded theory. Grounded theory was used in gathering and analysing data from 55 interviews and 108 weekly reports. The participants were 21 registered nurses who were public health nursing students. The grounded theory of conquering operational space explains how the students work to resolve their main concern. A social process with three identified phases, positioning, involving and integrating, was generated from analysing the data. Their subcategories and dimensions are related to the student role, relations with a supervisor, student activity and the consequences of each phase. Public health nursing students had to work towards gaining independence, often working against 'the system' and managing the tension by taking a risk. Many of them lost, changed and expanded their professional identity during practical placements. Public health nursing students' learning processes in clinical training are complex and dynamic and the theory of 'Conquering operational space' can assist supervisors in further developing their role in relation to guiding students in practice. Relationships are one key to opening or closing access to situations of learning and directly affect the students' achievement of mastering. The findings are pertinent to supervisors and educators as they prepare students for practice. Good relationships are elementary and supervisors can support students in conquering the field by letting students obtain operational space and gain independence. This may create a dialectical process that drives learning forward.

  4. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  5. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  6. Changes of Space Debris Orbits After LDR Operation

    Science.gov (United States)

    Wnuk, E.; Golebiewska, J.; Jacquelard, C.; Haag, H.

    2013-09-01

    A lot of technical studies are currently developing concepts of active removal of space debris to protect space assets from on orbit collision. For small objects, such concepts include the use of ground-based lasers to remove or reduce the momentum of the objects thereby lowering their orbit in order to facilitate their decay by re-entry into the Earth's atmosphere. The concept of the Laser Debris Removal (LDR) system is the main subject of the CLEANSPACE project. One of the CLEANSPACE objectives is to define a global architecture (including surveillance, identification and tracking) for an innovative ground-based laser solution, which can remove hazardous medium debris around selected space assets. The CLEANSPACE project is realized by a European consortium in the frame of the European Commission Seventh Framework Programme (FP7), Space topic. The use of sequence of laser operations to remove space debris, needs very precise predictions of future space debris orbital positions, on a level even better than 1 meter. Orbit determination, tracking (radar, optical and laser) and orbit prediction have to be performed with accuracy much better than so far. For that, the applied prediction tools have to take into account all perturbation factors that influence object orbit. The expected object's trajectory after the LDR operation is a lowering of its perigee. To prevent the debris with this new trajectory to collide with another object, a precise trajectory prediction after the LDR sequence is therefore the main task allowing also to estimate re-entry parameters. The LDR laser pulses change the debris object velocity v. The future orbit and re-entry parameters of the space debris after the LDR engagement can be calculated if the resulting ?v vector is known with the sufficient accuracy. The value of the ?v may be estimated from the parameters of the LDR station and from the characteristics of the orbital debris. However, usually due to the poor knowledge of the debris

  7. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    Science.gov (United States)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  8. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  9. 77 FR 71474 - Commercial Space Transportation Advisory Committee-Charter Renewal

    Science.gov (United States)

    2012-11-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Transportation (DOT). ACTION: Announcement of Charter Renewal of the Commercial Space Transportation Advisory... Administrator of the Federal Aviation Administration (FAA) on the critical matters facing the U.S. commercial...

  10. TAMU: Blueprint for A New Space Mission Operations System Paradigm

    Science.gov (United States)

    Ruszkowski, James T.; Meshkat, Leila; Haensly, Jean; Pennington, Al; Hogle, Charles

    2011-01-01

    The Transferable, Adaptable, Modular and Upgradeable (TAMU) Flight Production Process (FPP) is a System of System (SOS) framework which cuts across multiple organizations and their associated facilities, that are, in the most general case, in geographically disperse locations, to develop the architecture and associated workflow processes of products for a broad range of flight projects. Further, TAMU FPP provides for the automatic execution and re-planning of the workflow processes as they become operational. This paper provides the blueprint for the TAMU FPP paradigm. This blueprint presents a complete, coherent technique, process and tool set that results in an infrastructure that can be used for full lifecycle design and decision making during the flight production process. Based on the many years of experience with the Space Shuttle Program (SSP) and the International Space Station (ISS), the currently cancelled Constellation Program which aimed on returning humans to the moon as a starting point, has been building a modern model-based Systems Engineering infrastructure to Re-engineer the FPP. This infrastructure uses a structured modeling and architecture development approach to optimize the system design thereby reducing the sustaining costs and increasing system efficiency, reliability, robustness and maintainability metrics. With the advent of the new vision for human space exploration, it is now necessary to further generalize this framework to take into consideration a broad range of missions and the participation of multiple organizations outside of the MOD; hence the Transferable, Adaptable, Modular and Upgradeable (TAMU) concept.

  11. Operational environments for electrical power wiring on NASA space systems

    Science.gov (United States)

    Stavnes, Mark W.; Hammoud, Ahmad N.; Bercaw, Robert W.

    1994-01-01

    Electrical wiring systems are used extensively on NASA space systems for power management and distribution, control and command, and data transmission. The reliability of these systems when exposed to the harsh environments of space is very critical to mission success and crew safety. Failures have been reported both on the ground and in flight due to arc tracking in the wiring harnesses, made possible by insulation degradation. This report was written as part of a NASA Office of Safety and Mission Assurance (Code Q) program to identify and characterize wiring systems in terms of their potential use in aerospace vehicles. The goal of the program is to provide the information and guidance needed to develop and qualify reliable, safe, lightweight wiring systems, which are resistant to arc tracking and suitable for use in space power applications. This report identifies the environments in which NASA spacecraft will operate, and determines the specific NASA testing requirements. A summary of related test programs is also given in this report. This data will be valuable to spacecraft designers in determining the best wiring constructions for the various NASA applications.

  12. Phase-space formalism: Operational calculus and solution of evolution equations in phase-space

    International Nuclear Information System (INIS)

    Dattoli, G.; Torre, A.

    1995-05-01

    Phase-space formulation of physical problems offers conceptual and practical advantages. A class of evolution type equations, describing the time behaviour of a physical system, using an operational formalism useful to handle time ordering problems has been described. The methods proposed generalize the algebraic ordering techniques developed to deal with the ordinary Schroedinger equation, and how they are taylored suited to treat evolution problems both in classical and quantum dynamics has been studied

  13. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2016-09-01

    Full Text Available Abstract We characterize the boundedness and compactness of a product-type operator, which, among others, includes all the products of the single composition, multiplication, and differentiation operators, from a general space to Bloch-type spaces. We also give some upper and lower bounds for the norm of the operator.

  14. 77 FR 26564 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2012-05-04

    ... National Strategy for Global Supply Chain Security. The work of the Trade Facilitation Subcommittee... Strategy for Global Supply Chain Security as it relates to the Committee's effort to solicit, consolidate... chain management project. The Anti-Dumping/Countervailing Duties Subcommittee work on educational...

  15. 77 FR 68802 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2012-11-16

    ... Strategy for Global Supply Chain Security as it relates to an effort to solicit, consolidate, and provide... of entry to help identify counterfeit products, the distribution chain management and serialization... and Border Protection, Department of Homeland Security (DHS). ACTION: Committee Management; Notice of...

  16. 78 FR 64968 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2013-10-30

    ... regarding the Partner Government Agency--Message Set (PGA-MS). 2. The Global Supply Chain Subcommittee... the Global Shipment Identification Number (GSIN) as a possible tool for use in Distribution Chain... and Border Protection, Department of Homeland Security (DHS). ACTION: Committee Management; Notice of...

  17. 78 FR 43220 - Advisory Committee on Commercial Operations of Customs and Border Protection (COAC)

    Science.gov (United States)

    2013-07-19

    ... Standards Working Group (ISWG) and the Trusted Trader Measures Working Group. 6. The Global Supply Chain... Distribution Chain Management in Intellectual Property Rights Compliance. 4. The One U.S. Government at the... and Border Protection, Department of Homeland Security (DHS). ACTION: Committee Management; Notice of...

  18. A Space Operations Network Alternative: Using Globally Connected Research and Education Networks for Space-Based Science Operations

    Science.gov (United States)

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  19. An ethics for the living world: operation methods of Animal Ethics Committees in Italy

    Directory of Open Access Journals (Sweden)

    Mariano Martini

    2015-09-01

    Full Text Available INTRODUCTION AND OBJECTIVES. Coinciding with the recent implementation in Italy of the "Directive 2010/63/EU, regarding the protection of animals used for scientific purposes", the Authors would like to analyse the topic of the introduction of ethical committees for animal experimentation in Italy. This paper furthermore aims to underline some critical aspects concerning the actions taken by Italian institutions to comply with the provisions of EU. RESULTS AND DISCUSSION. The implementation of the recent Italian law (Decreto Legislativo n. 26 on 4 March 2014 Implementation of the Directive 2010/63/EU on the protection of animals used for scientific purposes leans towards a restrictive interpretation of the European provisions about composition and responsibilities of "Ethical Committee for Animal Experimentation". In the composition of the bodies mentioned, we note a tendency to restrict the composition to few professional figures contemplated by Italian law, without guaranteeing the independence of each committee; also, an absence of hierarchical relationship between a research institution and his committee is apparent. Moreover, a critical aspect is the lack of decision-making powers of these new organisms in terms of ethical evaluation of protocols and research projects. CONCLUSIONS. What EU legislation imposes on the member states is to set up an animal-welfare body (art. 26. This represents a strong incentive for Italy to follow the steps of many other European Countries, where ad hoc ethical committees have been working for a long time. The proper functioning of these bodies may contribute to guarantee the safety and welfare of the animals inside the laboratories, and to balance the protection of animal life and the interests of research.

  20. Human-Automation Allocations for Current Robotic Space Operations

    Science.gov (United States)

    Marquez, Jessica J.; Chang, Mai L.; Beard, Bettina L.; Kim, Yun Kyung; Karasinski, John A.

    2018-01-01

    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To

  1. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    Science.gov (United States)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  2. Applications of human error analysis to aviation and space operations

    International Nuclear Information System (INIS)

    Nelson, W.R.

    1998-01-01

    For the past several years at the Idaho National Engineering and Environmental Laboratory (INEEL) we have been working to apply methods of human error analysis to the design of complex systems. We have focused on adapting human reliability analysis (HRA) methods that were developed for Probabilistic Safety Assessment (PSA) for application to system design. We are developing methods so that human errors can be systematically identified during system design, the potential consequences of each error can be assessed, and potential corrective actions (e.g. changes to system design or procedures) can be identified. These applications lead to different requirements when compared with HR.As performed as part of a PSA. For example, because the analysis will begin early during the design stage, the methods must be usable when only partial design information is available. In addition, the ability to perform numerous ''what if'' analyses to identify and compare multiple design alternatives is essential. Finally, since the goals of such human error analyses focus on proactive design changes rather than the estimate of failure probabilities for PRA, there is more emphasis on qualitative evaluations of error relationships and causal factors than on quantitative estimates of error frequency. The primary vehicle we have used to develop and apply these methods has been a series of prqjects sponsored by the National Aeronautics and Space Administration (NASA) to apply human error analysis to aviation operations. The first NASA-sponsored project had the goal to evaluate human errors caused by advanced cockpit automation. Our next aviation project focused on the development of methods and tools to apply human error analysis to the design of commercial aircraft. This project was performed by a consortium comprised of INEEL, NASA, and Boeing Commercial Airplane Group. The focus of the project was aircraft design and procedures that could lead to human errors during airplane maintenance

  3. Operating Deflection Shapes for the Space Shuttle Partial Stack Rollout

    Science.gov (United States)

    Buehrle, Ralph D.; Kappus, Kathy

    2005-01-01

    In November of 2003 a rollout test was performed to gain a better understanding of the dynamic environment for the Space Shuttle during transportation from the Vehicle Assembly Building to the launch pad. This was part of a study evaluating the methodology for including the rollout dynamic loads in the Space Shuttle fatigue life predictions. The rollout test was conducted with a partial stack consisting of the Crawler Transporter, Mobile Launch Platform, and the Solid Rocket Boosters with an interconnecting crossbeam. Instrumentation included over 100 accelerometers. Data was recorded for steady state speeds, start-ups and stops, and ambient wind excitations with the vehicle at idle. This paper will describe the operating deflection shape analysis performed using the measured acceleration response data. The response data for the steady state speed runs were dominated by harmonics of the forcing frequencies, which were proportional to the vehicle speed. Assuming a broadband excitation for the wind, analyses of the data sets with the vehicle at idle were used to estimate the natural frequencies and corresponding mode shapes. Comparisons of the measured modal properties with numerical predictions are presented.

  4. 77 FR 27832 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-05-11

    ... organizations --Relations with non-governmental organizations --World Maritime Day --International Maritime... DEPARTMENT OF STATE [Public Notice: 7879] Shipping Coordinating Committee; Notice of Committee...-second Session of the International Maritime Organization (IMO) Technical Co-operation Committee (TCC 62...

  5. USA Space Debris Environment, Operations, and Research Updates

    Science.gov (United States)

    Liou, J.-C.

    2018-01-01

    ) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS

  6. General Purpose Data-Driven Monitoring for Space Operations

    Science.gov (United States)

    Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.

    2009-01-01

    As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault

  7. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  8. Fire monitoring from space: from research to operation

    Science.gov (United States)

    Pergola, Nicola; Filizzola, Carolina; Corrado, Rosita; Coviello, Irina; lacava, Teodosio; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Tramutoli, Valerio

    2013-04-01

    Each summer fires rage through European forests, burning hundreds of thousands of hectares per year, as a result of the many (up to 60000) forest fires that usually occur annually in Europe. Fires can threaten public health and safety, destroy property and cause economic damages. Despite of their medium extension (the average burnt area is less than 6 ha), much smaller if compared with other regions like the USA and Canada, the number of simultaneous active fires in Europe can be very high, fomented by weather conditions that, especially in summer times and for countries of South Europe, are particularly favourable to a rapid and dramatic development of flames. Fires still are not only a social problem, but also an environmental emergency, producing a continuous impoverishment of forests and possibly indirectly triggering other natural hazards (e.g. making slopes, without the trees action, more prone to landslides). Additionally, there is a general concern about the loss of biodiversity and the contribution to land degradation that fires may cause. Earth Observation satellite systems have been largely tested for fire detection and monitoring from space. Their spectral capability, synoptic view and revisit times can offer an added value in the operational use not only in real time, during fires fighting activities, but also in near-real or delay time during the phases of risk management and mitigation. However, the practice of an actual operational use of satellite products by end-users is still not usual at European level. This work is based on the experience carried out jointly by CNR-IMAA and the National Civil Protection Department (DPC), in the framework of a five-year agreement in which the operational use of an Earth observation satellite system for fires spotting and monitoring is tested. Satellite-based products, developed not only for detecting fires but also for continuously monitoring their evolution in time domain, have been provided to Civil Protection

  9. Anomaly Detection for Next-Generation Space Launch Ground Operations

    Science.gov (United States)

    Spirkovska, Lilly; Iverson, David L.; Hall, David R.; Taylor, William M.; Patterson-Hine, Ann; Brown, Barbara; Ferrell, Bob A.; Waterman, Robert D.

    2010-01-01

    NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly.

  10. Kennedy Space Center Orion Processing Team Planning for Ground Operations

    Science.gov (United States)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis

  11. Report on system operation - A background report prepared by the Nordel Operation Committee/OPG in the Nordel project on enhancing efficient functioning of the Nordic electricity market

    International Nuclear Information System (INIS)

    2004-12-01

    This report contains the operation procedures in extreme situations and lessons learned from blackouts, based on a mandate given by the Operations Committee. Nordic TSOs have had common rules and principles for system operation i.e. System Operation Agreement since the late 1990s. The rules have been revised according to the system security and market changes and needs. The collaboration between system operators is regular and fruitful. The knowledge and capability to manage extreme situations of the Nordic power system has continuously increased and the recent blackouts did not show major deficiencies in operation practices. Regardless of the existing good collaboration it is important to continue development in the future in order to ensure high system security. Important development areas are security of reserve supervision and coordination of calculation procedures for transmission limits, enhancement of data exchange routines between control centres in order to improve the overview of the system security within the Nordic power system. More extensive coordination of outage planning processes will further improve the system security. Continuously training of operational staff is important to be able to manage different situations and disturbances efficiently. (BA)

  12. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  13. Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results

    Science.gov (United States)

    1985-01-01

    The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.

  14. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  15. Spatiality of Derivations of Operator Algebras in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Quanyuan Chen

    2011-01-01

    Full Text Available Suppose that A is a transitive subalgebra of B(X and its norm closure A¯ contains a nonzero minimal left ideal I. It is shown that if δ is a bounded reflexive transitive derivation from A into B(X, then δ is spatial and implemented uniquely; that is, there exists T∈B(X such that δ(A=TA−AT for each A∈A, and the implementation T of δ is unique only up to an additive constant. This extends a result of E. Kissin that “if A¯ contains the ideal C(H of all compact operators in B(H, then a bounded reflexive transitive derivation from A into B(H is spatial and implemented uniquely.” in an algebraic direction and provides an alternative proof of it. It is also shown that a bounded reflexive transitive derivation from A into B(X is spatial and implemented uniquely, if X is a reflexive Banach space and A¯ contains a nonzero minimal right ideal I.

  16. Soldier/Warfighter Operationally Responsive Deployer for Space

    Data.gov (United States)

    National Aeronautics and Space Administration — The SWORDS launcher is a cooperative project between Office of the  Secretary of Defense, U.S. Army Space and Missile Defense Command/ Army Forces Strategic Command...

  17. Deep Space Network equipment performance, reliability, and operations management information system

    Science.gov (United States)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  18. ITER operational space for full plasma current H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Mattei, M. [Assoc. Euratom-ENEA-CREATE, Seconda University di Napoli, Aversa (Italy)], E-mail: massimiliano.mattei@unirc.it; Cavinato, M.; Saibene, G.; Portone, A. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Albanese, R.; Ambrosino, G. [Assoc. Euratom-ENEA-CREATE, University Napoli Federico II, Napoli (Italy); Horton, L.D. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton University (United States); Koechl, F. [Assoc. EURATOM-OAW/ATI, Vienna (Austria); Lomas, P.J. [Euratom/UKAEA Fusion Assoc., Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Nunes, I. [Assoc. EURATOM/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Parail, V. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Sartori, R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain); Sips, A.C.C. [Max Planck-Institut fur Plasmaphysik, EURATOM-Association, Garching (Germany); Thomas, P.R. [Fusion for Energy Joint Undertaking, 08019 Barcelona (Spain)

    2009-06-15

    Sensitivity studies performed as part of the ITER IO design review highlighted a very stiff dependence of the maximum Q attainable on the machine parameters. In particular, in the considered range, the achievable Q scales with I{sub p}{sup 4}. As a consequence, the achievement of the ITER objective of Q = 10 requires the machine to be routinely operated at a nominal current I{sub p} of 15 MA, and at full toroidal field BT of 5.3 T. This paper analyses the capabilities of the poloidal field (PF) system (including the central solenoid) of ITER against realistic full current plasma scenarios. An exploration of the ITER operational space for the 15 and 17 MA inductive scenario is carried out. An extensive analysis includes the evaluation of margins for the closed loop shape control action. The overall results of this analysis indicate that the control of a 15 MA plasma in ITER is likely to be adequate in the range of li 0.7-0.9 whereas, for a 17 MA plasma, control capabilities are strongly reduced. The ITER operational space, provided by the reference pre-2008 PF system, was rather limited if compared to the range of parameters normally observed in present experiment. Proposals for increasing the current and field limits on PF2, PF5 and PF6, adjustment on the number of turns in some of the PF coils, changes to the divertor dome geometry, to the conductor of PF6 to Nb3Sn, moving PF6 radially and/or vertically are described and evaluated in the paper. Some of them have been included in 2008 ITER revised configuration.

  19. Application and development of probabilistic safety assessment for nuclear power plant operations. Report of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Technical Committee Meeting on Procedures for Use of PSA for Optimizing Operational Limits and Conditions for Nuclear Power Plants was held in Barcelona from 20 to 23 September 1993 to serve as a forum for discussion of the development of methods and approaches for PSA applications. The meeting was co-sponsored by the IAEA and the Asco and Vandellos nuclear power plants in Spain and was attended by more than 85 participants from 23 countries. The 35 papers and presentations reflected the extent of activities in this area worldwide. Most of the papers discuss PSA application programmes and/or specific methods and approaches used. This TECDOC, which was prepared by the participants of the Technical Committee meeting, summarizes the insights gained from the papers and plenary discussions. It also presents the conclusions of the work of three working groups which discussed the advantages and limitations of specific aspects of PSA. It provides an up-to-date description of computerized tools for risk monitoring in used or under development in Member States. It is hoped that this report will be a useful source of information on PSA applications. Refs, figs, tabs.

  20. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    Science.gov (United States)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  1. Leadership and Cultural Challenges in Operating the International Space Station

    Science.gov (United States)

    Clement, J. L.; Ritsher, J. B.; Saylor, S. A.; Kanas, N.

    2006-01-01

    Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. ISS flight controllers have had to find ways to maintain effective team performance in this challenging new context. The goal of this study was to systematically identify and evaluate the major leadership and cultural challenges faces by ISS flight controllers, and to highlight the approaches that they have found most effective to surmount these challenges. We conducted a qualitative survey using a semi-structured interview. Subjects included 14 senior NASA flight controllers who were chosen on the basis of having had substantial experience working with international partners. Data were content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted some new analyses of data from a previous questionnaire study of Russian and American ISS mission control personnel. The interview data showed that respondents had substantial consensus on several leadership and cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Surprisingly few respondents offered strategies for addressing the challenge of working with team members whose native language is not American English. The questionnaire data showed that Americans think it is more important than Russians that mission control personnel speak the same dialect of one shared common language. Although specific to the ISS program, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future ISS flight controllers.

  2. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  3. The multiplication operators on some analytic function spaces of the ...

    Indian Academy of Sciences (India)

    Given f ∈ E1(Bn) we still denote by f (ξ) (ξ ∈ Sn) its admissible limit at the boundary which exists a.e. A ... BMOA is a Banach space under the following norm: || f ||2 ..... The same inequalities hold when ga is replaced by fa by the same observations. ... The case of the Bloch space and the weighted Bloch space. As in the ...

  4. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's Phase II proposal calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life capabilities. To...

  5. Expanded Operational Temperature Range for Space Rated Li-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Quallion's response to this solicitation calls for expanding the nominal operation range of its space rated lithium ion cells, while maintaining their long life...

  6. Existence of zeros for operators taking their values in the dual of a Banach space

    Directory of Open Access Journals (Sweden)

    Ricceri Biagio

    2004-01-01

    Full Text Available Using continuous selections, we establish some existence results about the zeros of weakly continuous operators from a paracompact topological space into the dual of a reflexive real Banach space.

  7. Space Station: NASA's software development approach increases safety and cost risks. Report to the Chairman, Committee on Science, Space, and Technology, House of Representatives

    Science.gov (United States)

    1992-06-01

    The House Committee on Science, Space, and Technology asked NASA to study software development issues for the space station. How well NASA has implemented key software engineering practices for the station was asked. Specifically, the objectives were to determine: (1) if independent verification and validation techniques are being used to ensure that critical software meets specified requirements and functions; (2) if NASA has incorporated software risk management techniques into program; (3) whether standards are in place that will prescribe a disciplined, uniform approach to software development; and (4) if software support tools will help, as intended, to maximize efficiency in developing and maintaining the software. To meet the objectives, NASA proceeded: (1) reviewing and analyzing software development objectives and strategies contained in NASA conference publications; (2) reviewing and analyzing NASA, other government, and industry guidelines for establishing good software development practices; (3) reviewing and analyzing technical proposals and contracts; (4) reviewing and analyzing software management plans, risk management plans, and program requirements; (4) reviewing and analyzing reports prepared by NASA and contractor officials that identified key issues and challenges facing the program; (5) obtaining expert opinions on what constitutes appropriate independent V-and-V and software risk management activities; (6) interviewing program officials at NASA headquarters in Washington, DC; at the Space Station Program Office in Reston, Virginia; and at the three work package centers; Johnson in Houston, Texas; Marshall in Huntsville, Alabama; and Lewis in Cleveland, Ohio; and (7) interviewing contractor officials doing work for NASA at Johnson and Marshall. The audit work was performed in accordance with generally accepted government auditing standards, between April 1991 and May 1992.

  8. Extension of operation of nuclear plants. Synthesis of the qualitative study and of the citizen committee

    International Nuclear Information System (INIS)

    Suteau, Regis

    2014-01-01

    The author comments the results of a survey which was based on 20 interviews with French citizens of different ages, political opinions, geographical locations and also different opinions on nuclear energy. The objective was to obtain their perception and feeling about the issue of nuclear plant service life extension, in order to assess whether they were aware of this issue, could understand it, and what was their opinion about it. Then, these citizens have been gathered three weeks later and met three experts (a representative of a NGO, a member of the ASN and a representative of EDF) who answered their questions and discussed their arguments. These citizens then made statements and recommendations. It appeared that the issue of lifetime extension is hardly known by the public, and is therefore not a topic of public debate but a modality within the important debate about nuclear energy. However, the citizen committee accepts this lifetime extension for different reasons (no known alternatives; economic aspects; safety, nuclear energy is non polluting energy; jobs will be saved) but under some conditions which depend on the opinion on nuclear energy (rather for or rather against). The opinion may change negatively in relationship with some issues: the future of radioactive wastes and dismantled installations, quality and traceability of subcontracted components. This survey is an opportunity to question the general relationship of French people with nuclear energy. In this respect, five profiles are identified: confident, resigned, realistic and reasonable, realistic and anxious, and opponent

  9. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  10. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    Science.gov (United States)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  11. 78 FR 66419 - Seventy Sixth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Science.gov (United States)

    2013-11-05

    ... TCAS Program Office ACAS X Functional Architecture Verification & Validation Activities Overview [ssquf... [ssquf] Initial Actions [ssquf] Scheduling of teleconferences, etc. Working Group Sign-up Other Business... Paige Williams, Management Analyst, NextGen, Business Operations Group, Federal Aviation Administration...

  12. Analyticity spaces of self-adjoint operators subjected to perturbations with applications to Hankel invariant distribution spaces

    NARCIS (Netherlands)

    Eijndhoven, van S.J.L.; Graaf, de J.

    1986-01-01

    A new theory of generalized functions has been developed by one of the authors (de Graaf). In this theory the analyticity domain of each positive self-adjoint unbounded operator $\\mathcal{A}$ in a Hilbert space $X$ is regarded as a test space denoted by $\\mathcal{S}_{x,\\mathcal{A}} $. In the first

  13. Toeplitz operators on higher Cauchy-Riemann spaces

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav; Zhang, G.

    2017-01-01

    Roč. 22, č. 22 (2017), s. 1081-1116 ISSN 1431-0643 Institutional support: RVO:67985840 Keywords : Toeplitz operator * Hankel operator * Cauchy-Riemann operators Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 0.800, year: 2016 https://www. math .uni-bielefeld.de/documenta/vol-22/32.html

  14. Generalized Polar Decompositions for Closed Operators in Hilbert Spaces and Some Applications

    OpenAIRE

    Gesztesy, Fritz; Malamud, Mark; Mitrea, Marius; Naboko, Serguei

    2008-01-01

    We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.

  15. Negotiating power relations, gender equality, and collective agency: are village health committees transformative social spaces in northern India?

    Science.gov (United States)

    Scott, Kerry; George, Asha S; Harvey, Steven A; Mondal, Shinjini; Patel, Gupteswar; Sheikh, Kabir

    2017-09-15

    Participatory health initiatives ideally support progressive social change and stronger collective agency for marginalized groups. However, this empowering potential is often limited by inequalities within communities and between communities and outside actors (i.e. government officials, policymakers). We examined how the participatory initiative of Village Health, Sanitation, and Nutrition Committees (VHSNCs) can enable and hinder the renegotiation of power in rural north India. Over 18 months, we conducted 74 interviews and 18 focus groups with VHSNC members (including female community health workers and local government officials), non-VHSNC community members, NGO staff, and higher-level functionaries. We observed 54 VHSNC-related events (such as trainings and meetings). Initial thematic network analysis supported further examination of power relations, gendered "social spaces," and the "discourses of responsibility" that affected collective agency. VHSNCs supported some re-negotiation of intra-community inequalities, for example by enabling some women to speak in front of men and perform assertive public roles. However, the extent to which these new gender dynamics transformed relations beyond the VHSNC was limited. Furthermore, inequalities between the community and outside stakeholders were re-entrenched through a "discourse of responsibility": The comparatively powerful outside stakeholders emphasized community responsibility for improving health without acknowledging or correcting barriers to effective VHSNC action. In response, some community members blamed peers for not taking up this responsibility, reinforcing a negative collective identity where participation was futile because no one would work for the greater good. Others resisted this discourse, arguing that the VHSNC alone was not responsible for taking action: Government must also intervene. This counter-narrative also positioned VHSNC participation as futile. Interventions to strengthen

  16. Space/Flight Operable Miniature Six Axis Transducer, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FUTEK will fully design and manufacture a sensor capable of measuring forces in and about each axis. The unit will measure forces up to 300 Newton's in the principle...

  17. Commanding and Planning for Robots in Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous systems like unmanned spacecraft or robotic vehicles have filled critical roles in NASA's great successes, surviving the harsh...

  18. Uniform Convergence and Spectra of Operators in a Class of Fréchet Spaces

    Directory of Open Access Journals (Sweden)

    Angela A. Albanese

    2014-01-01

    Full Text Available Well-known Banach space results (e.g., due to J. Koliha and Y. Katznelson/L. Tzafriri, which relate conditions on the spectrum of a bounded operator T to the operator norm convergence of certain sequences of operators generated by T, are extended to the class of quojection Fréchet spaces. These results are then applied to establish various mean ergodic theorems for continuous operators acting in such Fréchet spaces and which belong to certain operator ideals, for example, compact, weakly compact, and Montel.

  19. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    Science.gov (United States)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  20. On the L-characteristic of nonlinear superposition operators in lp-spaces

    International Nuclear Information System (INIS)

    Dedagic, F.

    1995-04-01

    In this paper we describe the L-characteristic of the nonlinear superposition operator F(x) f(s,x(s)) between two Banach spaces of functions x from N to R. It was shown that L-characteristic of the nonlinear superposition operator which acts between two Lebesgue spaces has so-called Σ-convexity property. In this paper we show that L-characteristic of the operator F (between two Banach spaces) has the convexity property. It means that the classical interpolation theorem of Reisz-Thorin for a linear operator holds for the nonlinear operator superposition which acts between two Banach spaces of sequences. Moreover, we consider the growth function of the operator superposition in mentioned spaces and we show that one has the logarithmically convexity property. (author). 7 refs

  1. Spectrum of the Wilson Dirac operator at finite lattice spacings

    DEFF Research Database (Denmark)

    Akemann, G.; Damgaard, Poul Henrik; Splittorff, Kim

    2011-01-01

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral Perturbation Theory and chiral Random Matrix Theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator...... as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral Random Matrix Theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral Perturbation Theory. All results are obtained for fixed index...... of the Wilson Dirac operator. The low-energy constants of Wilson chiral Perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator....

  2. 78 FR 38093 - First Meeting: RTCA Special Committee 228-Minimum Operational Performance Standards for Unmanned...

    Science.gov (United States)

    2013-06-25

    ... Activity. SC-228 Scope and Terms of Reference. SC-228 Structure and Organization of Work. [cir] Working Group 1--Detect and Avoid (DAA) [cir] Working Group 2--Command and Control (C2) Other Business Date and..., Business Operations Group, ANG-A12, Federal Aviation Administration. [FR Doc. 2013-15139 Filed 6-24-13; 8...

  3. 78 FR 61445 - Seventy-Sixth Meeting: RTCA Special Committee 147, Minimum Operational Performance Standards for...

    Science.gov (United States)

    2013-10-03

    ... of FAA TCAS Program Office ACAS X Functional Architecture Verification & Validation Activities... Other Business Action Items Time and Place of Next Meeting Plenary Adjourn Attendance is open to the... September 25, 2013. Paige Williams, Management Analyst, NextGen, Business Operations Group, Federal Aviation...

  4. Space shuttle/payload interface analysis. Volume 4: Business Risk and Value of Operations in Space (BRAVO). Part 1: Summary

    Science.gov (United States)

    1974-01-01

    Background information is provided which emphasizes the philosophy behind analytical techniques used in the business risk and value of operations in space (BRAVO) study. The focus of the summary is on the general approach, operation of the procedures, and the status of the study. For Vol. 1, see N74-12493; for Vol. 2, see N74-14530.

  5. Keynote speech - Manned Space Flights: Lessons Learned from Space Craft Operation and Maintenance

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Following graduation in 1973 from the Ecole de l'Air (the French Air Force Academy), Michel Tognini served in the French Air Force as an operational fighter pilot, flight leader in 1976, flight commander in 1979, test pilot then chief test pilot from 1983 to 1985. In 1985, France opened a recruitment program to expand its astronaut corps, and Michel Tognini was one of seven candidates selected by CNES. In July 1986, he was one of four candidates to undergo medical examinations in Moscow. In August 1986, he was assigned as a back-up crew member for the Soyuz TM-7 mission. Although he remained a French Air Force officer, he was placed on detachment to CNES for his space flight activities from September 1986 onwards. In 1991 he went to Star City, Russia, to start prime crew training for the third Soviet-French ANTARES mission. During his stay in Russia, he linked up with Mir (ANTARES mission) and spent 14 days (July 27–Aug. 10, 1992; Soyuz TM-14 and TM-14)carrying out a program of joint Soviet-French experimen...

  6. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  7. Molecular decompostition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    . Molecular decompositions for all the considered spaces are derived with the help of the algebra of almost diagonal operators. As an application, we obtain boundedness results on the considered spaces for Fourier multipliers and for pseudodifferential operators with suitable adapted homogeneous symbols using...

  8. Ordering of ''ladder'' operators, the Wigner function for number and phase, and the enlarged Hilbert space

    International Nuclear Information System (INIS)

    Luks, A.; Perinova, V.

    1993-01-01

    A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)

  9. Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators

    DEFF Research Database (Denmark)

    Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    and Triebel–Lizorkin spaces with full range of indices is established too. As an application, we obtain equivalent norm characterizations for the spaces mentioned above. Non-classical spaces as well as Lebesgue, Hardy, (generalized) Sobolev and Lipschitz spaces are also covered by our approach.......We consider spaces of homogeneous type associated with a non-negative self-adjoint operator whose heat kernel satisfies certain upper Gaussian bounds. Spectral multipliers are introduced and studied on distributions associated with this operator. The boundedness of spectral multipliers on Besov...

  10. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  11. Maximal multiplier operators in Lp(·)(Rn) spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Kopaliani, T.

    2016-01-01

    Roč. 140, č. 4 (2016), s. 86-97 ISSN 0007-4497 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : spherical maximal function * variable Lebesque spaces * boundedness result Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2016 http://www.sciencedirect.com/science/article/pii/S0007449715000329

  12. Overall feature of EAST operation space by using simple Core-SOL-Divertor model

    International Nuclear Information System (INIS)

    Hiwatari, R.; Hatayama, A.; Zhu, S.; Takizuka, T.; Tomita, Y.

    2005-01-01

    We have developed a simple Core-SOL-Divertor (C-S-D) model to investigate qualitatively the overall features of the operational space for the integrated core and edge plasma. To construct the simple C-S-D model, a simple core plasma model of ITER physics guidelines and a two-point SOL-divertor model are used. The simple C-S-D model is applied to the study of the EAST operational space with lower hybrid current drive experiments under various kinds of trade-off for the basic plasma parameters. Effective methods for extending the operation space are also presented. As shown by this study for the EAST operation space, it is evident that the C-S-D model is a useful tool to understand qualitatively the overall features of the plasma operation space. (author)

  13. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  14. Moving Toward Space Internetworking via DTN: Its Operational Challenges, Benefits, and Management

    Science.gov (United States)

    Barkley, Erik; Burleigh, Scott; Gladden, Roy; Malhotra, Shan; Shames, Peter

    2010-01-01

    The international space community has begun to recognize that the established model for management of communications with spacecraft - commanded data transmission over individual pair-wise contacts - is operationally unwieldy and will not scale in support of increasingly complex and sophisticated missions such as NASA's Constellation project. Accordingly, the international Inter-Agency Operations Advisory Group (IOAG) ichartered a Space Internetworking Strategy Group (SISG), which released its initial recommendations in a November 2008 report. The report includes a recommendation that the space flight community adopt Delay-Tolerant Networking (DTN) to address the problem of interoperability and communication scaling, especially in mission environments where there are multiple spacecraft operating in concert. This paper explores some of the issues that must be addressed in implementing, deploying, and operating DTN as part of a multi-mission, multi-agency space internetwork as well as benefits and future operational scenarios afforded by DTN-based space internetworking.

  15. Some means inequalities for positive operators in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Jin Liang

    2017-01-01

    Full Text Available Abstract In this paper, we obtain two refinements of the ordering relations among Heinz means with different parameters via the Taylor series of some hyperbolic functions and by the way, we derive new generalizations of Heinz operator inequalities. Moreover, we establish a matrix version of Heinz inequality for the Hilbert-Schmidt norm. Finally, we introduce a weighted multivariate geometric mean and show that the weighted multivariate operator geometric mean possess several attractive properties and means inequalities.

  16. A scientific operations plan for the NASA space telescope. [ground support systems, project planning

    Science.gov (United States)

    West, D. K.; Costa, S. R.

    1975-01-01

    A ground system is described which is compatible with the operational requirements of the space telescope. The goal of the ground system is to minimize the cost of post launch operations without seriously compromising the quality and total throughput of space telescope science, or jeopardizing the safety of the space telescope in orbit. The resulting system is able to accomplish this goal through optimum use of existing and planned resources and institutional facilities. Cost is also reduced and efficiency in operation increased by drawing on existing experience in interfacing guest astronomers with spacecraft as well as mission control experience obtained in the operation of present astronomical spacecraft.

  17. Interactive Planning for Capability Driven Air & Space Operations

    Science.gov (United States)

    2008-04-30

    Time, Routledge and Kegan , London, UK, 1980. [5] A. Bochman, Concerted instant–interval temporal semantics I: Temporal ontologies, Notre Dame Journal...then return true else deleteStatement (X, rj , Y ) end if end for return false Figure 8 shows the search space for instance in Table 2. The green ...nodes are those for which the set of relations cor- responding to the path from the root form a consistent set. A path from root to a green leaf node

  18. Development of a prototype real-time automated filter for operational deep space navigation

    Science.gov (United States)

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  19. Fighting in a Contested Space Environment: Training Marines for Operations with Degraded or Denied Space-Enabled Capabilities

    Science.gov (United States)

    2015-06-01

    TRAINING MARINES FOR OPERATIONS WITH DEGRADED OR DENIED SPACE-ENABLED CAPABILITIES 5. FUNDING NUMBERS 6. AUTHOR(S) David M. Garcia 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...could possibly have been linked to the blast as well [19]. Space Debris (4) There are over 20,000 pieces of debris the size of a softball or greater

  20. Planetary boundaries: exploring the safe operating space for humanity

    Science.gov (United States)

    Johan Rockström; Will Steffen; Kevin Noone; Asa Persson; F. Stuart Chapin; Eric Lambin; Timothy M. Lenton; Marten Scheffer; Carl Folke; Hans Joachim Schellnhuber; Björn Nykvist; Cynthia A. de Wit; Terry Hughes; Sander van der Leeuw; Henning Rodhe; Sverker Sörlin; Peter K. Snyder; Robert Costanza; Uno Svedin; Malin Falkenmark; Louise Karlberg; Robert W. Corell; Victoria J. Fabry; James Hansen; Brian Walker; Diana Liverman; Katherine Richardson; Paul Crutzen; Jonathan Foley

    2009-01-01

    Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due...

  1. Density operator description of geometric phenomena in the ray space

    Indian Academy of Sciences (India)

    set of generators for the related 2-sphere ray subspace (Ь2), highlighting the physical oper- ations performable ... generators, we propose a single-query quantum search algorithm to extract a desired ray exactly from a ..... The first observation [22] of noncyclic amplitudes and phases was made in a neutron in- terference ...

  2. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Science.gov (United States)

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  3. Planetary Boundaries: Exploring the Safe Operating Space for Humanity

    DEFF Research Database (Denmark)

    Richardson, Katherine; Rockström, Johan; Steffen, Will

    2009-01-01

    boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance...... and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure...

  4. The Honorable William Nelson, Senior Senator from Florida, Chairman, Senate Committee on Space, Aeronautics and Related Sciences signing the golden book. Greeting by Mr Robert Aymar, CERN Director General and Prof. Samuel Ting from the MIT.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    The Honorable William Nelson, Senior Senator from Florida, Chairman, Senate Committee on Space, Aeronautics and Related Sciences signing the golden book. Greeting by Mr Robert Aymar, CERN Director General and Prof. Samuel Ting from the MIT.

  5. The Honorable William Nelson, Senior Senator from Florida, Chairman, Senate Committee on Space, Aeronautics and Related Sciences visiting the AMS Hall of Prevessin with Prof. Samuel Ting from the MIT.

    CERN Multimedia

    Maximilien Brice

    2008-01-01

    The Honorable William Nelson, Senior Senator from Florida, Chairman, Senate Committee on Space, Aeronautics and Related Sciences visiting the AMS Hall of Prevessin with Prof. Samuel Ting from the MIT.

  6. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  7. Blue limits of the Blue Planet : An exploratory analysis of safe operating spaces for human water use under deep uncertainty

    NARCIS (Netherlands)

    Kwakkel, J.H.; Timmermans, J.S.

    2012-01-01

    In the Nature article ‘A safe operating space for humanity’, Rockström et al. (2009) introduce the concept of a safe operating space for humanity. A safe operating space is the space for human activities that will not push the planet out of the ‘Holocene state’ that has seen human civilizations

  8. Space Launch System Base Heating Test: Experimental Operations & Results

    Science.gov (United States)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  9. Self-Commutators of Composition Operators with Monomial Symbols on the Dirichlet Space

    Directory of Open Access Journals (Sweden)

    A. Abdollahi

    2011-01-01

    Full Text Available Let (=,∈, for some positive integer and the composition operator on the Dirichlet space induced by . In this paper, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators ∗,∗ and self-commutators of , which expose that the spectrum and point spectrum coincide. We also find the eigenfunctions of the operators.

  10. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  11. Scalar and configuration traces of operators in large spectroscopic spaces

    International Nuclear Information System (INIS)

    Chang, B.D.; Wong, S.S.M.

    1978-01-01

    In statistical spectroscopic calculations, the primary input is the trace of products of powers of Hamiltonian and excitation operators. The lack of a systematic approach to trace evaluation has been in the past one of the major difficulties in the applications of statistical spectroscopic methods. A general method with a simple derivation is described here to evaluate the scalar and configuration traces for operators expressed either in the m-scheme or fully coupled JT scheme. It is shown to be an effective method by actually programming it on a computer. Implications on the future applications of statistical spectroscopy in the area of level density, strength function and perturbation theory are also briefly discussed. (Auth.)

  12. Reducing Operating Costs by Optimizing Space in Facilities

    Science.gov (United States)

    2012-03-01

    Design: Mapping the High Performance Workscape. Jossey-Bass. San Francisco. Berkman, Elliot. (2012). A Conceptual Guide to Statistics using SPSS. Sage ...Cleaning: Includes labor costs for in-house and contract service, payroll , taxes and fringe benefits, plus salaried supervisors and managers, as well as...Labor costs include payroll , taxes and fringe benefits for employees and contracted workers. Personnel include operating engineers, general

  13. Winter School on Operator Spaces, Noncommutative Probability and Quantum Groups

    CERN Document Server

    2017-01-01

    Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems.  A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions.  The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The l...

  14. Automating Stowage Operations for the International Space Station

    Science.gov (United States)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  15. Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Science.gov (United States)

    Edwards, David L.; Spann, James; Burns, Howard D.; Schumacher, Dan

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects

  16. Automatic sequencing and control of Space Station airlock operations

    Science.gov (United States)

    Himel, Victor; Abeles, Fred J.; Auman, James; Tqi, Terry O.

    1989-01-01

    Procedures that have been developed as part of the NASA JSC-sponsored pre-prototype Checkout, Servicing and Maintenance (COSM) program for pre- and post-EVA airlock operations are described. This paper addresses the accompanying pressure changes in the airlock and in the Advanced Extravehicular Mobility Unit (EMU). Additionally, the paper focuses on the components that are checked out, and includes the step-by-step sequences to be followed by the crew, the required screen displays and prompts that accompany each step, and a description of the automated processes that occur.

  17. Space Technology - Game Changing Development NASA Facts: Autonomous Medical Operations

    Science.gov (United States)

    Thompson, David E.

    2018-01-01

    The AMO (Autonomous Medical Operations) Project is working extensively to train medical models on the reliability and confidence of computer-aided interpretation of ultrasound images in various clinical settings, and of various anatomical structures. AI (Artificial Intelligence) algorithms recognize and classify features in the ultrasound images, and these are compared to those features that clinicians use to diagnose diseases. The acquisition of clinically validated image assessment and the use of the AI algorithms constitutes fundamental baseline for a Medical Decision Support System that will advise crew on long-duration, remote missions.

  18. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  19. Piezoelectric PVDF materials performance and operation limits in space environments

    International Nuclear Information System (INIS)

    Dargaville, Tim Richard; Assink, Roger Alan; Clough, Roger Lee; Celina, Mathias Christopher

    2004-01-01

    Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies

  20. Digital Motion Imagery, Interoperability Challenges for Space Operations

    Science.gov (United States)

    Grubbs, Rodney

    2012-01-01

    With advances in available bandwidth from spacecraft and between terrestrial control centers, digital motion imagery and video is becoming more practical as a data gathering tool for science and engineering, as well as for sharing missions with the public. The digital motion imagery and video industry has done a good job of creating standards for compression, distribution, and physical interfaces. Compressed data streams can easily be transmitted or distributed over radio frequency, internet protocol, and other data networks. All of these standards, however, can make sharing video between spacecraft and terrestrial control centers a frustrating and complicated task when different standards and protocols are used by different agencies. This paper will explore the challenges presented by the abundance of motion imagery and video standards, interfaces and protocols with suggestions for common formats that could simplify interoperability between spacecraft and ground support systems. Real-world examples from the International Space Station will be examined. The paper will also discuss recent trends in the development of new video compression algorithms, as well likely expanded use of Delay (or Disruption) Tolerant Networking nodes.

  1. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  2. PI Microgravity Services Role for International Space Station Operations

    Science.gov (United States)

    DeLombard, Richard

    1998-01-01

    During the ISS era, the NASA Lewis Research Center's Principal Investigator Microgravity Services (PIMS) project will provide to principal investigators (PIs) microgravity environment information and characterization of the accelerations to which their experiments were exposed during on orbit operations. PIMS supports PIs by providing them with microgravity environment information for experiment vehicles, carriers, and locations within the vehicle. This is done to assist the PI with their effort to evaluate the effect of acceleration on their experiments. Furthermore, PIMS responsibilities are to support the investigators in the area of acceleration data analysis and interpretation, and provide the Microgravity science community with a microgravity environment characterization of selected experiment carriers and vehicles. Also, PIMS provides expertise in the areas of microgravity experiment requirements, vibration isolation, and the implementation of requirements for different spacecraft to the microgravity community and other NASA programs.

  3. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    Science.gov (United States)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  4. 76 FR 29722 - Elko Resource Advisory Committee

    Science.gov (United States)

    2011-05-23

    ... (Pub. L. 110-343) (the Act) and operates in compliance with the Federal Advisory Committee Act. The...- Determination Act; (2) Review roles of RAC committee members and Committee Chairman; (3) Overview of project...

  5. Heavy-Lift for a New Paradigm in Space Operations

    Science.gov (United States)

    Morris, Bruce; Burkey, Martin

    2010-01-01

    NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.

  6. Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

    CERN Document Server

    Lerner, Nicolas

    2010-01-01

    This book is devoted to the study of pseudo-differential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for nonselfadjoint operators. The first chapter is introductory and gives a presentation of classical classes of pseudo-differential operators. The second chapter is dealing with the general notion of metrics on the phase space. We expose some elements of the so-called Wick calculus and introduce g

  7. Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces

    International Nuclear Information System (INIS)

    Arai, A.

    1985-01-01

    We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)

  8. Increasing Efficiency of Routine Robot Space Operations through Adjustable Autonomy and Learning from Human Instructions

    Data.gov (United States)

    National Aeronautics and Space Administration — This research aims to address the execution of repetitive, routine and potentially hazardous tasks by robots operating in crewed low Earth orbit, lunar and...

  9. Occupational Analysis Products: Space Systems Operations - AFSC 1C6X1 (CD-ROM)

    National Research Council Canada - National Science Library

    Boerstler, Robert E

    2004-01-01

    ...: 1 CD-ROM; 4 3/4 in.; 30.4 MB. SYSTEMS DETAIL NOTE: ABSTRACT: The Space Systems Operations career ladder was surveyed to obtain current task and equipment data for use in evaluating current training programs...

  10. Taking Risks for the Future of Space Weather Forecasting, Research, and Operations

    Science.gov (United States)

    Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.

    2017-12-01

    Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.

  11. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  12. On the approximative normal values of multivalued operators in topological vector space

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Khuat van Ninh

    1989-09-01

    In this paper the problem of approximation of normal values of multivalued linear closed operators from topological vector Mackey space into E-space is considered. Existence of normal value and convergence of approximative values to normal value are proved. (author). 4 refs

  13. Cognitive Operations on Space and Their Impact on the Precision of Location Memory

    Science.gov (United States)

    Lansdale, Mark; Humphries, Joyce; Flynn, Victoria

    2013-01-01

    Learning about object locations in space usually involves the summation of information from different experiences of that space and requires various cognitive operations to make this possible. These processes are poorly understood and, in the extreme, may not occur--leading to mutual exclusivity of memories (Baguley, Lansdale, Lines, & Parkin,…

  14. Space operation system for Chang'E program and its capability ...

    Indian Academy of Sciences (India)

    investment. Due to the constraint in program cost, space operation for China's first lunar exploration program will be provided by the aerospace TT&C network designed for China's manned space pro- gram. The TT&C network consists of a ... foreign spacecrafts and for five spaceships in flight experiments of China's manned ...

  15. Space Weather Operation at KASI With Van Allen Probes Beacon Signals

    Science.gov (United States)

    Lee, Jongkil; Kim, Kyung-Chan; Giuseppe, Romeo; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin

    2018-02-01

    The Van Allen Probes (VAPs) are the only modern National Aeronautics and Space Administration (NASA) spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of these data via a 7 m satellite-tracking antenna and used these beacon data for space weather operations. An approximately 15 min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron flux >2 MeV at GEO, which potentially threatened satellite operations. Based on this study, we conclude that the combination of VAP data and National Oceanic and Atmospheric Administration-Geostationary Operational Environmental Satellite (NOAA-GOES) data can provide improved space environment information to geostationary satellite operators. In addition, the findings obtained indicate that more data-receiving sites would be necessary and data connections improved if this or a similar system were to be used as an operational data service.

  16. Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: State-operator approach

    International Nuclear Information System (INIS)

    Reznik, Benni; Groisman, Berry; Aharonov, Yakir

    2002-01-01

    We present a systematic simple method for constructing deterministic remote operations on single and multiple systems of arbitrary discrete dimensionality. These operations include remote rotations, remote interactions, and measurements. The resources needed for an operation on a two-level system are one ebit and a bidirectional communication of two cbits, and for an n-level system, a pair of entangled n-level particles and two classical 'nits'. In the latter case, there are n-1 possible distinct operations per n-level entangled pair. Similar results apply for generating interaction between a pair of remote systems, while for remote measurements only one-directional classical communication is needed. We further consider remote operations on N spatially distributed systems, and show that the number of possible distinct operations increases here exponentially, with the available number of entangled pairs that are initially distributed between the systems. Our results follow from the properties of a hybrid state-operator object (stator), which describes quantum correlations between states and operations

  17. Application of the French Space Operation Act and the Development of Space Activities in the Field of Launchers

    Science.gov (United States)

    Cahuzac, F.; Biard, A.

    2012-01-01

    The development of space activities has led France to define a new legal framework: French Space Operation Act (FSOA). The aim of this act, is to define the conditions according to which the French government authorizes and checks the spatial operations under its jurisdiction or its international responsibility as State of launch, according to the international treaties of the UN on space, in particular the Treaty (1967) on Principles Governing the Activities of States in the Exploration and Use of Outer Space, the Convention ( 1972 ) on International Liability for Damage Caused by Space Objects, and the Convention (1975) on Registration of Objects Launched into Outer Space. The main European space centre is the Guiana Space Centre (CSG), settled in France. A clarification of the French legal framework was compulsory to allow the arrival of new launchers (Soyuz and Vega). This act defines the competent authority, the procedure of authorization and licenses, the regime for operations led from foreign countries, the control of spatial objects, the enabling of inspectors, the delegation of monitoring to CNES, the procedure for urgent measures necessary for the safety, the registration of spatial objects. In this framework, the operator is fully responsible of the operation that he leads. He is subjected to a regime of authorization and to governmental technical monitoring delegated to CNES. In case of litigation, the operator gets the State guarantee above a certain level of damage to third party. The introduction of FSOA has led to issue a Technical Regulation set forth, in particular for the safety of persons and property, the protection of public health and the environment. This general regulation is completed by a specific regulation applicable to CSG that covers the preparation phase of the launch, and all specificities of the launch range, as regards the beginning of the launch. The Technical Regulation is based on 30 years of Ariane's activities and on the

  18. Joint operations planning for space surveillance missions on the MSX satellite

    Science.gov (United States)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  19. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    Engelmann, F.

    2000-01-01

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  20. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  1. Review of Issues Associated with Safe Operation and Management of the Space Shuttle Program

    Science.gov (United States)

    Johnstone, Paul M.; Blomberg, Richard D.; Gleghorn, George J.; Krone, Norris J.; Voltz, Richard A.; Dunn, Robert F.; Donlan, Charles J.; Kauderer, Bernard M.; Brill, Yvonne C.; Englar, Kenneth G.; hide

    1996-01-01

    At the request of the President of the United States through the Office of Science and Technology Policy (OSTP), the NASA Administrator tasked the Aerospace Safety Advisory Panel with the responsibility to identify and review issues associated with the safe operation and management of the Space Shuttle program arising from ongoing efforts to improve and streamline operations. These efforts include the consolidation of operations under a single Space Flight Operations Contract (SFOC), downsizing the Space Shuttle workforce and reducing costs of operations and management. The Panel formed five teams to address the potentially significant safety impacts of the seven specific topic areas listed in the study Terms of Reference. These areas were (in the order in which they are presented in this report): Maintenance of independent safety oversight; implementation plan for the transition of Shuttle program management to the Lead Center; communications among NASA Centers and Headquarters; transition plan for downsizing to anticipated workforce levels; implementation of a phased transition to a prime contractor for operations; Shuttle flight rate for Space Station assembly; and planned safety and performance upgrades for Space Station assembly. The study teams collected information through briefings, interviews, telephone conversations and from reviewing applicable documentation. These inputs were distilled by each team into observations and recommendations which were then reviewed by the entire Panel.

  2. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  3. Functional models for commutative systems of linear operators and de Branges spaces on a Riemann surface

    International Nuclear Information System (INIS)

    Zolotarev, Vladimir A

    2009-01-01

    Functional models are constructed for commutative systems {A 1 ,A 2 } of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that ξ 1 A 1 +ξ 2 A 2 is not a dissipative operator for any ξ 1 , ξ 2 element of R). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators {A 1 ,A 2 } for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and E-tilde(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.

  4. On the factorization of integral operators on spaces of summable functions

    International Nuclear Information System (INIS)

    Engibaryan, Norayr B

    2009-01-01

    We consider the factorization I-K=(I-U + )(I-U - ), where I is the identity operator, K is an integral operator acting on some Banach space of functions summable with respect to a measure μ on (a,b) subset of (-∞,+∞) continuous relative to the Lebesgue measure, (Kf)(x)=∫ a b k(x,t)f(t)μ(dt), x element of (a,b), and U ± are the desired Volterra operators. A necessary and sufficient condition is found for the existence of this factorization for a rather wide class of operators K with positive kernels and for Hilbert-Schmidt operators.

  5. Cross-cultural issues in space operations: A survey study among ground personnel of the European Space Agency

    Science.gov (United States)

    Sandal, Gro Mjeldheim; Manzey, Dietrich

    2009-12-01

    Today's space operations involve co-working of people with different ethnical, professional and organisational backgrounds. The aim of this study was to examine the implications of cultural diversity for efficient collaboration within the European Space Agency (ESA), and between ESA employees and representatives from other agencies. ESA employees from European countries ( N=576) answered to the CULT Ground Survey. The results showed that differences in relation to leadership and decision making were the most important issues thought to interfere with efficient co-working within ESA, and between ESA employees and colleagues from other agencies. Employees who collaborated with more than three nationalities within ESA indicated most challenges in co-working due to differences in compliance, behavioural norms and competitiveness. Challenges in co-working differed between agencies, and these differences were consistent with value differences in the national populations. The results may have applied value for training of European employees working in international space program teams.

  6. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    Science.gov (United States)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  7. Space Operations

    Science.gov (United States)

    2013-05-29

    support, products, and services, as required. US Tenth Fleet is the SSE for fleet satellite (FLTSAT) and ultrahigh frequency follow-on ( UFO ). b...direct support of Navy and joint forces. These systems include FLTSAT, UFO , MUOS, and varied payloads (Interim Polar and GBS). 10. Air Force Component...33-50 GHz S S-band, 2-4 GHz SHF super high frequency UFO ultrahigh frequency (UHF) follow-on WGS Wideband Global Satellite Communications System X

  8. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    Science.gov (United States)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  9. The application of heliospheric imaging to space weather operations: Lessons learned from published studies

    Science.gov (United States)

    Harrison, Richard A.; Davies, Jackie A.; Biesecker, Doug; Gibbs, Mark

    2017-08-01

    The field of heliospheric imaging has matured significantly over the last 10 years—corresponding, in particular, to the launch of NASA's STEREO mission and the successful operation of the heliospheric imager (HI) instruments thereon. In parallel, this decade has borne witness to a marked increase in concern over the potentially damaging effects of space weather on space and ground-based technological assets, and the corresponding potential threat to human health, such that it is now under serious consideration at governmental level in many countries worldwide. Hence, in a political climate that recognizes the pressing need for enhanced operational space weather monitoring capabilities most appropriately stationed, it is widely accepted, at the Lagrangian L1 and L5 points, it is timely to assess the value of heliospheric imaging observations in the context of space weather operations. To this end, we review a cross section of the scientific analyses that have exploited heliospheric imagery—particularly from STEREO/HI—and discuss their relevance to operational predictions of, in particular, coronal mass ejection (CME) arrival at Earth and elsewhere. We believe that the potential benefit of heliospheric images to the provision of accurate CME arrival predictions on an operational basis, although as yet not fully realized, is significant and we assert that heliospheric imagery is central to any credible space weather mission, particularly one located at a vantage point off the Sun-Earth line.

  10. 78 FR 32698 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-05-31

    ... DEPARTMENT OF STATE [Public Notice 8340] Shipping Coordinating Committee; Notice of Committee... Technical Co-operation Committee --Protection of vital shipping lanes --Periodic review of administrative... of the Organization since the twenty-eighth regular session of the Assembly --External relations...

  11. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  12. Future In-Space Operations (FISO): A Working Group and Community Engagement

    Science.gov (United States)

    Thronson, Harley; Lester, Dan

    2013-01-01

    Long-duration human capabilities beyond low Earth orbit (LEO), either in support of or as an alternative to lunar surface operations, have been assessed at least since the late 1960s. Over the next few months, we will present short histories of concepts for long-duration, free-space human habitation beyond LEO from the end of the Apollo program to the Decadal Planning Team (DPT)/NASA Exploration Team (NExT), which was active in 1999 2000 (see Forging a vision: NASA s Decadal Planning Team and the origins of the Vision for Space Exploration , The Space Review, December 19, 2005). Here we summarize the brief existence of the Future In-Space Operations (FISO) working group in 2005 2006 and its successor, a telecon-based colloquium series, which we co-moderate.

  13. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  14. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  15. Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat

    Science.gov (United States)

    Monje, Oscar; Valling, Simo; Cornish, Jim

    2013-01-01

    The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.

  16. Third Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)

    Science.gov (United States)

    Griffin, Sandy (Editor)

    1990-01-01

    Papers presented at the Third Annual Workshop on Space Operations Automation and Robotics (SOAR '89), hosted by the NASA Lyndon B. Johnson Space Center at Houston, Texas, on July 25 to 27, 1989, are given. Approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Also held were panel discussions on Air Force/NASA Artificial Intelligence Overview and Expert System Verification and Validation.

  17. The Advantages, Potentials and Safety of VTOL Suborbital Space Tourism Operations

    Science.gov (United States)

    Ridzuan Zakaria, N.; Nasrun, N.; Abu, J.; Jusoh, A.; Azim, L.; Said, A.; Ishak, S.; Rafidi Zakaria, N.

    2012-01-01

    Suborbital space tourism offers short-time zero gravity and Earth view from space to its customers, and a package that can offer the longest duration of zero- gravity and the most exciting Earth view from space to its customer can be considered a better one than the others. To increase the duration of zero gravity time involves the design and engineering of the suborbital vehicles, but to improve the view of Earth from space aboard a suborbital vehicle, involves more than just the design and engineering of the vehicle, but more on the location of where the vehicle operates. So far, most of the proposed operations of suborbital space tourism vehicles involve a flight to above 80km and less than 120km and taking-off and landing at the same location. Therefore, the operational location of the suborbital vehicle clearly determines the view of earth from space that will be available to its passengers. The proposed operational locations or spaceports usually are existing airports such as the airport at Curacao Island in the Caribbean or spaceport specially built at locations with economic interests such as Spaceport America in New Mexico or an airport that is going to be built, such as SpaceportSEA in Selangor, Malaysia. Suborbital vehicles operating from these spaceports can only offer limited views of Earth from space which is only few thousand kilometers of land or sea around their spaceports, and a clear view of only few hundred kilometers of land or sea directly below them, even though the views can be enhanced by the application of optical devices. Therefore, the view of some exotic locations such as a colorful coral reef, and phenomena such as a smoking volcano on Earth which may be very exciting when viewed from space will not be available on these suborbital tourism packages. The only possible way for the passengers of a suborbital vehicle to view such exotic locations and phenomena is by flying above or near them, and since it will not be economic and will be

  18. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  19. Extended space expectation values of position related operators for hydrogen-like quantum system evolutions

    International Nuclear Information System (INIS)

    Kalay, Berfin; Demiralp, Metin

    2014-01-01

    The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integer powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin

  20. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  1. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  2. Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2017-01-01

    Full Text Available Abstract In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators I α $I_{\\alpha}$ in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutators [ b , I α ] $[b,I_{\\alpha}]$ formed by b and I α $I_{\\alpha}$ are established. Also we study related problems about two-weight, weak type inequalities for I α $I_{\\alpha}$ and [ b , I α ] $[b,I_{\\alpha}]$ in the Morrey-type spaces and give partial results.

  3. Collision risk investigation for an operational spacecraft caused by space debris

    Science.gov (United States)

    Zhang, Binbin; Wang, Zhaokui; Zhang, Yulin

    2017-04-01

    The collision probability between an operational spacecraft and a population of space debris is investigated. By dividing the 3-dimensional operational space of the spacecraft into several space volume cells (SVC) and proposing a boundary selection method to calculate the collision probability in each SVC, the distribution of the collision risk, as functions of the time, the orbital height, the declination, the impact elevation, the collision velocity, etc., can be obtained. Thus, the collision risk could be carefully evaluated over a time span for the general orbital configurations of the spacecraft and the space debris. As an application, the collision risk for the Tiangong-2 space laboratory caused by the cataloged space debris is discussed and evaluated. Results show that most of the collision threat comes from the front left and front right in Tiangong-2's local, quasi-horizontal plane. And the collision probability will also accumulate when Tiangong-2 moves to the largest declinations (about {±} 42°). As a result, the manned space activities should be avoided at those declinations.

  4. Impacts of space weather and space climate on pipeline network operations

    Science.gov (United States)

    Trichtchenko, Larisa

    2014-05-01

    The geomagnetic fluctuations are accompanied by geo-electric (telluric) field and telluric currents at the surface of the Earth and in the pipelines. These currents interfere with pipeline corrosion protection, creating pipe-to-soil potential (PSP) fluctuations. It impacts pipeline operations in two ways. One is that non-disturbed "true" level of the protection is not known, which might lead to the wrong conclusions that a pipeline coating is damaged and digging out the section of the pipeline is needed. The other effect is changes in the electrical conditions in the pipeline-soil interface, compromising the corrosion protection and possibly causing enhancement of the corrosion. The global trend for construction of more pipelines in northern regions means placing them into areas where natural geomagnetic variations are larger and consequently telluric activity is more extreme, in comparison with pipelines located further south. This paper describes the solutions implemented as the result of the two projects done by NRCan researchers led by the author on request from pipeline companies. Two methods were proposed and implemented to address the problems. One is the statistical estimation of the telluric activity in the area of the planned pipelines. These statistical considerations then used as guidance in the design of corrosion protection systems to counteract the excessive corrosion. The other, to deal with the corrupted results during the pipeline surveys, is to forecast the geomagnetic storms for proper planning of the surveys. In addition, the developed telluric activity identification tool can be used in the analysis of the corrupted survey data.

  5. Fixed Point Theorems for T-Ciric Quasi-contractive Operator in CAT(0 Spaces

    Directory of Open Access Journals (Sweden)

    G. S. Saluja

    2013-08-01

    Full Text Available The purpose of this paper to study a three-step iterative algorithm for T-Ciric quasi-contractive (TCQC operator in the framework of CAT(0 spaces and establish strong convergence theorems for above said scheme and operator. Our results improve and extend the recent corresponding results from the existing literature (see, e.g., [28, 29, 30] and some others.

  6. Some s-numbers of an integral operator of Hardy type in Banach function spaces

    Czech Academy of Sciences Publication Activity Database

    Edmunds, D.; Gogatishvili, Amiran; Kopaliani, T.; Samashvili, N.

    2016-01-01

    Roč. 207, July (2016), s. 76-97 ISSN 0021-9045 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : Hardy type operators * Banach function spaces * s- numbers * compact linear operators Subject RIV: BA - General Mathematics Impact factor: 0.931, year: 2016 http://www.sciencedirect.com/science/article/pii/S0021904516000265

  7. Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)

    Science.gov (United States)

    Jourdainne, Laurent

    2013-09-01

    Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace

  8. Algebraic Properties of Quasihomogeneous and Separately Quasihomogeneous Toeplitz Operators on the Pluriharmonic Bergman Space

    Directory of Open Access Journals (Sweden)

    Hongyan Guan

    2013-01-01

    Full Text Available We study some algebraic properties of Toeplitz operator with quasihomogeneous or separately quasihomogeneous symbol on the pluriharmonic Bergman space of the unit ball in ℂn. We determine when the product of two Toeplitz operators with certain separately quasi-homogeneous symbols is a Toeplitz operator. Next, we discuss the zero-product problem for several Toeplitz operators, one of whose symbols is separately quasihomogeneous and the others are quasi-homogeneous functions, and show that the zero-product problem for two Toeplitz operators has only a trivial solution if one of the symbols is separately quasihomogeneous and the other is arbitrary. Finally, we also characterize the commutativity of certain quasihomogeneous or separately quasihomogeneous Toeplitz operators.

  9. Aviation safety: hazardous materials handling. Hearing before a Subcommittee of the Committee on Government Operations, House of Representatives, Ninety-Sixth Congress, Second Session

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Statements concerning the safety of air transport of hazardous and radioactive materials presented before a Subcommittee of the Committee on Government Operations of the House of Representatives are presented. Statements of various personnel involved in air transport including the Air Line Pilots Association and the US Postal Service and the Professional Air Traffic Controllers Organization are presented for the record. Also included are appendices concerning the Minneapolis-Saint Paul Metropolitan Airport Commission Ordinance number 44, Air Line Pilots Association procedures for the safe transportation of passengers, and a personal statement concerning the handling procedures of radioactive materials by the US Postal Service

  10. Priorities of Coworking Space Operation Based on Comparison of the Hosts and Users’ Perspectives

    Directory of Open Access Journals (Sweden)

    Jongseok Seo

    2017-08-01

    Full Text Available More than 1,180,000 people use several thousand coworking spaces these days, but the running of coworking spaces is a rather fragile business model. Coworking spaces need entrepreneurial sustainability as well. Therefore, this study identifies success factors for sustainable business through analysis of users and hosts’ demands and priorities about coworking spaces. To identify the priorities, we conducted a questionnaire survey with 60 hosts and 56 users by using the analytic hierarchy process method. We found that hosts thought community and communication most important, followed by space and interior, service diversity, and price plan, and users considered relationship facilitation the most important, followed by service diversity, price plan, and networking event and party. After discussions with coworking space hosts and users to understand the differences in viewpoints, we combined the results to find the highest priorities. Finally, we identified relationship facilitation, service diversity, and price plan as having the highest priorities for sustainable coworking space operation for both sides. This study has major implications for research into improving management of coworking spaces as it asks users and hosts to select and focus on elements of priority in their decision making for entrepreneurial sustainability and management innovation.

  11. Assessing and Adapting Scientific Results for Space Weather Research to Operations (R2O)

    Science.gov (United States)

    Thompson, B. J.; Friedl, L.; Halford, A. J.; Mays, M. L.; Pulkkinen, A. A.; Singer, H. J.; Stehr, J. W.

    2017-12-01

    Why doesn't a solid scientific paper necessarily result in a tangible improvement in space weather capability? A well-known challenge in space weather forecasting is investing effort to turn the results of basic scientific research into operational knowledge. This process is commonly known as "Research to Operations," abbreviated R2O. There are several aspects of this process: 1) How relevant is the scientific result to a particular space weather process? 2) If fully utilized, how much will that result improve the reliability of the forecast for the associated process? 3) How much effort will this transition require? Is it already in a relatively usable form, or will it require a great deal of adaptation? 4) How much burden will be placed on forecasters? Is it "plug-and-play" or will it require effort to operate? 5) How can robust space weather forecasting identify challenges for new research? This presentation will cover several approaches that have potential utility in assessing scientific results for use in space weather research. The demonstration of utility is the first step, relating to the establishment of metrics to ensure that there will be a clear benefit to the end user. The presentation will then move to means of determining cost vs. benefit, (where cost involves the full effort required to transition the science to forecasting, and benefit concerns the improvement of forecast reliability), and conclude with a discussion of the role of end users and forecasters in driving further innovation via "O2R."

  12. An examination of automation and robotics in the context of Space Station operations

    Science.gov (United States)

    Criswell, David R.; Lee, Douglas S.; Ragusa, James; Starks, Scott A.; Woodruff, John; Paules, Granville

    1988-01-01

    A NASA-sponsored review of Space Station automation and robotics (A&R) applications from an operations and utilization perspective is presented. The goals of the A&R panel and this report are to identify major suggestions for advanced A&R operations application in Space Station as well as key technologies that have emerged or gained prominence since the completion of previous reports; to review and incorporate the range of possible Space Station A&R applications into a framework for evaluation of A&R opportunities; and to propose incentives for the government, work packages, and subcontractors to more aggressively identify, evaluate, and incorporate advanced A&R in Space Station Operations. The suggestions for A&R focused on narrow objectives using a conservative approach tuned to Space Station at IOC and limiting the Station's growth capabilities. A more aggressive stance is to identify functional needs over the Program's life, exploit and leverage available technology, and develop the key advanced technologies permitting effective use of A&R. The challenge is to systematically identify candidate functions to be automated, provide ways to create solutions resulting in savings or increased capabilities, and offer incentives that will promote the automation.

  13. Using Distributed Operations to Enable Science Research on the International Space Station

    Science.gov (United States)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload

  14. Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Delfino, G. [International School of Advanced Studies (SISSA), Trieste (Italy)]|[INFN sezione di Trieste (Italy); Niccoli, G. [Univ. de Cergy-Pontoise (France). LPTM

    2007-12-15

    For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide. (orig.)

  15. Design and implementation of an inter-agency, multi-mission space flight operations network interface

    Science.gov (United States)

    Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.

    2004-01-01

    An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.

  16. Standard symmetric operators in Pontryagin spaces : a generalized von Neumann formula and minimality of boundary coefficients

    NARCIS (Netherlands)

    Azizov, Tomas; Ćurgus, Branko; Dijksma, Aad

    2003-01-01

    Certain meromorphic matrix valued functions on C\\R, the so-called boundary coefficients, are characterized in terms of a standard symmetric operator S in a Pontryagin space with finite (not necessarily equal) defect numbers, a meromorphic mapping into the defect subspaces of S, and a boundary

  17. Killing vectors and covariant operators of momenta for fermion in curved space.

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, P I; Zemlyakov, A T

    1996-12-31

    The operators of linear and angular momenta of fermion in symmetric curved space with killing vectors are constructed in the form covariant in respect to transformations of coordinates and local tetrad. Some applications of this formalism are considered. 14 refs., 1 figs.

  18. Killing vectors and covariant operators of momenta for fermion in curved space

    International Nuclear Information System (INIS)

    Fomin, P.I.; Zemlyakov, A.T.

    1995-01-01

    The operators of linear and angular momenta of fermion in symmetric curved space with killing vectors are constructed in the form covariant in respect to transformations of coordinates and local tetrad. Some applications of this formalism are considered. 14 refs., 1 figs

  19. Operational definition of (brane-induced) space-time and constraints on the fundamental parameters

    International Nuclear Information System (INIS)

    Maziashvili, Michael

    2008-01-01

    First we contemplate the operational definition of space-time in four dimensions in light of basic principles of quantum mechanics and general relativity and consider some of its phenomenological consequences. The quantum gravitational fluctuations of the background metric that comes through the operational definition of space-time are controlled by the Planck scale and are therefore strongly suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity scale but rather to the higher-dimensional modification of Newton's inverse square law at relatively large distances. For models with compact extra dimensions the shape modulus of extra space can be used as a most natural and safe stabilization mechanism against these fluctuations

  20. Challenges for Transitioning Science Knowledge to an Operational Environment for Space Weather

    Science.gov (United States)

    Spann, James

    2012-01-01

    Effectively transitioning science knowledge to an operational environment relevant to space weather is critical to meet the civilian and defense needs, especially considering how technologies are advancing and present evolving susceptibilities to space weather impacts. The effort to transition scientific knowledge to a useful application is not a research task nor is an operational activity, but an effort that bridges the two. Successful transitioning must be an intentional effort that has a clear goal for all parties and measureable outcome and deliverable. This talk will present proven methodologies that have been demonstrated to be effective for terrestrial weather and disaster relief efforts, and how those methodologies can be applied to space weather transition efforts.

  1. Toeplitz Operators, Pseudo-Homogeneous Symbols, and Moment Maps on the Complex Projective Space

    Directory of Open Access Journals (Sweden)

    Miguel Antonio Morales-Ramos

    2017-01-01

    Full Text Available Following previous works for the unit ball due to Nikolai Vasilevski, we define quasi-radial pseudo-homogeneous symbols on the projective space and obtain the corresponding commutativity results for Toeplitz operators. A geometric interpretation of these symbols in terms of moment maps is developed. This leads us to the introduction of a new family of symbols, extended pseudo-homogeneous, that provide larger commutative Banach algebras generated by Toeplitz operators. This family of symbols provides new commutative Banach algebras generated by Toeplitz operators on the unit ball.

  2. Description of symmetry of magnetic structures by representations of space groups. [Tables, projecton operator methods

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1974-10-15

    A description of magnetic structures based on the use of representations of space groups is given. Representations of the space groups were established for each compound on the basis of experimental data by the method of projection operators. The compounds contained in the list are collected according to crystal systems, alphabetically within each system. The description of each compound consists of the four parts. The first part contain the chemical symbol of the compound, the second its space group. The next part contains the chemical symbol of the magnetic atom and its positions in Wychoff notation with the number of equivalent positions in the crystal unit cell. The main description of a compound magnetic structure is given in the fourth part. It contains: K vector defined in the reciprocal space, the representation according to which a magnetic structure is transformed and the axial vector function S which describes the magnetic structure.

  3. On an Integral-Type Operator Acting between Bloch-Type Spaces on the Unit Ball

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2010-01-01

    Full Text Available Let 𝔹 denote the open unit ball of ℂn. For a holomorphic self-map φ of 𝔹 and a holomorphic function g in 𝔹 with g(0=0, we define the following integral-type operator: Iφgf(z=∫01ℜf(φ(tzg(tz(dt/t, z∈𝔹. Here ℜf denotes the radial derivative of a holomorphic function f in 𝔹. We study the boundedness and compactness of the operator between Bloch-type spaces ℬω and ℬμ, where ω is a normal weight function and μ is a weight function. Also we consider the operator between the little Bloch-type spaces ℬω,0 and ℬμ,0.

  4. Human Error and the International Space Station: Challenges and Triumphs in Science Operations

    Science.gov (United States)

    Harris, Samantha S.; Simpson, Beau C.

    2016-01-01

    Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.

  5. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards

  6. Planning in the Continuous Operations Environment of the International Space Station

    Science.gov (United States)

    Maxwell, Theresa; Hagopian, Jeff

    1996-01-01

    The continuous operation planning approach developed for the operations planning of the International Space Station (ISS) is reported on. The approach was designed to be a robust and cost-effective method. It separates ISS planning into two planning functions: long-range planning for a fixed length planning horizon which continually moves forward as ISS operations progress, and short-range planning which takes a small segment of the long-range plan and develops a detailed operations schedule. The continuous approach is compared with the incremental approach, the short and long-range planning functions are described, and the benefits and challenges of implementing a continuous operations planning approach for the ISS are summarized.

  7. 78 FR 54680 - NASA Federal Advisory Committees

    Science.gov (United States)

    2013-09-05

    ... Committee Management Division, Office of International and Interagency Relations, NASA Headquarters... AGENCY: National Aeronautics and Space Administration. ACTION: Annual Invitation for Public Nominations... invitation for public nominations for service on NASA Federal advisory committees. U.S. citizens may nominate...

  8. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kavelaars, Alicia T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Dept. of Aeronautics and Astronautics

    2006-10-10

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I&T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I&T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I&T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I&T management and oversight overall. E-Logbook has been used for the I&T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I&T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry.

  9. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    International Nuclear Information System (INIS)

    Kavelaars, Alicia T.; SLAC; Stanford U., Dept. Aeronaut. Astronaut

    2006-01-01

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I and T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I and T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I and T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I and T management and oversight overall. E-Logbook has been used for the I and T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I and T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry

  10. Anisotropic hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators.

    Science.gov (United States)

    Li, Baode; Yang, Dachun; Yuan, Wen

    2014-01-01

    Let φ : ℝ(n) × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H(A)(φ)(ℝ(n)), via the grand maximal function. The authors then obtain some real-variable characterizations of H(A)(φ)(ℝ(n)) in terms of the radial, the nontangential, and the tangential maximal functions, which generalize the known results on the anisotropic Hardy space H(A)(p) (ℝ(n)) with p ∈ (0,1] and are new even for its weighted variant. Finally, the authors characterize these spaces by anisotropic atomic decompositions. The authors also obtain the finite atomic decomposition characterization of H(A)(φ)(ℝ(n)), and, as an application, the authors prove that, for a given admissible triplet (φ, q, s), if T is a sublinear operator and maps all (φ, q, s)-atoms with q spaces ℬ, then T uniquely extends to a bounded sublinear operator from H(A)(φ)(ℝ(n)) to ℬ. These results are new even for anisotropic Orlicz-Hardy spaces on ℝ(n).

  11. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    Science.gov (United States)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  12. A&R challenges for in-space operations. [Automation and Robotic technologies

    Science.gov (United States)

    Underwood, James

    1990-01-01

    Automation and robotics (A&R) challenges for in-space operations are examined, with emphasis on the interaction between developing requirements, developing solutions, design concepts, and the nature of the applicability of automation in robotic technologies. Attention is first given to the use of A&R in establishing outposts on the moon and Mars. Then emphasis is placed on the requirements for the assembly of transportation systems in low earth orbit. Concepts of the Space Station which show how the assembly, processing, and checkout of systems in LEO might be accommodated are examined.

  13. Second Annual Workshop on Space Operations Automation and Robotics (SOAR 1988)

    Science.gov (United States)

    Griffin, Sandy (Editor)

    1988-01-01

    Papers presented at the Second Annual Workshop on Space Operation Automation and Robotics (SOAR '88), hosted by Wright State University at Dayton, Ohio, on July 20, 21, 22, and 23, 1988, are documented herein. During the 4 days, approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Panel discussions on Human Factors, Artificial Intelligence, Robotics, and Space Systems were held but are not documented herein. Technical topics addressed included knowledge-based systems, human factors, and robotics.

  14. Fixed points for some non-obviously contractive operators defined in a space of continuous functions

    OpenAIRE

    C. Avramescu; Cristian Vladimirescu

    2004-01-01

    Let $X$ be an arbitrary (real or complex) Banach space, endowed with the norm $\\left| \\cdot \\right| .$ Consider the space of the continuous functions $C\\left( \\left[ 0,T\\right] ,X\\right) $ $\\left( T>0\\right) $, endowed with the usual topology, and let $M$ be a closed subset of it. One proves that each operator $A:M\\rightarrow M$ fulfilling for all $x,y\\in M$ and for all $t\\in \\left[ 0,T\\right] $ the condition \\begin{eqnarray*} \\left| \\left( Ax\\right) \\left( t\\right) -\\left( Ay\\right) \\l...

  15. Space Toxicology: Environmental Health Considerations during Spaceflight Operations and Potential Paths for Research

    Science.gov (United States)

    Khan-Mayberry, Noreen N.; Sundaresan, Alemalu

    2009-01-01

    Space Toxicology is a specialized discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids [1]. Astronaut explorers face unique challenges to their health while working and living with limited resources for rescue and medical care during space operation. At its core the practice of space toxicology to identify, assess and predict potential chemical contaminants and limit the astronaut s exposure to these environmental factors in order to protect crew health. Space toxicologists are also charged with setting safe exposure limits that will protect the astronaut against a multitude of chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space, toxicological risks are gauged and managed within the context of isolation, continual exposures, reuse of air and water, limited rescue options, and the necessary use of highly toxic compounds required for propulsion. As the space program move towards human presence and exploration other celestial bodies in situ toxicological risks, such as inhalation of unusual and/or reactive mineral dusts must also be analyzed and controlled. Placing humans for long-term presence in space creates several problems and challenges to the long-term health of the crew, such as bone-loss and immunological challenges and has spurred research into acute, chronic and episodic exposure of the pulmonary system to mineral dusts [2]. NASA has demonstrated that lunar soil contains several types of reactive dusts, including an extremely fine respirable component. In order to protect astronaut health, NASA is now investigating the toxicity of this unique class of dusts. Understanding how these reactive components behave "biochemically" in a moisture-rich pulmonary environment will aid in determining how toxic these particles are to humans. The data obtained from toxicological examination of lunar dusts will determine the human risk criteria for lunar

  16. Freeman's transorbital lobotomy as an anomaly: A material culture examination of surgical instruments and operative spaces.

    Science.gov (United States)

    Collins, Brianne M; Stam, Henderikus J

    2015-05-01

    In 1946, Walter Freeman introduced the transorbital ice pick lobotomy. Touted as a procedure that could be learned and subsequently performed by psychiatrists outside of the operating room, the technique was quickly criticized by neurosurgeons. In this article, we take a material culture approach to consider 2 grounds upon which neurosurgeons based their objections-surgical instruments and operative spaces. On both counts, Freeman was in contravention of established normative neurosurgical practices and, ultimately, his technique was exposed as an anomaly by neurosurgeons. Despite its rejection, the transorbital lobotomy became entrenched in contemporary memory and remains the emblematic procedure of the psychosurgery era. (c) 2015 APA, all rights reserved).

  17. Simulation Evaluation of Controller-Managed Spacing Tools under Realistic Operational Conditions

    Science.gov (United States)

    Callantine, Todd J.; Hunt, Sarah M.; Prevot, Thomas

    2014-01-01

    Controller-Managed Spacing (CMS) tools have been developed to aid air traffic controllers in managing high volumes of arriving aircraft according to a schedule while enabling them to fly efficient descent profiles. The CMS tools are undergoing refinement in preparation for field demonstration as part of NASA's Air Traffic Management (ATM) Technology Demonstration-1 (ATD-1). System-level ATD-1 simulations have been conducted to quantify expected efficiency and capacity gains under realistic operational conditions. This paper presents simulation results with a focus on CMS-tool human factors. The results suggest experienced controllers new to the tools find them acceptable and can use them effectively in ATD-1 operations.

  18. Coordinating space telescope operations in an integrated planning and scheduling architecture

    Science.gov (United States)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  19. Absolutely continuous measures and compact composition operator on spaces of Cauchy transforms

    Directory of Open Access Journals (Sweden)

    Yusuf Abu Muhanna

    2004-01-01

    Full Text Available The analytic self-map of the unit disk D, φ is said to induce a composition operator Cφ from the Banach space X to the Banach space Y if Cφ(f=f∘φ∈Y for all f∈X. For z∈D and α>0, the families of weighted Cauchy transforms Fα are defined by f(z=∫TKxα(zdμ(x, where μ(x is complex Borel measure, x belongs to the unit circle T, and the kernel Kx(z=(1−x¯z−1. In this paper, we will explore the relationship between the compactness of the composition operator Cφ acting on Fα and the complex Borel measures μ(x.

  20. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  1. Physics constraints on tokamak edge operational space and extrapolation to ITER

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Janeschitz, G.; Sugihara, M.; Pacher, H.D.; Post, D.E.; Pacher, G.W.; Pogutse, O.P.

    1998-01-01

    This paper emphasises the theoretical understanding of the physical processes in the edge tokamak plasma and their attendant uncertainties and constraints. The various operational boundaries are represented in the edge operational space (EOS) diagram, the space of edge density and temperature, defined at the top of the H-mode transport barrier. The EOS is governed by four boundaries representing physical constraints for the edge plasma parameters. The first boundary represents the onset of type I ELM instabilities in terms of a critical pressure gradient for MHD stability at the edge which defines the maximum pedestal temperature for a given density once the width of the H-mode transport barrier at the edge (pedestal width) is known. The ideal ballooning mode is a candidate for this instability. The second boundary defines the boundary between type III ELM's, which are probably resistive MHD modes, and the ELM-free region. (orig.)

  2. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  3. Global Dynamical Systems Involving Generalized -Projection Operators and Set-Valued Perturbation in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Yun-zhi Zou

    2012-01-01

    Full Text Available A new class of generalized dynamical systems involving generalized f-projection operators is introduced and studied in Banach spaces. By using the fixed-point theorem due to Nadler, the equilibrium points set of this class of generalized global dynamical systems is proved to be nonempty and closed under some suitable conditions. Moreover, the solutions set of the systems with set-valued perturbation is showed to be continuous with respect to the initial value.

  4. Realization of vector fields for quantum groups as pseudodifferential operators on quantum spaces

    International Nuclear Information System (INIS)

    Chu, Chong-Sun; Zumino, B.

    1995-01-01

    The vector fields of the quantum Lie algebra are described for the quantum groups GL q (n), SL q (N) and SO q (N) as pseudodifferential operators on the linear quantum spaces covariant under the corresponding quantum group. Their expressions are simple and compact. It is pointed out that these vector fields satisfy certain characteristic polynomial identities. The real forms SU q (N) and SO q (N,R) are discussed in detail

  5. Experimental study of high density foods for the Space Operations Center

    Science.gov (United States)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  6. Daylight operation of a free space, entanglement-based quantum key distribution system

    Energy Technology Data Exchange (ETDEWEB)

    Peloso, Matthew P; Gerhardt, Ilja; Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com

    2009-04-15

    Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from the background light. Here, we present a lean entanglement-based QKD system overcoming that limitation. By implementing spectral, spatial and temporal filtering techniques, we establish a secure key continuously over several days under varying light and weather conditions.

  7. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    Science.gov (United States)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  8. Carrington-L5: The UK/US Operational Space Weather Monitoring Mission

    Science.gov (United States)

    Trichas, Markos; Gibbs, Mark; Harrison, Richard; Green, Lucie; Eastwood, Jonathan; Bentley, Bob; Bisi, Mario; Bogdanova, Yulia; Davies, Jackie; D'Arrigo, Paolo; Eyles, Chris; Fazakerley, Andrew; Hapgood, Mike; Jackson, David; Kataria, Dhiren; Monchieri, Emanuele; Windred, Phil

    2015-06-01

    Airbus Defence and Space (UK) has carried out a study to investigate the possibilities for an operational space weather mission, in collaboration with the Met Office, RAL, MSSL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for 24/7 operational forecasting needs. We have focussed on a mission at L5 assuming that a mission to L1 will already occur, on the basis that L5 (Earth trailing) offers the greatest benefit for the earliest possible warning on hazardous SWE events and the most accurate SWE predictions. The baseline payload has been selected to cover all UK Met Office/NOAA's users priorities for L5 using instruments with extensive UK/US heritage, consisting of: heliospheric imager, coronograph, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform and subsystems are based on extensive re-use from past Airbus Defence and Space spacecraft to minimize the development cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could be achieved by 2020, assuming Phase A kick-off in 2015-2016. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  9. The manned space-laboratories control centre - MSCC. Operational functions and its implementation

    Science.gov (United States)

    Brogl, H.; Kehr, J.; Wlaka, M.

    This paper describes the functions of the MSCC during the operations of the Columbus Attached Laboratory and the Free Flying Laboratory as part of the In-Orbit-Infrastructure Ground Segment. For the Attached Laboratory, MSCC payload operations coordination for European experiments within the Attached Laboratory and elsewhere on the Space Station Freedom will be explained. The Free Flying Laboratory will be operated and maintained exclusively from the MSCC during its 30 years lifetime. Several operational scenarios will demonstrate the role of the MSCC during routine - and servicing operations: of main importance are the servicing activities of the Attached Laboratory and the Free Flyer at the Space Station as well as servicing of the Free Flyer by the European Space Plane Hermes. The MSCC will have complex operational-, communications-and management interfaces with the IOI Ground Segment, the Space Station User community and with the international partners. Columbus User Support Centres will be established in many European member states, which have to be coordinated by the MSCC to ensure the proper reception of the scientific data and to provide them with quick access to their experiments in space. For operations planning and execution of experiments in the Attached Laboratory, a close cooperation with the Space Station control authorities in the USA will be established. The paper will show the development of the MSCC being initially used for the upcoming Spacelab Mission D-2 (MSCC Phase-1) and later upgraded to a Columbus dedicated control centre (MSCC Phase-2). For the initial construction phase the establishing of MSCC requirements, the philosophie used for the definition of the 'basic infrastructure' and key features of the installed facilities will be addressed. Resulting from Columbus and D-2 requirements, the sizing of the building with respect to controlrooms, conference rooms, office spare and simulation high-bay areas will be discussed. The defined 'basic

  10. Convergence rates and finite-dimensional approximations for nonlinear ill-posed problems involving monotone operators in Banach spaces

    International Nuclear Information System (INIS)

    Nguyen Buong.

    1992-11-01

    The purpose of this paper is to investigate convergence rates for an operator version of Tikhonov regularization constructed by dual mapping for nonlinear ill-posed problems involving monotone operators in real reflective Banach spaces. The obtained results are considered in combination with finite-dimensional approximations for the space. An example is considered for illustration. (author). 15 refs

  11. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  12. Domains of pseudo-differential operators: a case for the Triebel-Lizorkin spaces

    Directory of Open Access Journals (Sweden)

    Jon Johnsen

    2005-01-01

    Full Text Available The main result is that every pseudo-differential operator of type 1, 1 and order d is continuous from the Triebel-Lizorkin space Fp,1d to Lp, 1≤p≺∞, and that this is optimal within the Besov and Triebel-Lizorkin scales. The proof also leads to the known continuity for s≻d, while for all real s the sufficiency of Hörmander's condition on the twisted diagonal is carried over to the Besov and Triebel-Lizorkin framework. To obtain this, type 1, 1-operators are extended to distributions with compact spectrum, and Fourier transformed operators of this type are on such distributions proved to satisfy a support rule, generalising the rule for convolutions. Thereby the use of reduced symbols, as introduced by Coifman and Meyer, is replaced by direct application of the paradifferential methods. A few flaws in the literature have been detected and corrected.

  13. A note on the Königs domain of compact composition operators on the Bloch space

    Directory of Open Access Journals (Sweden)

    Jones Matthew

    2011-01-01

    Full Text Available Abstract Let be the unit disk in the complex plane. We define to be the little Bloch space of functions f analytic in which satisfy lim|z|→1 (1 - |z|2|f'(z| = 0. If is analytic then the composition operator Cφ : f ↦ f ∘ φ is a continuous operator that maps into itself. In this paper, we show that the compactness of Cφ , as an operator on , can be modelled geometrically by its principal eigenfunction. In particular, under certain necessary conditions, we relate the compactness of Cφ to the geometry of , where σ satisfies Schöder's functional equation σ ∘ φ = φ'(0σ. 2000 Mathematics Subject Classification: Primary 30D05; 47B33 Secondary 30D45.

  14. Regularization in Hilbert space under unbounded operators and general source conditions

    International Nuclear Information System (INIS)

    Hofmann, Bernd; Mathé, Peter; Von Weizsäcker, Heinrich

    2009-01-01

    The authors study ill-posed equations with unbounded operators in Hilbert space. This setup has important applications, but only a few theoretical studies are available. First, the question is addressed and answered whether every element satisfies some general source condition with respect to a given self-adjoint unbounded operator. This generalizes a previous result from Mathé and Hofmann (2008 Inverse Problems 24 015009). The analysis then proceeds to error bounds for regularization, emphasizing some specific points for regularization under unbounded operators. The study finally reviews two examples within the light of the present study, as these are fractional differentiation and some Cauchy problems for the Helmholtz equation, both studied previously and in more detail by U Tautenhahn and co-authors

  15. Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations

    Science.gov (United States)

    Burleigh, Scott C.

    2008-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.

  16. Extension of the TCV Operating Space Towards Higher Elongation and Higher Normalized Current

    International Nuclear Information System (INIS)

    Hofmann, F.; Coda, S.; Lavanchy, P.; Llobet, X.; Marmillod, Ph.; Martin, Y.; Martynov, A.; Mlynar, J.; Moret, J.-M.; Pochelon, A.; Sauter, O.

    2002-01-01

    Recently, an experimental campaign has been launched on TCV with the aim of exploring and extending the limits of the operating space. The vertical position control system has been optimized, with the help of extensive model calculations, in order to allow operation at the lowest possible stability margin. In addition, the growth rate of the axisymmetric instability has been minimized by choosing optimum values for the plasma triangularity and squareness and by operating close to the current limit imposed by the n= 1 external kink mode. These measures have allowed us to reach record values of elongation, κ=2.8, and normalized current, I N =3.6, in a tokamak with standard aspect ratio, R/a=3.5. (author)

  17. The Synthesis Method of Automated System of Operational Planning in Low-Space Communication System Messaging

    Directory of Open Access Journals (Sweden)

    Serhii Kovbasiuk

    2017-04-01

    Full Text Available One of the reasons for the decrease of efficiency in low-speed communication systems, satellite communication, which are based on nanoplatform is a high degree of operational planning centralisation. To overcome this problem the method which carries out the distribution of tasks of communications operational planning minimizing the exchange of information between spatially remote sites, and takes into account the computing performance of software and hardware was developed. The technique is based on the use of methods of structural and parametric synthesis, simulation and statistical analysis of the results. Its use allows to obtain the optimal structure of the automated system of operational planning in low-space communication system messaging evaluation of efficiency in terms of fixed communication of information load.

  18. Addressing Challenges to the Design & Test of Operational Lighting Environments for the International Space Station

    Science.gov (United States)

    Clark, Toni A.

    2014-01-01

    In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed

  19. Assessment for Operator Confidence in Automated Space Situational Awareness and Satellite Control Systems

    Science.gov (United States)

    Gorman, J.; Voshell, M.; Sliva, A.

    2016-09-01

    The United States is highly dependent on space resources to support military, government, commercial, and research activities. Satellites operate at great distances, observation capacity is limited, and operator actions and observations can be significantly delayed. Safe operations require support systems that provide situational understanding, enhance decision making, and facilitate collaboration between human operators and system automation both in-the-loop, and on-the-loop. Joint cognitive systems engineering (JCSE) provides a rich set of methods for analyzing and informing the design of complex systems that include both human decision-makers and autonomous elements as coordinating teammates. While, JCSE-based systems can enhance a system analysts' understanding of both existing and new system processes, JCSE activities typically occur outside of traditional systems engineering (SE) methods, providing sparse guidance about how systems should be implemented. In contrast, the Joint Director's Laboratory (JDL) information fusion model and extensions, such as the Dual Node Network (DNN) technical architecture, provide the means to divide and conquer such engineering and implementation complexity, but are loosely coupled to specialized organizational contexts and needs. We previously describe how Dual Node Decision Wheels (DNDW) extend the DNN to integrate JCSE analysis and design with the practicalities of system engineering and implementation using the DNN. Insights from Rasmussen's JCSE Decision Ladders align system implementation with organizational structures and processes. In the current work, we present a novel approach to assessing system performance based on patterns occurring in operational decisions that are documented by JCSE processes as traces in a decision ladder. In this way, system assessment is closely tied not just to system design, but the design of the joint cognitive system that includes human operators, decision-makers, information systems, and

  20. Interest of a drug and therapeutics committee for the operation of a hospital in a developing country: Dapaong, Togo.

    Science.gov (United States)

    Ben Yahya, M

    2016-05-01

    The department of pharmacy of the Regional Hospital of Dapaong is responsible for delivery of health products. We sought to assess the department's avoidable costs to optimize the hospital's drug policies and thereby improve patient care. This cost-forecasting study is intended to convince the hospital staff of the utility of setting up a drug and therapeutics committee and more particularly of developing a drug handbook for use within the public health institutions of the Savanna region. This prospective study seeks to improve the efficiency, quality, and availability of medicines by listing the references currently available at the Regional Hospital to demonstrate the percentage of duplicates and to show the references currently unavailable via "lost" sales. A retrospective study then estimated the loss of income from sales due to expired drugs. Our studies indicate that optimized management of the pharmacy would result in a potential gain of 14,914,397 FCFA, that is, 22,770 €. This significant savings could be used to improve the quality of care and promote quality assurance at the CHRD. The elimination of duplicates would allow the purchase of currently unavailable pharmaceutical classes (12,369,701 FCFA, that is, 18,885 € for reinvestment), and multidisciplinary collaboration with prescribers could reduce the losses associated with expired drugs (2,544,696 FCFA, or 3,885 €). These changes would improve the matching of the drugs prescribed at the CHRD and those delivered by the pharmacy.

  1. Space charge calibration of the ALICE TPC operated with an open gating grid

    Energy Technology Data Exchange (ETDEWEB)

    Hellbaer, Ernst [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Ivanov, Marian [GSI (Germany); Wiechula, Jens [Universitaet Tuebingen (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The Time Projection Chamber (TPC) is the main particle identification detector of the ALICE experiment at the CERN LHC. High interaction rates of 50 kHz in Pb-Pb during the Run 3 period after 2020 require a major upgrade of the TPC readout. The currently used Multiwire Proportional Chambers (MWPCs) will be replaced by readout chambers (ROCs) based on Gas Electron Multiplier (GEM) technology which will be operated in a continuous mode. While the gating grid of the MWPCs prevents the positive ions of the amplification region from entering the drift volume, the GEM-based ROCs will introduce an ion backflow (IBF) of about 1%. In combination with the high-luminosity environment, this amount of back-drifting ions results in a considerable space charge density which distorts the drift path of the primary ionisation electrons significantly. In order to still provide a high tracking efficiency and cluster-to-track association, an efficient calibration scheme will be implemented. As a test ground for the new calibration scheme, pp collision data was taken during Run 1 with the gating grid operated in a transparent mode allowing the ions to enter the drift volume. The measured space point distortions due to the space charge are presented together with the corrected data and compared to simulations for Run 3.

  2. 77 FR 16894 - Financial Research Advisory Committee

    Science.gov (United States)

    2012-03-22

    ... reported and collected; --Performing applied research and essential long-term research; --Developing tools... economics, financial institutions and markets, statistical analysis, financial markets analysis... is essential to the effective operation of the Committee. Application for Advisory Committee...

  3. Organization, Management and Function of International Space Station (ISS) Multilateral Medical Operations

    Science.gov (United States)

    Duncan, James M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    Long duration crews have inhabited the ISS since November of 2000. The favorable medical outcomes of its missions can be largely attributed to sustained collective efforts of all ISS Partners medical organizations. In-flight medical monitoring and support, although crucial, is just a component of the ISS system of Joint Medical Operations. The goal of this work is to review the principles, design, and function of the multilateral medical support of the ISS Program. The governing documents, which describe the relationships among all ISS partner medical organizations, were evaluated, followed by analysis of the roles, responsibilities, and decision-making processes of the ISS medical boards, panels, and working groups. The degree of integration of the medical support system was evaluated by reviewing the multiple levels of the status reviews and mission assurance activities carried out throughout the last six years. The Integrated Medical Group, consisting of physicians and other essential personnel in the mission control centers represents the front-line medical support of the ISS. Data from their day-to-day activities are presented weekly at the Space Medicine Operations Team (SMOT), where known or potential concerns are addressed by an international group of physicians. A broader status review is conducted monthly to project the state of crew health and medical support for the following month, and to determine measures to return to nominal state. Finally, a comprehensive readiness review is conducted during preparations for each ISS mission. The Multilateral Medical Policy Board (MMPB) issues medical policy decisions and oversees all health and medical matters. The Multilateral Space Medicine Board (MSMB) certifies crewmembers and visitors for training and space flight to the Station, and physicians to practice space medicine for the ISS. The Multilateral Medical Operations Panel (MMOP) develops medical requirements, defines and supervises implementation of

  4. Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler

    Science.gov (United States)

    Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.

    2004-06-01

    A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster

  5. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  6. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  7. Carrington-L5: The UK/US Space Weather Operational Mission.

    Science.gov (United States)

    Bisi, M. M.; Trichas, M.

    2015-12-01

    Airbus Defence and Space (UK) have carried out a study for an operational L5 space weather mission, in collaboration with RAL, the UK Met Office, UCL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for operational forecasting needs. The study focussed on a mission at L5 assuming that a US mission to L1 will already occur, on the basis that L5 offers the greatest benefit for SWE predictions. The baseline payload has been selected to address all MOSWOC/SWPC priorities using UK/US instruments, consisting of: a heliospheric imager, coronagraph, EUV imager, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform is based on extensive re-use from Airbus' past missions to minimize the cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could occur in 2020, assuming Phase A KO in 2015. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  8. Proceedings of the technical committee meeting on sodium removal and disposal from LMFRs in normal operation and in the framework of decommissioning

    International Nuclear Information System (INIS)

    Latge, C.

    1997-11-01

    This publication summarizes discussions and presented papers from the Technical Committee meeting on sodium removal and disposal from liquid metal fast reactors in normal operation and in the framework of decommissioning, organised by IAEA. The objective of this meeting was to provide a forum to review and exchange information on the international developments in technologies of sodium removal and disposal from liquid metal fast reactor components and systems in operation and maintenance conditions, and in framework of decommissioning. The technical parts of the meeting covered the three major subjects: sodium removal (cleaning) process, decontamination process and bulk disposal of sodium in the framework of decommissioning. These technologies were reviewed with regard to their implementation into current plants to improve operation and maintenance, and to develop an effective decommissioning program. Further, design for future Liquid metal fast reactors were reviewed in the context how they can accommodate today's technologies. The meeting resulted in an effective information exchange with the Member States sharing their needs as well as experiences in the mentioned topics

  9. Proceedings of the technical committee meeting on sodium removal and disposal from LMFRs in normal operation and in the framework of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Latge, C [ed.; CEA, Direction des Reacteurs Nucleaires, Departement d' Etudes des Reacteurs, CEA-Cadarache, Saint-Paul-lez-Durance (France)

    1997-11-01

    This publication summarizes discussions and presented papers from the Technical Committee meeting on sodium removal and disposal from liquid metal fast reactorsin normal operation and in the framework of decommissioning, organised by IAEA. The objective of this meeting was to provide a forum to review and exchange information on the international developments in technologies of sodium removal and disposal from liquid metal fast reactor components and systems in operation and maintenance conditions, and in framework of decommissioning. The technical parts of the meeting covered the three major subjects: sodium removal (cleaning) process, decontamination process and bulk disposal of sodium in the framework of decommissioning. These technologies were reviewed with regard to their implementation into current plants to improve operation and maintenance, and to develop an effective decommissioning program. Further, design for future Liquid metal fast reactors were reviewed in the context how they can accommodate today's technologies. The meeting resulted in an effective information exchange with the Member States sharing their needs as well as experiences in the mentioned topics.

  10. The physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory

    International Nuclear Information System (INIS)

    Ding You; Rovelli, Carlo

    2010-01-01

    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit). We also generalize the definition of the volume operator in the spin-foam model to the Lorentzian signature and show that it matches the one of loop quantum gravity, as in the Euclidean case.

  11. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    Science.gov (United States)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  12. A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space

    International Nuclear Information System (INIS)

    Kaplitskii, V M

    2014-01-01

    The function Ψ(x,y,s)=e iy Φ(−e iy ,s,x), where Φ(z,s,v) is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation, where s=1/2+iλ. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space L 2 (Π), where Π=(0,1)×(0,2π). We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of Ψ(x,y,s). We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function. Bibliography: 15 titles

  13. An assessment of the status and trends in satellite communications 1986-2000: An information document prepared for the Communications Subcommittee of the Space Applications Advisory Committee

    Science.gov (United States)

    Poley, W. A.; Stevens, G. H.; Stevenson, S. M.; Lekan, J.; Arth, C. H.; Hollansworth, J. E.; Miller, E. F.

    1986-01-01

    This is a response to a Space Applications Advisory Committee (SAAC) request for information about the status and trends in satellite communications, to be used to support efforts to conceive and recommend long range goals for NASA communications activities. Included in this document are assessments of: (1) the outlook for satellite communications, including current applications, potential future applications, and impact of the changing environment such as optical fiber networks, the Integrated Services Digital Network (ISDN) standard, and the rapidly growing market for Very Small Aperture Terminals (VSAT); (2) the restrictions imposed by our limited spectrum resource; and (3) technology needs indicated by future trends. Potential future systems discussed include: large powerful satellites for providing personal communications; VSAT compatible satellites with onboard switching and having voice capability; large satellites which offer a pervasive T1 network service (primarily for video-phone); and large geostationary communications facilities which support common use by several carriers. Also, discussion is included of NASA particular needs and possible future systems. Based on the mentioned system concepts, specific technology recommendations are provided for the time frames of now - 1993, 1994 - 2000, and 2000 - 2010.

  14. Structures of the fractional spaces generated by the difference neutron transport operator

    International Nuclear Information System (INIS)

    Ashyralyev, Allaberen; Taskin, Abdulgafur

    2015-01-01

    The initial boundary value problem for the neutron transport equation is considered. The first, second and third order of accuracy difference schemes for the approximate solution of this problem are presented. Highly accurate difference schemes for neutron transport equation based on Padé approximation are constructed. In applications, stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained.The positivity of the neutron transport operator in Slobodeckij spaces is proved. Numerical techniques are developed and algorithms are tested on an example in MATLAB

  15. Approximating second-order vector differential operators on distorted meshes in two space dimensions

    International Nuclear Information System (INIS)

    Hermeline, F.

    2008-01-01

    A new finite volume method is presented for approximating second-order vector differential operators in two space dimensions. This method allows distorted triangle or quadrilateral meshes to be used without the numerical results being too much altered. The matrices that need to be inverted are symmetric positive definite therefore, the most powerful linear solvers can be applied. The method has been tested on a few second-order vector partial differential equations coming from elasticity and fluids mechanics areas. These numerical experiments show that it is second-order accurate and locking-free. (authors)

  16. Use of diesel engines in industrial trucks operated in enclosed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, W; Reibold, G

    1981-01-01

    Report on emission investigations on a fork-lifter equipped with a low-pollutant MWM-engine, tests were carried out in enclosed spaces. The aim was to clarify if the maximum MPC at a place of work listed in a table of waste gas components can be observed even under unfavourable operating conditions of the fork lifter. The test is described, results are analysed. It is proved that there are no health hazards for the staff even under the extreme conditions chosen for the test.

  17. C0-semigroups of linear operators on some ultrametric Banach spaces

    Directory of Open Access Journals (Sweden)

    Toka Diagana

    2006-01-01

    Full Text Available C0-semigroups of linear operators play a crucial role in the solvability of evolution equations in the classical context. This paper is concerned with a brief conceptualization of C0-semigroups on (ultrametric free Banach spaces E. In contrast with the classical setting, the parameter of a given C0-semigroup belongs to a clopen ball Ωr of the ground field K. As an illustration, we will discuss the solvability of some homogeneous p-adic differential equations.

  18. A space-based public service platform for terrestrial rescue operations

    Science.gov (United States)

    Fleisig, R.; Bernstein, J.; Cramblit, D. C.

    1977-01-01

    The space-based Public Service Platform (PSP) is a multibeam, high-gain communications relay satellite that can provide a variety of functions for a large number of people on earth equipped with extremely small, very low cost transceivers. This paper describes the PSP concept, the rationale used to derive the concept, the criteria for selecting specific communication functions to be performed, and the advantages of performing such functions via satellite. The discussion focuses on the benefits of using a PSP for natural disaster warning; control of attendant rescue/assistance operations; and rescue of people in downed aircraft, aboard sinking ships, lost or injured on land.

  19. Amateur Radio on the International Space Station - the First Operational Payload on the ISS

    Science.gov (United States)

    Bauer, F. H.; McFadin, L.; Steiner, M.; Conley, C. L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found Amateur Radio and its connection to life on Earth to be a constant companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the FGB to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early in the development of ISS, an international organization called ARISS (Amateur Radio on the International Space Station) was formed to coordinate the construction and operation of amateur radio (ham radio) equipment on ISS. ARISS represents a melding of the volunteer teams that have pioneered the development and use of amateur radio equipment on human spaceflight vehicles. The Shuttle/Space Amateur Radio Experiment (SAREX) team enabled Owen Garriott to become the first astronaut ham to use amateur radio from space in 1983. Since then, amateur radio teams in the U.S. (SAREX), Germany, (SAFEX), and Russia (Mirex) have led the development and operation of amateur radio equipment on board NASA's Space Shuttle, Russia's Mir space station, and the International Space Station. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the Amateur Radio public, 3) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. To date, over 65 schools have been selected from around the world for scheduled contacts with the orbiting ISS crew. Ten or more students at each school ask the astronauts questions, and the nature of these contacts embodies the primary goal of the ARISS program, -- to excite student's interest in science, technology and amateur radio. The ARISS team has developed various hardware elements for the ISS amateur radio station. These hardware elements have flown to ISS

  20. Robustness of Operational Matrices of Differentiation for Solving State-Space Analysis and Optimal Control Problems

    Directory of Open Access Journals (Sweden)

    Emran Tohidi

    2013-01-01

    Full Text Available The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space analysis and optimal control problems (OCPs has been proposed in this paper. After imposing the Pontryagins maximum principle to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.

  1. Real time evolution at finite temperatures with operator space matrix product states

    International Nuclear Information System (INIS)

    Pižorn, Iztok; Troyer, Matthias; Eisler, Viktor; Andergassen, Sabine

    2014-01-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model. (paper)

  2. Real time evolution at finite temperatures with operator space matrix product states

    Science.gov (United States)

    Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias

    2014-07-01

    We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

  3. Low-cost management aspects for developing, producing and operating future space transportation systems

    Science.gov (United States)

    Goehlich, Robert A.; Rücker, Udo

    2005-01-01

    It is believed that a potential means for further significant reduction of the recurrent launch cost, which results also in a stimulation of launch rates of small satellites, is to make the launcher reusable, to increase its reliability and to make it suitable for new markets such as mass space tourism. Therefore, not only launching small satellites with expendable rockets on non-regular flights but also with reusable rockets on regular flights should be considered for the long term. However, developing, producing and operating reusable rockets require a fundamental change in the current "business as usual" philosophy. Under current conditions, it might not be possible to develop, to produce or to operate a reusable vehicle fleet economically. The favorite philosophy is based on "smart business" processes adapted by the authors using cost engineering techniques. In the following paper, major strategies for reducing costs are discussed, which are applied for a representative program proposal.

  4. 78 FR 29201 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2013-05-17

    ... the International Maritime Organization's (IMO) Marine Safety Committee to be held at the IMO... session of the Sub-Committee) Technical co-operation activities relating to maritime safety and security... amendments to mandatory instruments Measures to enhance maritime security Goal-based new ship construction...

  5. 77 FR 57638 - Shipping Coordinating Committee; Notice of Committee Meeting

    Science.gov (United States)

    2012-09-18

    ... the International Maritime Organization's (IMO) Marine Safety Committee to be held at the IMO... seventeenth session of the Sub-Committee); Technical co-operation activities relating to maritime safety and... amendments to mandatory instruments; Measures to enhance maritime security; Goal-based new ship construction...

  6. Inspecting operating nuclear powerplants: shortcomings in the Nuclear Regulatory Commission program. Fourth report by the Committee on Government Operations together with additional views

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Workers at every one of this Nation's 69 operating commercial nuclear powerplants conduct a constant vigil of great importance to this country's economy and to the health and safety of its citizens. They must constantly observe, assess and respond to the subtle and complex changes in the operating conditions of a reactor facility. They must do so skillfully enough to prevent major accidents and outages. It is for that reason that extraordinary efforts to train people to anticipate and understand unexpected events are necessary in the nuclear industry. It is for that reason that nuclear powerplant systems must be designed with unusually intricate safeguards against failure, that their maintenance must be meticulous and incessant, and that the condition of those systems must be constantly understood by nuclear plan management to prevent unanticipated degradation or breakdowns. Regrettably, facts disclosed by an oversight investigation by the Government Operations Subcommittee on Environment, Energy and Natural Resources indicate that those high standards have not yet been consistently attained by the nuclear industry or by the NRC. Significant mistakes in judgment and operational errors continue to occur at many operating nuclear powerplants, and the NRC inspection program too often fails to backstop the licensee. Utility failings are not discovered by the NRC in time to prevent costly and even dangerous mistakes from being made

  7. Disease severity, not operative approach, drives organ space infection after pediatric appendectomy.

    Science.gov (United States)

    Kelly, Kristin N; Fleming, Fergal J; Aquina, Christopher T; Probst, Christian P; Noyes, Katia; Pegoli, Walter; Monson, John R T

    2014-09-01

    This study examines patient and operative factors associated with organ space infection (OSI) in children after appendectomy, specifically focusing on the role of operative approach. Although controversy exists regarding the risk of increased postoperative intra-abdominal infections after laparoscopic appendectomy, this approach has been largely adopted in the treatment of pediatric acute appendicitis. Children aged 2 to 18 years undergoing open or laparoscopic appendectomy for acute appendicitis were selected from the 2012 American College of Surgeons Pediatric National Surgical Quality Improvement Program database. Univariate analysis compared patient and operative characteristics with 30-day OSI and incisional complication rates. Factors with a P value of less than 0.1 and clinical importance were included in the multivariable logistic regression models. A P value less than 0.05 was considered significant. For 5097 children undergoing appendectomy, 4514 surgical procedures (88.6%) were performed laparoscopically. OSI occurred in 155 children (3%), with half of these infections developing postdischarge. Significant predictors for OSI included complicated appendicitis, preoperative sepsis, wound class III/IV, and longer operative time. Although 5.2% of patients undergoing open surgery developed OSI (odds ratio = 1.82; 95% confidence interval, 1.21-2.76; P = 0.004), operative approach was not associated with increased relative odds of OSI (odds ratio = 0.99; confidence interval, 0.64-1.55; P = 0.970) after adjustment for other risk factors. Overall, the model had excellent predictive ability (c-statistic = 0.837). This model suggests that disease severity, not operative approach, as previously suggested, drives OSI development in children. Although 88% of appendectomies in this population were performed laparoscopically, these findings support utilization of the surgeon's preferred surgical technique and may help guide postoperative counsel in high-risk children.

  8. Efficient O(N) recursive computation of the operational space inertial matrix

    International Nuclear Information System (INIS)

    Lilly, K.W.; Orin, D.E.

    1993-01-01

    The operational space inertia matrix Λ reflects the dynamic properties of a robot manipulator to its tip. In the control domain, it may be used to decouple force and/or motion control about the manipulator workspace axes. The matrix Λ also plays an important role in the development of efficient algorithms for the dynamic simulation of closed-chain robotic mechanisms, including simple closed-chain mechanisms such as multiple manipulator systems and walking machines. The traditional approach used to compute Λ has a computational complexity of O(N 3 ) for an N degree-of-freedom manipulator. This paper presents the development of a recursive algorithm for computing the operational space inertia matrix (OSIM) that reduces the computational complexity to O(N). This algorithm, the inertia propagation method, is based on a single recursion that begins at the base of the manipulator and progresses out to the last link. Also applicable to redundant systems and mechanisms with multiple-degree-of-freedom joints, the inertia propagation method is the most efficient method known for computing Λ for N ≥ 6. The numerical accuracy of the algorithm is discussed for a PUMA 560 robot with a fixed base

  9. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  10. Thoracic sonography for pneumothorax: The clinical evaluation of an operational space medicine spin-off

    Science.gov (United States)

    Kirkpatrick, Andrew W.; Nicolaou, Savvas; Rowan, Kevin; Liu, David; Cunningham, Johan; Sargsyan, Ashot E.; Hamilton, Douglas; Dulchavsky, Scott A.

    2005-05-01

    The recent interest in the use of ultrasound (US) to detect pneumothoraces after acute trauma in North America was initially driven by an operational space medicine concern. Astronauts aboard the International Space Station (ISS) are at risk for pneumothoraces, and US is the only potential medical imaging available. Pneumothoraces are common following trauma, and are a preventable cause of death, as most are treatable with relatively simple interventions. While pneumothoraces are optimally diagnosed clinically, they are more often inapparent even on supine chest radiographs (CXR) with recent series reporting a greater than 50% rate of occult pneumothoraces. In the course of basic scientific investigations in a conventional and parabolic flight laboratory, investigators familiarized themselves with the sonographic features of both pneumothoraces and normal pulmonary ventilation. By examining the visceral-parietal pleural interface (VPPI) with US, investigators became confident in diagnosing pneumothoraces. This knowledge was subsequently translated into practice at an American and a Canadian trauma center. The sonographic examination was found to be more accurate and sensitive than CXR (US 96% and 100% versus US 74% and 36%) in specific circumstances. Initial studies have also suggested that detecting the US features of pleural pulmonary ventilation in the left lung field may offer the ability to exclude serious endotracheal tube malpositions such as right mainstem and esophageal intubations. Applied thoracic US is an example of a clinically useful space medicine spin-off that is improving health care on earth.

  11. Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    Science.gov (United States)

    André, Nicolas; Grande, Manuel

    2017-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending

  12. Real Time Space Weather Support for Chandra X-ray Observatory Operations

    Science.gov (United States)

    O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.

    2012-12-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector

  13. The projection operator in a Hilbert space and its directional derivative. Consequences for the theory of projected dynamical systems

    Directory of Open Access Journals (Sweden)

    George Isac

    2004-01-01

    Full Text Available In the first part of this paper we present a representation theorem for the directional derivative of the metric projection operator in an arbitrary Hilbert space. As a consequence of the representation theorem, we present in the second part the development of the theory of projected dynamical systems in infinite dimensional Hilbert space. We show that this development is possible if we use the viable solutions of differential inclusions. We use also pseudomonotone operators.

  14. The finite element method scheme for a solution of an evolution variational inequality with a nonlocal space operator

    Science.gov (United States)

    Glazyrina, O. V.; Pavlova, M. F.

    2016-11-01

    We consider the parabolic inequality with monotone with respect to a gradient space operator, which is depended on integral with respect to space variables solution characteristic. We construct a two-layer differential scheme for this problem with use of penalty method, semidiscretization with respect to time variable method and the finite element method (FEM) with respect to space variables. We proved a convergence of constructed mothod.

  15. 47 CFR 25.137 - Application requirements for earth stations operating with non-U.S. licensed space stations.

    Science.gov (United States)

    2010-10-01

    ... space stations. (a) Earth station applicants or entities filing a “letter of intent” or “Petition for... Union. (d) Earth station applicants requesting authority to operate with a non-U.S.-licensed space... 47 Telecommunication 2 2010-10-01 2010-10-01 false Application requirements for earth stations...

  16. FEMA's purchase of a radiological training package: an avoidable disaster. Twenty-Third Report by the Committee on Government Operations, Ninety-Ninth Congress, First Session, House Report 99-367, November 12, 1985

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    A congressional study of allegations against the Federal Emergency Management Agency (FEMA) management of a training program to prepare for a transportation emergency involving radioactive materials focused on contracting procedures. The study uncovered a lack of concern on the part of the agency in its response to committee inquiries and hearings. The findings fault FEMA for noncompetitive procurement, ignoring the advice of a scientific interagency, poor training and operating procedures, and other failures involving the Bradford training package. The committee recommends a thorough review of contracting procedures and an improved relationship with the radiological technical advisors

  17. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    Science.gov (United States)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  18. Operational Space-Assisted Irrigation Advisory Services: Overview Of And Lessons Learned From The Project DEMETER

    Science.gov (United States)

    Osann Jochum, M. A.; Demeter Partners

    2006-08-01

    The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) was dedicated to assessing and demonstrating improvements introduced by Earth observation (EO) and Information and Communication Technologies (ICT) in farm and Irrigation Advisory Service (IAS) day-to-day operations. The DEMETER concept of near-real-time delivery of EO-based irrigation scheduling information to IAS and farmers has proven to be valid. The operationality of the space segment was demonstrated for Landsat 5-TM in the Barrax pilot zone during the 2004 and 2005 irrigation campaigns. Extra-fast image delivery and quality controlled operational processing make the EO-based crop coefficient maps available at the same speed and quality as ground-based data (point samples), while significantly extending the spatial coverage and reducing service cost. Leading-edge online analysis and visualization tools provide easy, intuitive access to the information and personalized service to users. First feedback of users at IAS and farmer level is encouraging. The paper gives an overview of the project and its main achievements.

  19. Real Time Space Weather Support for Chandra X-Ray Observatory Operations

    Science.gov (United States)

    O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.

    2012-01-01

    NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data

  20. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    Science.gov (United States)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  1. Operational support to collision avoidance activities by ESA's space debris office

    Science.gov (United States)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  2. Generic procedure for designing and implementing plan management systems for space science missions operations

    Science.gov (United States)

    Chaizy, P. A.; Dimbylow, T. G.; Allan, P. M.; Hapgood, M. A.

    2011-09-01

    This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA's methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and

  3. Latest Community Coordinated Modeling Center (CCMC) services and innovative tools supporting the space weather research and operational communities.

    Science.gov (United States)

    Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).

  4. Technologies for improving current and future light water reactor operation and maintenance: Development on the basis of experience. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-09-01

    experienced in nuclear power plant operation and maintenance. Worldwide, the average energy availability factor has increased from approximately 70 percent in 1989 to 79 percent' in 1998, with some utilities achieving significantly higher values. This is being achieved through integrated programmes, including personnel training and quality assurance, from improvements implemented in plant systems and components, and from improvements in outage duration for maintenance, refuelling, and other scheduled shutdowns, as well as forced outages. International co-operation is a key role in this success. The various programmes of the World Association of Nuclear Operators (WANO) to exchange information and encourage communication of experience, and the activities of the IAEA including projects in nuclear power plant performance assessment and feedback, effective quality management, and information exchange meetings on technology advances, are important examples of international co-operation to improve the performance of nuclear power plants. This IAEA Technical Committee meeting (TCM) was convened to provide a forum for information exchange on technologies for improving plant operation and maintenance which can contribute to enhanced economic competitiveness of LWRs, and on on-going or planned technology development expected to achieve further improvements. Information exchange of recent positive experience on development and/or implementation of technologies that have resulted in reduced operation and maintenance costs of LWRs, and information on on-going or planned activities, was strongly encouraged

  5. Technologies for improving current and future light water reactor operation and maintenance: Development on the basis of experience. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    experienced in nuclear power plant operation and maintenance. Worldwide, the average energy availability factor has increased from approximately 70 percent in 1989 to 79 percent' in 1998, with some utilities achieving significantly higher values. This is being achieved through integrated programmes, including personnel training and quality assurance, from improvements implemented in plant systems and components, and from improvements in outage duration for maintenance, refuelling, and other scheduled shutdowns, as well as forced outages. International co-operation is a key role in this success. The various programmes of the World Association of Nuclear Operators (WANO) to exchange information and encourage communication of experience, and the activities of the IAEA including projects in nuclear power plant performance assessment and feedback, effective quality management, and information exchange meetings on technology advances, are important examples of international co-operation to improve the performance of nuclear power plants. This IAEA Technical Committee meeting (TCM) was convened to provide a forum for information exchange on technologies for improving plant operation and maintenance which can contribute to enhanced economic competitiveness of LWRs, and on on-going or planned technology development expected to achieve further improvements. Information exchange of recent positive experience on development and/or implementation of technologies that have resulted in reduced operation and maintenance costs of LWRs, and information on on-going or planned activities, was strongly encouraged.

  6. Defining Learning Space in a Serious Game in Terms of Operative and Resultant Actions

    Science.gov (United States)

    Martin, Michael W.; Shen, Yuzhong

    2012-01-01

    This paper explores the distinction between operative and resultant actions in games, and proposes that the learning space created by a serious game is a function of these actions. Further, it suggests a possible relationship between these actions and the forms of cognitive load imposed upon the game player. Association of specific types of cognitive load with respective forms of actions in game mechanics also presents some heuristics for integrating learning content into serious games. Research indicates that different balances of these types of actions are more suitable for novice or experienced learners. By examining these relationships, we can develop a few basic principles of game design which have an increased potential to promote positive learning outcomes.

  7. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    Science.gov (United States)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  8. On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)

  9. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  10. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  11. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    Science.gov (United States)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  12. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  13. Didactic satellite based on Android platform for space operation demonstration and development

    Science.gov (United States)

    Ben Bahri, Omar; Besbes, Kamel

    2018-03-01

    Space technology plays a pivotal role in society development. It offers new methods for telemetry, monitoring and control. However, this sector requires training, research and skills development but the lack of instruments, materials and budgets affects the ambiguity to understand satellite technology. The objective of this paper is to describe a demonstration prototype of a smart phone device for space operations study. Therefore, the first task was carried out to give a demonstration for spatial imagery and attitude determination missions through a wireless communication. The smart phone's Bluetooth was used to achieve this goal inclusive of a new method to enable real time transmission. In addition, an algorithm around a quaternion based Kalman filter was included in order to detect the reliability of the prototype's orientation. The second task was carried out to provide a demonstration for the attitude control mission using the smart phone's orientation sensor, including a new method for an autonomous guided mode. As a result, the acquisition platform showed real time measurement with good accuracy for orientation detection and image transmission. In addition, the prototype kept the balance during the demonstration based on the attitude control method.

  14. The proposed EROSpace institute, a national center operated by space grant universities

    Science.gov (United States)

    Smith, Paul L.; Swiden, LaDell R.; Waltz, Frederick A.

    1993-01-01

    The "EROSpace Institute" is a proposed visiting scientist program in associated with the U.S. Geological Survey's EROS Data Center (EDC). The Institute would be operated by a consortium of universities, possible drawn from NASA's Space Grant College and Fellowship Program consortia and the group of 17 capability-enhancement consortia, or perhaps from consortia though out the nation with a topical interest in remote sensing. The National Center for Atmospheric Research or the Goddard Institute for Space Studies provide models for the structure of such an institute. The objectives of the Institute are to provide ready access to the body of data housed at the EDC and to increase the cadre of knowledgeable and trained scientists able to deal with the increasing volume of remote sensing data to become available from the Earth Observing System. The Institute would have a staff of about 100 scientists at any one time, about half permanent staff, and half visiting scientists. The latter would include graduate and undergraduate students, as well as faculty on temporary visits, summer fellowships, or sabbatical leaves. The Institute would provide office and computing facilities, as well as Internet linkages to the home institutions so that scientists could continue to participate in the program from their home base.

  15. Private financing and operation of a space station: Investment requirements, risk, government support and other primary business management considerations

    Science.gov (United States)

    Simon, M.

    1982-01-01

    Private investment in a manned space station is considered as an alternative to complete government sponsorship of such a program. The implications of manned space operations are discussed from a business perspective. The most significant problems and risks which would be faced by a private company involved in a space station enterprise are outlined and possible government roles in helping to overcome these difficulties suggested. Economic factors such as inflation and the rate of interest are of primary concern, but less obvious conditions such as antitrust and appropriate regulatory laws, government appropriations for space activities, and national security are also considered.

  16. Dedicated Slosh Dynamics Experiment on ISS using SPHERES (Advanced Space Operations in CR)

    Data.gov (United States)

    National Aeronautics and Space Administration — At the Kennedy Space Center (KSC) the Launch Services Program is leading an effort to conduct an experiment aboard the International Space Station (ISS) to validate...

  17. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  18. Optical devices for proximity operations study and test report. [intensifying images for visual observation during space transportation system activities

    Science.gov (United States)

    Smith, R. A.

    1979-01-01

    Operational and physical requirements were investigated for a low-light-level viewing device to be used as a window-mounted optical sight for crew use in the pointing, navigating, stationkeeping, and docking of space vehicles to support space station operations and the assembly of large structures in space. A suitable prototype, obtained from a commercial vendor, was subjected to limited tests to determine the potential effectiveness of a proximity optical device in spacecraft operations. The constructional features of the device are discussed as well as concepts for its use. Tests results show that a proximity optical device is capable of performing low-light-level viewing services and will enhance manned spacecraft operations.

  19. On anisotropic Triebel-Lizorkin type spaces with applications to the study of pseudo-differential operators

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    A construction of Triebel-Lizorkin type spaces associated with flexible decompositions of the frequency space $R^d$ is considered. The class of admissible frequency decompositions is generated by a one parameter group of (anisotropic) dilations on $R^d$ and a suitable decomposition function. The ......, and their interpolation properties are studied. As the main application, we consider H¨ormander type classes of pseudo-differential operators adapted to the anisotropy and boundedness of such operators between corresponding Triebel-Lizorkin type spaces is proved.......A construction of Triebel-Lizorkin type spaces associated with flexible decompositions of the frequency space $R^d$ is considered. The class of admissible frequency decompositions is generated by a one parameter group of (anisotropic) dilations on $R^d$ and a suitable decomposition function....... The decomposition function governs the structure of the decomposition of the frequency space, and for a very particular choice of decomposition function the spaces are reduced to classical (anisotropic) Triebel-Lizorkin spaces. An explicit atomic decomposition of the Triebel-Lizorkin type spaces is provided...

  20. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.