WorldWideScience

Sample records for space neuroscience research

  1. Cognitive Neuroscience in Space

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  2. Advancing Ethical Neuroscience Research.

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses. © 2016 American Medical Association. All Rights Reserved.

  3. Neuroscience research in Africa: Current status

    Abd-Allah, Foad; Kissani, Najib; William, Anthony; Oraby, Mohammed Ibrahim; Moustafa, Ramez Reda; Shaker, Ehab; El-Tamawy, Mohamed Soliman; Shakir, Raad

    2015-01-01

    There are limited data on the contribution of the African continent to neuroscience research and publications. This review aims to provide a clear view on the state of neuroscience research among African countries, and to compare neuroscience research within the 52 African countries. A literature review search was conducted for all published articles by African authors in both local and international journals using Medline and other primary databases. Neuroscience represents 9.1% of the total...

  4. A new research trend in social neuroscience

    Liu, Tao; Pelowski, Matthew John

    2014-01-01

    The ability to flexibly modulate our behaviors in social contexts and to successfully interact with other persons is a fundamental, but pivotal, requirement for human survival. Although previous social neuroscience research with single individuals has contributed greatly to our understanding...

  5. Neurosciences

    ... this page: //medlineplus.gov/ency/article/007456.htm Neurosciences To use the sharing features on this page, please enable JavaScript. Neurosciences (or clinical neurosciences) refers to the branch of ...

  6. The neurosciences research program at MIT and the beginning of the modern field of neuroscience.

    Adelman, George

    2010-01-15

    The interdisciplinary field, "neuroscience," began at MIT in 1962 with the founding of the Neurosciences Research Program (NRP) by Francis O. Schmitt and a group of US and international scientists - physical, biological, medical, and behavioral - interested in understanding the brain basis of behavior and mind. They organized and held specialist meetings of basic topics in neuroscience, and the journal and book publications over the next 20 years, based on these meetings, helped establish the new field.

  7. Information Infrastructure for Cooperative Research in Neuroscience

    P. J. Durka

    2009-01-01

    Full Text Available The paper describes a framework for efficient sharing of knowledge between research groups, which have been working for several years without flaws. The obstacles in cooperation are connected primarily with the lack of platforms for effective exchange of experimental data, models, and algorithms. The solution to these problems is proposed by construction of the platform (EEG.pl with the semantic aware search scheme between portals. The above approach implanted in the international cooperative projects like NEUROMATH may bring the significant progress in designing efficient methods for neuroscience research.

  8. Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives

    Cristiano eAlessandro

    2013-04-01

    Full Text Available In this paper we review the works related to muscle synergies that have been carried-out in neuroscience and control engineering. In particular, we refer to the hypothesis that the central nervous system (CNS generates desired muscle contractions by combining a small number of predefined modules, called muscle synergies. We provide an overview of the methods that have been employed to test the validity of this scheme, and we show how the concept of muscle synergy has been generalized for the control of artificial agents. The comparison between these two lines of research, in particular their different goals and approaches, is instrumental to explain the computational implications of the hypothesized modular organization. Moreover, it clarifies the importance of assessing the functional role of muscle synergies: although these basic modules are defined at the level of muscle activations (input-space, they should result in the effective accomplishment of the desired task. This requirement is not always explicitly considered in experimental neuroscience, as muscle synergies are often estimated solely by analyzing recorded muscle activities. We suggest that synergy extraction methods should explicitly take into account task execution variables, thus moving from a perspective purely based on input-space to one grounded on task-space as well.

  9. Neuroscience research on aging and implications for counseling psychology.

    Wright, Stephen L; Díaz, Fernando

    2014-10-01

    The advances in neuroscience have led to an increase in scientific understanding of the aging process, and counseling psychologists can benefit from familiarity with the research on the neuroscience of aging. In this article, we have focused on the cognitive neuroscience of aging, and we describe the progression of healthy aging to Alzheimer's disease, given its high prevalence rate among older adults (Alzheimer's Association, 2013). Common techniques used to study the cognitive neuroscience of aging are explained in regards to measuring age-related changes in the brain and the role of biomarkers in identifying cognitive decline related to Alzheimer's disease. Using this information and in collaboration with cognitive neuroscientists, it is our hope that counseling psychologists may further pursue research areas on aging as well as design appropriate interventions for older individuals who may be experiencing cognitive impairment. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Advancing Neuroscience Research in Africa: Invertebrate Species to the Rescue.

    Balogun, Wasiu Gbolahan; Cobham, Ansa Emmanuel; Amin, Abdulbasit; Seeni, Azman

    2018-03-15

    Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Embedding a Recovery Orientation into Neuroscience Research: Involving People with a Lived Experience in Research Activity.

    Stratford, Anthony; Brophy, Lisa; Castle, David; Harvey, Carol; Robertson, Joanne; Corlett, Philip; Davidson, Larry; Everall, Ian

    2016-03-01

    This paper highlights the importance and value of involving people with a lived experience of mental ill health and recovery in neuroscience research activity. In this era of recovery oriented service delivery, involving people with the lived experience of mental illness in neuroscience research extends beyond their participation as "subjects". The recovery paradigm reconceptualises people with the lived experience of mental ill health as experts by experience. To support this contribution, local policies and procedures, recovery-oriented training for neuroscience researchers, and dialogue about the practical applications of neuroscience research, are required.

  12. Review of Research: Neuroscience and Reading--A Review for Reading Education Researchers

    Hruby, George G.; Goswami, Usha

    2011-01-01

    In this review, we lay the groundwork for an interdisciplinary conversation between literacy education research and relevant neuroscience research. We review recent neuroscience research on correlates of proposed cognitive subprocesses in text decoding and reading comprehension and analyze some of the methodological and conceptual challenges of…

  13. Space research

    Tempelmayer, A.

    2000-01-01

    Space research in Austria began since 1969 and has its roots in Graz. An overview of the projects performed by Austrian organizations such as local network interconnection via satellites systems, MIGMAS (Microanalysis station), ALP-SAT (Autonomous Libration Point-Satellite), MIDAS (Micro-imaging dust analysis system), among others are described. (nevyjel)

  14. Brain in Space: A Teacher's Guide with Activities for Neuroscience

    Sullivan, Walter W., Jr.

    1998-01-01

    The lessons and activities in this guide will engage your students in the excitement of space life science investigations after the Neurolab Spacelab mission. It is the authors' goal that the information in this guide will inspire both you and your students to become interested and active participants in this space mission. Few experiences can compare with the excitement and thrill of watching a Shuttle launch. This guide provides an opportunity for you and your students to go one step further by conducting the experiments on Earth that are relevent to the research conducted in space.

  15. A new research trend in social neuroscience: Towards an interactive-brain neuroscience.

    Liu, Tao; Pelowski, Matthew

    2014-09-01

    The ability to flexibly modulate our behaviors in social contexts and to successfully interact with other persons is a fundamental, but pivotal, requirement for human survival. Although previous social neuroscience research with single individuals has contributed greatly to our understanding of the basic mechanisms underlying social perception and social emotions, much of the dynamic nature of interactions between persons remains beyond the reach of single-brain studies. This has led to a growing argument for a shift to the simultaneous measurement of the brain activity of two or more individuals in realistic social interactions-an approach termed "hyperscanning." Although this approach offers important promise in unlocking the brain's role in truly social situations, there are multiple procedural and theoretical questions that require review and analysis. In this paper we discuss this research trend from four aspects: hyperscanning apparatus, experimental task, quantification method, and theoretical interpretation. We also give four suggestions for future research: (a) electroencephalography and near-infrared spectroscopy are useful tools by which to explore the interactive brain in more ecological settings; (b) games are an appropriate method to simulate daily life interactions; (c) transfer entropy may be an important method by which to quantify directed exchange of information between brains; and (d) more explanation is needed of the results of interbrain synchronization itself. © 2014 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  16. Brain Extracellular Space: The Final Frontier of Neuroscience.

    Nicholson, Charles; Hrabětová, Sabina

    2017-11-21

    Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. A framework for streamlining research workflow in neuroscience and psychology

    Jonas eKubilius

    2014-01-01

    Full Text Available Successful accumulation of knowledge is critically dependent on the ability to verify and replicate every part of scientific conduct. However, such principles are difficult to enact when researchers continue to resort on ad hoc workflows and with poorly maintained code base. In this paper I examine the needs of neuroscience and psychology community, and introduce psychopy_ext, a unifying framework that seamlessly integrates popular experiment building, analysis and manuscript preparation tools by choosing reasonable defaults and implementing relatively rigid patterns of workflow. This structure allows for automation of multiple tasks, such as generated user interfaces, unit testing, control analyses of stimuli, single-command access to descriptive statistics, and publication quality plotting. Taken together, psychopy_ext opens an exciting possibility for faster, more robust code development and collaboration for researchers.

  18. Advances in the Use of Neuroscience Methods in Research on Learning and Instruction

    De Smedt, Bert

    2014-01-01

    Cognitive neuroscience offers a series of tools and methodologies that allow researchers in the field of learning and instruction to complement and extend the knowledge they have accumulated through decades of behavioral research. The appropriateness of these methods depends on the research question at hand. Cognitive neuroscience methods allow…

  19. Brain-(Not) Based Education: Dangers of Misunderstanding and Misapplication of Neuroscience Research

    Alferink, Larry A.; Farmer-Dougan, Valeri

    2010-01-01

    Oversimplification or inappropriate interpretation of complex neuroscience research is widespread among curricula claiming that brain-based approaches are effective for improved learning and retention. We examine recent curricula claiming to be based on neuroscience research, discuss the implications of such misinterpretation for special…

  20. Basic Neuroscience Research with Nonhuman Primates: A Small but Indispensable Component of Biomedical Research

    Roelfsema, P.R.; Treue, S.

    2014-01-01

    Research with nonhuman primates represents a small component of neuroscience with far-reaching relevance that is irreplaceable for essential insights into cognitive functions, brain disease, and therapy. Transparency and widespread information about this research and its importance is central to

  1. Basic neuroscience research with nonhuman primates: a small but indispensable component of biomedical research

    Roelfsema, Pieter R.; Treue, Stefan

    2014-01-01

    Research with nonhuman primates represents a small component of neuroscience with far-reaching relevance that is irreplaceable for essential insights into cognitive functions, brain disease, and therapy. Transparency and widespread information about this research and its importance is central to

  2. Basic neuroscience research with nonhuman primates : a small but indispensable component of biomedical research

    Roelfsema, Pieter R; Treue, Stefan

    2014-01-01

    Research with nonhuman primates represents a small component of neuroscience with far-reaching relevance that is irreplaceable for essential insights into cognitive functions, brain disease, and therapy. Transparency and widespread information about this research and its importance is central to

  3. Nazi Medical Research in Neuroscience: Medical Procedures, Victims, and Perpetrators.

    Loewenau, Aleksandra; Weindling, Paul J

    Issues relating to the euthanasia killings of the mentally ill, the medical research conducted on collected body parts, and the clinical investigations on living victims under National Socialism are among the best-known abuses in medical history. But to date, there have been no statistics compiled regarding the extent and number of the victims and perpetrators, or regarding their identities in terms of age, nationality, and gender. "Victims of Unethical Human Experiments and Coerced Research under National Socialism," a research project based at Oxford Brookes University, has established an evidence-based documentation of the overall numbers of victims and perpetrators through specific record linkages of the evidence from the period of National Socialism, as well as from post-WWII trials and other records. This article examines the level and extent of these unethical medical procedures as they relate to the field of neuroscience. It presents statistical information regarding the victims, as well as detailing the involvement of the perpetrators and Nazi physicians with respect to their post-war activities and subsequent court trials.

  4. Ethical Issues Associated with the Use of Animal Experimentation in Behavioral Neuroscience Research

    Ohl, Frauke; Meijboom, Franck

    2015-01-01

    This chapter briefly explores whether there are distinct characteristics in the field of Behavioral Neuroscience that demand specific ethical reflection. We argue that although the ethical issues in animal-based Behavioral Neuroscience are not necessarily distinct from those in other research

  5. The Use of Animal Models in Behavioural Neuroscience Research

    Bovenkerk, B.; Kaldewaij, F.

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  6. The Use of Animal Models in Behavioural Neuroscience Research.

    Bovenkerk, Bernice; Kaldewaij, Frederike

    2015-01-01

    Animal models are used in experiments in the behavioural neurosciences that aim to contribute to the prevention and treatment of cognitive and affective disorders in human beings, such as anxiety and depression. Ironically, those animals that are likely to be the best models for psychopathology are

  7. Point of View: The Importance of Teaching Neuroscience Research at Historically Black Colleges and Universities

    Cohen, Jeremy

    2016-01-01

    This column shares reflections or thoughtful opinions on issues of broad interest to the community. This month's issue discusses the importance of the insights that are gained through neuroscience research.

  8. Space vestibulo-neuroscience in the new century

    Money, K. E.; Young, L. R. (Principal Investigator)

    1993-01-01

    In the new century there will probably be more long spaceflights and fewer short spaceflights. There will probably be several flights to Mars, flights that (if chemical rockets are used) will involve one year to get there, a second year on Mars, and a third year to return. The three-year Mars scenario will probably include rotation of the spacecraft to provide artificial gravity. If nuclear thermal rockets are used, a manned exploration of Mars could be accomplished in less than one year. Vestibular research will be directed towards ensuring that astronauts, upon landing on Mars, will be able to walk with confidence and without delay. Research will be required to investigate vestibular adaptation in spaceflight, motion sickness, and the vestibular effects of rotation in spaceflight.

  9. The emperor's new wardrobe: Rebalancing diversity of animal models in neuroscience research.

    Yartsev, Michael M

    2017-10-27

    The neuroscience field is steaming ahead, fueled by a revolution in cutting-edge technologies. Concurrently, another revolution has been underway-the diversity of species utilized for neuroscience research is sharply declining, as the field converges on a few selected model organisms. Here, from the perspective of a young scientist, I naively ask: Is the great diversity of questions in neuroscience best studied in only a handful of animal models? I review some of the limitations the field is facing following this convergence and how these can be rectified by increasing the diversity of appropriate model species. I propose that at this exciting time of revolution in genetics and device technologies, neuroscience might be ready to diversify again, if provided the appropriate support. Copyright © 2017, American Association for the Advancement of Science.

  10. Space Station Habitability Research

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  11. Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs

    Kroeger, Lori A.; Brown, Rhonda Douglas; O'Brien, Beth A.

    2012-01-01

    Research Findings: This article describes major theories and research on math cognition across the fields of neuroscience, cognitive psychology, and education and connects these literatures to intervention practices. Commercially available math intervention programs were identified and evaluated using the following questions: (a) Did neuroscience…

  12. Space biology research development

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  13. Bridging the Gap: establishing the necessary infrastructure and knowledge for teaching and research in neuroscience in Africa.

    Yusuf, Sadiq; Baden, Tom; Prieto-Godino, Lucia L

    2014-06-01

    Advances in neuroscience research over the last few decades have increased our understanding of how individual neurons acquire their specific properties and assemble into complex circuits, and how these circuits are affected in disease. One of the important motives driving neuroscience research is the development of new scientific techniques and interdisciplinary cooperation. Compared to developed countries, many countries on the African continent are confronted with poor facilities, lack of funding or career development programs for neuroscientists, all of which deter young scientists from taking up neuroscience as a career choice. This article highlights some steps that are being taken to promote neuroscience education and research in Africa.

  14. From brain to neuro: the brain research association and the making of British neuroscience, 1965-1996.

    Abi-Rached, Joelle M

    2012-01-01

    This article explores the short history of "neuroscience" as a discipline in its own right as opposed to the much longer past of the brain sciences. It focuses on one historical moment, the formation of the first British "neuroscience" society, the Brain Research Association (BRA), renamed in 1996 to the British Neuroscience Association (BNA). It outlines the new thinking brought about by this new science of brain, mind, and behavior, it sketches the beginnings of the BRA and the institutionalization of neuroscience in the British context, and it further explores the ambiguous relation the association had towards some of the ethical, social, and political implications of this new area of research.

  15. Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science?

    Bespalov, Anton; Steckler, Thomas

    2018-04-15

    There are many reasons why novel therapeutics fail in clinical trials but these failures are often attributed to lacking quality of preclinical data. These problems are not limited to any specific therapeutic area, academic or industrial research and are due in large part to several generic factors influencing research quality (e.g., related to definition of pre-specified endpoints, principles of study design and analysis, biased reporting, and lack of proper training). Yet, neuroscience drug discovery is often said to be affected more than the other fields. Within neuroscience, behavioral studies are the most blamed for being poorly designed, underpowered and mis-reported and there are indeed several factors that may be rather unique for behavioral research, such as a multitude of environmental conditions that are difficult to control and that are often not reported, ethical concerns about in vivo research and the pressure to reduce animal numbers, contributing to under-powered studies, and the complexity of study design and analysis, creating too much room for post hoc data massaging and selective reporting. Also, the blood-brain barrier as a frequently neglected complicating factor has to be considered in CNS research. The importance of these factors is increasingly recognized and urgent efforts are needed to demonstrate that behavioral methods of preclinical neuroscience research deliver results that can be as robust as with the non-behavioral methods Until this goal is achieved, behavioral neuroscience and neuroscience in general may be losing young talent, CNS drug discovery may lack the needed investment and this field may indeed be amongst the most affected by the current preclinical data quality crisis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Critical ethnography: An under-used research methodology in neuroscience nursing.

    Ross, Cheryl; Rogers, Cath; Duff, Diane

    2016-01-01

    Critical ethnography is a qualitative research method that endeavours to explore and understand dominant discourses that are seen as being the 'right' way to think, see, talk about or enact a particular 'action' or situation in society and recommend ways to re-dress social power inequities. In health care, vulnerable populations, including many individuals who have experienced neurological illnesses or injuries that leave them susceptible to the influence of others, would be suitable groups for study using critical ethnography methodology. Critical ethnography has also been used to study workplace culture. While ethnography has been effectively used to underpin other phenomena of interest to neuroscience nurses, only one example of the use of critical ethnography exists in the published literature related to neuroscience nursing. In our "Research Corner" in this issue of the Canadian Journal of Neuroscience Nursing (CJNN) our guest editors, Dr. Cheryl Ross and Dr. Cath Rogers will briefly highlight the origins of qualitative research, ethnography, and critical ethnography and describe how they are used and, as the third author, I will discuss the relevance of critical ethnography findings for neuroscience nurses.

  17. Neuroscience-related research in Ghana: a systematic evaluation of direction and capacity.

    Quansah, Emmanuel; Karikari, Thomas K

    2016-02-01

    Neurological and neuropsychiatric diseases account for considerable healthcare, economic and social burdens in Ghana. In order to effectively address these burdens, appropriately-trained scientists who conduct high-impact neuroscience research will be needed. Additionally, research directions should be aligned with national research priorities. However, to provide information about current neuroscience research productivity and direction, the existing capacity and focus need to be identified. This would allow opportunities for collaborative research and training to be properly explored and developmental interventions to be better targeted. In this study, we sought to evaluate the existing capacity and direction of neuroscience-related research in Ghana. To do this, we examined publications reporting research investigations authored by scientists affiliated with Ghanaian institutions in specific areas of neuroscience over the last two decades (1995-2015). 127 articles that met our inclusion criteria were systematically evaluated in terms of research foci, annual publication trends and author affiliations. The most actively-researched areas identified include neurocognitive impairments in non-nervous system disorders, depression and suicide, epilepsy and seizures, neurological impact of substance misuse, and neurological disorders. These studies were mostly hospital and community-based surveys. About 60% of these articles were published in the last seven years, suggesting a recent increase in research productivity. However, data on experimental and clinical research outcomes were particularly lacking. We suggest that future investigations should focus on the following specific areas where information was lacking: large-scale disease epidemiology, effectiveness of diagnostic platforms and therapeutic treatments, and the genetic, genomic and molecular bases of diseases.

  18. Ethical issues associated with the use of animal experimentation in behavioral neuroscience research.

    Ohl, Frauke; Meijboom, Franck

    2015-01-01

    This chapter briefly explores whether there are distinct characteristics in the field of Behavioral Neuroscience that demand specific ethical reflection. We argue that although the ethical issues in animal-based Behavioral Neuroscience are not necessarily distinct from those in other research disciplines using animal experimentation, this field of endeavor makes a number of specific, ethically relevant, questions more explicit and, as a result, may expose to discussion a series of ethical issues that have relevance beyond this field of science. We suggest that innovative research, by its very definition, demands out-of-the-box thinking. At the same time, standardization of animal models and test procedures for the sake of comparability across experiments inhibits the potential and willingness to leave well-established tracks of thinking, and leaves us wondering how open minded research is and whether it is the researcher's established perspective that drives the research rather than the research that drives the researcher's perspective. The chapter finishes by introducing subsequent chapters of this book volume on Ethical Issues in Behavioral Neuroscience.

  19. The Mind Research Network - Mental Illness Neuroscience Discovery Grant

    Roberts, J. [The Mind Research Network, Albuquerque, NM (United States); Calhoun, V. [The Mind Research Network, Albuquerque, NM (United States)

    2013-12-17

    The scientific and technological programs of the Mind Research Network (MRN), reflect DOE missions in basic science and associated instrumentation, computational modeling, and experimental techniques. MRN's technical goals over the course of this project have been to develop and apply integrated, multi-modality functional imaging techniques derived from a decade of DOE-support research and technology development.

  20. [Research domain criteria (RDoC) : Psychiatric research as applied cognitive neuroscience].

    Walter, H

    2017-05-01

    Just before the official launch of the DSM-5 in 2013, the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health was made public and is becoming increasingly more important in psychiatric research. The aim of this paper is to clarify the conceptual approach of RDoC, to systematically discuss limitations, to present exemplary RDoC-based studies and to consider the relevance of the RDoC concepts for clinicians and scientists. The is a qualitative introduction and review article with a critical discussion. The RDoC initiative was not conceived as an alternative diagnostic manual to DSM-5 or IDC-10/11 for use in clinical practice. It is a new systematic framework for psychiatric research based on the most recent results of cognitive neuroscience and aims to map mental disorders dimensionally and transdiagnostically. Despite some weaknesses, it is currently the most elaborated and scientifically grounded approach for multidisciplinary research on mental disorders. In contrast to the purely symptom-based DSM and ICD approaches, which are agnostic with respect to the pathogenesis of mental diseases, the explicit aim of the RDoC initiative is to systematize biological knowledge about risk factors and causes of mental disorders; therefore, it has a much greater potential to develop new and individualized therapeutic strategies based on disease mechanisms.

  1. Behaviorism and Neuroscience.

    Thompson, Richard F.

    1994-01-01

    The influence of behaviorism's methods and theories on theory and research in the neurosciences is examined, partly in light of John B. Watson's 1913 essay. An attempt is made to reconcile classical behaviorism and modern cognitive psychology and neuroscience. (SLD)

  2. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research.

    Di Domenico, Stefano I; Ryan, Richard M

    2017-01-01

    Intrinsic motivation refers to people's spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation.

  3. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research

    Di Domenico, Stefano I.; Ryan, Richard M.

    2017-01-01

    Intrinsic motivation refers to people’s spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation. PMID:28392765

  4. Optogenetics in preclinical neuroscience and psychiatry research: recent insights and potential applications

    Britt, Jonathan; McDevitt,Ross; Reed,Sean

    2014-01-01

    Ross A McDevitt,1 Sean J Reed,2 Jonathan P Britt2,3 1Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; 2Integrated Program in Neuroscience, Montreal Neurological Institute, 3Department of Psychology, McGill University, Montreal, QC, Canada Abstract: There have been significant advances in the treatment of psychiatric disease in the last half century, but it is still unclear which neural circuits are ultimately responsible for s...

  5. Neurogenomics: An opportunity to integrate neuroscience, genomics and bioinformatics research in Africa

    Thomas K. Karikari

    2015-06-01

    Full Text Available Modern genomic approaches have made enormous contributions to improving our understanding of the function, development and evolution of the nervous system, and the diversity within and between species. However, most of these research advances have been recorded in countries with advanced scientific resources and funding support systems. On the contrary, little is known about, for example, the possible interplay between different genes, non-coding elements and environmental factors in modulating neurological diseases among populations in low-income countries, including many African countries. The unique ancestry of African populations suggests that improved inclusion of these populations in neuroscience-related genomic studies would significantly help to identify novel factors that might shape the future of neuroscience research and neurological healthcare. This perspective is strongly supported by the recent identification that diseased individuals and their kindred from specific sub-Saharan African populations lack common neurological disease-associated genetic mutations. This indicates that there may be population-specific causes of neurological diseases, necessitating further investigations into the contribution of additional, presently-unknown genomic factors. Here, we discuss how the development of neurogenomics research in Africa would help to elucidate disease-related genomic variants, and also provide a good basis to develop more effective therapies. Furthermore, neurogenomics would harness African scientists' expertise in neuroscience, genomics and bioinformatics to extend our understanding of the neural basis of behaviour, development and evolution.

  6. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future.

    Bellen, Hugo J; Tong, Chao; Tsuda, Hiroshi

    2010-07-01

    Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.

  7. Danish Space Research Institute

    1991-01-01

    The present report presents a description of the activities and finances of the Danish Space Reserach Institute during 1989 and 1990. The research deals with infrared astronomy (ISOPHOT), X-ray astronomy (EXPECT/SODART), hard X-ray astronomy (WATCH), satellite projects and sounding rocket experiments. (CLS)

  8. All the Vice Chancellor's Neuroscientists: Unity to Achieve Success in Solving Malaysia's Diseases via Upgrading Clinical Services and Neuroscience Research.

    Abdullah, Jafri Malin

    2013-05-01

    President Obama of the United States of America announced this April the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN for short) investment, while Professor Henry Markram's team based in the European Union will spend over a billion euros on the Human Brain Project, breaking through the unknowns in the fifth science of the decade: Neuroscience. Malaysia's growth in the same field needs to be augmented, and thus the Universiti Sains Malaysia's vision is to excel in the field of clinical brain sciences, mind sciences and neurosciences. This will naturally bring up the level of research in the country simultaneously. Thus, a center was recently established to coordinate this venture. The four-year Integrated Neuroscience Program established recently will be a sustainable source of neuroscientists for the country. We hope to establish ourselves by 2020 as a global university with neurosciences research as an important flagship.

  9. Neurofeminism and feminist neurosciences: a critical review of contemporary brain research

    Sigrid eSchmitz

    2014-07-01

    Full Text Available To date, feminist approaches to neurosciences have evaluated the debates surrounding practices of knowledge production within and research results of contemporary brain research. Consequently, neurofeminist scholars have critically examined gendered impacts of neuroscientific research. More recently, feminist neuroscientists also develop research appraoches for more gender-appropriate neuroscientific research on several levels. Based on neurofeminist critique feminist neuroscientists aim to enrich neuroscientific work by offering methodological suggestions for a more differentiated setup of categories and experimental designs, for reflective result presentations and interpretations as well as for the analysis of result validity. Reframing neuro-epistemologies by including plasticity concepts works to uncover social influences on the gendered development of the brain and of behavior. More recently, critical work on contemporary neurocultures has highlighted the entanglements of neuroscientific research within society and the implications of ‘neurofacts’ for gendered cultural symbolisms, social practices, and power relations. Not least, neurofeminism critically analyzes the portrayal of neuro-knowledge in popular media. This article presents on overview on neurofeminist debates and on current approaches of feminist neurosciences. The authors conclude their review by calling for a more gender-appropriate research approach that takes into account both its situatedness and reflections on the neuroscientific agenda, but also questions neurofeminist discourse in regards to uses and misuses of its concepts.

  10. Neurofeminism and feminist neurosciences: a critical review of contemporary brain research.

    Schmitz, Sigrid; Höppner, Grit

    2014-01-01

    To date, feminist approaches to neurosciences have evaluated the debates surrounding practices of knowledge production within and research results of contemporary brain research. Consequently, neurofeminist scholars have critically examined gendered impacts of neuroscientific research. Feminist neuroscientists also develop research approaches for a more gender-appropriate neuroscientific research on several levels. Based on neurofeminist critique feminist neuroscientists aim to enrich neuroscientific work by offering methodological suggestions for a more differentiated setup of categories and experimental designs, for reflective result presentations and interpretations as well as for the analysis of result validity. Reframing neuro-epistemologies by including plasticity concepts works to uncover social influences on the gendered development of the brain and of behavior. More recently, critical work on contemporary neurocultures has highlighted the entanglements of neuroscientific research within society and the implications of 'neurofacts' for gendered cultural symbolisms, social practices, and power relations. Not least, neurofeminism critically analyses the portrayal of neuro-knowledge in popular media. This article presents on overview on neurofeminist debates and on current approaches of feminist neurosciences. The authors conclude their review by calling for a more gender-appropriate research approach that takes into account both its situatedness and reflections on the neuroscientific agenda, but also questions neurofeminist discourse in regards to uses and misuses of its concepts.

  11. Neuroscience discipline science plan

    1991-01-01

    Over the past two decades, NASA's efforts in the neurosciences have developed into a program of research directed at understanding the acute changes that occur in the neurovestibular and sensorimotor systems during short-duration space missions. However, the proposed extended-duration flights of up to 28 days on the Shuttle orbiter and 6 months on Space Station Freedom, a lunar outpost, and Mars missions of perhaps 1-3 years in space, make it imperative that NASA's Life Sciences Division begin to concentrate research in the neurosciences on the chronic effects of exposure to microgravity on the nervous system. Major areas of research will be directed at understanding (1) central processing, (2) motor systems, (3) cognitive/spatial orientation, and (4) sensory receptors. The purpose of the Discipline Science Plan is to provide a conceptual strategy for NASA's Life Sciences Division research and development activities in the comprehensive area of neurosciences. It covers the significant research areas critical to NASA's programmatic requirements for the Extended-Duration Orbiter, Space Station Freedom, and exploration mission science activities. These science activities include ground-based and flight; basic, applied, and operational; and animal and human research and development. This document summarizes the current status of the program, outlines available knowledge, establishes goals and objectives, identifies science priorities, and defines critical questions in the subdiscipline areas of nervous system function. It contains a general plan that will be used by NASA Headquarters Program Offices and the field centers to review and plan basic, applied, and operational intramural and extramural research and development activities in this area.

  12. Three Research Strategies of Neuroscience and the Future of Legal Imaging Evidence.

    Jun, Jinkwon; Yoo, Soyoung

    2018-01-01

    Neuroscientific imaging evidence (NIE) has become an integral part of the criminal justice system in the United States. However, in most legal cases, NIE is submitted and used only to mitigate penalties because the court does not recognize it as substantial evidence, considering its lack of reliability. Nevertheless, we here discuss how neuroscience is expected to improve the use of NIE in the legal system. For this purpose, we classified the efforts of neuroscientists into three research strategies: cognitive subtraction, the data-driven approach, and the brain-manipulation approach. Cognitive subtraction is outdated and problematic; consequently, the court deemed it to be an inadequate approach in terms of legal evidence in 2012. In contrast, the data-driven and brain manipulation approaches, which are state-of-the-art approaches, have overcome the limitations of cognitive subtraction. The data-driven approach brings data science into the field and is benefiting immensely from the development of research platforms that allow automatized collection, analysis, and sharing of data. This broadens the scale of imaging evidence. The brain-manipulation approach uses high-functioning tools that facilitate non-invasive and precise human brain manipulation. These two approaches are expected to have synergistic effects. Neuroscience has strived to improve the evidential reliability of NIE, with considerable success. With the support of cutting-edge technologies, and the progress of these approaches, the evidential status of NIE will be improved and NIE will become an increasingly important part of legal practice.

  13. Three Research Strategies of Neuroscience and the Future of Legal Imaging Evidence

    Jinkwon Jun

    2018-03-01

    Full Text Available Neuroscientific imaging evidence (NIE has become an integral part of the criminal justice system in the United States. However, in most legal cases, NIE is submitted and used only to mitigate penalties because the court does not recognize it as substantial evidence, considering its lack of reliability. Nevertheless, we here discuss how neuroscience is expected to improve the use of NIE in the legal system. For this purpose, we classified the efforts of neuroscientists into three research strategies: cognitive subtraction, the data-driven approach, and the brain-manipulation approach. Cognitive subtraction is outdated and problematic; consequently, the court deemed it to be an inadequate approach in terms of legal evidence in 2012. In contrast, the data-driven and brain manipulation approaches, which are state-of-the-art approaches, have overcome the limitations of cognitive subtraction. The data-driven approach brings data science into the field and is benefiting immensely from the development of research platforms that allow automatized collection, analysis, and sharing of data. This broadens the scale of imaging evidence. The brain-manipulation approach uses high-functioning tools that facilitate non-invasive and precise human brain manipulation. These two approaches are expected to have synergistic effects. Neuroscience has strived to improve the evidential reliability of NIE, with considerable success. With the support of cutting-edge technologies, and the progress of these approaches, the evidential status of NIE will be improved and NIE will become an increasingly important part of legal practice.

  14. Speech perception under adverse conditions: Insights from behavioral, computational and neuroscience research

    Sara eGuediche

    2014-01-01

    Full Text Available Adult speech perception reflects the long-term regularities of the native language, but it is also flexible such that it accommodates and adapts to adverse listening conditions and short-term deviations from native-language norms. The purpose of this review article is to examine how the broader neuroscience literature can inform and advance research efforts in understanding the neural basis of flexibility and adaptive plasticity in speech perception. In particular, we consider several domains of neuroscience research that offer insight into how perception can be adaptively tuned to short-term deviations while also maintaining without affecting the long-term learned regularities for mapping sensory input. We review several literatures to highlight the potential role of learning algorithms that rely on prediction error signals and discuss specific neural structures that are likely to contribute to such learning. Already, a few studies have alluded to a potential role of these mechanisms in adaptive plasticity in speech perception. Better understanding the application and limitations of these algorithms for the challenges of flexible speech perception under adverse conditions promises to inform theoretical models of speech.

  15. Applied Neuroscience Laboratory Complex

    Federal Laboratory Consortium — Located at WPAFB, Ohio, the Applied Neuroscience lab researches and develops technologies to optimize Airmen individual and team performance across all AF domains....

  16. [From brain imaging to good teaching? implicating from neuroscience for research on learning and instruction].

    Stubenrauch, Christa; Krinzinger, Helga; Konrad, Kerstin

    2014-07-01

    Psychiatric disorders in childhood and adolescence, in particular attention deficit disorder or specific learning disorders like developmental dyslexia and developmental dyscalculia, affect academic performance and learning at school. Recent advances in neuroscientific research have incited an intensive debate both in the general public and in the field of educational and instructional science as well as to whether and to what extent these new findings in the field of neuroscience might be of importance for school-related learning and instruction. In this review, we first summarize neuroscientific findings related to the development of attention, working memory and executive functions in typically developing children and then evaluate their relevance for school-related learning. We present an overview of neuroimaging studies of specific learning disabilities such as developmental dyslexia and developmental dyscalculia, and critically discuss their practical implications for educational and teaching practice, teacher training, early diagnosis as well as prevention and disorder-specific therapy. We conclude that the new interdisciplinary field of neuroeducation cannot be expected to provide direct innovative educational applications (e.g., teaching methods). Rather, the future potential of neuroscience lies in creating a deeper understanding of the underlying cognitive mechanisms and pathomechanisms of learning processes and learning disorders.

  17. Neuroscience research on the addictions: a prospectus for future ethical and policy analysis.

    Hall, Wayne; Carter, Lucy; Morley, Katherine I

    2004-09-01

    The increasing evidence that many addictive phenomena have a genetic and neurobiological basis promises improvements in societal responses to addiction that raise important ethical and social policy issues. One of the major potential benefits of such research is improved treatment of drug addiction, but in order to do the research required to realize this promise, it will be necessary to address ethical doubts raised about the capacity of addicted persons to give free and informed consent to participate in studies that involve the administration of drugs of dependence. Neuroscience research on addiction promises to transform the long running debate between moral and medical models of addiction by providing a detailed causal explanation of addiction in terms of brain processes. We must avoid causal models of addiction being misinterpreted as supporting simple-minded social policies, e.g., that we identify the minority of the community that is genetically and biologically vulnerable to addiction and hence can neglect social policy options for reducing addiction, including drug control policies. Causal accounts of addiction supplied by neuroscience and genetic research may also be seen to warrant the use of pharmacotherapies and drug vaccines under legal coercion. Neuroscientists also need to anticipate the ethical issues that may arise if the knowledge that they produce delivers interventions that enhance human cognitive and other capacities. Advances in neuroimaging that enable us to identify "addicts" or predict future risk of addiction will raise concerns about invasion of privacy, third-party use of neuroimaging data, the powers of courts to coerce defendants to undergo such tests, and consumer protection against the overinterpretation of test results. Given the strong public and media interest in the results of their research, neuroscientists and geneticists have a moral obligation, and a professional interest, to minimize popular misunderstandings of their work

  18. Educational Neuroscience: Neuroethical Considerations

    Lalancette, Helene; Campbell, Stephen R.

    2012-01-01

    Research design and methods in educational neuroscience involve using neuroscientific tools such as brain image technologies to investigate cognitive functions and inform educational practices. The ethical challenges raised by research in social neuroscience have become the focus of neuroethics, a sub-discipline of bioethics. More specifically…

  19. Space botanic research

    Sitnik, K.M.; Kordyum, Se.L.

    1980-01-01

    The basic results of investigations in the field of space botanics are considered, starting with the effect of cosmic radiation on quiet spores and seeds and ending with the modern stage of complex study of lower plants, growing and developing within various periods of time under conditions of a real space flight in special chambers and growing systems. The possibility of using different investigation methods such as luminooptic, electronomicroscopic, biochemical, biophysical, physiological and others to estimate the effect of factors of an orbital flight on plants, are discussed [ru

  20. From Cognitive to Educational Neuroscience

    Dündar, Sefa; Ayvaz, Ülkü

    2016-01-01

    In recent years, several theoretical discussions as to the relationship between neuroscience and education have been held. Researchers have started to have cooperation over neuroscience and the interdisciplinary researches in which education is included. It was found that there were interactions between cognitive neuroscience and educational…

  1. Optogenetics in preclinical neuroscience and psychiatry research: recent insights and potential applications

    McDevitt RA

    2014-07-01

    Full Text Available Ross A McDevitt,1 Sean J Reed,2 Jonathan P Britt2,3 1Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; 2Integrated Program in Neuroscience, Montreal Neurological Institute, 3Department of Psychology, McGill University, Montreal, QC, Canada Abstract: There have been significant advances in the treatment of psychiatric disease in the last half century, but it is still unclear which neural circuits are ultimately responsible for specific disease states. Fortunately, technical limitations that have constrained this research have recently been mitigated by advances in research tools that facilitate circuit-based analyses. The most prominent of these tools is optogenetics, which refers to the use of genetically encoded, light-sensitive proteins that can be used to manipulate discrete neural circuits with temporal precision. Optogenetics has recently been used to examine the neural underpinnings of both psychiatric disease and symptom relief, and this research has rapidly identified novel therapeutic targets for what could be a new generation of rational drug development. As these and related methodologies for controlling neurons ultimately make their way into the clinic, circuit-based strategies for alleviating psychiatric symptoms could become a remarkably refined approach to disease treatment. Keywords: optogenetics, depression, anxiety, addiction, obsessive-compulsive disorder

  2. Pain Research Forum: Application of Scientific Social Media Frameworks in Neuroscience

    Sudeshna eDas

    2014-03-01

    Full Text Available Background: Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. Methods: We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF. PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Results: Launched in 2011, PRF has over 1,300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum and StemBook.Discussion: Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned and ongoing challenges in using PRF as a driving force to develop tools for online collaboration in

  3. Pain Research Forum: application of scientific social media frameworks in neuroscience.

    Das, Sudeshna; McCaffrey, Patricia G; Talkington, Megan W T; Andrews, Neil A; Corlosquet, Stéphane; Ivinson, Adrian J; Clark, Tim

    2014-01-01

    Social media has the potential to accelerate the pace of biomedical research through online collaboration, discussions, and faster sharing of information. Focused web-based scientific social collaboratories such as the Alzheimer Research Forum have been successful in engaging scientists in open discussions of the latest research and identifying gaps in knowledge. However, until recently, tools to rapidly create such communities and provide high-bandwidth information exchange between collaboratories in related fields did not exist. We have addressed this need by constructing a reusable framework to build online biomedical communities, based on Drupal, an open-source content management system. The framework incorporates elements of Semantic Web technology combined with social media. Here we present, as an exemplar of a web community built on our framework, the Pain Research Forum (PRF) (http://painresearchforum.org). PRF is a community of chronic pain researchers, established with the goal of fostering collaboration and communication among pain researchers. Launched in 2011, PRF has over 1300 registered members with permission to submit content. It currently hosts over 150 topical news articles on research; more than 30 active or archived forum discussions and journal club features; a webinar series; an editor-curated weekly updated listing of relevant papers; and several other resources for the pain research community. All content is licensed for reuse under a Creative Commons license; the software is freely available. The framework was reused to develop other sites, notably the Multiple Sclerosis Discovery Forum (http://msdiscovery.org) and StemBook (http://stembook.org). Web-based collaboratories are a crucial integrative tool supporting rapid information transmission and translation in several important research areas. In this article, we discuss the success factors, lessons learned, and ongoing challenges in using PRF as a driving force to develop tools for

  4. Space Weather Research: Indian perspective

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  5. A repository based on a dynamically extensible data model supporting multidisciplinary research in neuroscience.

    Corradi, Luca; Porro, Ivan; Schenone, Andrea; Momeni, Parastoo; Ferrari, Raffaele; Nobili, Flavio; Ferrara, Michela; Arnulfo, Gabriele; Fato, Marco M

    2012-10-08

    Robust, extensible and distributed databases integrating clinical, imaging and molecular data represent a substantial challenge for modern neuroscience. It is even more difficult to provide extensible software environments able to effectively target the rapidly changing data requirements and structures of research experiments. There is an increasing request from the neuroscience community for software tools addressing technical challenges about: (i) supporting researchers in the medical field to carry out data analysis using integrated bioinformatics services and tools; (ii) handling multimodal/multiscale data and metadata, enabling the injection of several different data types according to structured schemas; (iii) providing high extensibility, in order to address different requirements deriving from a large variety of applications simply through a user runtime configuration. A dynamically extensible data structure supporting collaborative multidisciplinary research projects in neuroscience has been defined and implemented. We have considered extensibility issues from two different points of view. First, the improvement of data flexibility has been taken into account. This has been done through the development of a methodology for the dynamic creation and use of data types and related metadata, based on the definition of "meta" data model. This way, users are not constrainted to a set of predefined data and the model can be easily extensible and applicable to different contexts. Second, users have been enabled to easily customize and extend the experimental procedures in order to track each step of acquisition or analysis. This has been achieved through a process-event data structure, a multipurpose taxonomic schema composed by two generic main objects: events and processes. Then, a repository has been built based on such data model and structure, and deployed on distributed resources thanks to a Grid-based approach. Finally, data integration aspects have been

  6. A repository based on a dynamically extensible data model supporting multidisciplinary research in neuroscience

    Corradi Luca

    2012-10-01

    Full Text Available Abstract Background Robust, extensible and distributed databases integrating clinical, imaging and molecular data represent a substantial challenge for modern neuroscience. It is even more difficult to provide extensible software environments able to effectively target the rapidly changing data requirements and structures of research experiments. There is an increasing request from the neuroscience community for software tools addressing technical challenges about: (i supporting researchers in the medical field to carry out data analysis using integrated bioinformatics services and tools; (ii handling multimodal/multiscale data and metadata, enabling the injection of several different data types according to structured schemas; (iii providing high extensibility, in order to address different requirements deriving from a large variety of applications simply through a user runtime configuration. Methods A dynamically extensible data structure supporting collaborative multidisciplinary research projects in neuroscience has been defined and implemented. We have considered extensibility issues from two different points of view. First, the improvement of data flexibility has been taken into account. This has been done through the development of a methodology for the dynamic creation and use of data types and related metadata, based on the definition of “meta” data model. This way, users are not constrainted to a set of predefined data and the model can be easily extensible and applicable to different contexts. Second, users have been enabled to easily customize and extend the experimental procedures in order to track each step of acquisition or analysis. This has been achieved through a process-event data structure, a multipurpose taxonomic schema composed by two generic main objects: events and processes. Then, a repository has been built based on such data model and structure, and deployed on distributed resources thanks to a Grid-based approach

  7. Space Radiation Research at NASA

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  8. Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources.

    Henry Jeremy Bockholt

    2010-04-01

    Full Text Available A neuroinformatics (NI system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN, database system has been designed and improved through our experience with 200 research studies and 250 researchers from 7 different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining.

  9. Mining the Mind Research Network: A Novel Framework for Exploring Large Scale, Heterogeneous Translational Neuroscience Research Data Sources

    Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.

    2009-01-01

    A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147

  10. SELF-REGULATION RESEARCH IN THE CONTEXT OF EDUCATIONAL NEUROSCIENCE – A SYSTEMATIC REVIEW

    Violeta Maria CARAGEA

    2017-12-01

    Full Text Available Self-regulation in school contexts is a subject that caught the attention of researchers from many disciplines. Educational neuroscience is an emerging research field aiming to bridge the neuroscientific knowledge and methodology with those of more consecrated research disciplines investigating learning and education, like psychology, sociology or education. Our paper investigates recent empirical studies exploring self-regulation in preK-12 educational contexts and which were identified as educational neuroscientific literature. As a result of an extensive search and filtering process conducted in conformity with the systematic review methodology, we found five articles that passed the predefined filtering criteria. Our findings suggest that this type of literature appeared mostly in the last decade with the occasion of new neuroscientific methodologies allowing conducting non-invasive advanced brain studies. The main self-regulation elements these studies focus on are academic motivation, attention orientation, self-perception on own mental abilities and behaviours, cognitive and emotional engagement in learning, social and task-related behaviour regulation. The methodologies used consisted mainly in self- or others-reported questionnaires, behavioural measures evaluation, academic performance measurement, computerized testing of cognitive abilities, physiological measures recordings (e.g. saliva or blood samples, heart rate, electroencephalography (EEG, and functional magnetic resonance imaging (fMRI. The samples included in the reviewed articles vary from preschool to primary, middle and high school students, comprising 376 participants in total. The reported research outcomes are rather limited but they also offer optimism regarding the possibilities to use neuroscientific methods for investigating self-regulation in an educational context. Various aspects regarding limitations of this type of research are discussed.

  11. Position Statement on Motivations, Methodologies, and Practical Implications of Educational Neuroscience Research: fMRI Studies of the Neural Correlates of Creative Intelligence

    Geake, John

    2011-01-01

    In this position statement it is argued that educational neuroscience must necessarily be relevant to, and therefore have implications for, both educational theory and practice. Consequently, educational neuroscientific research necessarily must embrace educational research questions in its remit.

  12. The Muscle Sensor for on-site neuroscience lectures to pave the way for a better understanding of brain-machine-interface research.

    Koizumi, Amane; Nagata, Osamu; Togawa, Morio; Sazi, Toshiyuki

    2014-01-01

    Neuroscience is an expanding field of science to investigate enigmas of brain and human body function. However, the majority of the public have never had the chance to learn the basics of neuroscience and new knowledge from advanced neuroscience research through hands-on experience. Here, we report that we produced the Muscle Sensor, a simplified electromyography, to promote educational understanding in neuroscience. The Muscle Sensor can detect myoelectric potentials which are filtered and processed as 3-V pulse signals to shine a light bulb and emit beep sounds. With this educational tool, we delivered "On-Site Neuroscience Lectures" in Japanese junior-high schools to facilitate hands-on experience of neuroscientific electrophysiology and to connect their text-book knowledge to advanced neuroscience researches. On-site neuroscience lectures with the Muscle Sensor pave the way for a better understanding of the basics of neuroscience and the latest topics such as how brain-machine-interface technology could help patients with disabilities such as spinal cord injuries. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  14. Directed information measures in neuroscience

    Vicente, Raul; Lizier, Joseph

    2014-01-01

    Analysis of information transfer has found rapid adoption in neuroscience, where a highly dynamic transfer of information continuously runs on top of the brain's slowly-changing anatomical connectivity. Measuring such transfer is crucial to understanding how flexible information routing and processing give rise to higher cognitive function. Directed Information Measures in Neuroscience reviews recent developments of concepts and tools for measuring information transfer, their application to neurophysiological recordings and analysis of interactions. Written by the most active researchers in the field the book discusses the state of the art, future prospects and challenges on the way to an efficient assessment of neuronal information transfer. Highlights include the theoretical quantification and practical estimation of information transfer, description of transfer locally in space and time, multivariate directed measures, information decomposition among a set of stimulus/responses variables, and the relation ...

  15. All the Vice Chancellor’s Neuroscientists: Unity to Achieve Success in Solving Malaysia’s Diseases via Upgrading Clinical Services and Neuroscience Research

    Abdullah, Jafri Malin

    2013-01-01

    President Obama of the United States of America announced this April the Brain Research Through Advancing Innovative Neurotechnologies (BRAIN for short) investment, while Professor Henry Markram’s team based in the European Union will spend over a billion euros on the Human Brain Project, breaking through the unknowns in the fifth science of the decade: Neuroscience. Malaysia's growth in the same field needs to be augmented, and thus the Universiti Sains Malaysia’s vision is to excel in the field of clinical brain sciences, mind sciences and neurosciences. This will naturally bring up the level of research in the country simultaneously. Thus, a center was recently established to coordinate this venture. The four-year Integrated Neuroscience Program established recently will be a sustainable source of neuroscientists for the country. We hope to establish ourselves by 2020 as a global university with neurosciences research as an important flagship. PMID:23966818

  16. A neuroscientific perspective on dreaming : collaboration between neuroscience and psychoanalysis is needed to progress in dream research

    Perrine Marie RUBY

    2011-11-01

    Full Text Available Dreaming is still a mystery of human cognition though it has been studied at the experimental level since more than one century. Experimental psychology first investigated dream content and frequency. Then, the neuroscientific approach to dreaming arose at the end of the fifties and rapidly proposed a physiological substrate of dreaming : rapid eye movement sleep (REM. Fifty years later, this hypothesis was challenged because it could not explain all the characteristics of dream reports. The neurophysiological correlates of dreaming, as its functions, remain thus unclear and many questions are left unresolved. Do the representations constituting the dream emerge randomly from the brain or do they surface according to certain parameters? Is the organisation of the dream’s representations chaotic or is it determined by rules? Does dreaming have a meaning? Psychoanalysis provides hypotheses to answer these questions. Until now theses hypotheses have been barely considered in cognitive neuroscience, but the recent creation of neuropsychoanalysis brings new hopes of discussion between the two fields. Considering the psychoanalytical perspective in cognitive neuroscience would provide new directions/leads for dream research and would help to achieve a comprehensive understanding of dreaming. Notably, several subjective issues at the core of psychoanalytic approach, such as the concept of personal meaning, the concept of unconscious episodic memory and the subjects’ history are not addressed or considered in cognitive neuroscience. This paper argues that the expertise of psychoanalysis in singularity and personal meaning is needed to succeed in addressing these issues in cognitive neuroscience and to progress in the understanding of dreaming and psyche.

  17. Intentional Excellence in the Baldwin Wallace University Neuroscience Program

    Morris, Jacqueline K.; Peppers, Kieth; Mickley, G. Andrew

    2015-01-01

    The Society for Neuroscience recognized Baldwin Wallace University’s (BWU) undergraduate Neuroscience program as their Program of the Year for 2012. This award acknowledged the “accomplishments of a neuroscience department or program for excellence in educating neuroscientists and providing innovative models to which other programs can aspire.” The Neuroscience program grew out of students interested in studying the biological basis of behavior. BWU’s neuroscience major is research-intensive, and all students are required to produce an empirically-based senior thesis. This requirement challenges program resources, and the demand for faculty attention is high. Thus, we developed an intentional 3-step peer mentoring system that encourages our students to collaborate with and learn from, not only faculty, but each other. Peer mentoring occurs in the curriculum, faculty research labs, and as students complete their senior theses. As the program has grown with over 80 current majors, we have developed a new Neuroscience Methods course to train students on the safety, ethics, and practice of research in the neuroscience laboratory space. Students in this course leave with the skills and knowledge to assist senior level students with their theses and to begin the process of developing their own projects in the laboratory. Further, our students indicate that their “peer mentorship was excellent,” “helped them gain confidence,” and “allowed them to be more successful in their research.” PMID:26240522

  18. The utility of twins in developmental cognitive neuroscience research: How twins strengthen the ABCD research design.

    Iacono, William G; Heath, Andrew C; Hewitt, John K; Neale, Michael C; Banich, Marie T; Luciana, Monica M; Madden, Pamela A; Barch, Deanna M; Bjork, James M

    2018-08-01

    The ABCD twin study will elucidate the genetic and environmental contributions to a wide range of mental and physical health outcomes in children, including substance use, brain and behavioral development, and their interrelationship. Comparisons within and between monozygotic and dizygotic twin pairs, further powered by multiple assessments, provide information about genetic and environmental contributions to developmental associations, and enable stronger tests of causal hypotheses, than do comparisons involving unrelated children. Thus a sub-study of 800 pairs of same-sex twins was embedded within the overall Adolescent Brain and Cognitive Development (ABCD) design. The ABCD Twin Hub comprises four leading centers for twin research in Minnesota, Colorado, Virginia, and Missouri. Each site is enrolling 200 twin pairs, as well as singletons. The twins are recruited from registries of all twin births in each State during 2006-2008. Singletons at each site are recruited following the same school-based procedures as the rest of the ABCD study. This paper describes the background and rationale for the ABCD twin study, the ascertainment of twin pairs and implementation strategy at each site, and the details of the proposed analytic strategies to quantify genetic and environmental influences and test hypotheses critical to the aims of the ABCD study. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Research Opportunities in Space Propulsion

    Rodgers, Stephen L.

    2007-01-01

    Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used

  20. Cognitive Neuroscience Meets Mathematics Education

    De Smedt, Bert; Ansari, Daniel; Grabner, Roland H.; Hannula, Minna M.; Schneider, Michael; Verschaffel, Lieven

    2010-01-01

    While there has been much theoretical debate concerning the relationship between neuroscience and education, researchers have started to collaborate across both disciplines, giving rise to the interdisciplinary research field of neuroscience and education. The present contribution tries to reflect on the challenges of this new field of empirical…

  1. Mathematical and theoretical neuroscience cell, network and data analysis

    Nieus, Thierry

    2017-01-01

    This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical  and numerical topics;  statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.

  2. Space Research, Education, and Related Activities In the Space Sciences

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  3. Space Weather Research in Armenia

    Chilingarian, A. A.

    DVIN for ASEC (Data Visualization interactive Network for Aragats Space Environmental Center) is product for accessing and analysis the on-line data from Solar Monitors located at high altitude research station on Mt. Aragats in Armenia. Data from ASEC monitors is used worldwide for scientific purposes and for monitoring of severe solar storms in progress. Alert service, based on the automatic analysis of variations of the different species of cosmic ray particles is available for subscribers. DVIN advantages: DVIN is strategically important as a scientific application to help develop space science and to foster global collaboration in forecasting potential hazards of solar storms. It precisely fits with the goals of the new evolving information society to provide long-term monitoring and collection of high quality scientific data, and enables adequate dialogue between scientists, decision makers, and civil society. The system is highly interactive and exceptional information is easily accessible online. Data can be monitored and analyzed for desired time spans in a fast and reliable manner. The ASEC activity is an example of a balance between the scientific independence of fundamental research and the needs of civil society. DVIN is also an example of how scientific institutions can apply the newest powerful methods of information technologies, such as multivariate data analysis, to their data and also how information technologies can provide convenient and reliable access to this data and to new knowledge for the world-wide scientific community. DVIN provides very wide possibilities for sharing data and sending warnings and alerts to scientists and other entities world-wide, which have fundamental and practical interest in knowing the space weather conditions.

  4. Space Station Freedom combustion research

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  5. The Impact of the 5E Teaching Model on Changes in Neuroscience, Drug Addiction, and Research Methods Knowledge of Science Teachers Attending California's ARISE Professional Development Workshops

    Manzo, Rosa D.; Whent, Linda; Liets, Lauren; de la Torre, Adela; Gomez-Camacho, Rosa

    2016-01-01

    This study examined how science teachers' knowledge of research methods, neuroscience and drug addiction changed through their participation in a 5-day summer science institute. The data for this study evolved from a four-year NIH funded science education project called Addiction Research and Investigation for Science Educators (ARISE). Findings…

  6. Scientific projection paper for space radiobiological research

    Vinograd, S.P.

    1980-01-01

    A nationale for the radiobiological research requirements for space is rooted in a national commitment to the exploration of space, mandated in the form of the National Space Act. This research is almost entirely centered on man; more specifically, on the effects of the space radiation environment on man and his protection from them. The research needs discussed in this presentation include the space radiation environment; dosimetry; radiation biology-high LET particles (dose/response); and operational countermeasures

  7. Pioneering Space Research with Balloons

    Jones, W. V.

    NASA s Scientific Ballooning Planning Team has concluded that ballooning enables significant scientific discoveries while providing test beds for space instruments and training for young scientists Circumpolar flights around Antarctica have been spectacularly successful with fight durations up to 42 days Demand for participation in this Long-Duration Balloon LDB program a partnership with the U S National Science Foundation Office of Polar Programs is greater than the current capacity of two flights per campaign Given appropriate international agreements LDB flights in the Northern Hemisphere would be competitive with Antarctic flights and super-pressure balloons would allow comparable flights at any latitude The Balloon Planning Team made several recommendations for LDB flights provide a reliable funding source for sophisticated payloads extend the Antarctic capability to three flights per year and develop a comparable capability in the Arctic provide aircraft for intact-payload recovery develop a modest trajectory modification capability to enable longer flights and enhance super-pressure balloons to carry 1-ton payloads to 38 km Implementation of these recommendations would facilitate frequent access to near-space for cutting-edge research and technology development for a wide range of investigations

  8. Robot-assisted surgery: an emerging platform for human neuroscience research

    Anthony Michael Jarc

    2015-06-01

    Full Text Available Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity – from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure – can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether.

  9. Integrating cognitive (neuroscience using mechanisms

    Marcin Miłkowski

    2016-11-01

    Full Text Available In this paper, an account of theoretical integration in cognitive (neuroscience from the mechanistic perspective is defended. It is argued that mechanistic patterns of integration can be better understood in terms of constraints on representations of mechanisms, not just on the space of possible mechanisms, as previous accounts of integration had it. This way, integration can be analyzed in more detail with the help of constraintsatisfaction account of coherence between scientific represen-tations. In particular, the account has resources to talk of idealizations and research heuristics employed by researchers to combine separate results and theoretical frameworks. The account is subsequently applied to an example of successful integration in the research on hippocampus and memory, and to a failure of integration in the research on mirror neurons as purportedly explanatory of sexual orientation.

  10. Can Neuroscience Construct a Literate Gendered Culture?

    Whitehead, David

    2011-01-01

    The construction of boys as a gendered culture is not usually associated with neuroscience. Exceptions are publications and presentations by consultants on boys' education who adopt a "brain-based" perspective. From a neuroscience perspective, my analysis indicates the selective use of primary neuroscience research to construct and perpetuate…

  11. The Neuroscience of Improvisation

    Landau, Andrew T.; Limb, Charles J.

    2017-01-01

    Current research in the neuroscience of musical creativity reveals promising implications for the value of learning to improvise. This article outlines the neuroscientific literature on musical improvisation and relates these findings to the benefits of musical creativity. We begin by describing the neural substrates of flow with respect to the…

  12. BRAIN. Broad Research in Artificial Intelligence and Neuroscience - CEREBRO. Investigación en sentido amplio sobre Inteligencia Artificial y Neurociencia - Resumen en español

    Bogdan Patrut

    2010-01-01

    BRAIN. Broad Research in Artificial Intelligence and Neuroscience CEREBRO. Investigación en sentido amplio sobre Inteligencia Artificial y Neurociencia Investigación en sentido amplio sobre Inteligencia Artificial y Neurociencia Volumen 1, Número 4 Octubre 2010: Otoño 2010 www.brain.edusoft.ro Editor Jefe: Bogdan Patrut

  13. Integrated neuroscience program: an alternative approach to teaching neurosciences to chiropractic students.

    He, Xiaohua; La Rose, James; Zhang, Niu

    2009-01-01

    Most chiropractic colleges do not offer independent neuroscience courses because of an already crowded curriculum. The Palmer College of Chiropractic Florida has developed and implemented an integrated neuroscience program that incorporates neurosciences into different courses. The goals of the program have been to bring neurosciences to students, excite students about the interrelationship of neuroscience and chiropractic, improve students' understanding of neuroscience, and help the students understand the mechanisms underpinning the chiropractic practice. This study provides a descriptive analysis on how the integrated neuroscience program is taught via students' attitudes toward neuroscience and the comparison of students' perceptions of neuroscience content knowledge at different points in the program. A questionnaire consisting of 58 questions regarding the neuroscience courses was conducted among 339 students. The questionnaire was developed by faculty members who were involved in teaching neuroscience and administered in the classroom by faculty members who were not involved in the study. Student perceptions of their neuroscience knowledge, self-confidence, learning strategies, and knowledge application increased considerably through the quarters, especially among the 2nd-year students. The integrated neuroscience program achieved several of its goals, including an increase in students' confidence, positive attitude, ability to learn, and perception of neuroscience content knowledge. The authors believe that such gains can expand student ability to interpret clinical cases and inspire students to become excited about chiropractic research. The survey provides valuable information for teaching faculty to make the course content more relevant to chiropractic students.

  14. Another Important News from the Neuronman: Malaysia’s Neuroscience Group Moves upwards in Terms of Research, Creativity, and Innovation

    ABDULLAH, Jafri Malin

    2015-01-01

    12 months ago the first Neuroscience special issue of the Malaysia Journal of Medical Sciences was born with the intention to increase the number of local publication dedicated to neurosciences. Since then many events happened in the neuroscience world of Malaysia, those considered major were the establishment of a Neurotechnology Foresight 2050 task force by the Academy of Medicine Malaysia as well as the launching of Malaysia as the 18th member to join the International Neuroinformatics Coordinating Facility on the 9th October 2015 which was officiated by the Deputy Ministers of Higher Education, Datuk Mary Yap. PMID:27006631

  15. Another Important News from the Neuronman: Malaysia's Neuroscience Group Moves upwards in Terms of Research, Creativity, and Innovation.

    Abdullah, Jafri Malin

    2015-12-01

    12 months ago the first Neuroscience special issue of the Malaysia Journal of Medical Sciences was born with the intention to increase the number of local publication dedicated to neurosciences. Since then many events happened in the neuroscience world of Malaysia, those considered major were the establishment of a Neurotechnology Foresight 2050 task force by the Academy of Medicine Malaysia as well as the launching of Malaysia as the 18th member to join the International Neuroinformatics Coordinating Facility on the 9th October 2015 which was officiated by the Deputy Ministers of Higher Education, Datuk Mary Yap.

  16. NASA Space Weather Center Services: Potential for Space Weather Research

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  17. [Social neuroscience and psychiatry].

    Takahashi, Hidehiko

    2013-01-01

    The topics of emotion, decision-making, and consciousness have been traditionally dealt with in the humanities and social sciences. With the dissemination of noninvasive human neuroimaging techniques such as fMRI and the advancement of cognitive science, neuroimaging studies focusing on emotions, social cognition, and decision-making have become established. I overviewed the history of social neurosciences. The emerging field of social brain research or social neuroscience will greatly contribute to clinical psychiatry. In the first part. I introduced our early fMRI studies on social emotions such as guilt, embarrassment, pride, and envy. Dysfunction of social emotions can be observed in various forms of psychiatric disorder, and the findings should contribute to a better understanding of the pathophysiology of psychiatric conditions. In the second part, I introduced our recent interdisciplinary neuroscience approach combining molecular neuroimaging techniques(positron emission tomography: PET), cognitive sciences, and economics to understand the neural as well as molecular basis of altered decision-making in neuropsychiatric disorders. An interdisciplinary approach combing molecular imaging techniques and cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of impaired decision-making in neuropsychiatric disorders and drug development.

  18. Contemporary neuroscience in the media.

    Racine, Eric; Waldman, Sarah; Rosenberg, Jarett; Illes, Judy

    2010-08-01

    Technological innovations in neuroscience have opened new windows to the understanding of brain function and the neuronal underpinnings of brain activity in neuropsychiatric disorders and social behavior. Public interest and support for neuroscience research through initiatives like the Decade of the Brain project and increasingly diverse brain-related initiatives have created new interfaces between neuroscience and society. Against this backdrop of dynamic innovation, we set out to examine how different features of neuroscience are depicted in print media. We used the 'guided news' function of the LexisNexis Academic database with keyword searches to find news articles published between 1995 and 2004 in major U.S. and U.K. English-language news sources. We performed searches on headlines, lead paragraphs, and body terms to maximize search yields. All articles were coded for overall tone of coverage, details on reported studies, presence of ethical, legal, and social discussion as well as the emerging interpretations of neuroscience - in the form of neuro-essentialism, neuro-realism, and neuro-policy. We found that print media coverage of the use of neurotechnology for diagnosis or therapy in neuropsychiatric disorders was generally optimistic. We also found that, even within articles that were identified as research reports, many did not provide details about research studies. We also gained additional insights into the previously identified phenomena of neuro-essentialism, neuro-realism, and neuro-policy showing some profound impacts of neuroscience on personal identity and policy-making. Our results highlight the implications of transfer of neuroscience knowledge to society given the substantial and authoritative weight ascribed to neuroscience knowledge in defining who we are. We also discuss the impact of these findings on neuroscience and on the respective contributions of the social sciences and the biological sciences in contemporary psychiatry and mental

  19. Coordinating Space Nuclear Research Advancement and Education

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  20. Space Life Sciences Research and Education Program

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  1. Brain Chemistry and Behaviour: An Update on Neuroscience Research and Its Implications for Understanding Drug Addiction

    Robinson, Emma S. J.

    2011-01-01

    Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…

  2. Reconsidering the concept of 'dual-use' in the context of neuroscience research

    Voarino, Nathalie

    2014-11-01

    Full Text Available The concept of ‘dual-use’ research usually refers to research with both civilian (e.g., therapeutic and military applications. I argue here that this dichotomy can and should be reconsidered and thus that the concept of dual-use can be helpful in examining other potential misuses, such as neuroenhancement or neuromarketing.

  3. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one’s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty. PMID:23493377

  4. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience.

    Coburn, Alex; Vartanian, Oshin; Chatterjee, Anjan

    2017-09-01

    A burgeoning interest in the intersection of neuroscience and architecture promises to offer biologically inspired insights into the design of spaces. The goal of such interdisciplinary approaches to architecture is to motivate construction of environments that would contribute to peoples' flourishing in behavior, health, and well-being. We suggest that this nascent field of neuroarchitecture is at a pivotal point in which neuroscience and architecture are poised to extend to a neuroscience of architecture. In such a research program, architectural experiences themselves are the target of neuroscientific inquiry. Here, we draw lessons from recent developments in neuroaesthetics to suggest how neuroarchitecture might mature into an experimental science. We review the extant literature and offer an initial framework from which to contextualize such research. Finally, we outline theoretical and technical challenges that lie ahead.

  5. Building up careers in translational neuroscience and mental health research: Education and training in the Centre for Biomedical Research in Mental Health.

    Rapado-Castro, Marta; Pazos, Ángel; Fañanás, Lourdes; Bernardo, Miquel; Ayuso-Mateos, Jose Luis; Leza, Juan Carlos; Berrocoso, Esther; de Arriba, Jose; Roldán, Laura; Sanjuán, Julio; Pérez, Victor; Haro, Josep M; Palomo, Tomás; Valdizan, Elsa M; Micó, Juan Antonio; Sánchez, Manuel; Arango, Celso

    2015-01-01

    The number of large collaborative research networks in mental health is increasing. Training programs are an essential part of them. We critically review the specific implementation of a research training program in a translational Centre for Biomedical Research in Mental Health in order to inform the strategic integration of basic research into clinical practice to have a positive impact in the mental health system and society. Description of training activities, specific educational programs developed by the research network, and challenges on its implementation are examined. The Centre for Biomedical Research in Mental Health has focused on training through different activities which have led to the development of an interuniversity master's degree postgraduate program in mental health research, certified by the National Spanish Agency for Quality Evaluation and Accreditation. Consolidation of training programs within the Centre for Biomedical Research in Mental Health has considerably advanced the training of researchers to meet competency standards on research. The master's degree constitutes a unique opportunity to accomplish neuroscience and mental health research career-building within the official framework of university programs in Spain. Copyright © 2014 SEP y SEPB. Published by Elsevier España. All rights reserved.

  6. New directions in hypnosis research: strategies for advancing the cognitive and clinical neuroscience of hypnosis

    Jensen, Mark P.; Jamieson, Graham A.; Lutz, Antoine; Mazzoni, Giuliana; McGeown, William J.; Santarcangelo, Enrica L.; Demertzi, Athena; De Pascalis, Vilfredo; Bányai, Éva I.; Rominger, Christian; Vuilleumier, Patrik; Faymonville, Marie-Elisabeth; Terhune, Devin B.

    2017-01-01

    This article summarizes key advances in hypnosis research during the past two decades, including (i) clinical research supporting the efficacy of hypnosis for managing a number of clinical symptoms and conditions, (ii) research supporting the role of various divisions in the anterior cingulate and prefrontal cortices in hypnotic responding, and (iii) an emerging finding that high hypnotic suggestibility is associated with atypical brain connectivity profiles. Key recommendations for a research agenda for the next decade include the recommendations that (i) laboratory hypnosis researchers should strongly consider how they assess hypnotic suggestibility in their studies, (ii) inclusion of study participants who score in the middle range of hypnotic suggestibility, and (iii) use of expanding research designs that more clearly delineate the roles of inductions and specific suggestions. Finally, we make two specific suggestions for helping to move the field forward including (i) the use of data sharing and (ii) redirecting resources away from contrasting state and nonstate positions toward studying (a) the efficacy of hypnotic treatments for clinical conditions influenced by central nervous system processes and (b) the neurophysiological underpinnings of hypnotic phenomena. As we learn more about the neurophysiological mechanisms underlying hypnosis and suggestion, we will strengthen our knowledge of both basic brain functions and a host of different psychological functions. PMID:29034102

  7. Neuroscience and Values: A Case Study Illustrating Developments in Policy, Training and Research in the UK and Internationally**

    Fulford, K. W. M

    2011-01-01

    In the current climate of dramatic advances in the neurosciences, it has been widely assumed that the diagnosis of mental disorder is a matter exclusively for value-free science. Starting from a detailed case history, this paper describes how, to the contrary, values come into the diagnosis of mental disorders, directly through the criteria at the heart of psychiatry’s most scientifically grounded classification, the American Psychiatric Association’s DSM (Diagnostic and Statistical Manual). Various possible interpretations of the prominence of values in psychiatric diagnosis are outlined. Drawing on work in the Oxford analytic tradition of philosophy, it is shown that, properly understood, the prominence of psychiatric diagnostic values reflects the necessary engagement of psychiatry with the diversity of individual human values. This interpretation opens up psychiatric diagnostic assessment to the resources of a new skills-based approach to working with complex and conflicting values (also derived from analytic philosophy) called ‘values-based practice.’ Developments in values-based practice in training, policy and research in mental health are briefly outlined. The paper concludes with an indication of how the integration of values-based with evidence-based approaches provides the basis for psychiatric practice in the twenty-first century that is both science-based and person-centred. PMID:21694963

  8. Integrating Social Neuroscience and Social Work: Innovations for Advancing Practice-Based Research

    Matto, Holly C.; Strolin-Goltzman, Jessica

    2010-01-01

    Throughout the social work profession, there is ongoing interest in building a social science agenda that can address the complex practice-based questions faced by social work professionals today. Methodological innovations and unique funding opportunities have already significantly advanced research on social work practice. Still, there is…

  9. Scientific research can be prone to bubbles too – neuroscience risks being the next one

    Hendricks, Vincent Fella

    2014-01-01

    Science, like any other field that attracts investment, is prone to bubbles. Overly optimistic investments in scientific fields, research methods and technologies generate episodes comparable to those experienced by financial markets prior to crashing. Assessing the toxic intellectual debt that b...

  10. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research

    Di Domenico, Stefano I.; Ryan, Richard M.

    2017-01-01

    Intrinsic motivation refers to people?s spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recentl...

  11. Space Photovoltaic Research and Technology 1995

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  12. Seven challenges for neuroscience.

    Markram, Henry

    2013-01-01

    Although twenty-first century neuroscience is a major scientific enterprise, advances in basic research have not yet translated into benefits for society. In this paper, I outline seven fundamental challenges that need to be overcome. First, neuroscience has to become "big science" - we need big teams with the resources and competences to tackle the big problems. Second, we need to create interlinked sets of data providing a complete picture of single areas of the brain at their different levels of organization with "rungs" linking the descriptions for humans and other species. Such "data ladders" will help us to meet the third challenge - the development of efficient predictive tools, enabling us to drastically increase the information we can extract from expensive experiments. The fourth challenge goes one step further: we have to develop novel hardware and software sufficiently powerful to simulate the brain. In the future, supercomputer-based brain simulation will enable us to make in silico manipulations and recordings, which are currently completely impossible in the lab. The fifth and sixth challenges are translational. On the one hand we need to develop new ways of classifying and simulating brain disease, leading to better diagnosis and more effective drug discovery. On the other, we have to exploit our knowledge to build new brain-inspired technologies, with potentially huge benefits for industry and for society. This leads to the seventh challenge. Neuroscience can indeed deliver huge benefits but we have to be aware of widespread social concern about our work. We need to recognize the fears that exist, lay them to rest, and actively build public support for neuroscience research. We have to set goals for ourselves that the public can recognize and share. And then we have to deliver on our promises. Only in this way, will we receive the support and funding we need.

  13. Animals in Space From Research Rockets to the Space Shuttle

    Burgess, Colin

    2007-01-01

    Many readers will doubtless be astonished to learn that animals were being fired aloft in U.S. and Soviet research rockets in the late 1940s. In fact most people not only believe that the Russian space dog Laika was the first canine to be launched into space, but also that the high-profile, precursory Mercury flights of chimps Ham and Enos were the only primate flights conducted by the United States. In fact, both countries had sent literally dozens of animals aloft for many years prior to these events and continued to do so for many years after. Other latter-day space nations, such as France and China, would also begin to use animals in their own space research. Animals in Space will explain why dogs, primates, mice and other rodents were chosen and tested, at a time when dedicated scientists from both space nations were determined to establish the survivability of human subjects on both ballistic and orbital space flights. It will also recount the way this happened; the secrecy involved and the methods empl...

  14. Three Requirements for Justifying an Educational Neuroscience

    Hruby, George G.

    2012-01-01

    Background: Over the past quarter century, efforts to bridge between research in the neurosciences and research, theory, and practice in education have grown from a mere hope to noteworthy scholarly sophistication. Many dedicated educational researchers have developed the secondary expertise in the necessary neurosciences and related fields to…

  15. Diagnostic Biomarkers for Posttraumatic Stress Disorder (PTSD): Promising Horizons from Translational Neuroscience Research

    Michopoulos, Vasiliki; Norrholm, Seth Davin; Jovanovic, Tanja

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently re-classified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition (DSM-5), the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal (HPA) axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes. PMID:25727177

  16. Diagnostic Biomarkers for Posttraumatic Stress Disorder: Promising Horizons from Translational Neuroscience Research.

    Michopoulos, Vasiliki; Norrholm, Seth Davin; Jovanovic, Tanja

    2015-09-01

    Posttraumatic stress disorder (PTSD) is a heterogeneous disorder that affects individuals exposed to trauma (e.g., combat, interpersonal violence, and natural disasters). Although its diagnostic features have been recently reclassified with the emergence of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition, the disorder remains characterized by hyperarousal, intrusive reminders of the trauma, avoidance of trauma-related cues, and negative cognition and mood. This heterogeneity indicates the presence of multiple neurobiological mechanisms underlying the etiology and maintenance of PTSD. Translational research spanning the past few decades has revealed several potential avenues for the identification of diagnostic biomarkers for PTSD. These include, but are not limited to, monoaminergic transmitter systems, the hypothalamic-pituitary-adrenal axis, metabolic hormonal pathways, inflammatory mechanisms, psychophysiological reactivity, and neural circuits. The current review provides an update to the literature with regard to the most promising putative PTSD biomarkers, with specific emphasis on the interaction between neurobiological influences on disease risk and symptom progression. Such biomarkers will most likely be identified by multi-dimensional models derived from comprehensive descriptions of molecular, neurobiological, behavioral, and clinical phenotypes. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.

  17. Space research in the Netherlands 1980

    1981-01-01

    In 1960, the Royal Netherlands Academy of Arts and Sciences established a committee with the task of coordinating space research in the Netherlands and maintaining the necessary international contacts. This committe, usually called GROC, has instituted four working groups, in which most of the Netherlands space research is concentrated. These groups are: Working Group for Solar and Stellar Space Research, Working Group for Cosmic Rays, Working Group for Photometry and the Working Group for Satellite Geodesy. General information on space research in the Netherlands Anno 1980 is given. Detailed data about the working groups, their work during 1980 and their programmes are presented, together with a survey of their scientific publications. A financial summary is also included. (Auth.)

  18. Advanced Neuroscience Interface Research

    2002-05-01

    patients, including 1 "C-labled choline for PET studies. We have presented our work at major international scientific conferences. Phosphatidylcholine ...examined in this study will include choline and Cr-containing brain metabolites such as: GPC, phosphatidylcholine (PC), Pcho, CDP-choline and...attack (TIA), epilepsy, Parkinson disease or major physical illness (e.g., carcinoma, insulin -dependent diabetes mellitus); and 5) conditions that would

  19. NRH Neuroscience Research Center

    2004-06-01

    average CSI and average FIM components? Associated rehab conditions (previously called complications) 27 of 72 r. UTIs : examine relationship with use of...report. We will consider adding a pharmacist to our team. Preliminary suggestions include: a. Assemble a comprehensive list of anti-hypertensive

  20. NRH Neuroscience Research Center

    2008-06-01

    Subacute Rehabilitation Programs for Medicare Beneficiiaries with Hip Fracture .: Medical Care. 43 (September) No. 9, 892-901. • DeJong, Gebern (2005...and Costs after Hip Fracture and Stroke: A Comparison of Rehabilitation Settings. JAMA (1997); 277(5): 396-404. 4 Heinemann AW, Hamilton B...back as 1936.32 Hospital associated malnutrition was reported in the middle and late 1970’s.33 34 Early enteral feeding in trauma patients has

  1. NRH Neuroscience Research Center

    2005-06-01

    used with individuals with neurological injuries, period between successive heel- strikes in the same leg. where the straps are used to assist with... forefoot which assists ankle dor- The amount of EMG activity generated within each siflexion for toe clearance during swing (see Section 2.3 of the seven...cuff illustrates that after heel- strike , the 3.3. Interaction forces between subject and robot subject drives their leg back into the Lokomat such

  2. Space research in the Netherlands 1976

    1977-06-01

    The reports of the four working groups of the Netherlands Committee for Geophysics and Space Research are given for 1976. The research desribed includes the electromagnetic and particle radiation of the sun and stars, cosmic rays and non-solar X-and gamma-radiation, photometric observations in the far infrared and ultraviolet spectral regions and observational and geometric satellite geodesy. (Auth.)

  3. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  4. Two-Person Neuroscience and Naturalistic Social Communication: The Role of Language and Linguistic Variables in Brain-Coupling Research

    García, Adolfo M.; Ibáñez, Agustín

    2014-01-01

    Social cognitive neuroscience (SCN) seeks to understand the brain mechanisms through which we comprehend others’ emotions and intentions in order to react accordingly. For decades, SCN has explored relevant domains by exposing individual participants to predesigned stimuli and asking them to judge their social (e.g., emotional) content. Subjects are thus reduced to detached observers of situations that they play no active role in. However, the core of our social experience is construed throug...

  5. New spaces for researching postgraduate Education research in ...

    We complement this stance with the ideas articulated by Kuhlen (2003) ... three spaces for interrogating postgraduate Education research offers fresh opportu- ..... Since science has a central role in the production of new knowledge, universal ...

  6. Medical technology advances from space research

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  7. Imaging Mass Spectrometry in Neuroscience

    2013-01-01

    Imaging mass spectrometry is an emerging technique of great potential for investigating the chemical architecture in biological matrices. Although the potential for studying neurobiological systems is evident, the relevance of the technique for application in neuroscience is still in its infancy. In the present Review, a principal overview of the different approaches, including matrix assisted laser desorption ionization and secondary ion mass spectrometry, is provided with particular focus on their strengths and limitations for studying different neurochemical species in situ and in vitro. The potential of the various approaches is discussed based on both fundamental and biomedical neuroscience research. This Review aims to serve as a general guide to familiarize the neuroscience community and other biomedical researchers with the technique, highlighting its great potential and suitability for comprehensive and specific chemical imaging. PMID:23530951

  8. Promoting a Dialogue between Neuroscience and Education

    Turner, David A.

    2011-01-01

    There have been a number of calls for a 'dialogue' between neuroscience and education. However, 'dialogue' implies an equal conversation between partners. The outcome of collaboration between neuroscientists and educators not normally expected to be so balanced. Educationists are expected to learn from neuroscience how to conduct research with…

  9. New spaces for researching postgraduate Education research in ...

    ... understandings and ideas of/about Education research. Although the project described in this article has ended, we found that in the third space of the interactive experienced moment fresh questions about the knowledge produced by postgraduate Education researchers in South Africa, at the critical historical moment of ...

  10. Ethical issues in neuroscience.

    Fuchs, Thomas

    2006-11-01

    The study gives an overview of ethical questions raised by the progress of neuroscience in identifying and intervening in neural correlates of the mind. Ethical problems resulting from brain research have induced the emergence of a new discipline termed neuroethics. Critical questions concern issues, such as prediction of disease, psychopharmacological enhancement of attention, memory or mood, and technologies such as psychosurgery, deep-brain stimulation or brain implants. Such techniques are capable of affecting the individual's sense of privacy, autonomy and identity. Moreover, reductionist interpretations of neuroscientific results challenge notions of free will, responsibility, personhood and the self which are essential for western culture and society. They may also gradually change psychiatric concepts of mental health and illness. These tendencies call for thorough, philosophically informed analyses of research findings and critical evaluation of their underlying conceptions of humans. Advances in neuroscience raise ethical, social and legal issues in relation to the human person and the brain. Potential benefits of applying neuroimaging, psychopharmacology and neurotechnology to mentally ill and healthy persons have to be carefully weighed against their potential harm. Questions concerning underlying concepts of humans should be actively dealt with by interdisciplinary and public debate.

  11. Neuroscience-Inspired Artificial Intelligence.

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  12. Neuroscience in the public sphere.

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-04-26

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Neuroscience in the Public Sphere

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-01-01

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere.

  14. Thinking-space as Research Creation

    Amhøj, Christa Breum

    2016-01-01

    to occur here and now. Design/methodology/approach: The object of the chapter is an experiment entitled The Future Public Leadership Education Now. It is based on non-representational studies and designed to operate on the affective registers. Findings: The chapter offers a theoretical and pragmatic...... than criticising existing practices. Building on notions of affective studies, the aim is to experiment on how to shift the focus from thinking about open spaces to intensifying thinking-spaces, able to generate the processual relations increasing the opportunity for a qualitative better welfare...... wandering as wondering. It continues and expands the experiment as an ongoing thinking-spaces moving between the known and the unknown. It aims at gently opening the opportunity for a qualitatively better welfare to occur. Practical implications: Researchers become welfare artists intensifying affective co...

  15. Why do science in space? Researchers' Night at CERN 2017

    Nellist, Clara

    2017-01-01

    Space topic and debate "Why do science in space?" With the special presence of Matthias Maurer, European Space Agency astronaut, and Mercedes Paniccia, PhD, Senior Research Associate for space experiment AMS.

  16. The Neuroscience Information Framework: A Data and Knowledge Environment for Neuroscience

    Akil, Huda; Ascoli, Giorgio A.; Bowden, Douglas M.; Bug, William; Donohue, Duncan E.; Goldberg, David H.; Grafstein, Bernice; Grethe, Jeffrey S.; Gupta, Amarnath; Halavi, Maryam; Kennedy, David N.; Marenco, Luis; Martone, Maryann E.; Miller, Perry L.; Müller, Hans-Michael; Robert, Adrian; Shepherd, Gordon M.; Sternberg, Paul W.; Van Essen, David C.; Williams, Robert W.

    2009-01-01

    With support from the Institutes and Centers forming the NIH Blueprint for Neuroscience Research, we have designed and implemented a new initiative for integrating access to and use of Web-based neuroscience resources: the Neuroscience Information Framework. The Framework arises from the expressed need of the neuroscience community for neuroinformatic tools and resources to aid scientific inquiry, builds upon prior development of neuroinformatics by the Human Brain Project and others, and directly derives from the Society for Neuroscience’s Neuroscience Database Gateway. Partnered with the Society, its Neuroinformatics Committee, and volunteer consultant-collaborators, our multi-site consortium has developed: (1) a comprehensive, dynamic, inventory of Web-accessible neuroscience resources, (2) an extended and integrated terminology describing resources and contents, and (3) a framework accepting and aiding concept-based queries. Evolving instantiations of the Framework may be viewed at http://nif.nih.gov, http://neurogateway.org, and other sites as they come on line. PMID:18946742

  17. Researching transformative learning spaces through learners' stories

    Maslo, Elina

    spaces, learning to learn through languages, learners´ stories, qualitative research method Methodology or Methods/Research Instruments or Sources Used A number of semi structured qualitative interviews have been conducted with three learners of Danish as second language. The language learners...... in the paper is on the research process and methodological tools. The goal of this paper is to show, that learners´ stories have a huge potential in researching learning processes. References Benson, P. & D. Nunan (2004). Lerners´ stories. Difference and Diversity in Language Learning. Cambridge University...... to use learners´ stories as a research methodology in the field of learning in general and language learning in particular....

  18. Physics Research on the International Space Station

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  19. Jung's views on causes and treatments of schizophrenia in light of current trends in cognitive neuroscience and psychotherapy research I. Aetiology and phenomenology.

    Silverstein, Steven M

    2014-02-01

    Jung's writings on schizophrenia are almost completely ignored or forgotten today. The purpose of this paper, along with a follow-up article, is to review the primary themes found in Jung's writings on schizophrenia, and to assess the validity of his theories about the disorder in light of our current knowledge base in the fields of psychopathology, cognitive neuroscience and psychotherapy research. In this article, five themes related to the aetiology and phenomenology of schizophrenia from Jung's writings are discussed:1) abaissement du niveau mental; 2) the complex; 3) mandala imagery; 4) constellation of archetypes and 5) psychological versus toxic aetiology. Reviews of the above areas suggest three conclusions. First, in many ways, Jung's ideas on schizophrenia anticipated much current thinking and data about the disorder. Second, with the recent (re)convergence of psychological and biological approaches to understanding and treating schizophrenia, the pioneering ideas of Jung regarding the importance of both factors and their interaction remain a useful and rich, but still underutilized resource. Finally, a more concerted effort to understand and evaluate the validity of Jung's concepts in terms of evidence from neuroscience could lead both to important advances in analytical psychology and to developments in therapeutic approaches that would extend beyond the treatment of schizophrenia. © 2014, The Society of Analytical Psychology.

  20. A review of algal research in space

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  1. Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience

    1995-01-01

    Photographer: Digital Telepresence: Dr Murial Ross's Virtual Reality Application for Neuroscience Research Biocomputation. To study human disorders of balance and space motion sickness. Shown here is a 3D reconstruction of a nerve ending in inner ear, nature's wiring of balance organs.

  2. Omics Research on the International Space Station

    Love, John

    2015-01-01

    The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated

  3. Tardigrades in Space Research - Past and Future

    Weronika, Erdmann; Łukasz, Kaczmarek

    2017-12-01

    To survive exposure to space conditions, organisms should have certain characteristics including a high tolerance for freezing, radiation and desiccation. The organisms with the best chance for survival under such conditions are extremophiles, like some species of Bacteria and Archea, Rotifera, several species of Nematoda, some of the arthropods and Tardigrada (water bears). There is no denying that tardigrades are one of the toughest animals on our planet and are the most unique in the extremophiles group. Tardigrada are very small animals (50 to 2,100 μm in length), and they inhabit great number of Earth environments. Ever since it was proven that tardigrades have high resistance to the different kinds of stress factors associated with cosmic journeys, combined with their relatively complex structure and their relative ease of observation, they have become a perfect model organism for space research. This taxon is now the focus of astrobiologists from around the world. Therefore, this paper presents a short review of the space research performed on tardigrades as well as some considerations for further studies.

  4. Tardigrades in Space Research - Past and Future.

    Weronika, Erdmann; Łukasz, Kaczmarek

    2017-12-01

    To survive exposure to space conditions, organisms should have certain characteristics including a high tolerance for freezing, radiation and desiccation. The organisms with the best chance for survival under such conditions are extremophiles, like some species of Bacteria and Archea, Rotifera, several species of Nematoda, some of the arthropods and Tardigrada (water bears). There is no denying that tardigrades are one of the toughest animals on our planet and are the most unique in the extremophiles group. Tardigrada are very small animals (50 to 2,100 μm in length), and they inhabit great number of Earth environments. Ever since it was proven that tardigrades have high resistance to the different kinds of stress factors associated with cosmic journeys, combined with their relatively complex structure and their relative ease of observation, they have become a perfect model organism for space research. This taxon is now the focus of astrobiologists from around the world. Therefore, this paper presents a short review of the space research performed on tardigrades as well as some considerations for further studies.

  5. Epigenetics Research on the International Space Station

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  6. Critical neuroscience-or critical science? A perspective on the perceived normative significance of neuroscience

    Schleim, Stephan

    2014-01-01

    Members of the Critical Neuroscience initiative raised the question whether the perceived normative significance of neuroscience is justified by the discipline's actual possibilities. In this paper I show how brain research was assigned the ultimate political, social, and moral authority by some

  7. Building Space Management | Climate Neutral Research Campuses | NREL

    , repurposing underused space and through the use of electronic media. Several space management principles can Building Space Management Building Space Management Building space represents one of the largest recruiting and successful acquisition of research funding. Learn more about how space management is necessary

  8. Undergraduate Neuroscience Education: Blueprints for the 21(st) Century.

    Wiertelak, Eric P; Ramirez, Julio J

    2008-01-01

    Paralleling the explosive growth of neuroscientific knowledge over the last two decades, numerous institutions from liberal arts colleges to research universities have either implemented or begun exploring the possibility of implementing undergraduate programs in neuroscience. In 1995, Faculty for Undergraduate Neuroscience (FUN) partnered with Project Kaleidoscope (PKAL) to offer a workshop exploring how undergraduate neuroscience education should proceed. Four blueprints were created to provide direction to the burgeoning interest in developing programs in undergraduate neuroscience education: 1) Neuroscience nested in psychology; 2) Neuroscience nested in biology; 3) Neuroscience as a minor; and 4) Neuroscience as a major. In 2005, FUN again partnered with PKAL to revisit the blueprints in order to align the blueprints with modern pedagogical philosophy and technology. The original four blueprints were modified and updated. One particularly exciting outgrowth of the 2005 workshop was the introduction of a fifth curricular blueprint that strongly emphasizes the integration of the humanities and social sciences into neuroscience: Neuroscience Studies. Because of the interdisciplinary nature of neuroscience, an education in neuroscience will prepare the next generation of students to think critically, synthetically, and creatively as they confront the problems facing humanity in the 21(st) century.

  9. Research & Technology Report Goddard Space Flight Center

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  10. Education Research: An exploration of case-based learning in neuroscience grand rounds using the Delphi technique.

    Rigby, Heather; Schofield, Susie; Mann, Karen; Benstead, Timothy

    2012-07-17

    Neuroscience grand rounds (NSGR) is a key educational exercise in most academic medical centers. Despite its importance, there are few published studies evaluating the manner in which it is conducted. Our objective was to obtain consensus opinion from staff neurologists, neurosurgeons, neuroradiologists, and neuropathologists on the features that best characterize a highly educational NSGR. Using the Delphi technique, multiple rounds of questionnaires were presented to a panel of neurologists, neurosurgeons, neuropathologists, and neuroradiologists. The anonymous responses were analyzed and fed back to participants. Each round, the participants were given the opportunity to react to collective opinion by changing their response or by presenting arguments in favor or against the item in question. We found that support for NSGR in its present form is high and that particularly strong support exists for 1) case-based rounds, 2) high level of audience interaction, 3) resident participation in case presentation and analysis, 4) formal training for residents in leading case-based presentations, and 5) resident feedback and evaluation. Our results offer centers that use a case-based format for NSGR with guidance to maximize the important learning opportunity that it provides. We provide an organized evaluation of expert opinion on how this important educational exercise should be conducted. The results expose some fresh insights into traditional values in medical education.

  11. Can a metaphor of physics contribute to MEG neuroscience research? Intermittent turbulent eddies in brain magnetic fields

    Mandell, Arnold J.

    2013-01-01

    A common manifestation of nonlinear mathematical and experimental neurobiological dynamical systems in transition, intermittence, is currently being attended by concepts from physics such as turbulent eddy and the avalanche of critical systems. Do these concepts constitute an enticing poetry of dynamical universality or do these metaphors from physics generate more specific novel and relevant concepts and experiments in the neurosciences? Using six graphics and ten measures derived from the ergodic theory of dynamical systems, we study the magnetoencephalic, MEG, records of taskless, “resting” human subjects to find consistent evidence for turbulent (chaotic) dynamics marked by intermittent turbulent eddies. This brings up an apparent discrepancy via the juxtaposition of the superposition characteristics of magnetic fields and the non-superposition properties of turbulent flow. Treating this apparent inconsistency as an existent duality, we propose a physical model for how that might be the case. This leaves open the question: has the physical metaphor, turbulent eddy, contributed to a scientific understanding of the human resting MEG?

  12. A survey of the neuroscience resource landscape: perspectives from the neuroscience information framework.

    Cachat, Jonathan; Bandrowski, Anita; Grethe, Jeffery S; Gupta, Amarnath; Astakhov, Vadim; Imam, Fahim; Larson, Stephen D; Martone, Maryann E

    2012-01-01

    The number of available neuroscience resources (databases, tools, materials, and networks) available via the Web continues to expand, particularly in light of newly implemented data sharing policies required by funding agencies and journals. However, the nature of dense, multifaceted neuroscience data and the design of classic search engine systems make efficient, reliable, and relevant discovery of such resources a significant challenge. This challenge is especially pertinent for online databases, whose dynamic content is largely opaque to contemporary search engines. The Neuroscience Information Framework was initiated to address this problem of finding and utilizing neuroscience-relevant resources. Since its first production release in 2008, NIF has been surveying the resource landscape for the neurosciences, identifying relevant resources and working to make them easily discoverable by the neuroscience community. In this chapter, we provide a survey of the resource landscape for neuroscience: what types of resources are available, how many there are, what they contain, and most importantly, ways in which these resources can be utilized by the research community to advance neuroscience research. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Nanotechnology, nanotoxicology, and neuroscience.

    Suh, Won Hyuk; Suslick, Kenneth S; Stucky, Galen D; Suh, Yoo-Hun

    2009-02-01

    Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.

  14. Neuroscience: viable applications in education?

    Devonshire, Ian M; Dommett, Eleanor J

    2010-08-01

    As a relatively young science, neuroscience is still finding its feet in potential collaborations with other disciplines. One such discipline is education, with the field of neuroeducation being on the horizon since the 1960s. However, although its achievements are now growing, the partnership has not been as successful as first hopes suggested it should be. Here the authors discuss the theoretical barriers and potential solutions to this, which have been suggested previously, with particular focus on levels of research in neuroscience and their applicability to education. Moreover, they propose that these theoretical barriers are driven and maintained by practical barriers surrounding common language and research literacy. They propose that by overcoming these practical barriers through appropriate training and shared experience, neuroeducation can reach its full potential.

  15. Applications of neuroscience in criminal law: legal and methodological issues.

    Meixner, John B

    2015-01-01

    The use of neuroscience in criminal law applications is an increasingly discussed topic among legal and psychological scholars. Over the past 5 years, several prominent federal criminal cases have referenced neuroscience studies and made admissibility determinations regarding neuroscience evidence. Despite this growth, the field is exceptionally young, and no one knows for sure how significant of a contribution neuroscience will make to criminal law. This article focuses on three major subfields: (1) neuroscience-based credibility assessment, which seeks to detect lies or knowledge associated with a crime; (2) application of neuroscience to aid in assessments of brain capacity for culpability, especially among adolescents; and (3) neuroscience-based prediction of future recidivism. The article briefly reviews these fields as applied to criminal law and makes recommendations for future research, calling for the increased use of individual-level data and increased realism in laboratory studies.

  16. The International Max Planck Research Schools for Molecular Biology and Neurosciences in Gttingen (Germany) as Examples for Joint Doctoral Training by a German University and Its Non-University Partners

    Burkhardt, Steffen; Neher, Erwin

    2008-01-01

    New concepts of higher education have recently been implemented through the MSc/PhD programmes in Molecular Biology and Neurosciences in the International Max Planck Research Schools, due to close cooperation between the University of Gttingen, three Max Planck Institutes and the German Primate Centre. The novel measures include a three stage…

  17. Neuroscience and humanistic psychiatry: a residency curriculum.

    Griffith, James L

    2014-04-01

    Psychiatry residencies with a commitment to humanism commonly prioritize training in psychotherapy, cultural psychiatry, mental health policy, promotion of human rights, and similar areas reliant upon dialogue and collaborative therapeutic relationships. The advent of neuroscience as a defining paradigm for psychiatry has challenged residencies with a humanistic focus due to common perceptions that it would entail constriction of psychiatric practice to diagnostic and psychopharmacology roles. The author describes a neuroscience curriculum that has taught psychopharmacology effectively, while also advancing effectiveness of language-based and relationship-based therapeutics. In 2000, the George Washington University psychiatry residency initiated a neuroscience curriculum consisting of (1) a foundational postgraduate year 2 seminar teaching cognitive and social neuroscience and its integration into clinical psychopharmacology, (2) advanced seminars that utilized a neuroscience perspective in teaching specific psychotherapeutic skill sets, and (3) case-based teaching in outpatient clinical supervisions that incorporated a neuroscience perspective into traditional psychotherapy supervisions. Curricular assessment was conducted by (1) RRC reaccreditation site visit feedback, (2) examining career trajectories of residency graduates, (3) comparing PRITE exam Somatic Treatments subscale scores for 2010-2012 residents with pre-implementation residents, and (4) postresidency survey assessment by 2010-2012 graduates. The 2011 RRC site visit report recommended a "notable practice" citation for "innovative neurosciences curriculum." Three of twenty 2010-2012 graduates entered neuroscience research fellowships, as compared to none before the new curriculum. PRITE Somatic Treatments subscale scores improved from the 23rd percentile to the 62nd percentile in pre- to post-implementation of curriculum (p neuroscience curriculum for a residency committed to humanistic psychiatry

  18. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  19. [Sex- and gender-sensitive research in epidemiology and medicine: how can this be achieved? Aims and first results of the network "Sex-/Gender-Sensitive Research in Epidemiology, Neurosciences and Genetics/Cancer Research"].

    Jahn, I; Gansefort, D; Kindler-Röhrborn, A; Pfleiderer, B

    2014-09-01

    It is considered general knowledge among physicians and epidemiologists that biological and social aspects associated with being male or female have a strong influence on health and disease. Integrating these aspects into research is necessary to counteract the problems--including ethical problems--resulting from a different evidence basis for men and women. From January 2011 to June 2014 the Federal Ministry of Education and Research supported the network "Sex-/Gender-Sensitive Research in Epidemiology, Neuroscience and Genetics/Cancer Research" with three subprojects, which aimed to promote gender-sensitive research practices. The concepts and results are presented in this article. The subproject gathered data (literature analyses, questionnaires) and offered programs for young scientists. Experiences and results were collected and generalized, for instance, in the form of definitions of terms. 50 young scientists have taken part in the training program, identifying associations and barriers in sex-/gender-sensitive research. Among others, a working definition for "sex-/gender-sensitive research" was developed, as well as definitions for the terms "sex-specific" (for biological characteristics that are specific to men or women) and "sex-/gender-dependent" or "sex-/gender-associated" (for biological and social factors, for which the extent of occurrence differs between the sexes). The concepts realized by the network are well suited to stimulate further development and discussions. The definition of terms is an important base for a productive and high-yielding interdisciplinary collaboration.

  20. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  1. Implementation of an Integrated Neuroscience Unit.

    Breslin, Rory P; Franker, Lauren; Sterchi, Suzanne; Sani, Sepehr

    2016-02-01

    Many challenges exist in today's health care delivery system, and much focus and research are invested into ways to improve care with cost-effective measures. Specialty-specific dedicated care units are one solution for inpatient hospital care because they improve outcomes and decrease mortality. The neuroscience population encompasses a wide variety of diagnoses of spinal to cranial issues with a wide spectrum of needs varying from one patient to the next. Neuroscience care must be patient-specific during the course of frequent acuity changes, and one way to achieve this is through a neuroscience-focused unit. Few resources are available on how to implement this type of unit. Advanced practice nurses are committed to providing high-quality, safe, and cost-effective care and are instrumental in the success of instituting a unit dedicated to the care of neuroscience patients.

  2. Layers of Neuroscience

    Dumoulin, Serge O

    2017-01-01

    In a patch of cortex, laminae connect to different parts of the brain. Huber et al. (2017) demonstrate the ability of human neuroimaging to derive laminar information flow between brain regions, paving the way for human neuroscience applications.

  3. Philosophy, Neuroscience and Education

    Clark, John

    2015-01-01

    This short note takes two quotations from Snooks' recent editorial on neuroeducation and teases out some further details on the philosophy of neuroscience and neurophilosophy along with consideration of the implications of both for philosophy of education.

  4. Space The New Medical Frontier / NASA Spinoffs Milestones in Space Research

    Skip Navigation Bar Home Current Issue Past Issues Space The New Medical Frontier Past Issues / Fall 2007 ... the occasion. Photo courtesy of NIH Long-Term Space Research Until the advent of the ISS, research ...

  5. Ionospheric research for space weather service support

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  6. Research progress on space radiation biology

    Li Wenjian; Dang Bingrong; Wang Zhuanzi; Wei Wei; Jing Xigang; Wang Biqian; Zhang Bintuan

    2010-01-01

    Space radiation, particularly induced by the high-energy charged particles, may cause serious injury on living organisms. So it is one critical restriction factor in Manned Spaceflight. Studies have shown that the biological effects of charged particles were associated with their quality, the dose and the different biological end points. In addition, the microgravity conditions may affect the biological effects of space radiation. In this paper we give a review on the biological damage effects of space radiation and the combined biological effects of the space radiation coupled with the microgravity from the results of space flight and ground simulation experiments. (authors)

  7. Neuromarketing and consumer neuroscience: contributions to neurology.

    Javor, Andrija; Koller, Monika; Lee, Nick; Chamberlain, Laura; Ransmayr, Gerhard

    2013-02-06

    'Neuromarketing' is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods 'neuromarketing' and scientific ones 'consumer neuroscience'. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience. In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research. We identify the following areas where consumer neuroscience could contribute to the field of neurology:First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson's disease, frontotemporal dementia, epilepsy, and Huntington's disease.Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson's disease and frontotemporal dementia to advance knowledge of this important behavioral symptom.Third, trust research in the medical context lacks

  8. Omicron space habitat—research stage II

    Doule, Ondřej; Šálený, Vratislav; Hérin, Benoît; Rousek, Tomáš

    2012-01-01

    The design presented in this paper is in response to the revolution in private space activities, the increasing public interest in commercial flights to space and the utilization of structures such as space hotels or private orbital habitats. The baseline for the Omicron design concept is the Russian Salyut derived space station module. Salyut was the first space station to orbit the Earth. Its unique design and technical features were what made the development of space stations Salyut 1-7, MIR and the International Space Station (ISS) Zwezda service module possible. Due to its versatility and the reliable operating launch vehicle Proton, this space module series has the potential to be adapted for space hotel development. This paper proposes a conceptual design of the space habitat called Omicron, with particular focus on interior design for the microgravity environment. The Omicron concepts address the needs of space tourism with a strong emphasis on the safety and comfort of the spaceflight participants. The Omicron habitat supports three inhabitants in nominal conditions (e.g., two passengers and one astronaut). The habitat provides a flexible interior, facilities and spaces dynamically transforming in order to accommodate various types of activities, which will be performed in an organically formed interior supporting spatial orientation and movement in microgravity. The future development potential of Omicron is also considered. The baseline version is composed solely of one rigid module with an inverted cupola for observations. An alternative version offers more space using an inflatable structure. Finally, a combination of multiple Omicron modules enables the creation of a larger orbital habitat. The Omicron's subsystems support a few days visit by trained passengers. The transport to the habitat would be provided e.g., by the Soyuz TMA spacecraft carried by the Soyuz launch vehicle in the early stage of Omicron's development, before a fully reusable

  9. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  10. Space research and cosmic plasma physics

    Alfven, H.

    1983-08-01

    Scientific progress depends on the development of new instruments. The change from Ptolemaic to Copernican cosmology was to a large extent caused by the introduction of telescopes. Similarly, space research has changed our possibilities to explore our large scale environment so drastically that a thorough revision of cosmic physics is now taking place. A list is given of a large number of fields in which this revision is in progress or is just starting. The new view are based on in situ measurements in the magnetospheres. By extrapolating these measurments to more distant regions, also plasma astrophysics in general has to be reconsidered. In certain important fields the basic approach has to be changed. This applies to cosmogony (origin and evolution of the solar system) and to cosmology. New results from laboratory and magnetospheric measurements extrapolated to cosmogonic conditions give an increased reliability to our treatment of the origin and evolution of the Solar system. Especially the Voyager observations of the saturnian rings give us the hope that we may transfer cosmogony from a playground for more or less crazy ideas into a respectable science. (author)

  11. Security implications and governance of cognitive neuroscience.

    Kosal, Margaret E; Huang, Jonathan Y

    2015-01-01

    In recent years, significant efforts have been made toward elucidating the potential of the human brain. Spanning fields as disparate as psychology, biomedicine, computer science, mathematics, electrical engineering, and chemistry, research venturing into the growing domains of cognitive neuroscience and brain research has become fundamentally interdisciplinary. Among the most interesting and consequential applications to international security are the military and defense community's interests in the potential of cognitive neuroscience findings and technologies. In the United States, multiple governmental agencies are actively pursuing such endeavors, including the Department of Defense, which has invested over $3 billion in the last decade to conduct research on defense-related innovations. This study explores governance and security issues surrounding cognitive neuroscience research with regard to potential security-related applications and reports scientists' views on the role of researchers in these areas through a survey of over 200 active cognitive neuroscientists.

  12. Invertebrate neuroscience and CephsInAction at the Mediterranean Society for Neuroscience Meeting Cagliari 2015.

    Holden-Dye, Lindy; Fiorito, Graziano; Ponte, Giovanna

    2015-12-01

    Invertebrate neuroscience, and in particular cephalopod research, is well represented in the Mediterranean region. Therefore, the recent meeting of the Mediterranean Society for Neuroscience in Santa Margherita di Pula, Sardinia (12-15 June 2015) provided an excellent opportunity for invertebrate contributions. Furthermore, the Chair of an EU COST Action for cephalopod research (FA1301; www.cephsinaction.org ), Giovanna Ponte, together with Graziano Fiorito from the Stazione Zoologica, Naples, aligned a meeting of research groups working in the field of cephalopod neurophysiology from across Europe to coincide with the neuroscience meeting. This provided an exciting forum for exchange of ideas. Here we provide brief highlights of both events and an explanation of the activities of the COST Action for the broader invertebrate neuroscience community.

  13. Three requirements for justifying an educational neuroscience.

    Hruby, George G

    2012-03-01

    Over the past quarter century, efforts to bridge between research in the neurosciences and research, theory, and practice in education have grown from a mere hope to noteworthy scholarly sophistication. Many dedicated educational researchers have developed the secondary expertise in the necessary neurosciences and related fields to generate both empirical research and theoretical syntheses of noteworthy promise. Nonetheless, thoughtful and critical scholars in education have expressed concern about both the intellectual coherence and ethical dangers of this new area. It is still an open question whether educational neuroscience is for some time yet to remain only a formative study area for adventurous scholars or is already a fully fledged field of educational scholarship. In this paper, I suggest that to be a worthy field of educational research, educational neuroscience will need to address three issues: intellectual coherence, mutually informing and respected scholarly expertise, and an ethical commitment to the moral implications and obligations shared within educational research generally. I shall set forth some examples of lapses in this regard, focusing primarily on work on reading development, as that is my area of expertise, and make recommendations for due diligence. Arguments. First, intellectual coherence requires both precision in definition of technical terms (so that diverse scholars and professionals may communicate findings and insights consistently across fields), and precision in the logical warrants by which educational implications are drawn from empirical data from the neurosciences. Both needs are facilitated by careful attention to categorical boundary and avoidance of category error. Second, educational neuroscientists require focused and broad expertise in both the neurosciences and educational scholarship on teaching and learning in classrooms (and/or ancillary fields). If history is our guide, neuroscience implications for practice will

  14. Consumer Neuroscience : Pricing research to gain and sustain a cutting edge competitive advantage by improving customer value and profitability

    Kumlehn, Malte

    2011-01-01

    This is the first study that exclusively focuses on gaining knowledge of the vast opportunities that Neuroscientific pricing research offers for marketing purposes. The findings of this study provide evidence of the importance to improve customer and organizational decision making. The findings further highlight the crucial importance of Neuroscientific pricing research. Moreover, evidence is provided that fundamental and well formulated models and concepts need to be developed in the discipl...

  15. Space Weather Forecasting and Supporting Research in the USA

    Pevtsov, A. A.

    2017-12-01

    In the United State, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For civilian and commercial purposes, space weather forecast is done by the Space Weather Prediction Center (SWPC) of the National Oceanic and Atmospheric Administration (NOAA). Observational data for modeling come from the network of groundbased observatories funded via various sources, as well as from the instruments on spacecraft. Numerical models used in forecast are developed in framework of individual research projects. The article provides a brief review of current state of space weather-related research and forecasting in the USA.

  16. Neuromarketing and consumer neuroscience: contributions to neurology

    2013-01-01

    Background ‘Neuromarketing’ is a term that has often been used in the media in recent years. These public discussions have generally centered around potential ethical aspects and the public fear of negative consequences for society in general, and consumers in particular. However, positive contributions to the scientific discourse from developing a biological model that tries to explain context-situated human behavior such as consumption have often been neglected. We argue for a differentiated terminology, naming commercial applications of neuroscientific methods ‘neuromarketing’ and scientific ones ‘consumer neuroscience’. While marketing scholars have eagerly integrated neuroscientific evidence into their theoretical framework, neurology has only recently started to draw its attention to the results of consumer neuroscience. Discussion In this paper we address key research topics of consumer neuroscience that we think are of interest for neurologists; namely the reward system, trust and ethical issues. We argue that there are overlapping research topics in neurology and consumer neuroscience where both sides can profit from collaboration. Further, neurologists joining the public discussion of ethical issues surrounding neuromarketing and consumer neuroscience could contribute standards and experience gained in clinical research. Summary We identify the following areas where consumer neuroscience could contribute to the field of neurology: First, studies using game paradigms could help to gain further insights into the underlying pathophysiology of pathological gambling in Parkinson’s disease, frontotemporal dementia, epilepsy, and Huntington’s disease. Second, we identify compulsive buying as a common interest in neurology and consumer neuroscience. Paradigms commonly used in consumer neuroscience could be applied to patients suffering from Parkinson’s disease and frontotemporal dementia to advance knowledge of this important behavioral symptom

  17. Going down to the Crossroads: Neuroendocrinology, Developmental Psychobiology, and Prospects for Research at the Intersection of Neuroscience and Education

    Blair, Clancy

    2010-01-01

    The relation of stress hormones and activity in stress response systems to the development of aspects of cognition and behavior important for educational achievement and attainment is examined from the perspective of the developmental psychobiological model. It is proposed that research in neuroendocrinology supports three general conclusions,…

  18. Space Station life science research facility - The vivarium/laboratory

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  19. Neuroscience is Bad

    Presskorn-Thygesen, Thomas

    The title is telling: I will argue first that ‘traditional’ cognitive neuroscience is conceptually flawed and secondly – as an open question – inquire whether theories of brain plasticity are scientifically more sound and more apt to enter into collaboration with the social sciences. The ascripti......The title is telling: I will argue first that ‘traditional’ cognitive neuroscience is conceptually flawed and secondly – as an open question – inquire whether theories of brain plasticity are scientifically more sound and more apt to enter into collaboration with the social sciences...

  20. CERN and ESA examine future fundamental physics research in space

    CERN Press Office. Geneva

    2000-01-01

    A special workshop on Fundamental Physics in Space and related topics will be held at CERN in Geneva from 5 to 7 April 2000. Remarkable advances in technology and progress made in reliability and cost effectiveness of European space missions in recent years have opened up exciting new directions for such research. The workshop provides a forum for sharing expertise gained in high energy physics research with colleagues working in research in space.

  1. Animal welfare and the refinement of neuroscience research methods--a case study of Huntington's disease models.

    Olsson, I Anna S; Hansen, Axel K; Sandøe, Peter

    2008-07-01

    The use of animals in biomedical and other research presents an ethical dilemma: we do not want to lose scientific benefits, nor do we want to cause laboratory animals to suffer. Scientists often refer to the potential human benefits of animal models to justify their use. However, even if this is accepted, it still needs to be argued that the same benefits could not have been achieved with a mitigated impact on animal welfare. Reducing the adverse effects of scientific protocols ('refinement') is therefore crucial in animal-based research. It is especially important that researchers share knowledge on how to avoid causing unnecessary suffering. We have previously demonstrated that even in studies in which animal use leads to spontaneous death, scientists often fail to report measures to minimize animal distress (Olsson et al. 2007). In this paper, we present the full results of a case study examining reports, published in peer-reviewed journals between 2003 and 2004, of experiments employing animal models to study the neurodegenerative disorder Huntington's disease. In 51 references, experiments in which animals were expected to develop motor deficits so severe that they would have difficulty eating and drinking normally were conducted, yet only three references were made to housing adaptation to facilitate food and water intake. Experiments including end-stages of the disease were reported in 14 papers, yet of these only six referred to the euthanasia of moribund animals. If the reference in scientific publications reflects the actual application of refinement, researchers do not follow the 3Rs (replacement, reduction, refinement) principle. While in some cases, it is clear that less-than-optimal techniques were used, we recognize that scientists may apply refinement without referring to it; however, if they do not include such information in publications, it suggests they find it less relevant. Journal publishing policy could play an important role: first, in

  2. Space Weather Research Towards Applications in Europe

    Lilensten, Jean

    2007-01-01

    This book shows the state of the art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position, with theoretic papers and applicative papers as well. It is divided into 5 chapters. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, 4 to 5 contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather. From the reading of this book, it becomes evident that space weather is a living discipline, full of promises and already full of amazing realizations. The strength of Europe is clear through the book, but it is also clear that this discipline is world wide.

  3. Space Plant Biology Research at KSC

    Romeyn, Matthew

    2016-01-01

    Long duration space exploration will require the capability for crews to grow their own food. Growing food is desirable from a mass-efficiency standpoint, as it is currently not feasible to carry enough prepackaged food on spacecraft to sustain crews for long duration missions. Nutritionally, fresh produce provides key nutrients that are not preserved well in pre-packaged meals (e.g. vitamins C and K) and those that are able to counteract detrimental effects of space flight, such as antioxidants to combat radiation exposure and lutein for decreasing macular degeneration. Additionally, there are significant psychological benefits of maintaining gardens, one being an indicator for the passage of time.

  4. Space Research in the Federal Republic of Germany.

    Preuss, Karl-Heinz, Ed.; Simen, Rolf H., Ed.

    The Federal Republic of Germany's space policy is designed to promote basic research, contribute to the development of space technology, and apply the findings in the public and private sectors. It is also aimed at enhancing the competitiveness of the West German space industry and helping countries of the Third World to solve their development…

  5. Organizational Metamorphosis in Space Research and Development.

    Tompkins, Phillip K.

    1978-01-01

    The communicative, and therefore organizational and managerial, aspects of the Marshall Space Flight Center's (MSFC) metamorphosis from Saturn V to Skylab are analyzed. MSFC's consistent successes are attributed to the organization's commitment to communication systems, its technical integrity, and its single-minded purpose. (JMF)

  6. Neuroscience and the fallacies of functionalism.

    Reddy, William M

    2010-01-01

    Smail's "On Deep History and the Brain" is rightly critical of the functionalist fallacies that have plagued evolutionary theory, sociobiology, and evolutionary psychology. However, his attempt to improve on these efforts relies on functional explanations that themselves oversimplify the lessons of neuroscience. In addition, like explanations in evolutionary psychology, they are highly speculative and cannot be confirmed or disproved by evidence. Neuroscience research is too diverse to yield a single picture of brain functioning. Some recent developments in neuroscience research, however, do suggest that cognitive processing provides a kind of “operating system” that can support a great diversity of cultural material. These developments include evidence of “top-down” processing in motor control, in visual processing, in speech recognition, and in “emotion regulation.” The constraints that such a system may place on cultural learning and transmission are worth investigating. At the same time, historians are well advised to remain wary of the pitfalls of functionalism.

  7. Civil Law and Neuroscience

    de Kogel, C.H.; Schrama, W.M.; Smit, M.

    2014-01-01

    The relationship between the brain and human behaviour is receiving increasing attention in legal practice. Much has already been published about the role of neuroscience in criminal law, but surprisingly little is known about its role in civil law. In this contribution, the relevance of

  8. Linking Neuroscience and Psychoanalysis.

    Habicht, Manuela H.

    This review discusses the relationship between neuroscience and psychoanalysis and introduces a new scientific method called neuro-psychoanalysis, a combination of the two phenomena. A significant difference between the two is that psychoanalysis has not evolved scientifically since it has not developed objective methods for testing ideas that it…

  9. The law and neuroscience.

    Gazzaniga, Michael S

    2008-11-06

    Some of the implications for law of recent discoveries in neuroscience are considered in a new program established by the MacArthur Foundation. A group of neuroscientists, lawyers, philosophers, and jurists are examining issues in criminal law and, in particular, problems in responsibility and prediction and problems in legal decision making.

  10. Visual thinking and neuroscience.

    Smith, C U M

    2008-01-01

    After a consideration of visual thinking in science the role of such thinking in neuroscience is discussed. Three instances are examined - cortical column, retina, impulse - and it is argued that visual thinking is employed, though in different ways, in each. It lies at the core of neurobiological thought.

  11. Neuroanatomy and Global Neuroscience.

    DeFelipe, Javier

    2017-07-05

    Our brains are like a dense forest-a complex, seemingly impenetrable terrain of interacting cells mediating cognition and behavior. However, we should view the challenge of understanding the brain with optimism, provided that we choose appropriate strategies for the development of global neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Implications of Affective and Social Neuroscience for Educational Theory

    Immordino-Yang, Mary Helen

    2011-01-01

    The past decade has seen major advances in cognitive, affective and social neuroscience that have the potential to revolutionize educational theories about learning. The importance of emotion and social learning has long been recognized in education, but due to technological limitations in neuroscience research techniques, treatment of these…

  13. Neuroscience and the Soul: Competing Explanations for the Human Experience

    Preston, Jesse Lee; Ritter, Ryan S.; Hepler, Justin

    2013-01-01

    The development of fMRI techniques has generated a boom of neuroscience research across the psychological sciences, and revealed neural correlates for many psychological phenomena seen as central to the human experience (e.g., morality, agency). Meanwhile, the rise of neuroscience has reignited old debates over mind-body dualism and the soul.…

  14. Applying Neuroscience to Enhance Tactical Leader Cognitive Performance in Combat

    2011-12-16

    highlights works inspired by neuroscience discoveries in the last twenty years. Neuroscience Literature and Research In his 1994 book, Descartes ’ Error...http://faculty.washington.edu/chudler/ facts.html (accessed 9 October 2011). Damasio, Antonio. 1994. Descartes ’ error: Emotion, reason, and the human

  15. Tissue Engineering Organs for Space Biology Research

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  16. Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain

    Rana, Mohit; Varan, Andrew Q.; Davoudi, Anis; Cohen, Ronald A.; Sitaram, Ranganatha; Ebner, Natalie C.

    2016-01-01

    Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging. PMID:27803662

  17. Space research on organs and tissues

    Tischler, Marc E.; Morey-Holton, Emily

    1993-01-01

    Studies in space on various physiological systems have and will continue to provide valuable information on how they adapt to reduced gravitational conditions, and how living in a 1 g (gravity) environment has guided their development. Muscle and bone are the most notable tissues that respond to unweighting caused by lack of gravity. The function of specific muscles and bones relates directly to mechanical loading, so that removal of 'normal forces' in space, or in bedridden patients, causes dramatic loss of tissue mass. The cardiovascular system is also markedly affected by reduced gravity. Adaptation includes decreased blood flow to the lower extremities, thus decreasing the heart output requirement. Return to 1 g is associated with a period of reconditioning due to the deconditioning that occurs in space. Changes in the cardiovascular system are also related to responses of the kidney and certain endocrine (hormone-producing) organs. Changes in respiratory function may also occur, suggesting an effect on the lungs, though this adaptation is poorly understood. The neurovestibular system, including the brain and organs of the inner ear, must adapt to the disorientation caused by lack of gravity. Preliminary findings have been reported for liver. Additionally, endocrine organs responsible for release of hormones such as insulin, growth hormone, glucocorticoids, and thyroid hormone may respond to spaceflight.

  18. Research in space science and technology. Semiannual progress report

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  19. Models of Learning Space: Integrating Research on Space, Place and Learning in Higher Education

    Ellis, R. A.; Goodyear, P.

    2016-01-01

    Learning space research is a relatively new field of study that seeks to inform the design, evaluation and management of learning spaces. This paper reviews a dispersed and fragmented literature relevant to understanding connections between university learning spaces and student learning activities. From this review, the paper distils a number of…

  20. Establishing space research capability in Ethiopia

    Bosinger, T.; Damtie, B.; Usoskin, I. G.

    It is often considered by various sources and institutions around the world that promotion of space physics activities in a developing country like Ethiopia is a waste of time and resources. It has, of course, some sense: developing countries should put all their efforts in improving the standard of life, infrastructure and basic education. However, it is straightforward to realize that nowadays improvement in any of the basic needs of developing countries is related to high technology (e.g. mobile phones, GPS, remote sensing). This means that a developing country has to take care of recruiting specialists among their own people who can take part in the decision making processes which are increasingly of global nature. Moreover, many citizens of developing countries are studying and working abroad attaining high expertise. As a matter of fact, there are more Ethiopians with PhD in physics working abroad than in the country. These people are lost for the benefit of their own country if there is no need for their profession in their home country. There is no doubt that the main task of improving the standard of living cannot be achieved without development and social transformation of the society, which can take place efficiently in a self-adopting and dynamic process. In line with the above argument, we have initiated the establishment of the Washera Space Physics Laboratory (WASPL) at Addis Ababa University in Ethiopia. It is a collaboration project between Oulu University and Addis Ababa University. The laboratory is expected to start operation of a pulsation magnetometer and photometer in September 2004. Other types of standard geophysical instruments are to be installed in subsequent missions. The project is of mutual interest of both parties. The equatorial ionosphere is still a poorly investigated region of our near Earth's space. In a first pilot investigation the existence and properties of the ionospheric Alfvén resonator (IAR) in the equatorial ionosphere

  1. Cognitive neuroscience of obsessive-compulsive disorder.

    Stern, Emily R; Taylor, Stephan F

    2014-09-01

    Cognitive neuroscience investigates neural responses to cognitive and emotional probes, an approach that has yielded critical insights into the neurobiological mechanisms of psychiatric disorders. This article reviews some of the major findings from neuroimaging studies using a cognitive neuroscience approach to investigate obsessive-compulsive disorder (OCD). It evaluates the consistency of results and interprets findings within the context of OCD symptoms, and proposes a model of OCD involving inflexibility of internally focused cognition. Although further research is needed, this body of work probing cognitive-emotional processes in OCD has already shed considerable light on the underlying mechanisms of the disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Linking African Researchers with Adaptation Policy Spaces | IDRC ...

    Linking African Researchers with Adaptation Policy Spaces. Poor understanding of policy processes tends to reduce the value of research results and the ability of researchers to influence policy. One of the main goals of IDRC's Climate Change Adaptation in Africa (CCAA) program is to build the capacity of researchers to ...

  3. NREL Research Takes Off for International Space Station | News | NREL

    hydrogen. Research has proven that nitrate starvation triggers C. vulgaris to go into lipid production mode NREL Research Takes Off for International Space Station NREL Research Takes Off for International the other, Chlorella vulgaris, will make lipids. NREL research dating back to the late 1970s opened

  4. History of neurosciences at the School of Medical Sciences, Universiti Sains Malaysia.

    Idris, Badrisyah; Sayuti, Sani; Abdullah, Jafri Malin

    2007-02-01

    Universiti Sains Malaysia is the only institution in Malaysia which incorporates all fields of the neurosciences under one roof. The integration of basic and clinical neurosciences has made it possible for this institution to become an excellent academic and research centre. This article describes the history, academic contributions and scientific progress of neurosciences at Universiti Sains Malaysia.

  5. Neuroscience and Ethics.

    Liao, S Matthew

    2017-03-01

    A number of people believe that results from neuroscience have the potential to settle seemingly intractable debates concerning the nature, practice, and reliability of moral judgments. In particular, Joshua Greene has argued that evidence from neuroscience can be used to advance the long-standing debate between consequentialism and deontology. This paper first argues that charitably interpreted, Greene's neuroscientific evidence can contribute to substantive ethical discussions by being part of an epistemic debunking argument. It then argues that taken as an epistemic debunking argument, Greene's argument falls short in undermining deontological judgments. Lastly, it proposes that accepting Greene's methodology at face value, neuroimaging results may in fact call into question the reliability of consequentialist judgments. The upshot is that Greene's empirical results do not undermine deontology and that Greene's project points toward a way by which empirical evidence such as neuroscientific evidence can play a role in normative debates.

  6. Educational Neuroscience: What Can We Learn?

    Bell, Derek

    2014-01-01

    There has been a marked increase in interest, research, and publications exploring ways in which educational practices might be influenced by neuroscience. The idea that a greater understanding of how the brain works can improve teaching and learning is very seductive, but what can teachers and other professionals working in education learn from…

  7. Global mental health and neuroscience: potential synergies.

    Stein, Dan J; He, Yanling; Phillips, Anthony; Sahakian, Barbara J; Williams, John; Patel, Vikram

    2015-02-01

    Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The use of pigs in neuroscience

    Lind, Nanna Marie; Moustgaard, Anette; Jelsing, Jacob

    2007-01-01

    The use of pigs in neuroscience research has increased in the past decade, which has seen broader recognition of the potential of pigs as an animal for experimental modeling of human brain disorders. The volume of available background data concerning pig brain anatomy and neurochemistry has...

  9. Cognitive Neuroscience and Education: Unravelling the Confusion

    Purdy, Noel; Morrison, Hugh

    2009-01-01

    This paper critically examines the application of research into cognitive neuroscience to educational contexts. It first considers recent warnings from within the neuroscientific community itself about the limitations of current neuroscientific knowledge and the urgent need to dispel popular "neuromyths" which have become accepted in…

  10. Socioaffective Neuroscience & Psychology (SNP)

    Mouras , Harold

    2011-01-01

    It is an exciting challenge for us to launch a new interdisciplinary journal, Socioaffective Neuroscience & Psychology. We believe the journal will appeal to a wide audience across several scientific specialties. In recent decades, considerable technical and theoretical advances have shed new light on psychological and neural processes. For example, in the area of neuroimaging techniques, it is now possible to explore the role of the brain in a wide variety of behaviours and paradigms (mo...

  11. Some revolutions in neuroscience.

    Gross, Charles

    2013-01-01

    In the long history of the study of the nervous system, there have been a number of major developments that involved radical and permanent changes in fundamental beliefs and assumptions about the nervous system and in tactics and strategies for studying it. These may be termed Revolutions in Neuroscience. This essay considers eight of these, ranging from the 6th century BCE to the end of the 20th century.

  12. Setting Priorities for Space Research: Opportunities and Imperatives

    Dutton, John A.; Abelson, Philip H.; Beckwith, Steven V. W.; Bishop, William P.; Byerly, Radford, Jr.; Crowe, Lawson; Dews, Peter; Garriott, Owen K.; Lunine, Jonathan; Macauley, Molly K.

    1992-01-01

    This report represents the first phase of a study by a task group convened by the Space Studies Board to ascertain whether it should attempt to develop a methodology for recommending priorities among the various initiatives in space research (that is, scientific activities concerned with phenomena in space or utilizing observations from space). The report argues that such priority statements by the space research community are both necessary and desirable and would contribute to the formulation and implementation of public policy. The report advocates the establishment of priorities to enhance effective management of the nation's scientific research program in space. It argues that scientific objectives and purposes should determine how and under what circumstances scientific research should be done. The report does not take a position on the controversy between advocates of manned space exploration and those who favor the exclusive use of unmanned space vehicles. Nor does the report address questions about the value or appropriateness of Space Station Freedom or proposals to establish a permanent manned Moon base or to undertake a manned mission to Mars. These issues lie beyond the charge to the task group.

  13. Critical Neuroscience – or Critical Science? A Perspective on the Perceived Normative Significance of Neuroscience

    Stephan eSchleim

    2014-05-01

    Full Text Available Members of the Critical Neuroscience initiative raised the question whether the perceived normative significance of neuroscience is justified by the discipline’s actual possibilities. In this paper I show how brain research was assigned the ultimate political, social, and moral authority by some leading researchers who suggested that neuroscientists should change their research priorities, promising solutions to social challenges in order to increase research funds. Discussing the two examples of cognitive enhancement and the neuroscience of (immoral behavior I argue that there is indeed a gap between promises and expectations on the one hand and knowledge and applications on the other. However it would be premature to generalize this to the neurosciences at large, whose knowledge-producing, innovative, and economic potentials have just recently been confirmed by political and scientific decision-makers with the financial support for the Human Brain Project and the BRAIN Initiative. Finally, I discuss two explanations for the analyzed communication patterns and argue why Critical Neuroscience is necessary, but not sufficient. A more general Critical Science movement is required to improve the scientific incentive system.

  14. Le débat démocratique en neurosciences : possible et nécessaire

    Laliberté, Maude

    2012-09-01

    Full Text Available The neurosciences, a dynamic field of biomedical research, are a paradigmatic example to illustrate the responsibilities of researchers and their interactions with society. This comment highlights the importance of public debate in neurosciences.

  15. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    Virgin Galactic is building the world's first commercial spaceline. Our suborbital spaceflight system, pictured in Figure 1, consists of two vehicles: WhiteKnightTwo (WK2) and SpaceShipTwo (SS2). WhiteKnightTwo is a four-engine, dual-fuselage jet aircraft capable of high-altitude heavy lift missions, including, but not limited to fulfilling its role as a mothership for SpaceShipTwo, an air-launched, suborbital spaceplane capable of routinely reaching an apogee up to 110 kilometers. In conjunction, these two vehicles allow access to space and to regions of the atmosphere ranging from the troposphere to the thermosphere; additionally, they provide extended periods of microgravity in a reliable and affordable way. SpaceShipTwo, with a payload capacity of up to 1,300 lbs. (~600 kg), features payload mounting interfaces that are compatible with standard architectures such as NASA Space Shuttle Middeck Lockers, Cargo Transfer Bags, and server racks, in addition to custom structures. With the standard interface, payloads are allowed access to the large 17 inch diameter cabin windows for external observations. Each dedicated research flight will be accompanied by a Virgin Galactic Flight Test Engineer, providing an opportunity for limited in-flight interaction. In addition, tended payloads - a flight that includes the researcher and his or her payload - are also an option. At a price point that is highly competitive with parabolic aircraft and sounding rockets and significantly cheaper than orbital flights, SpaceShipTwo is a unique platform that can provide frequent and repeatable research opportunities. Suborbital flights on SpaceShipTwo offer researchers several minutes of microgravity time and views of the external environment in the upper atmosphere and in outer space. In addition to serving as an important research platform in and of itself, SpaceShipTwo also offers researchers a means to test, iterate, and calibrate experiments designed for orbital platforms

  16. Crystal Growth and Other Materials Physical Researches in Space Environment

    Pan, Mingxiang

    Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.

  17. Predicting Space Weather: Challenges for Research and Operations

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  18. Potential high efficiency solar cells: Applications from space photovoltaic research

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  19. Computational neuroscience a first course

    Mallot, Hanspeter A

    2013-01-01

    Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and  equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

  20. Center for Neuroscience & Regenerative Medicine

    Federal Laboratory Consortium — The Center for Neuroscience and Regenerative Medicine (CNRM) was established as a collaborative intramural federal program involving the U.S. Department of Defense...

  1. NSF's Perspective on Space Weather Research for Building Forecasting Capabilities

    Bisi, M. M.; Pulkkinen, A. A.; Bisi, M. M.; Pulkkinen, A. A.; Webb, D. F.; Oughton, E. J.; Azeem, S. I.

    2017-12-01

    Space weather research at the National Science Foundation (NSF) is focused on scientific discovery and on deepening knowledge of the Sun-Geospace system. The process of maturation of knowledge base is a requirement for the development of improved space weather forecast models and for the accurate assessment of potential mitigation strategies. Progress in space weather forecasting requires advancing in-depth understanding of the underlying physical processes, developing better instrumentation and measurement techniques, and capturing the advancements in understanding in large-scale physics based models that span the entire chain of events from the Sun to the Earth. This presentation will provide an overview of current and planned programs pertaining to space weather research at NSF and discuss the recommendations of the Geospace Section portfolio review panel within the context of space weather forecasting capabilities.

  2. NeuroTalk: Improving the Communication of Neuroscience

    Moser, Mary Anne; McCormick, Jennifer B.; Racine, Eric; Blakeslee, Sandra; Caplan, Arthur; Hayden, Erika Check; Ingram, Jay; Lohwater, Tiffany; McKnight, Peter; Nicholson, Christie; Phillips, Anthony; Sauvé, Kevin D.; Snell, Elaine; Weiss, Sam

    2010-01-01

    There is increasing pressure for neuroscientists to communicate their research and the societal implications of their findings to the public. Communicating science is challenging and the transformation of communication by digital and interactive media makes the challenge even greater. To successfully facilitate dialogue with the public in this new media landscape we suggest three courses of action for the neuroscience community: a cultural shift that explicitly recognizes and rewards public outreach, the identification and development of neuroscience communication experts, and ongoing empirical research on public communication of neuroscience. PMID:19953102

  3. Space Weather Research at the National Science Foundation

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  4. Neuroscience-driven discovery and development of sleep therapeutics

    Dresler, M.; Spoormaker, V.I.; Beitinger, P.; Czisch, M.; Kimura, M.; Steiger, A.; Holsboer, F.

    2014-01-01

    Until recently, neuroscience has given sleep research and discovery of better treatments of sleep disturbances little attention, despite the fact that disturbed sleep has overwhelming impact on human health. Sleep is a complex phenomenon in which specific psychological, electrophysiological,

  5. Neuroscience Investigations: An Overview of Studies Conducted

    Reschke, Millard F.

    1999-01-01

    The neural processes that mediate human spatial orientation and adaptive changes occurring in response to the sensory rearrangement encountered during orbital flight are primarily studied through second and third order responses. In the Extended Duration Orbiter Medical Project (EDOMP) neuroscience investigations, the following were measured: (1) eye movements during acquisition of either static or moving visual targets, (2) postural and locomotor responses provoked by unexpected movement of the support surface, changes in the interaction of visual, proprioceptive, and vestibular information, changes in the major postural muscles via descending pathways, or changes in locomotor pathways, and (3) verbal reports of perceived self-orientation and self-motion which enhance and complement conclusions drawn from the analysis of oculomotor, postural, and locomotor responses. In spaceflight operations, spatial orientation can be defined as situational awareness, where crew member perception of attitude, position, or motion of the spacecraft or other objects in three-dimensional space, including orientation of one's own body, is congruent with actual physical events. Perception of spatial orientation is determined by integrating information from several sensory modalities. This involves higher levels of processing within the central nervous system that control eye movements, locomotion, and stable posture. Spaceflight operational problems occur when responses to the incorrectly perceived spatial orientation are compensatory in nature. Neuroscience investigations were conducted in conjunction with U. S. Space Shuttle flights to evaluate possible changes in the ability of an astronaut to land the Shuttle or effectively perform an emergency post-landing egress following microgravity adaptation during space flights of variable length. While the results of various sensory motor and spatial orientation tests could have an impact on future space flights, our knowledge of

  6. NASA Space Biology Plant Research for 2010-2020

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  7. Geospace monitoring for space weather research and operation

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  8. Geospace monitoring for space weather research and operation

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  9. Iranians' contribution to world literature on neuroscience.

    Ashrafi, Farzad; Mohammadhassanzadeh, Hafez; Shokraneh, Farhad; Valinejadi, Ali; Johari, Karim; Saemi, Nazanin; Zali, Alireza; Mohaghegh, Niloofar; Ashayeri, Hassan

    2012-12-01

    The purpose of this study is to analyse Iranian scientific publications in the neuroscience subfields by librarians and neuroscientists, using Science Citation Index Expanded (SCIE) via Web of Science data over the period, 2002-2008. Data were retrieved from the SCIE. Data were collected from the 'subject area' of the database and classified by neuroscience experts into 14 subfields. To identify the citation patterns, we applied the 'impact factor' and the 'number of publication'. Data were also analysed using HISTCITE, Excel 2007 and SPSS. Seven hundred and thirty-four papers have been published by Iranian between 2002 and 2008. Findings showed a growing trend of neuroscience papers in the last 3 years with most papers (264) classified in the neuropharmacology subfield. There were fewer papers in neurohistory, psychopharmacology and artificial intelligence. International contributions of authors were mostly in the neurology subfield, and 'Collaboration Coefficient' for the neuroscience subfields in Iran was 0.686 which is acceptable. Most international collaboration between Iranians and developed countries was from USA. Eighty-seven percent of the published papers were in journals with the impact factor between 0 and 4; 25% of papers were published by the researchers affiliated to Tehran University of Medical Sciences. Progress of neuroscience in Iran is mostly seen in the neuropharmacology and the neurology subfields. Other subfields should also be considered as a research priority by health policymakers. As this study was carried out by the collaboration of librarians and neuroscientists, it has been proved valuable for both librarians and policymakers. This study may be encouraging for librarians from other developing countries. © 2012 The authors. Health Information and Libraries Journal © 2012 Health Libraries Group.

  10. The promise of educational neuroscience: Comment on Bowers (2016).

    Gabrieli, John D E

    2016-10-01

    Bowers (2016) argues that there are practical and principled problems with how educational neuroscience may contribute to education, including lack of direct influences on teaching in the classroom. Some of the arguments made are convincing, including the critique of unsubstantiated claims about the impact of educational neuroscience and the reminder that the primary outcomes of education are behavioral, such as skill in reading or mathematics. Bowers' analysis falls short in 3 major respects. First, educational neuroscience is a basic science that has made unique contributions to basic education research; it is not part of applied classroom instruction. Second, educational neuroscience contributes to ideas about education practices and policies beyond classroom curriculum that are important for helping vulnerable students. Third, educational neuroscience studies using neuroimaging have not only revealed for the first time the brain basis of neurodevelopmental differences that have profound influences on educational outcomes, but have also identified individual brain differences that predict which students learn more or learn less from various curricula. In several cases, the brain measures significantly improved or vastly outperformed conventional behavioral measures in predicting what works for individual children. These findings indicate that educational neuroscience, at a minimum, has provided novel insights into the possibilities of individualized education for students, rather than the current practice of learning through failure that a curriculum did not support a student. In the best approach to improving education, educational neuroscience ought to contribute to basic research addressing the needs of students and teachers. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Advancing Translational Space Research Through Biospecimen Sharing: Amplified Impact of Studies Utilizing Analogue Space Platforms

    Staten, B.; Moyer, E.; Vizir, V.; Gompf, H.; Hoban-Higgins, T.; Lewis, L.; Ronca, A.; Fuller, C. A.

    2016-01-01

    Biospecimen Sharing Programs (BSPs) have been organized by NASA Ames Research Center since the 1960s with the goal of maximizing utilization and scientific return from rare, complex and costly spaceflight experiments. BSPs involve acquiring otherwise unused biological specimens from primary space research experiments for distribution to secondary experiments. Here we describe a collaboration leveraging Ames expertise in biospecimen sharing to magnify the scientific impact of research informing astronaut health funded by the NASA Human Research Program (HRP) Human Health Countermeasures (HHC) Element. The concept expands biospecimen sharing to one-off ground-based studies utilizing analogue space platforms (e.g., Hindlimb Unloading (HLU), Artificial Gravity) for rodent experiments, thereby significantly broadening the range of research opportunities with translational relevance for protecting human health in space and on Earth.

  12. The value of integrating policy people and space in research.

    Hecker, Louise; Birla, Ravi K

    2009-03-01

    In this article, we address several tangible and intangible factors, which are difficult to quantify and often overlooked yet are crucial for research success. We discuss three dimensions which encompass: (1) policy, (2) people, and (3) space. Policies, such as rules and regulations, define the culture of any research program/initiative. Governing rules and regulations defined within these policies are dictated by cultural values. Individuals who exhibit strong leadership, promote innovation, and exercise strategic planning often determine the governing policies. People are the most valuable asset available to any institution. Ensuring the professional growth (personal and scientific) and creating an environment which supports collaborative and collegial research through teamwork are factors that are important for individuals. Space, the physical work environment, is the third dimension of our model and is often an underutilized resource. In addition to the physical layout and design of the space, creating a positive work atmosphere which supports research initiatives is equally important and can create valuable momentum to research efforts. Collectively, these three dimensions (policy, people, and space) have a significant impact on the success of any research initiative. The primary objective of this article is to create awareness and emphasize the importance of implementing these variables within research initiatives in academic settings.

  13. Physical sciences research plans for the International Space Station

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  14. Research study on antiskid braking systems for the space shuttle

    Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

    1973-01-01

    A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

  15. Lewis Research Center space station electric power system test facilities

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  16. Challenges for Transitioning Science Research to Space Weather Applications

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  17. Research and Technology 1996: Innovation in Time and Space

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  18. Cooperative research in space geodesy and crustal dynamics

    1994-01-01

    This research grant, which covered the period of July 1991 to August 1994, was concerned with a variety of topics within the geodesy and crustal dynamics fields. The specific topics of this grant included satellite tracking and gravity field determinations and crustal dynamics (this concentrated of space geodetic site stability for VLBI sites). Summaries of the specific research projects are included along with a list of publications and presentations supported by this research grant.

  19. Space Station Centrifuge: A Requirement for Life Science Research

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  20. Research progress of free space coherent optical communication

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  1. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  2. A physiological perspective on the neuroscience of eating.

    Geary, Nori

    2014-09-01

    I present the thesis that 'being physiological,' i.e., analyzing eating under conditions that do not perturb, or minimally perturb, the organism's endogenous processes, should be a central goal of the neuroscience of eating. I describe my understanding of 'being physiological' based on [i] the central neural-network heuristic of CNS function that traces back to Cajal and Sherrington, [ii] research on one of the simpler problems in the neuroscience of eating, identification of endocrine signals that control eating. In this context I consider natural meals, physiological doses and ranges, and antagonist studies. Several examples involve CCK. Next I describe my view of the cutting edge in the molecular neuroscience of eating as it has evolved from the discovery of leptin signaling through the application of optogenetic and pharmacogenetic methods. Finally I describe some novel approaches that may advance the neuroscience of eating in the foreseeable future. I conclude that [i] the neuroscience of eating may soon be able to discern 'physiological' function in the operation of CNS networks mediating eating, [ii] the neuroscience of eating should capitalize on methods developed in other areas of neuroscience, e.g., improved methods to record and manipulate CNS function in behaving animals, identification of canonical regional circuits, use of population electrophysiology, etc., and [iii] subjective aspects of eating are crucial aspects of eating science, but remain beyond mechanistic understanding. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The "Century of Biology" and the Evolving Role of Medicinal Chemists in Neuroscience.

    Doller, Dario

    2017-01-18

    Society expects that the wave of contemporary new discoveries in biological sciences will soon lead to novel treatments for human diseases, including many devastating brain disorders. Historically, medicinal chemists have contributed to drug discovery teams in ways that synergize with those from their partner sciences, and help transform new knowledge into the ultimate tangible asset: a new drug. The optimal balance of resources and the right strategy to minimize the risk of late clinical failure may differ for different therapeutic indications. Recent progress in the oncology and neuroscience therapeutic areas is compared and contrasted, in particular looking at the biological target space and functional attributes of recently FDA-approved drugs and those in the late clinical pipeline. Medicinal chemists are poised to have major influence in neuroscience drug research, and examples of areas of potential impact are presented, together with a discussion of the soft skills they bring to their project teams and why they have been so impactful.

  4. Wavelets in neuroscience

    Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia

    2015-01-01

    This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...

  5. Neuroscience, brains, and computers

    Giorno Maria Innocenti

    2013-07-01

    Full Text Available This paper addresses the role of the neurosciences in establishing what the brain is and how states of the brain relate to states of the mind. The brain is viewed as a computational deviceperforming operations on symbols. However, the brain is a special purpose computational devicedesigned by evolution and development for survival and reproduction, in close interaction with theenvironment. The hardware of the brain (its structure is very different from that of man-made computers.The computational style of the brain is also very different from traditional computers: the computationalalgorithms, instead of being sets of external instructions, are embedded in brain structure. Concerningthe relationships between brain and mind a number of questions lie ahead. One of them is why andhow, only the human brain grasped the notion of God, probably only at the evolutionary stage attainedby Homo sapiens.

  6. Dynamical principles in neuroscience

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-01-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  7. Dynamical principles in neuroscience

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  8. Notes on the Recent History of Neuroscience in Africa

    Vivienne A. Russell

    2017-11-01

    Full Text Available Neuroscience began with neuroanatomy and neurosurgery in Egypt more than 5000 years ago. Knowledge grew over time and specialized neurosurgery centers were established in north Africa in the eleventh century. However, it was not until the twentieth century that neuroscience research became established in sub-Saharan Africa. In most African countries, clinical research focused on understanding the rationale and improving treatment of epilepsy, infections, nutritional neuropathies, stroke and tumors. Significant advances were made. In the twenty-first century, African knowledge expanded to include all branches of neuroscience, contributing to genetic, biochemical and inflammatory determinants of brain disorders. A major focus of basic neuroscience research has been, and is, investigation of plant extracts, drugs and stress in animal models, providing insight and identifying potential novel therapies. A significant event in the history of African neuroscience was the founding of the Society of Neuroscientists of Africa (SONA in 1993. The International Brain Research Organization (IBRO supported SONA conferences, as well as workshops and neuroscience training schools in Africa. Thanks to their investment, as well as that of funding agencies, such as the National Institutes of Health (NIH, International Society for Neurochemistry (ISN, World Federation of Neurosurgical Societies (WFNS, World Federation of Neurology (WFN and the International League Against Epilepsy (ILAE, neuroscience research is well-established in Africa today. However, in order to continue to develop, African neuroscience needs continued international support and African neuroscientists need to engage in policy and decision-making to persuade governments to fund studies that address the unique regional needs in Africa.

  9. Interactive social neuroscience to study autism spectrum disorder.

    Rolison, Max J; Naples, Adam J; McPartland, James C

    2015-03-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.

  10. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  11. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  12. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  13. Perspectives of biotechnologies based on dormancy phenomenon for space researches

    Alekseev, V.; Sychev, V.; Layus, D.; Levinsky, M.; Novikova, N.; Zakhodnova, T.

    Long term space missions will require a renewable source of food and an efficient method to recycle oxygen Plants especially aquatic micro algae provide an obvious solution to these problems However long duration plant growth and reproduction in space that is necessary for transportation of a control ecological life support system CELSS from Earth to other planets are problematic The introduction of heterotrophs in space CELSS is a more formidable problem as the absence of gravity creates additional difficulties for their life Dormancy phenomenon protected a great many animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years This phenomenon can be quite perspective as a tool to overcome difficulties with CELSS transportation in space missions Cryptobiotic stages of microbes fungi unicellular algae and protists can survive in open space conditions that is important for interplanetary quarantine and biological security inside spacecraft Searching for life outside the Earth at such planet like Mars with extremely variable environment should be oriented on dormancy as crucial phases of a life cycle in such organisms Five major research programs aimed on study dormancy phenomenon for exobiology purposes and creation of new biotechnologies are discussed List of species candidate components of CELSS with dormancy in their life cycle used in space experiments at the Russian segment of International Space Station now includes 26 species from bacteria to fish The

  14. Research into command, control, and communications in space construction

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  15. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  16. Towards a two-body neuroscience

    Dumas, Guillaume

    2011-01-01

    Recent work from our interdisciplinary research group has revealed the emergence of inter-brain synchronization across multiple frequency bands during social interaction.1 Our findings result from the close collaboration between experts who study neural dynamics and developmental psychology. The initial aim of the collaboration was to combine knowledge from these two fields in order to move from a classical one-brain neuroscience towards a novel two-body approach. A new technique called hyper...

  17. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  18. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  19. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  20. Evaluating research for disruptive innovation in the space sector

    Summerer, L.

    2012-12-01

    Many governmental space activities need to be planned with a time horizon that extends beyond the comfort zone of reliable technology development assessments and predictions. In an environment of accelerating technological change, a methodological approach to addressing non-core technology trends and potentially disruptive, game-changing developments not yet linked to the space sector is increasingly important to complement efforts in core technology R&D planning. Various models and organisational setups aimed at fulfilling this purpose are in existence. These include, with varying levels of relevance to space, the National Aeronautics and Space Administration (NASA) Institute for Advanced Concepts (NIAC, operational form 1998 to 2007 and recently re-established), the Defence Advanced Research Projects Agency of the US Department of Defence, the Massachusetts Institute of Technology (MIT) Medialab, the early versions of Starlab, the Lockheed Skunk Works and the European Space Agency's Advanced Concepts Team. Some of these organisations have been reviewed and assessed individually, though systematic comparison of their methods, approaches and results have not been published. This may be due in part to the relatively sparse scientific literature on organisational parameters for enabling disruptive innovation as well as to the lack of commonly agreed indicators for the evaluation of their performance. Furthermore, innovation support systems in the space sector are organised differently than in traditional, open competitive markets, which serve as the basis for most scholarly literature on the organisation of innovation. The present paper is intended to advance and stimulate discussion on the organisation of disruptive innovation mechanisms specifically for the space sector. It uses the examples of the NASA Institute for Advanced Concepts and the ESA Advanced Concepts Team, analyses their respective approaches and compares their results, leading to the proposal of

  1. Experimental Methods in Psychology and Cognitive and Affective Neuroscience

    Habekost, Thomas; Nielsen, Julie Hassing

    2014-01-01

    studies are central. Recently, experimental studies within the field of affective neuroscience have also received attention. Notwithstanding, experimental methods remain controversial also in psychology, and one should carefully weigh their advantages against their drawbacks.......Laboratory experiments have always been important in psychology and are as commonly used today as ever due to the dominating position of cognitive research in international psychology. This trend has been further strengthened by recent developments in cognitive neuroscience, where experimental...

  2. Experimental Methods in Psychology and Cognitive and Affective Neuroscience

    Habekost, Thomas; Nielsen, Julie Hassing

    2014-01-01

    Laboratory experiments have always been important in psychology and are as commonly used today as ever due to the dominating position of cognitive research in international psychology. This trend has been further strengthened by recent developments in cognitive neuroscience, where experimental studies are central. Recently, experimental studies within the fi eld of affective neuroscience have also received attention. Notwithstanding, experimental methods remain controversial also in psychology...

  3. Research Progress and Prospect of GNSS Space Environment Science

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  4. International Research Results and Accomplishments From the International Space Station

    Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will

  5. In-space research, technology and engineering experiments and Space Station

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  6. Space Transportation Technology Workshop: Propulsion Research and Technology

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  7. Space Research in Africa: Challenges and Opportunities | Ligate ...

    All of these examples show that at a certain stage in history, Africa was a leader in science and technology (Shibanda & Isabel, 2000). However in the 21st Century, Africa has lagged behind technologically compared to all the other continents. Space research and deployment of supporting technologies including remote ...

  8. Space, geophysical research related to Latin America - Part 2

    Mendoza, Blanca; Shea, M. A.

    2016-11-01

    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers have been printed in two separate issues. The first issue was published in Advances in Space Research, Vol. 57, number 6 and contained 15 papers. This is the second issue and contains 25 additional papers. These papers show the wide variety of research, both theoretical and applied, that is currently being developed or related to space and geophysical sciences in the Sub-Continent.

  9. Social neuroscience and theory of mind.

    Westby, Carol E

    2014-01-01

    The role of theory of mind (ToM) in autism spectrum disorders and other communication impairments has been an active area of research in the last 30 years. Advances in neuroimaging in the last 10 years have led to the rise of the field of social neuroscience, which has markedly increased the understanding of the neurophysiological/neuroanatomical and neurochemical nature of ToM functioning and deficits in typically developing individuals and in children and adults with a variety of social and communication impairments. The goal of this paper is to (a) describe the current concepts of ToM based on neuroscience research, and (b) present a framework for the dimensions of ToM that have been identified, which can be used to guide assessment and intervention for persons with deficits in ToM that affect social interactions. This article presents neuroscience research that has documented the neurophysiological/neuroanatomical bases for cognitive and affective ToM and interpersonal and intrapersonal ToM as well as neurochemical and epigenetic influences on ToM. This information provides an important framework for assessing ToM deficits in persons with social and communication impairments and developing interventions that target the specific dimensions of ToM deficits. © 2014 S. Karger AG, Basel.

  10. The Research-to-Operations-to-Research Cycle at NOAA's Space Weather Prediction Center

    Singer, H. J.

    2017-12-01

    The provision of actionable space weather products and services by NOAA's Space Weather Prediction Center relies on observations, models and scientific understanding of our dynamic space environment. It also depends on a deep understanding of the systems and capabilities that are vulnerable to space weather, as well as national and international partnerships that bring together resources, skills and applications to support space weather forecasters and customers. While these activities have been evolving over many years, in October 2015, with the release of the National Space Weather Strategy and National Space Weather Action Plan (NSWAP) by National Science and Technology Council in the Executive Office of the President, there is a new coordinated focus on ensuring the Nation is prepared to respond to and recover from severe space weather storms. One activity highlighted in the NSWAP is the Operations to Research (O2R) and Research to Operations (R2O) process. In this presentation we will focus on current R2O and O2R activities that advance our ability to serve those affected by space weather and give a vision for future programs. We will also provide examples of recent research results that lead to improved operational capabilities, lessons learned in the transition of research to operations, and challenges for both the science and operations communities.

  11. Can Neuroscience Contribute to Practical Ethics? A Critical Review and Discussion of the Methodological and Translational Challenges of the Neuroscience of Ethics.

    Racine, Eric; Dubljević, Veljko; Jox, Ralf J; Baertschi, Bernard; Christensen, Julia F; Farisco, Michele; Jotterand, Fabrice; Kahane, Guy; Müller, Sabine

    2017-06-01

    Neuroethics is an interdisciplinary field that arose in response to novel ethical challenges posed by advances in neuroscience. Historically, neuroethics has provided an opportunity to synergize different disciplines, notably proposing a two-way dialogue between an 'ethics of neuroscience' and a 'neuroscience of ethics'. However, questions surface as to whether a 'neuroscience of ethics' is a useful and unified branch of research and whether it can actually inform or lead to theoretical insights and transferable practical knowledge to help resolve ethical questions. In this article, we examine why the neuroscience of ethics is a promising area of research and summarize what we have learned so far regarding its most promising goals and contributions. We then review some of the key methodological challenges which may have hindered the use of results generated thus far by the neuroscience of ethics. Strategies are suggested to address these challenges and improve the quality of research and increase neuroscience's usefulness for applied ethics and society at large. Finally, we reflect on potential outcomes of a neuroscience of ethics and discuss the different strategies that could be used to support knowledge transfer to help different stakeholders integrate knowledge from the neuroscience of ethics. © 2017 John Wiley & Sons Ltd.

  12. NASA Self-Assessment of Space Radiation Research

    Cucinotta, Francis A.

    2010-01-01

    Space exploration involves unavoidable exposures to high-energy galactic cosmic rays whose penetration power and associated secondary radiation makes radiation shielding ineffective and cost prohibitive. NASA recognizing the possible health dangers from cosmic rays notified the U.S. Congress as early as 1959 of the need for a dedicated heavy ion accelerator to study the largely unknown biological effects of galactic cosmic rays on astronauts. Information and scientific tools to study radiation health effects expanded over the new decades as NASA exploration programs to the moon and preparations for Mars exploration were carried out. In the 1970 s through the early 1990 s a more than 3-fold increase over earlier estimates of fatal cancer risks from gamma-rays, and new knowledge of the biological dangers of high LET radiation were obtained. Other research has increased concern for degenerative risks to the central nervous system and other tissues at lower doses compared to earlier estimates. In 1996 a review by the National Academy of Sciences Space Science Board re-iterated the need for a dedicated ground-based accelerator facility capable of providing up to 2000 research hours per year to reduce uncertainties in risks projections and develop effective mitigation measures. In 1998 NASA appropriated funds for construction of a dedicated research facility and the NASA Space Radiation Laboratory (NSRL) opened for research in October of 2003. This year marks the 8th year of NSRL research were about 1000 research hours per year have been utilized. In anticipation of the approaching ten year milestone, funded investigators and selected others are invited to participate in a critical self-assessment of NSRL research progress towards NASA s goals in space radiation research. A Blue and Red Team Assessment format has been integrated into meeting posters and special plenary sessions to allow for a critical debate on the progress of the research and major gaps areas. Blue

  13. Computational and cognitive neuroscience of vision

    2017-01-01

    Despite a plethora of scientific literature devoted to vision research and the trend toward integrative research, the borders between disciplines remain a practical difficulty. To address this problem, this book provides a systematic and comprehensive overview of vision from various perspectives, ranging from neuroscience to cognition, and from computational principles to engineering developments. It is written by leading international researchers in the field, with an emphasis on linking multiple disciplines and the impact such synergy can lead to in terms of both scientific breakthroughs and technology innovations. It is aimed at active researchers and interested scientists and engineers in related fields.

  14. Setting priorities for space research: An experiment in methodology

    1995-01-01

    In 1989, the Space Studies Board created the Task Group on Priorities in Space Research to determine whether scientists should take a role in recommending priorities for long-term space research initiatives and, if so, to analyze the priority-setting problem in this context and develop a method by which such priorities could be established. After answering the first question in the affirmative in a previous report, the task group set out to accomplish the second task. The basic assumption in developing a priority-setting process is that a reasoned and structured approach for ordering competing initiatives will yield better results than other ways of proceeding. The task group proceeded from the principle that the central criterion for evaluating a research initiative must be its scientific merit -- the value of the initiative to the proposing discipline and to science generally. The group developed a two-stage methodology for priority setting and constructed a procedure and format to support the methodology. The first of two instruments developed was a standard format for structuring proposals for space research initiatives. The second instrument was a formal, semiquantitative appraisal procedure for evaluating competing proposals. This report makes available complete templates for the methodology, including the advocacy statement and evaluation forms, as well as an 11-step schema for a priority-setting process. From the beginning of its work, the task group was mindful that the issue of priority setting increasingly pervades all of federally supported science and that its work would have implications extending beyond space research. Thus, although the present report makes no recommendations for action by NASA or other government agencies, it provides the results of the task group's work for the use of others who may study priority-setting procedures or take up the challenge of implementing them in the future.

  15. What Can Neuroscience Bring to Education?

    Ferrari, Michel

    2011-01-01

    Educational neuroscience promises to incorporate emerging insights from neuroscience into education, and is an exiting renovation of cognitive science in education. But unlike cognitive neuroscience--which aims to explain how the mind is embodied--educational neuroscience necessarily incorporates values that reflect the kind of citizen and the…

  16. Maintaining US Space Weather Capabilities after DMSP: Research to Operations

    Machuzak, J. S.; Gentile, L. C.; Burke, W. J.; Holeman, E. G.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    The first Defense Meteorological Satellite Program (DMSP) spacecraft was launched in 1972; the last is scheduled to fly in 2020. Presently, there is no replacement for the space-weather monitoring sensors that now fly on DMSP. The present suite has provided comprehensive, long-term records that constitute a critical component of the US space weather corporate memory. Evolving operational needs and research accomplishments justify continued collection of space environmental data. Examples include measurements to: (1) Monitor the Dst index in real time as a driver of next-generation satellite drag models; (2) Quantify electromagnetic energy fluxes from deep space to the ionosphere/ thermosphere that heat neutrals, drive disturbance-dynamo winds and degrade precise orbit determinations; (3) Determine strengths of stormtime electric fields at high and low latitudes that lead to severe blackouts and spacecraft anomalies; (4) Specify variability of plasma density irregularities, equatorial plasma bubbles, and the Appleton anomaly to improve reliability of communication, navigation and surveillance links; (5) Characterize energetic particle fluxes responsible for auroral clutter and radar degradation; (6) Map regions of L-Band scintillation for robust GPS applications; and (7) Update the World Magnetic Field Model needed to maintain guidance system superiority. These examples illustrate the utility of continued space environment awareness. Comprehensive assessments of both operational requirements and research advances are needed to make informed selections of sensors and spacecraft that support future capabilities. A proposed sensor set and satellite constellation to provide the needed measurement capabilities will be presented.

  17. International Space Station Research and Facilities for Life Sciences

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  18. Early Japanese contributions to space weather research (1945–1960

    A. Nishida

    2010-04-01

    Full Text Available Major contributions by Japanese scientists in the period of 1945 to 1960 are reviewed. This was the period when the foundation of the space weather research was laid by ground-based observations and theoretical research. Important contributions were made on such subjects as equatorial ionosphere in quiet times, tidal wind system in the ionosphere, formation of the F2 layer, VLF propagation above the ionosphere, and precursory phenomena (type IV radio outburst and polar cap absorption to storms. At the IGY (1957, 1958, research efforts were intensified and new programs in space and Antarctica were initiated. Japanese scientists in this discipline held a tight network for communication and collaboration that has been kept to this day.

  19. Stronger Collaborations Needed for Successful Space Weather Research

    Akasofu, Syun-Ichi

    2007-12-01

    One of the purposes of space weather research is to predict when and how the electromagnetic environment around the Earth will be disturbed after specific (solar storms,) which are defined here as various transient solar phenomena that occur at the time of solar flares [Akasofu and Chapman, 1972]. Accurate space weather predictions require an integrating and synthesizing research effort by a close collaboration among solar physicists, interplanetary physicists, magnetospheric physicists, and upper atmosphere physicists. Unfortunately, such integration/synthesis (I/S) projects in the past have often become an umbrella under which individual researchers in the four disciplines pursue only subjects of their own interests, disintegrate into individual projects, and even encourage the trend of infinite specialization because of the potential availability of additional funds.

  20. Habitability research priorities for the International Space Station and beyond.

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  1. Reducing barriers to ethics in neuroscience

    Judy Illes

    2010-10-01

    Full Text Available Ethics is a growing interest for neuroscientists, but rather than signifying a commitment to the protection of human subjects, care of animals, and public understanding to which the professional community is engaged in a fundamental way, interest has been consumed by administrative overhead and the mission creep of institutional ethics reviews. Faculty, trainees, and staff (N=605 whose work involves brain imaging and brain stimulation completed an online survey about ethics in their research. Using factor analysis and linear regression, we found significant effects for invasiveness of imaging technique, professional position, gender, and local presence of bioethics centers. We propose strategies for improving communication between the neuroscience community and ethics review boards, collaborations between neuroscientists and biomedical ethicists, and ethics training in graduate neuroscience programs to revitalize mutual goals and interests.

  2. Neuroscience within companies: some case studies

    Maria Emanuela Salati

    2017-04-01

    Full Text Available It is possible to understand many crucial processes within organizations such as change planning and management, training, decision making and leadership thanks to organisational neuroscience. For example, poorly managed change can result in alarm messages within our brains. Managers must be aware of how their words, emotions and conduct have a significant impact on team mood and results. Another fast-growing area of research is neuromarketing, thanks to company investments. This article presents a success story: a company that, faced with the need to change its selling proposition, uses neurometric techniques to analyse possible resistance of the sales force and then acted accordingly. Even training can significantly improve company efficiency thanks to neuroscience. This article also discusses some experiments carried out by the Training Department of a large public transport company.

  3. Biological and Physical Space Research Laboratory 2002 Science Review

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  4. NASA Space Engineering Research Center for VLSI systems design

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  5. The neuroscience of musical improvisation.

    Beaty, Roger E

    2015-04-01

    Researchers have recently begun to examine the neural basis of musical improvisation, one of the most complex forms of creative behavior. The emerging field of improvisation neuroscience has implications not only for the study of artistic expertise, but also for understanding the neural underpinnings of domain-general processes such as motor control and language production. This review synthesizes functional magnetic resonance imagining (fMRI) studies of musical improvisation, including vocal and instrumental improvisation, with samples of jazz pianists, classical musicians, freestyle rap artists, and non-musicians. A network of prefrontal brain regions commonly linked to improvisatory behavior is highlighted, including the pre-supplementary motor area, medial prefrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex. Activation of premotor and lateral prefrontal regions suggests that a seemingly unconstrained behavior may actually benefit from motor planning and cognitive control. Yet activation of cortical midline regions points to a role of spontaneous cognition characteristic of the default network. Together, such results may reflect cooperation between large-scale brain networks associated with cognitive control and spontaneous thought. The improvisation literature is integrated with Pressing's theoretical model, and discussed within the broader context of research on the brain basis of creative cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. [Neurosciences and philosophy of mind].

    Saal, Aarón

    2005-01-01

    In this paper we argue that the interaction between neurosciences and philosophy of the mind is on the way to understand consciousness, and to solve the mind-body or mind-brain problem. Naturalism is the view that mental processes are just brain processes and that consciousness is a natural phenomenon. It is possible to construct a theory about its nature by blending insights from neuroscience, philosophy of the mind, phenomenology, psychology and evolutionary biology.

  7. Opera and neuroscience.

    Lorusso, Lorenzo; Franchini, Antonia Francesca; Porro, Alessandro

    2015-01-01

    Opera is the most complete form of theatrical representation, characterized by musical accompaniment, both instrumental and vocal. It has played an important role in sociocultural spheres, affecting the various social strata and reflecting customs and ideas in different centuries. Composers have created pieces that have also shown the development of medicine. Since the birth of opera in seventeenth century in Italy, neuroscience has played an important role in influencing the representation of madness and neurological aspects. From the Folly of the Renaissance, a path toward a representation of madness was developed, initially linked to the myths of classical antiquity. In the seventeenth and eighteenth centuries, madness was represented as comical or funny, of a loving nature and influenced by the spread of the Commedia dell'Arte (Comedy of Art). In the nineteenth century, with the rise of the first scientific theories of the mind, insanity took more precise connotations and was separated from other psychiatric and neurological diseases. The operas of the twentieth century depicted psychiatric and neurological diseases, taking into account newer medical and scientific discoveries. © 2015 Elsevier B.V. All rights reserved.

  8. The International Space Station Research Opportunities and Accomplishments

    Alleyne, Camille W.

    2011-01-01

    In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper

  9. Space Weather Research Presented at the 2007 AGU Fall Meeting

    Kumar, Mohi

    2007-12-01

    AGU's 47th annual Fall Meeting, held 10-14 December 2007 in San Francisco, Calif., was the largest gathering of geoscientists in the Union's history. More than 14,600 people attended. The Space Physics and Aeronomy (SPA) sections sported excellent turnout, with more than 1300 abstracts submitted over 114 poster and oral sessions. Topics discussed that related to space weather were manifold: the nature of the Sun-Earth system revealed through newly launched satellites, observations and models of ionospheric convection, advances in the understanding of radiation belt physics, Sun-Earth coupling via energetic coupling, data management and archiving into virtual observatories, and the applications of all this research to space weather forecasting and prediction.

  10. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  11. Engaging Students in Space Research: Young Engineers and Scientists 2008

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  12. Translational Cellular Research on the International Space Station

    Love, John; Cooley, Vic

    2016-01-01

    The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a

  13. Space facilities: Meeting future needs for research, development, and operations

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  14. New solar irradiances for use in space research

    Tobiska, W.; Bouwer, D.; Jones, A.

    Space environment research applications require solar irradiances in a variety of time scales and spectral formats We describe the development of research grade modeled solar irradiances using four models and systems that are also used for space weather operations The four models systems include SOLAR2000 S2K SOLARFLARE SFLR APEX and IDAR which are used by Space Environment Technologies SET to provide solar irradiances from the soft X-rays through the visible spectrum SFLR uses the GOES 0 1--0 8 nm X-rays in combination with a Mewe model subroutine to provide 0 1--30 0 nm irradiances at 0 1 nm spectral resolution at 1 minute time resolution and in a 6-hour XUV--EUV spectral solar flare evolution forecast with a 7 minute latency and a 2 minute cadence These irradiances have been calibrated with the SORCE XPS observations and we report on the inclusion of these irradiances in the S2K model There are additional developments with S2K that we discuss particularly the method by which S2K is emerging as a hybrid model empirical plus physics-based and real-time data integration platform Numerous new solar indices have been recently developed for the operations community and we describe their inclusion in S2K The APEX system is a real-time data retrieval system developed under contract to the University of Southern California Space Sciences Center SSC to provide SOHO SEM data processing and distribution SSC provides the updated SEM data to the research community and SET provides the operational data to the space operations community We

  15. Management of Service Projects in Support of Space Flight Research

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  16. MAGDAS Project for Space Weather Research and Application

    Yumoto, Kiyohumi

    2009-01-01

    The Space Environment Research Center (SERC), Kyushu University, is currently deploying a new ground-based magnetometer network of MAGnetic Data Acqusition System (MAGDAS), in cooperation with about 30 organizations in the world, in order to understand the complex Sun-Earth system for space weather research and application. SERC will conducts MAGDAS observation at 50 stations in the Circum-pan Pacific Magnetometer Network (CPMN) region, and FM-CW radar observation along the 210 deg. magnetic meridian (MM) during the IHY/ILWS/CAWSES periods. This project is actively providing the following space weather monitoring:(1) Global 3-dimensional current system to know electromagnetic coupling of the region 1 and 2 field-aligned currents, auroral electrojet current, Sq current, and equatorial electrojet current. (2) Plasma mass density along the 210 deg. MM to understand plasma environment change during space storms. (3) Ionospheric electric field intensity with 10-sec sampling at L = 1.26 to understand how the external electric field penetrates into the equatorial ionosphere.

  17. A Space For Critical Research on Education Policy

    Rasmussen, Palle

    2014-01-01

    of educational research. Since most network activity is focused around the yearly conferences, the first part of the article discusses the conference session space, its forms and its links to the broader community of educational researchers. The second part of the article traces the origin and development......The activities of EERA and the yearly ECER conferences are mainly organized in standing networks. Through the example of the network on Policy Studies and Politics of Education, this article takes a closer look at network activity and the ways in which it contributes to the development...... of the network on Policy Studies and Politics of Education, emphasizing how the network has provided a space for critical analysis and discussion of education policies and forms of governance being pursued by national and trans-national actors in and beyond Europe....

  18. 2015 Los Alamos Space Weather Summer School Research Reports

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  19. 2015 Los Alamos Space Weather Summer School Research Reports

    Cowee, Misa; Chen, Yuxi; Desai, Ravindra; Hassan, Ehab; Kalmoni, Nadine; Lin, Dong; Depascuale, Sebastian; Hughes, Randall Scott; Zhou, Hong

    2015-01-01

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student's PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfv@@nic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a

  20. Growing Diversity in Space Weather and Climate Change Research

    Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.

    2013-12-01

    Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.

  1. Space Exploration: Challenges in Medicine, Research, and Ethics

    Davis, Jeffrey R.

    2007-01-01

    This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.

  2. A low-temperature research facility for space

    Donnelly, R.J.

    1991-01-01

    The Jet Propulsion Laboratory is proposing to NASA a new initiative to construct a Low Temperature Research Facility for use in space. The facility is described, together with some details of timing and support. An advisory group has been formed which seeks to advise JPL and NASA of the capabilities required in this facility and to invite investigators to propose experiments which require the combination of low temperature and reduced gravity to be successful. (orig.)

  3. Neuroscience, power and culture: an introduction.

    Vrecko, Scott

    2010-01-01

    In line with their vast expansion over the last few decades, the brain sciences -- including neurobiology, psychopharmacology, biological psychiatry, and brain imaging -- are becoming increasingly prominent in a variety of cultural formations, from self-help guides and the arts to advertising and public health programmes. This article, which introduces the special issue of "History of the Human Science" on "Neuroscience, Power and Culture," considers the ways that social and historical research can, through empirical investigations grounded in the observation of what is actually happening and has already happened in the sciences of mind and brain, complement speculative discussions of the possible social implications of neuroscience that now appear regularly in the media and in philosophical bioethics. It suggests that the neurosciences are best understood in terms of their lineage within the "psy"-disciplines, and that, accordingly, our analyses of them will be strengthened by drawing on existing literatures on the history and politics of psychology -- particularly those that analyze formations of knowledge, power and subjectivity associated with the discipline and its practical applications. Additionally, it argues against taking today's neuroscientific facts and brain-targetting technologies as starting points for analysis, and for greater recognition of the ways that these are shaped by historical, cultural and political-economic forces.

  4. Using personality neuroscience to study personality disorder.

    Abram, Samantha V; DeYoung, Colin G

    2017-01-01

    Personality neuroscience integrates techniques from personality psychology and neuroscience to elucidate the neural basis of individual differences in cognition, emotion, motivation, and behavior. This endeavor is pertinent not only to our understanding of healthy personality variation, but also to the aberrant trait manifestations present in personality disorders and severe psychopathology. In the current review, we focus on the advances and limitations of neuroimaging methods with respect to personality neuroscience. We discuss the value of personality theory as a means to link specific neural mechanisms with various traits (e.g., the neural basis of the "Big Five"). Given the overlap between dimensional models of normal personality and psychopathology, we also describe how researchers can reconceptualize psychopathological disorders along key dimensions, and, in turn, formulate specific neural hypotheses, extended from personality theory. Examples from the borderline personality disorder literature are used to illustrate this approach. We provide recommendations for utilizing neuroimaging methods to capture the neural mechanisms that underlie continuous traits across the spectrum from healthy to maladaptive. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. The future of psychiatry as clinical neuroscience.

    Reynolds, Charles F; Lewis, David A; Detre, Thomas; Schatzberg, Alan F; Kupfer, David J

    2009-04-01

    Psychiatry includes the assessment, treatment, and prevention of complex brain disorders, such as depression, bipolar disorder, anxiety disorders, schizophrenia, developmental disorders (e.g., autism), and neurodegenerative disorders (e.g., Alzheimer dementia). Its core mission is to prevent and alleviate the distress and impairment caused by these disorders, which account for a substantial part of the global burden of illness-related disability. Psychiatry is grounded in clinical neuroscience. Its core mission, now and in the future, is best served within this context because advances in assessment, treatment, and prevention of brain disorders are likely to originate from studies of etiology and pathophysiology based in clinical and translational neuroscience. To ensure its broad public health relevance in the future, psychiatry must also bridge science and service, ensuring that those who need the benefits of its science are also its beneficiaries. To do so effectively, psychiatry as clinical neuroscience must strengthen its partnerships with the disciplines of public health (including epidemiology), community and behavioral health science, and health economics.The authors present a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of psychiatry and identify strategies for strengthening its future and increasing its relevance to public health and the rest of medicine. These strategies encompass new approaches to strengthening the relationship between psychiatry and neurology, financing psychiatry's mission, emphasizing early and sustained multidisciplinary training (research and clinical), bolstering the academic infrastructure, and reorganizing and refinancing mental health services both for preventive intervention and cost-effective chronic disease management.

  6. The Future of Psychiatry as Clinical Neuroscience

    Reynolds, Charles F.; Lewis, David A.; Detre, Thomas; Schatzberg, Alan F.; Kupfer, David J.

    2009-01-01

    Psychiatry includes the assessment, treatment, and prevention of complex brain disorders, such as depression, bipolar disorder, anxiety disorders, schizophrenia, developmental disorders (e.g., autism), and neurodegenerative disorders (e.g., Alzheimer dementia). Its core mission is to prevent and alleviate the distress and impairment caused by these disorders, which account for a substantial part of the global burden of illness-related disability. Psychiatry is grounded in clinical neuroscience. Its core mission, now and in the future, is best served within this context because advances in assessment, treatment, and prevention of brain disorders are likely to originate from studies of etiology and pathophysiology based in clinical and translational neuroscience. To ensure its broad public health relevance in the future, psychiatry must also bridge science and service, ensuring that those who need the benefits of its science are also its beneficiaries. To do so effectively, psychiatry as clinical neuroscience must strengthen its partnerships with the disciplines of public health (including epidemiology), community and behavioral health science, and health economics. The authors present a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis of psychiatry and identify strategies for strengthening its future and increasing its relevance to public health and the rest of medicine. These strategies encompass new approaches to strengthening the relationship between psychiatry and neurology, financing psychiatry’s mission, emphasizing early and sustained multidisciplinary training (research and clinical), bolstering the academic infrastructure, and reorganizing and refinancing mental health services both for preventive intervention and cost-effective chronic disease management. PMID:19318776

  7. Towards Homo Digitalis: Important Research Issues for Psychology and the Neurosciences at the Dawn of the Internet of Things and the Digital Society

    Christian Montag

    2018-02-01

    Full Text Available The present article gives an overview on central challenges humans face at the dawn of complex digital societies and the Internet of Things (IoT, i.e., a world completely connected to the Internet. Among the many challenges to be handled in digital societies is a growing fragmented life style leading to loss of productivity as well as moments for self-reflection. In all this, it is of tremendous importance to understand the impact of digital worlds on our brains and psyches and to reveal possible unintended side-effects of technology use. Does human nature change due to constant interactions with virtual realities? In this context, we also face the challenge to design digital worlds according to our mammalian-emotional heritage deeply anchored in subcortical areas of the human brain. Here, we refer to emotional needs as carved out by Panksepp’s Affective Neuroscience Theory and how they can or cannot be fulfilled in digital worlds. Aside from a review of several key studies dealing with the raised challenges, some first solutions to successfully meet the mentioned problems are provided to achieve sustainable and healthy digital worlds, with whom humans can interact carefree on a daily basis.

  8. Action Research as a Space for Transforming Learning Cultures

    Elżbieta Wołodźko

    2015-12-01

    Full Text Available The article presents a three-year educational action research project on autonomous and reflective learning. Students and teachers, being actively engaged in many learning practices, were both participating in process(es of developing educational and research community. These interrelated processes framed a dynamic space for constructing and reconstructing the participants’ learning cultures. Thanks to linking educational and research aspects of students’ activity and to interpenetration of practice and reflection, action research generates particular conditions for learning cultures’ transformation, from “traditional” toward “new” ones, based on reflectivity, authenticity and empowerment. The dynamism of learning cultures was connected to various and conscious and reflective types of educational participation, which affected autonomy of studying (in its numerous dimensions and types, being in turn a constitutive element of participants’ learning cultures.

  9. Life science-based neuroscience education at large Western Public Universities.

    Coskun, Volkan; Carpenter, Ellen M

    2016-12-01

    The last 40 years have seen a remarkable increase in the teaching of neuroscience at the undergraduate level. From its origins as a component of anatomy or physiology departments to its current status as an independent interdisciplinary field, neuroscience has become the chosen field of study for many undergraduate students, particularly for those interested in medical school or graduate school in neuroscience or related fields. We examined how life science-based neuroscience education is offered at large public universities in the Western United States. By examining publicly available materials posted online, we found that neuroscience education may be offered as an independent program, or as a component of biological or physiological sciences at many institutions. Neuroscience programs offer a course of study involving a core series of courses and a collection of topical electives. Many programs provide the opportunity for independent research, or for laboratory-based training in neuroscience. Features of neuroscience programs at Western universities closely matched those seen at the top 25 public universities, as identified by U.S. News & World Report. While neuroscience programs were identified in many Western states, there were several states in which public universities appeared not to provide opportunities to major in neuroscience. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  11. Artistic Research on Freedom in Space and Science

    Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina

    ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on

  12. A geographical history of social cognitive neuroscience.

    Lieberman, Matthew D

    2012-06-01

    The history of social cognitive neuroscience (SCN) began with isolated islands of research in Europe and the United States in the 1990s. In the decade between 1995 and 2004 most of the major areas of current SCN research were identified in a series of high profile first studies. This paper reviews the timeline as well as the geography of important moments in the short history of this field. Of note is the different focus seen in European contributions (theory of mind, mirror neurons, and empathy) and the more self-focused U.S. contributions (self-knowledge, emotion regulation, implicit attitudes). Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The Neuroscience of Growth Mindset and Intrinsic Motivation.

    Ng, Betsy

    2018-01-26

    Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  14. The Neuroscience of Growth Mindset and Intrinsic Motivation

    Betsy Ng

    2018-01-01

    Full Text Available Our actions can be triggered by intentions, incentives or intrinsic values. Recent neuroscientific research has yielded some results about the growth mindset and intrinsic motivation. With the advances in neuroscience and motivational studies, there is a global need to utilize this information to inform educational practice and research. Yet, little is known about the neuroscientific interplay between growth mindset and intrinsic motivation. This paper attempts to draw on the theories of growth mindset and intrinsic motivation, together with contemporary ideas in neuroscience, outline the potential for neuroscientific research in education. It aims to shed light on the relationship between growth mindset and intrinsic motivation in terms of supporting a growth mindset to facilitate intrinsic motivation through neural responses. Recent empirical research from the educational neuroscience perspective that provides insights into the interplay between growth mindset and intrinsic motivation will also be discussed.

  15. Optimising, generalising and integrating educational practice using neuroscience

    Colvin, Robert

    2016-07-01

    Practical collaboration at the intersection of education and neuroscience research is difficult because the combined discipline encompasses both the activity of microscopic neurons and the complex social interactions of teachers and students in a classroom. Taking a pragmatic view, this paper discusses three education objectives to which neuroscience can be effectively applied: optimising, generalising and integrating instructional techniques. These objectives are characterised by: (1) being of practical importance; (2) building on existing education and cognitive research; and (3) being infeasible to address based on behavioural experiments alone. The focus of the neuroscientific aspect of collaborative research should be on the activity of the brain before, during and after learning a task, as opposed to performance of a task. The objectives are informed by literature that highlights possible pitfalls with educational neuroscience research, and are described with respect to the static and dynamic aspects of brain physiology that can be measured by current technology.

  16. Research-grade CMOS image sensors for demanding space applications

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  17. The Neuroscience of Mathematical Cognition and Learning. OECD Education Working Papers, No. 136

    Looi, Chung Yen; Thompson, Jacqueline; Krause, Beatrix; Kadosh, Roi Cohen

    2016-01-01

    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in…

  18. Human Research Program Space Radiation Standing Review Panel (SRP)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be

  19. Extending the Mind: A Review of Ethnographies of Neuroscience Practice

    Tara eMahfoud

    2014-06-01

    Full Text Available This paper reviews ethnographies of neuroscience laboratories in the United States and Europe, organizing them into three main sections: 1 descriptions of the capabilities and limitations of technologies used in neuroimaging laboratories to map ‘activity’ or ‘function’ onto structural models of the brain, 2 discussions of the ‘distributed’ or ‘extended’ mind in neuroscience practice, and 3 the implications of neuroscience research and the power of brain images outside the laboratory. I will try to show the importance of ethnographic work in such settings, and place this body of ethnographic work within its historical framework - such ethnographies largely emerged within the Decade of the Brain, as announced by former President of the United States George H. W. Bush in 1990. The main argument is that neuroscience research and the context within which it is taking place has changed since the 1990’s - specifically with the launch of ‘big science’ projects such as the Human Brain Project in the European Union and the BRAIN initiative in the United States. There is an opportunity for more research into the institutional and politico-economic context within which neuroscience research is taking place, and for continued engagement between the social and biological sciences.

  20. Devices development and techniques research for space life sciences

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  1. Recent technology products from Space Human Factors research

    Jenkins, James P.

    1991-01-01

    The goals of the NASA Space Human Factors program and the research carried out concerning human factors are discussed with emphasis given to the development of human performance models, data, and tools. The major products from this program are described, which include the Laser Anthropometric Mapping System; a model of the human body for evaluating the kinematics and dynamics of human motion and strength in microgravity environment; an operational experience data base for verifying and validating the data repository of manned space flights; the Operational Experience Database Taxonomy; and a human-computer interaction laboratory whose products are the display softaware and requirements and the guideline documents and standards for applications on human-computer interaction. Special attention is given to the 'Convoltron', a prototype version of a signal processor for synthesizing the head-related transfer functions.

  2. Contamination control research activities for space optics in JAXA RANDD

    Kimoto, Y.

    2017-11-01

    Contamination control research activities for space optics projects in JAXA R&D are described. More accurate contamination control techniques are requested because of intensified recent science mission requirements. One approach to control the contamination effects is analysis by software. JAXA has been developing a contamination analytical tool "J-SPICE" (Japanese Spacecraft Induced Contamination analysis software) as well as experiment facilities to improve the J-SPICE. A reflection model in J-SPICE has been experimentally verified and outgassing model data has been acquired by a facility. JAXA has developed a facility which could determine the influence of the contamination at a specific wavelength by combining a vacuum chamber with an I-R spectrometer and performed an experiment to inspect the effect of baking. Space material exposure experiment results reveal the actual thickness of the contamination layer in ISS orbit.

  3. Research on the International Space Station - An Overview

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  4. Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging

    Marta Karolina Zamroziewicz

    2016-06-01

    Full Text Available Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition’s impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition – from entire diets to specific nutrients – affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns, along with (ii modern indices of brain health derived from high-resolution magnetic resonance imaging. By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.

  5. Classics in Chemical Neuroscience: Haloperidol.

    Tyler, Marshall W; Zaldivar-Diez, Josefa; Haggarty, Stephen J

    2017-03-15

    The discovery of haloperidol catalyzed a breakthrough in our understanding of the biochemical basis of schizophrenia, improved the treatment of psychosis, and facilitated deinstitutionalization. In doing so, it solidified the role for chemical neuroscience as a means to elucidate the molecular underpinnings of complex neuropsychiatric disorders. In this Review, we will cover aspects of haloperidol's synthesis, manufacturing, metabolism, pharmacology, approved and off-label indications, and adverse effects. We will also convey the fascinating history of this classic molecule and the influence that it has had on the evolution of neuropsychopharmacology and neuroscience.

  6. Research on optic antenna of space laser communication networking

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  7. Refinement of the use of food and fluid control as motivational tools for macaques used in behavioural neuroscience research: report of a Working Group of the NC3Rs.

    Prescott, Mark J; Brown, Verity J; Flecknell, Paul A; Gaffan, David; Garrod, Kate; Lemon, Roger N; Parker, Andrew J; Ryder, Kathy; Schultz, Wolfram; Scott, Leah; Watson, Jayne; Whitfield, Lucy

    2010-11-30

    This report provides practical guidance on refinement of the use of food and fluid control as motivational tools for macaques used in behavioural neuroscience research. The guidance is based on consideration of the scientific literature and, where data are lacking, expert opinion and professional experience, including that of the members of a Working Group convened by the United Kingdom National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). The report should be useful to researchers, veterinarians and animal care staff responsible for the welfare of macaques used in food and fluid control protocols, as well as those involved with designing, performing and analysing studies that use these protocols. It should also assist regulatory authorities and members of local ethical review processes or institutional animal care and use committees concerned with evaluating such protocols. The report provides a framework for refinement that can be tailored to meet local requirements. It also identifies data gaps and areas for future research and sets out the Working Group's recommendations on contemporary best practice. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Fungi in space--literature survey on fungi used for space research.

    Kern, V D; Hock, B

    1993-09-01

    A complete review of the scientific literature on experiments involving fungi in space is presented. This review begins with balloon experiments around 1935 which carried fungal spores, rocket experiments in the 1950's and 60's, satellite and moon expeditions, long-time orbit experiments and Spacelab missions in the 1980's and 90's. All these missions were aimed at examining the influence of cosmic radiation and weightlessness on genetic, physiological, and morphogenetic processes. During the 2nd German Spacelab mission (D-2, April/May 1993), the experiment FUNGI provided the facilities to cultivate higher basidiomycetes over a period of 10 d in orbit, document gravimorphogenesis and chemically fix fruiting bodies under weightlessness for subsequent ultrastructural analysis. This review shows the necessity of space travel for research on the graviperception of higher fungi and demonstrates the novelty of the experiment FUNGI performed within the framework of the D-2 mission.

  9. Auroral research in Norway up to the space age

    Egeland, A.; Brekke, A.

    1986-01-01

    Since Norway is located in and close to the belt of maximum auroral occurrence, this may explain why Norwegian scientists have made such a significant contribution in auroral research. This, however, does not explain why Norwegians have been more active in this field than scientists in our neighboring countries. The same is even true in meteorology. Thus, it seems that Norwegians have concentrated on ''outdoor'' natural sciences. K.O. Birkeland, F.M. Stoermer and L. Vegard were the first to apply precise methods to study aurora and associated phenomena. They were also the first to propose a realistic theory and to calculate the motion of fast electrons from the Sun to the Earth's polar atmosphere. Through their research, these pioneers discovered many new effects and laid the foundation of our present-day exploration of aurora from space

  10. Psychosocial Research on the International Space Station: Special Privacy Considerations

    Kanas, N.; Salnitskiy, V.; Ritsher, J.; Grund, E.; Weiss, D.; Gushin, V.; Kozerenko, O.

    Conducting psychosocial research with astronauts and cosmonauts requires special privacy and confidentiality precautions due to the high profile nature of the subject population and to individual crewmember perception of the risks inherent in divulging sensitive psychological information. Sampling from this small population necessitates subject protections above and beyond standard scientific human subject protocols. Many of these protections have relevance for psychosocial research on the International Space Station. In our previous study of psychosocial issues involving crewmembers on the Mir space station, special precautions were taken during each phase of the missions. These were implemented in order to gain the trust necessary to ameliorate the perceived risks of divulging potentially sensitive psychological information and to encourage candid responses. Pre-flight, a standard confidentiality agreement was provided along with a special layman's summary indicating that only group-level data would be presented, and subjects chose their own ID codes known only to themselves. In-flight, special procedures and technologies (such as encryption) were employed to protect the data during the collection. Post-flight, an analytic strategy was chosen to further mask subject identifiers, and draft manuscripts were reviewed by the astronaut office prior to publication. All of the eligible five astronauts and eight cosmonauts who flew joint US/Russian missions on the Mir were successfully recruited to participate, and their data completion rate was 76%. Descriptive analyses of the data indicated that there was sufficient variability in all of the measures to indicate that thoughtful, discriminating responses were being provided (e.g., the full range of response options was used in 63 of the 65 items of the Profile of Mood States measure, and both true and false response options were used in all 126 items of the Group Environment and the Work Environment measures). This

  11. Neuroscience Knowledge Among Athletic Training Professional Programs

    Douglas M. Seavey

    2016-05-01

    programs (91.2% of the total 336 professional programs. Anatomy (91.59%, physiology (88.35% and exercise physiology (92.56% were most frequently required basic science courses. However, only 4.85% (n=15 of programs have human gross anatomy dissection or prosection in their curricula and just 2.59% (n=8 of athletic training programs require a course in neuroscience/neuroanatomy. Conclusions: Our data demonstrates a gap exists in athletic training education in the area of neuroanatomy/neuroscience content. The BRAIN ( Brain Research through Advancing Innovative Neurotechnologies Initiative is new federal research and healthcare task-force aimed at revolutionizing the understanding of the human brain. The Sports and Health Research Program is a partnership between the National Institutes of Health and the National Football League to fund sport concussion research. With the future professional degree change eminent, professional and post-professional athletic training education must seriously consider the inclusion of neuroanatomy content. We present several wet-brain specimen and active learning laboratory options that educators may adopt to provide added depth toneuroscience/neuroanatomy knowledge base.

  12. Advances in Rodent Research Missions on the International Space Station

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  13. Materials Science Research Rack Onboard the International Space Station

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  14. Neuroscience challenges to philosophical anthropology

    Antonio Sánchez Orantos

    2016-02-01

    Full Text Available This article aims to provide a possible framework to critically define the concept of human nature and person in dialogue with Neuroscience. He tries to help meet the challenge of the naturalism in the current thought.

  15. Psychological constructionism and cultural neuroscience.

    Hechtman, Lisa A; Pornpattananangkul, Narun; Chiao, Joan Y

    2012-06-01

    Lindquist et al. argue that emotional categories do not map onto distinct regions within the brain, but rather, arise from basic psychological processes, including conceptualization, executive attention, and core affect. Here, we use examples from cultural neuroscience to argue that psychological constructionism, not locationism, captures the essential role of emotion in the social and cultural brain.

  16. Does Neuroscience Matter for Education?

    Schrag, Francis

    2011-01-01

    In this review essay, Francis Schrag focuses on two recent anthologies dealing completely or in part with the role of neuroscience in learning and education: The "Jossey-Bass Reader on the Brain and Learning", edited by Jossey-Bass Publishers, and "New Philosophies of Learning", edited by Ruth Cigman and Andrew Davis. Schrag argues that…

  17. Neuroscience, Education and Mental Health

    Arboccó de los Heros, Manuel

    2016-01-01

    The following article presents a series of investigations, reflections, and quotes about neuroscience, education, and psychology. Each area is specialized in some matters but at some point they share territory and mutually benefit one another, and help us to increasingly understand the complex world of learning, the brain, and human behavior. We…

  18. A Neuroscience Perspective on Learning

    Sloan, Dendy; Norrgran, Cynthia

    2016-01-01

    We briefly discuss memory types and three modern principles of neuroscience: 1) Protein growth at the synapse, 2) the three-brain theory, and 3) the interplay of the hippocampus, the neocortex, and the prefrontal cortex. To illustrate the potential of this perspective, four applications of these principles are provided.

  19. Teaching Ethics Informed by Neuroscience

    Sayre, Molly Malany

    2016-01-01

    New findings about the brain are explicating how we make moral and ethical decisions. The neuroscience of morality is relevant to ethical decision making in social work because of a shared biopsychosocial perspective and the field's explanatory power to understand possible origins of universally accepted morals and personal attitudes at play in…

  20. Brain Matters: Neuroscience and Creativity

    Blevins, Dean G.

    2012-01-01

    This article introduces a relationship between neuroscience and creativity for the sake of religious education. Citing creativity as a process that involves both originality and value, the writing articulates Howard Gardner's interplay between the talent of the person, the internal demands of a discipline, and the quality judgment of the field.…

  1. The Space-Time Asymmetry Research (STAR) program

    Buchman, Sasha

    Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment

  2. Behavioral Neuroscience Laboratory

    Federal Laboratory Consortium — This lab supports cognitive research using rodent models. Capabilities for behavioral assessments include:Morris water maze and Barnes maze (spatial memory)elevate...

  3. Neuroscience & the Classroom: Making Connections. A Video Course for Grades K-12 Teachers and School Counselors

    Annenberg Learner, 2012

    2012-01-01

    Exciting developments in the field of neuroscience are leading to a new understanding of how the brain works that is beginning to transform teaching in the classroom. "Neuroscience & the Classroom: Making Connections" brings together researchers and educators in a dialog about how insights into brain function can be harnessed by teachers for use…

  4. Principles of Curriculum Design and Construction Based on the Concepts of Educational Neuroscience

    Watagodakumbura, Chandana

    2017-01-01

    With the emergence of a wealth of research-based information in the field of educational neuroscience, educators are now able to make more evidence-based decisions in the important area of curriculum design and construction. By viewing from the perspective of educational neuroscience, we can give a more meaningful and lasting purpose of leading to…

  5. The Potential Relevance of Cognitive Neuroscience for the Development and Use of Technology-Enhanced Learning

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating neuroscientific concepts into TEL research. We caution…

  6. Boundary as Bridge: An Analysis of the Educational Neuroscience Literature from a Boundary Perspective

    Beauchamp, Catherine; Beauchamp, Miriam H.

    2013-01-01

    Within the emerging field of educational neuroscience, concerns exist that the impact of neuroscience research on education has been less effective than hoped. In seeking a way forward, it may be useful to consider the problems of integrating two complex fields in the context of disciplinary boundaries. Here, a boundary perspective is used as a…

  7. Neuroscience and Education: How Best to Filter out the Neurononsense from Our Classrooms?

    Purdy, Noel

    2008-01-01

    This article considers the extent to which neuroscience is being applied to education, both on a classroom level and also on the level of curricular reform in Northern Ireland. The article reviews recent research in the area of neuroscience and education and examines a number of popular "neuromyths." It urges the educational world to…

  8. Multidisciplinary research in public health: a case study of research on access to green space.

    Kessel, A; Green, J; Pinder, R; Wilkinson, P; Grundy, C; Lachowycz, K

    2009-01-01

    Quantitative analysis of the physical and demographic parameters of access to Thames Chase Community Forest (TCCF), and how these have changed between 1990 and 2003; and qualitative exploration of our understanding of the links between health and the natural environment (TCCF), with a focus on the issue of 'access' to green space. Multimethod design involving both quantitative (analysis of physical access to green space) and qualitative (ethnography) components. Quantitative analysis, using geographical information systems, of physical access to the community forest; and ethnographic research including participant observation, non-participant observation, in-depth interviews and attendance at meetings and conferences. The quantitative analysis showed that public access to green space improved between 1990 and 2003 as a result of the regeneration and acquisition of new areas, and the average reduction in distance to green space was 162 m. However, such improvements were distributed differentially between population groups. In both 1990 and 2003, people from deprived areas and in poorer health had better access to green space than people from less deprived areas, but the greatest improvement in access to green space over this interval occurred in areas of below average deprivation (i.e. in the more affluent areas). The ethnographic research showed different interpretations of the notion of access. Use of TCCF was determined by a variety of factors including whether a person could 'imagine themselves' using such a space, different perceptions of what is actually being accessed (e.g. a place to exercise or a place to socialise), and ideas about using the countryside 'properly'. The health benefits of using a green space, such as TCCF, for walking or exercising are well recognized. However, whether people choose to use local green space may be determined by a variety of factors. These are likely to include physical distance to access of green space, as well as

  9. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  10. Integration of three important urban spaces in the city of Patras. A design research on the relationship of characteristics of space and the enriched environment

    Vasiliki Kondyli

    2015-09-01

    Full Text Available This contribution presents a design project that focuses on three important urban spaces in the city of Patras. The contribution deals with some of the fundamental problems which depict in these particular areas. Two of the most essential issues of these abandoned and isolated places are the accessibility of pedestrians and the lack of identity. A design experiment is developed, identifying disadvantages of the space and taking into consideration groups of people that are interested in an upcoming change, This experiment is based on knowledge of neuroscience about space and it deals with human’s experience and senses. It focuses on open urban spaces and the consolidation of a cultural and historical place into daily life.

  11. Population Neuroscience: Dementia Epidemiology Serving Precision Medicine and Population Health.

    Ganguli, Mary; Albanese, Emiliano; Seshadri, Sudha; Bennett, David A; Lyketsos, Constantine; Kukull, Walter A; Skoog, Ingmar; Hendrie, Hugh C

    2018-01-01

    Over recent decades, epidemiology has made significant contributions to our understanding of dementia, translating scientific discoveries into population health. Here, we propose reframing dementia epidemiology as "population neuroscience," blending techniques and models from contemporary neuroscience with those of epidemiology and biostatistics. On the basis of emerging evidence and newer paradigms and methods, population neuroscience will minimize the bias typical of traditional clinical research, identify the relatively homogenous subgroups that comprise the general population, and investigate broader and denser phenotypes of dementia and cognitive impairment. Long-term follow-up of sufficiently large study cohorts will allow the identification of cohort effects and critical windows of exposure. Molecular epidemiology and omics will allow us to unravel the key distinctions within and among subgroups and better understand individuals' risk profiles. Interventional epidemiology will allow us to identify the different subgroups that respond to different treatment/prevention strategies. These strategies will inform precision medicine. In addition, insights into interactions between disease biology, personal and environmental factors, and social determinants of health will allow us to measure and track disease in communities and improve population health. By placing neuroscience within a real-world context, population neuroscience can fulfill its potential to serve both precision medicine and population health.

  12. Current status and research of plant space mutation breeding

    Qiu Xinmian

    2011-01-01

    Plant space mutation breeding and discussed themechanism of plant space mutagenesis. The variations of organisms were induced by the comprehensive effects of high vacuum, microgravity,incense radiat ion and so on. The application of space mutation breeding and inheritance in specially good grmplasm material in China were well summarized. The prospects of space mutat ion breeding was described. The space mutagenesis will provided a new way for the future breeding. (author)

  13. The rhesus measurement system: A new instrument for space research

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  14. What is a representative brain? Neuroscience meets population science.

    Falk, Emily B; Hyde, Luke W; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M; Keating, Daniel P; Langa, Kenneth M; Martz, Meghan E; Maslowsky, Julie; Morrison, Frederick J; Noll, Douglas C; Patrick, Megan E; Pfeffer, Fabian T; Reuter-Lorenz, Patricia A; Thomason, Moriah E; Davis-Kean, Pamela; Monk, Christopher S; Schulenberg, John

    2013-10-29

    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain-behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective--population neuroscience--that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.

  15. Space Station thermal storage/refrigeration system research and development

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  16. Einstein's idealism and a new kind of space research

    Popov, M. A.

    In 1935, Albert Einstein, Boris Podolsky and Nathan Rosen made an attempt to imagine quantum experimental nonsense or some impossible experiment (EPR-experiment) in order to justify their local realism in physics. However, in the mid-1960s, John Bell showed that it is possible to realize this kind of nonsense in laboratory. Today, when EPR-refutation of local realism is routine in modern experimental physics (Clauser and Freedman [1972]; Aspect, Dalibard and Roger [1982]; Zeilinger et al. [1998]), we must; nevertheless, remark that Albert Einstein was not always a realist. As is known, in his Special Relativitz A. Einstein introduced some pure idealistic principle which K. Godel developed in famous "Remark about the relationship between Relativity theorz and Idealistic Philosophy" (1949). Kurt Godel for the first time showed an existence of special-relativistic solipsism, assuming that objective simultaneity in experimental science "loses its objective meaning". Correspondingly, there is only subjective simultaneity, that is provable by calculations with the finite velocity of light and astronomical observations. In particular, this space solipsism means that when we observe the sun, we can see only what happend on Sun 8.33 minutes ago; in other words, we percieve only certain sensations or a certain collections of ideas of the past, but not the present. Similarly, when astronomers observe galaxies estimated to be two billion light years from the Earth, they see these galaxies as they were two billion light years ago not as they are Now. Thus, in accordance with this, we may await that in this context for some pairs of astronomical objects we cannot prove they exist NOW. Moreover, this new kind of space research could be connected with introduction of the Cognitive Dark Matter, or, what is associated with manifold of the large-scale events of the Universe as a whole which are realizing Now, beyond consciousness of the observers-humans. Because we cannot know

  17. Reflexivity: The Creation of Liminal Spaces--Researchers, Participants, and Research Encounters.

    Enosh, Guy; Ben-Ari, Adital

    2016-03-01

    Reflexivity is defined as the constant movement between being in the phenomenon and stepping outside of it. In this article, we specify three foci of reflexivity--the researcher, the participant, and the encounter--for exploring the interview process as a dialogic liminal space of mutual reflection between researcher and participant. Whereas researchers' reflexivity has been discussed extensively in the professional discourse, participants' reflexivity has not received adequate scholarly attention, nor has the promise inherent in reflective processes occurring within the encounter. © The Author(s) 2015.

  18. Music therapy with disorders of consciousness and neuroscience

    O'Kelly, Julian; Magee, Wendy L.

    2013-01-01

    , there is little evidence to support music therapy in rehabilitation programmes. In contrast, advances in neuroscience have improved our understanding of both brain damage and brain/music interactions. There is increasing support for the role of musical activity in promoting neuroplasticity and functional...... improvements for people with neuro-disabilities, although music therapy specific studies are lacking. Collaborations between the fields of neuroscience and music therapy may yield fruitful progress for both disciplines as well as for patient populations. By outlining the key findings and the remaining...... questions offered by the neuroscience literature, this paper sets out the future challenges to address for clinicians and researchers in developing evidence-based approaches to their work....

  19. Contemplative Neuroscience as an Approach to Volitional Consciousness

    Thompson, Evan

    This chapter presents a methodological approach to volitional consciousness for cognitive neuroscience based on studying the voluntary self-generation and self-regulation of mental states in meditation. Called contemplative neuroscience, this approach views attention, awareness, and emotion regulation as flexible and trainable skills, and works with experimental participants who have undergone training in contemplative practices designed to hone these skills. Drawing from research on the dynamical neural correlates of contemplative mental states and theories of large-scale neural coordination dynamics, I argue for the importance of global system causation in brain activity and present an "interventionist" approach to intentional causation.

  20. Rodent Research on the International Space Station - A Look Forward

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and

  1. Spatial Polygamy and Contextual Exposures (SPACEs): Promoting Activity Space Approaches in Research on Place and Health

    Matthews, Stephen A.; Yang, Tse-Chuan

    2014-01-01

    Exposure science has developed rapidly and there is an increasing call for greater precision in the measurement of individual exposures across space and time. Social science interest in an individual’s environmental exposure, broadly conceived, has arguably been quite limited conceptually and methodologically. Indeed, we appear to lag behind our exposure science colleagues in our theories, data, and methods. In this paper we discuss a framework based on the concept of spatial polygamy to demonstrate the need to collect new forms of data on human spatial behavior and contextual exposures across time and space. Adopting new data and methods will be essential if we want to better understand social inequality in terms of exposure to health risks and access to health resources. We discuss the opportunities and challenges focusing on the potential seemingly offered by focusing on human mobility, and specifically the utilization of activity space concepts and data. A goal of the paper is to spatialize social and health science concepts and research practice vis-a-vis the complexity of exposure. The paper concludes with some recommendations for future research focusing on theoretical and conceptual development, promoting research on new types of places and human movement, the dynamic nature of contexts, and on training. “When we elect wittingly or unwittingly, to work within a level … we tend to discern or construct – whichever emphasis you prefer – only those kinds of systems whose elements are confined to that level.”Otis Dudley Duncan (1961, p. 141). “…despite the new ranges created by improved transportation, local government units have tended to remain medieval in size.”Torsten Hägerstrand (1970, p.18) “A detective investigating a crime needs both tools and understanding. If he has no fingerprint powder, he will fail to find fingerprints on most surfaces. If he does not understand where the criminal is likely to have put his fingers, he will not

  2. The Neuroscience of Leadership

    Rock, David; Schwartz, Jeffrey

    2007-01-01

    Success in any organization may depend on changing the behavior of stakeholders to meet new challenges. But humans have brains designed to register change as threat, and thus they often cling to old habits and mindsets. Recent breakthroughs in brain research provide a fresh alternative to both behavioral and humanistic approaches to organizational…

  3. Advances in space power research and technology at the National Aeronautics and Space Administration

    Mullin, J. P.; Randolph, L. P.; Hudson, W. R.; Ambrus, J. H.

    1981-01-01

    Progress and plans in various areas of the NASA Space Power Program are discussed. Solar cell research is narrowed to GaAs, multibandgap, and thin Si cells for arrays in planar and concentrator configurations, with further work to increase cell efficiency, radiation hardness, develop flexible encapsulants, and reduce cost. Electrochemical research is concentrating on increasing energy and power density, cycle and wet stand life, reliability and cost reduction of batteries. Further development of the Ni-H2 battery and O2-H2 fuel cell to multihundred kW with a 5 year life and 30,000 cycles is noted. Basic research is ongoing for alkali metal anodes for high energy density secondary cells. Nuclear thermoelectric propulsion is being developed for outer planets exploration propulsion systems, using Si-Ge generators, and studies with rare earth chalcogenides and sulfides are mentioned. Power Systems Management seeks to harmonize increasing power supply levels with inner and outer spacecraft environments, circuits, demands, and automatic monitoring. Concomitant development of bipolar transistors, an infrared rectenna, spacecraft charging measurement, and larger heat pipe transport capacity are noted.

  4. Advances in space power research and technology at the National Aeronautics and Space Administration

    Mullin, J.P.; Randolph, L.P.; Hudson, W.R.; Ambrus, J.H.

    1981-01-01

    Progress and plans in various areas of the NASA Space Power Program are discussed. Solar cell research is narrowed to GaAs, multibandgap, and thin Si cells for arrays in planar and concentrator configurations, with further work to increase cell efficiency, radiation hardness, develop flexible encapsulants, and reduce cost. Electrochemical research is concentrating on increasing energy and power density, cycle and wet stand life, reliability and cost reduction of batteries. Further development of the Ni-H 2 battery and O 2 -H 2 fuel cell to multihundred kW with a 5 year life and 30,000 cycles is noted. Basic research is ongoing for alkali metal anodes for high energy density secondary cells. Nuclear thermoelectric propulsion is being developed for outer planets exploration propulsion systems, using Si-Ge generators, and studies with rare earth chalcogenides and sulfides are mentioned. Power Systems Management seeks to harmonize increasing power supply levels with inner and outer spacecraft environments, circuits, demands, and automatic monitoring. Concomitant development of bipolar transistors, an infrared rectenna, spacecraft charging measurement, and larger heat pipe transport capacity are noted

  5. NASA Dryden Flight Research Center's Space Weather Needs

    Wiley, Scott

    2011-01-01

    Presentation involves educating Goddard Space Weather staff about what our needs are, what type of aircraft we have and to learn what we have done in the past to minimize our exposure to Space Weather Hazards.

  6. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  7. New techniques in systems neuroscience

    2015-01-01

    This volume is essential reading for anyone wishing to understand the recent explosion of experimental tools in neuroscience that now make it possible to manipulate, record, and understand neuronal activity within the intact brain, and which are helping us to learn how the many neurons that comprise a network act together to control behavior. Leaders in the field discuss the latest developments in optogenetics, functional imaging, circuit mapping, and the application of these tools to complex biological problems. New Techniques in Systems Neuroscience Explores cutting-edge methodological developments and their biological motivations Covers state-of-the-art advances in optogenetics, imaging, circuit mapping, and the molecular characterization of individual neurons Describes key examples of how these methods have been applied in different model organisms Is appropriate for experts and those just entering the field alike.

  8. Time to connect: bringing social context into addiction neuroscience.

    Heilig, Markus; Epstein, David H; Nader, Michael A; Shaham, Yavin

    2016-09-01

    Research on the neural substrates of drug reward, withdrawal and relapse has yet to be translated into significant advances in the treatment of addiction. One potential reason is that this research has not captured a common feature of human addiction: progressive social exclusion and marginalization. We propose that research aimed at understanding the neural mechanisms that link these processes to drug seeking and drug taking would help to make addiction neuroscience research more clinically relevant.

  9. Neuroscience in the HBSE Sequence: Mandate and Methodology

    Combs-Orme, Terri; Lefmann, Tess; Pilkay, Stefanie; Strong, Joe; Thompson, Phyllis; Veerman, Tara

    2017-01-01

    Important findings from neuroscience research provide valuable knowledge for social work practice, and although these findings are already being incorporated into practice in many other disciplines, social work has been slow to integrate this content into foundation professional education. This article describes how one social work program…

  10. A Primer on Concepts and Applications of Proteomics in Neuroscience

    Hosp, Fabian; Mann, Matthias

    2017-01-01

    The enormous complexity of the central nervous system has impeded its systemic exploration for decades but powerful "omic" technologies are now pushing forward the frontiers of neuroscience research at an increasing pace. This Primer reviews the most recent progress in mass spectrometry (MS...

  11. Pathological choice: the neuroscience of gambling and gambling addiction

    Clark, L.; Averbeck, B.; Payer, D.; Sescousse, G.T.; Winstanley, C.A.; Xue, G.

    2013-01-01

    Gambling is pertinent to neuroscience research for at least two reasons. First, gambling is a naturalistic and pervasive example of risky decision making, and thus gambling games can provide a paradigm for the investigation of human choice behavior and "irrationality." Second, excessive gambling

  12. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one?s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both researc...

  13. BRAIN. Broad Research in Artificial Intelligence and Neuroscience-Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety

    Utku Köse

    2018-01-01

    Nowadays, there is a serious anxiety on the existence of dangerous intelligent systems and it is not just a science-fiction idea of evil machines like the ones in well-known Terminator movie or any other movies including intelligent robots – machines threatening the existence of humankind. So, there is a great interest in some alternative research works under the topics of Machine Ethics, Artificial Intelligence Safety and the associated research topics like Future of Artificial I...

  14. Invited Review Article: Advanced light microscopy for biological space research

    De Vos, W.H.; Beghuin, D.; Schwarz, C.J.; Jones, D.B.; van Loon, J.J.W.A.; Bereiter-Hahn, J.; Stelzer, E.H.K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as

  15. Invited review article: advanced light microscopy for biological space research

    De Vos, W.H.; Beghuin, D.; Schwarz, C.J.; Jones, D.B.; van Loon, J.J.W.A.; Bereiter-Hahn, J.; Stelzer, E.H.K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as

  16. Neuroscience, Education and Metal Health

    Manuel Arboccó de los Heros

    2016-04-01

    Full Text Available The following article presents a series of investigations, reflections, and quotes about neuroscience, education, and psychology. Each area is specialized in some matters but at some point they share territory and mutually benefit one another, and help us to increasingly understand the complex world of learning, the brain, and human behavior. We hope them to be of interest and a promoter of new thoughts.

  17. The future of network neuroscience

    2017-02-01

    Full Text Available Understanding the brain represents one of the most profound and pressing scientific challenges of the 21st century. As brain data have increased in volume and complexity, the tools and methods of network science have become indispensable for mapping and modeling brain structure and function, for bridging scales of organization, and for integrating across empirical and computational methodologies. The creation of a new journal, Network Neuroscience, will contribute to guiding this emerging and interdisciplinary field in new directions.

  18. Saving a Unique Data Set for Space Weather Research

    Bilitza, D.; Benson, R. F.; Reinisch, B. W.; Huang, X. A.

    2017-12-01

    The Canadian/US International Satellites for Ionospheric Studies (ISIS) program included the four satellites Alouette 1 and 2, ISIS 1 and 2 launched in 1962, 1965, 1969, and 1971, respectively and in operation for 10, 10, 21, and 19 years, respectively. The core experiment on these satellites was a topside sounder that could determine the ionospheric electron density from the orbit altitude down to about 250-500 km near where the ionosphere reaches its point of highest density, the F-peak. The mission was long lasting and highly successful, producing a wealth of information about the topside ionosphere in the form of analog ionosphere soundings on 7-track tapes. The analysis process required a tedious manual scaling of ionogram traces that could then, with appropriate software, be converted into electron density profiles. Even with the combined effort involving ionospheric groups from many countries only a relatively small percentage of the huge volume of recorded ionograms could be converted to electron density profiles. Even with this limited number significant new insights were achieved documented by the many Alouette/ISIS-related papers published in the 1960s and 1970s. Recognizing the importance of this unique data set for space weather research a new effort was undertaken in the late Nineties to analyze more of the Alouette/ISIS ionograms. The immediate cause for action was the threat to the more than 100,000 analog telemetry tapes in storage in Canada because of space limitations and storage costs. We were able to have nearly 20,000 tapes shipped to the NASA Goddard Space Flight Center for analog-to-digital conversion and succeeded in developing software that automatically scales and converts the ionograms to electron density profiles. This rescue effort is still ongoing and has already produced a significant increase in the information available for the topside ionosphere and has resulted in numerous publications. The data have led to improvements of the

  19. Using Drawings of the Brain Cell to Exhibit Expertise in Neuroscience: Exploring the Boundaries of Experimental Culture

    Hay, David B.; Williams, Darren; Stahl, Daniel; Wingate, Richard J.

    2013-01-01

    This paper explores the research perspective of neuroscience by documenting the brain cell (neuron) drawings of undergraduates, trainee scientists, and leading neuroscience researchers in a single research-intensive university. Qualitative analysis, drawing-sorting exercises, and hierarchical cluster analysis are used to answer two related…

  20. Successfully Transitioning Science Research to Space Weather Applications

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  1. The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    Wojtek James eGoscinski

    2014-03-01

    Full Text Available The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE is a national imaging and visualisation facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organisation (CSIRO, and the Victorian Partnership for Advanced Computing (VPAC, with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI, x-ray computer tomography (CT, electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i integrated multiple different neuroimaging analysis software components, (ii enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research.

  2. Best Practices: The Neuroscience Program at Central Michigan University

    Dunbar, Gary L.

    2015-01-01

    The original design of our program at Central Michigan University (CMU) and its evolving curriculum were directly influenced by Faculty for Undergraduate (FUN) workshops at Davidson College, Oberlin College, Trinity College, and Macalester College. The course content, laboratory exercises, and pedagogy used were informed by excellent articles in the Journal of Undergraduate Neuroscience Education (JUNE) and presentations at these FUN workshops and meetings over the years. Like the program at Baldwin-Wallace College, which was a previous winner of the Undergraduate Neuroscience Program of the Year Award, as selected by the Committee on Neuroscience Departments and Programs (CNDP) of the Society for Neuroscience (SfN, our program stresses the importance of inquiry-based, hands-on research experience for our undergraduates and utilizes a peer-mentoring system. A distinct advantage that is employed at CMU is the use of graduate student mentors, which allows us to expand our peer-mentorship to distinct research teams that are focused on a specific research project. Developing our program was not easy. The present manuscript reviews the long and arduous journey (including ways in which we navigated some difficult internal political issues) we made to build a strong program. Hopefully, this description may prove helpful for other evolving programs, in terms of avoiding certain pitfalls and overcoming obstacles, as well as selecting practices that have proven to be successful at our institution. PMID:26240523

  3. Training the Next Generation in Space Situational Awareness Research

    Colpo, D.; Reddy, V.; Arora, S.; Tucker, S.; Jeffries, L.; May, D.; Bronson, R.; Hunten, E.

    Traditional academic SSA research has relied on commercial off the shelf (COTS) systems for collecting metric and lightcurve data. COTS systems have several advantages over a custom built system including cost, easy integration, technical support and short deployment timescales. We at the University of Arizona took an alternative approach to develop a sensor system for space object characterization. Five engineering students designed and built two 0.6-meter F/4 electro-optical (EO) systems for collecting lightcurve and spectral data. All the design and fabrication work was carried out over the course of two semesters as part f their senior design project that is mandatory for the completion of their bachelors in engineering degree. The students designed over 200 individual parts using three-dimensional modeling software (SolidWorks), and conducted detailed optical design analysis using raytracing software (ZEMAX), with oversight and advice from faculty sponsor and Starizona, a local small business in Tucson. The components of the design were verified by test, analysis, inspection, or demonstration, per the process that the University of Arizona requires for each of its design projects. Methods to complete this project include mechanical FEA, optical testing methods (Foucault Knife Edge Test and Couder Mask Test), tests to verify the function of the thermometers, and a final pointing model test. A surprise outcome of our exercise is that the entire cost of the design and fabrication of these two EO systems was significantly lower than a COTS alternative. With careful planning and coordination we were also able to reduce to the deployment times to those for a commercial system. Our experience shows that development of hardware and software for SSA research could be accomplished in an academic environment that would enable the training of the next generation with active support from local small businesses.

  4. Action Research to Improve the Learning Space for Diagnostic Techniques

    Ellen Ariel

    2015-08-01

    Full Text Available The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of “knowledge” and “understanding.” The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001, it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed.

  5. Action Research to Improve the Learning Space for Diagnostic Techniques.

    Ariel, Ellen; Owens, Leigh

    2015-12-01

    The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of "knowledge" and "understanding." The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001), it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed. Journal of Microbiology & Biology Education.

  6. Optimize Use of Space Research and Technology for Medical Devices

    Minnifield, Nona K.

    2012-01-01

    systems, and cutting-edge component technologies to conduct a wide range of scientific observations and measurements. These technologies are also considered for practical applications that benefit society in remarkable ways. At NASA Goddard, the technology transfer initiative promotes matching technologies from Earth and space science needs to targeted industry sectors. This requires clear knowledge of industry needs and priorities and social demands. The process entails matching mature technologies where there are known innovation challenges and good opportunities for matching technology needs. This requires creative thinking and takes commitment of time and resources. Additionally, we also look at applications for known hot industry or societal needs. Doing so has given us occasion to host discussions with representatives from industry, academia, government organizations, and societal special interest groups about the application of NASA Goddard technologies for devices used in medical monitoring and detection tools. As a result, partnerships have been established. Innovation transpired when new products were enabled because of NASA Goddard research and technology programs.

  7. Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths

    Cho, Joo-Yun; Dubinsky, Janet M.

    2018-01-01

    Educators are increasingly interested in applying neuroscience findings to improve educational practice. However, their understanding of the brain often lags behind their enthusiasm for the brain. We propose that educational psychology can serve as a bridge between basic research in neuroscience and psychology on one hand and educational practice on the other. We evaluated whether taking an educational psychology course is associated with increased neuroscience literacy and reduced belief in neuromyths in a sample of South Korean pre-service teachers. The results showed that taking an educational psychology course was associated with the increased neuroscience literacy, but there was no impact on belief in neuromyths. We consider the implications of these and other findings of the study for redesigning educational psychology courses and textbooks for improving neuroscience literacy. PMID:29401508

  8. Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths.

    Im, Soo-Hyun; Cho, Joo-Yun; Dubinsky, Janet M; Varma, Sashank

    2018-01-01

    Educators are increasingly interested in applying neuroscience findings to improve educational practice. However, their understanding of the brain often lags behind their enthusiasm for the brain. We propose that educational psychology can serve as a bridge between basic research in neuroscience and psychology on one hand and educational practice on the other. We evaluated whether taking an educational psychology course is associated with increased neuroscience literacy and reduced belief in neuromyths in a sample of South Korean pre-service teachers. The results showed that taking an educational psychology course was associated with the increased neuroscience literacy, but there was no impact on belief in neuromyths. We consider the implications of these and other findings of the study for redesigning educational psychology courses and textbooks for improving neuroscience literacy.

  9. Taking an educational psychology course improves neuroscience literacy but does not reduce belief in neuromyths.

    Soo-Hyun Im

    Full Text Available Educators are increasingly interested in applying neuroscience findings to improve educational practice. However, their understanding of the brain often lags behind their enthusiasm for the brain. We propose that educational psychology can serve as a bridge between basic research in neuroscience and psychology on one hand and educational practice on the other. We evaluated whether taking an educational psychology course is associated with increased neuroscience literacy and reduced belief in neuromyths in a sample of South Korean pre-service teachers. The results showed that taking an educational psychology course was associated with the increased neuroscience literacy, but there was no impact on belief in neuromyths. We consider the implications of these and other findings of the study for redesigning educational psychology courses and textbooks for improving neuroscience literacy.

  10. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  11. Cognitive neuroscience: the troubled marriage of cognitive science and neuroscience.

    Cooper, Richard P; Shallice, Tim

    2010-07-01

    We discuss the development of cognitive neuroscience in terms of the tension between the greater sophistication in cognitive concepts and methods of the cognitive sciences and the increasing power of more standard biological approaches to understanding brain structure and function. There have been major technological developments in brain imaging and advances in simulation, but there have also been shifts in emphasis, with topics such as thinking, consciousness, and social cognition becoming fashionable within the brain sciences. The discipline has great promise in terms of applications to mental health and education, provided it does not abandon the cognitive perspective and succumb to reductionism. Copyright © 2010 Cognitive Science Society, Inc.

  12. Psychiatry chief resident opinions toward basic and clinical neuroscience training and practice.

    Bennett, Jeffrey I; Handa, Kamna; Mahajan, Aman; Deotale, Pravesh

    2014-04-01

    The authors queried attendees to a chief resident conference on whether program education and training in neuroscience or in translating neuroscience research into practice is sufficient and what changes are needed. The authors developed and administered a 26-item voluntary questionnaire to each attendee at the Chief Residents' Leadership Conference at the American Psychiatric Association 2013 annual meeting in San Francisco, CA. Out of 94 attendees, 55 completed and returned questionnaires (58.5%). A majority of respondents stated that their program provided adequate training in neuroscience (61.8%); opportunities for neuroscience research existed for them (78.2%), but that their program did not prepare them for translating future neuroscience research findings into clinical practice (78.9%) or educate them on the NIMH Research Domain Criteria (83.3%). A majority of respondents stated that the ACGME should require a specific neuroscience curriculum (79.6%). Chief residents believe that curricular and cultural change is needed in psychiatry residency neuroscience education.

  13. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  14. A short history of neurosciences in Austria.

    Jellinger, K A

    2006-03-01

    Based on internal medicine and psychiatry and in close connection with pathology, the neurosciences in Austria began to develop in the 18(th) century, e.g. with the description of inflammation of the central nervous system by J. P. Franck (1745-1823) and the "phrenology" by F. J. Gall (1745-1823). Under the influence of the great pathologist C. Rokitansky (1804-1878), the tripode of the Vienna neurology - L. Türck (1810-1868), as initiator, Th. v. Meynert (1833-1892) the activator, and H. Obersteiner (1847-1922) as the founder of the Vienna Neurological Institute, presented basic contributions to the morphology and pathology of the nervous system. At the end of the 19(th) and in the early 20(th) century, they were followed by important publications by S. Fred (aphasia), C. Redlich (tabes dorsalis), F. Sträussler (CNS syphilis), A. Spitzer (fiber anatomy of the brain), P. Schilder (diffuse sclerosis), R. Barany (Nobel price for physiology and medicine 1914), J. Wagner v. Jauregg (Nobel price for medicine, 1927), O. Loewi (Nobel Price for Physiology and Medicine together with Sir H. Dale, 1936), A. Schüller (histiocytosis X), C. v. Economo (encephalitis lethargica and cytoarchitectonics of the human cerebral cortex), E. Pollak (Wilson disease), E. Gamper (mesencephalic subject), J. Gerstmann (Gerstmann-Sträussler-Scheinker syndrome and Gerstmann parietal syndrome), H. Hoff with L. Schönbauer (brain tumors and surgery), and others. Major research institutions were the departments of psychiatry I and II at the University of Vienna School of Medicine (foundation 1870), unification 1911, separation into departments of neurology, psychiatry and neuropsychiatry of children and adolescents in 1971), the Obersteiner Institute in Vienna (foundation 1882, separation 1993), the university departments at Graz and Innsbruck, both founded in 1891, and other laboratories, where renouned clinicans and neuroscientists, like O. Marburg, H. Hoff, O. Pötzl, O. Kauders, F

  15. Neuroethics: the institutionalization of ethics in neuroscience

    Hamdan, Amer Cavalheiro

    2017-01-01

    Abstract Recent advances in neuroscience have led to numerous ethical questions. Neuroethics is the study of ethical, legal and social advancements in neuroscience which, despite being a recently developed discipline, has a long historical tradition. The concern with ethical issues in neuroscience is extremely old and dates back to the philosophical and scientific traditions that originally sought to understand the relationship between the brain and behavior. More recently, the field of neuro...

  16. Neuroscience in Nazi Europe Part III

    Zeidman, Lawrence A; Kondziella, Daniel

    2012-01-01

    In Part I, neuroscience collaborators with the Nazis were discussed, and in Part II, neuroscience resistors were discussed. In Part III, we discuss the tragedy regarding european neuroscientists who became victims of the Nazi onslaught on “non-Aryan” doctors. Some of these unfortunate...... of neuroscience, we pay homage and do not allow humanity to forget, lest this dark period in history ever repeat itself....

  17. Geocam Space: Enhancing Handheld Digital Camera Imagery from the International Space Station for Research and Applications

    Stefanov, William L.; Lee, Yeon Jin; Dille, Michael

    2016-01-01

    Handheld astronaut photography of the Earth has been collected from the International Space Station (ISS) since 2000, making it the most temporally extensive remotely sensed dataset from this unique Low Earth orbital platform. Exclusive use of digital handheld cameras to perform Earth observations from the ISS began in 2004. Nadir viewing imagery is constrained by the inclined equatorial orbit of the ISS to between 51.6 degrees North and South latitude, however numerous oblique images of land surfaces above these latitudes are included in the dataset. While unmodified commercial off-the-shelf digital cameras provide only visible wavelength, three-band spectral information of limited quality current cameras used with long (400+ mm) lenses can obtain high quality spatial information approaching 2 meters/ground pixel resolution. The dataset is freely available online at the Gateway to Astronaut Photography of Earth site (http://eol.jsc.nasa.gov), and now comprises over 2 million images. Despite this extensive image catalog, use of the data for scientific research, disaster response, commercial applications and visualizations is minimal in comparison to other data collected from free-flying satellite platforms such as Landsat, Worldview, etc. This is due primarily to the lack of fully-georeferenced data products - while current digital cameras typically have integrated GPS, this does not function in the Low Earth Orbit environment. The Earth Science and Remote Sensing (ESRS) Unit at NASA Johnson Space Center provides training in Earth Science topics to ISS crews, performs daily operations and Earth observation target delivery to crews through the Crew Earth Observations (CEO) Facility on board ISS, and also catalogs digital handheld imagery acquired from orbit by manually adding descriptive metadata and determining an image geographic centerpoint using visual feature matching with other georeferenced data, e.g. Landsat, Google Earth, etc. The lack of full geolocation

  18. Planetary Data Archiving Activities in Indian Space Research Organisation (isro)

    Gopala Krishna, Barla; Srivastava, Pradeep Kumar

    The Indian Space Research Organisation (ISRO) has launched its first planetary mission to Moon viz., Chandrayaan-1 on October 22, 2008. The basic objectives of the Chandrayaan-1 mission are photoselenological and chemical mapping of the Moon with improved spatial and spectral resolution. The payloads in this mission are: (i) Terrain mapping stereo camera (TMC) with 20km swath (400-900 nm band) for 3D imaging of lunar surface at a spatial resolution of 5m (ii) Hyper Spectral Imager (HySI) in the 400-920 nm band with 64 channels and spatial resolution of 80m (20km swath) for mineralogical mapping (iii) High-energy X-ray (30-270 keV) spectrometer having a footprint of 40km for study of volatile transport on Moon and (iv) Laser ranging instrument with vertical resolution of 5m (v) Miniature imaging radar instrument (Mini-SAR) from APL, NASA to look for presence of ice in the polar region (vi) Near infrared spectrometer (SIR-2) from Max Plank Institute, Germany (vii)Moon Mineralogy Mapper (M3) from JPL, NASA for mineralogical mapping in the infra-red regions (0.7 -3.0 micron) (viii) Sub-keV Atom Reflecting Analyzer (SARA) from Sweden, India and Japan for detection of low energy neutral atoms emanated from the lunar surface (ix) Radiation Dose Monitor (RADOM) from Bulgaria for monitoring energetic particle flux in the lunar environment and (x) Collimated low energy (1-10keV) X-ray spectrometer (C1XS) with a field of view of 20km for chemical mapping of the lunar surface from RAL, UK. A wealth of data has been collected (November 2008 to August 2009) from the above instru-ments during the mission life of Chandrayaan-1 and the science data from these instruments is being archived at Indian Space Science Data Centre (ISSDC). ISRO Science Data Archive (ISDA) identified at ISSDC is the primary data archive for the payload data of current and future Indian space science missions. The data center (ISSDC) is responsible for the Ingest, Archive, and Dissemination of the payload

  19. A developmental social neuroscience model for understanding loneliness in adolescence.

    Wong, Nichol M L; Yeung, Patcy P S; Lee, Tatia M C

    2018-02-01

    Loneliness is prevalent in adolescents. Although it can be a normative experience, children and adolescents who experience loneliness are often at risk for anxiety, depression, and suicide. Research efforts have been made to identify the neurobiological basis of such distressful feelings in our social brain. In adolescents, the social brain is still undergoing significant development, which may contribute to their increased and differential sensitivity to the social environment. Many behavioral studies have shown the significance of attachment security and social skills in adolescents' interactions with the social world. In this review, we propose a developmental social neuroscience model that extends from the social neuroscience model of loneliness. In particular, we argue that the social brain and social skills are both important for the development of adolescents' perceived loneliness and that adolescents' familial attachment sets the baseline for neurobiological development. By reviewing the related behavioral and neuroimaging literature, we propose a developmental social neuroscience model to explain the heightened perception of loneliness in adolescents using social skills and attachment style as neurobiological moderators. We encourage future researchers to investigate adolescents' perceived social connectedness from the developmental neuroscience perspective.

  20. Research in space commercialization, technology transfer and communications, vol. 2

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  1. ASTERIA: Arcsecond Space Telescope Enabling Research in Astrophysics

    Knapp, M.; Seager, S.; Smith, M. W.; Pong, C. M.

    2017-12-01

    ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) is a technology demonstration and opportunistic science mission to advance the state of the art in CubeSat capabilities for astrophysical measurements. The goal of ASTERIA is to achieve arcsecond-level line of sight pointing error and highly stable focal plane temperature control. These technologies will enable precision photometry, i.e. the careful measurement of stellar brightness over time. This in turn provides a way to study stellar activity, transiting exoplanets, and other astrophysical phenomena, both during the ASTERIA mission and in future CubeSat constellations. ASTERIA is a 6U CubeSat (roughly 10 x 20 x 30 cm, 12 kg) that will operate in low-Earth orbit. The payload consists of a lens and baffle assembly, a CMOS imager, and a two-axis piezoelectric positioning stage on which the focal plane is mounted. A set of commercial reaction wheels provides coarse attitude control. Fine pointing control is achieved by tracking a set of guide stars on the CMOS sensor and moving the piezoelectric stage to compensate for residual pointing errors. Precision thermal control is achieved by isolating the payload from the spacecraft bus, passively cooling the detector, and using trim heaters to perform small temperature corrections over the course of an observation. The ASTERIA project is a collaboration with MIT and is funded at JPL through the Phaeton Program for training early career employees. Flight hardware was delivered in June 2017, with launch expected in August 2017 and deployment targeted for October 2017.

  2. Annual Research Review: Transdiagnostic neuroscience of child and adolescent mental disorders--differentiating decision making in attention-deficit/hyperactivity disorder, conduct disorder, depression, and anxiety.

    Sonuga-Barke, Edmund J S; Cortese, Samuele; Fairchild, Graeme; Stringaris, Argyris

    2016-03-01

    alternatives). In CD, it is reckless and insensitive to negative consequences. In depression, it is disengaged, perseverative, and pessimistic, while in anxiety, it is hesitant, risk-averse, and self-deprecating. A survey of current empirical indications related to these disorder-specific hypotheses highlights the limited and fragmentary nature of the evidence base and illustrates the need for a major research initiative in decision making in childhood disorders. The final section highlights a number of important additional general themes that need to be considered in future research. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  3. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies.

    Koerner, Tess K; Zhang, Yang

    2017-02-27

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  4. Behavioral neuroscience and the media.

    Blakeslee, Sandra; DiChristina, Mariette; Raeburn, Paul; Lambert, Kelly

    2012-12-05

    To provide assurance that accurate summaries of behavioral neuroscience findings are presented in mainstream news sources, it is important for scientists to cooperate with science journalists and, on occasion, write informative articles for lay audiences or contribute scientific knowledge in other relevant venues. Accordingly, three influential science journalists were invited to a special Presidential Symposium at the 2011 IBNS annual meeting to discuss (1) the importance of public dissemination of scientific knowledge, (2) insightful recommendations for effective science writing for mainstream audiences and (3) the potential impact of science blogs on the communication of science information. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  6. Neuroscience Data and Tool Sharing: A legal and policy framework for neuroinformatics

    Eckersley, P.; Egan, G.F.; de Schutter, E.; Yiyuan, T.; Novák, Mirko; Šebesta, Václav; Mathiessen, L.; Jaaskelainen, I.P.; Ruotsalainen, U.; Herz, A.V.M.; Hoffmann, K.P.; Ritz, R.; Ravindranath, V.; Beltrame, F.; Amari, S.; Usui, S.; Lee, S. Y.; van Pelt, S.; Bjaalie, J.G.; Wrobel, A.; da Silva, F.M.; Gonzales, C.; Grillner, S.; Verschure, P.; Dalkara, T.; Bennett, R.; Willshaw, D.; Koslow, S.H.; Miller, P.L.; Subramanian, S.; Toga, A.W.

    2003-01-01

    Roč. 1, č. 2 (2003), s. 149-165 ISSN 1539-2791 Source of funding: V - iné verejné zdroje Keywords : neuroscience * neuroinformatics * legal frameworks * collaborative research Subject RIV: IN - Informatics, Computer Science

  7. Feature: Post Traumatic Stres Disorder PTSD: A Growing Epidemic / Neuroscience and PTSD Treatments

    ... Navigation Bar Home Current Issue Past Issues Feature PTSD PTSD: A Growing Epidemic Past Issues / Winter 2009 Table ... 20 percent of Iraqi war veterans Neuroscience and PTSD Treatments Dr. Barbara Rothbaum believes current research is ...

  8. The MVP Model as an Organizing Framework for Neuroscience Findings Related to Learning

    Zakrajsek, Todd M.

    2017-01-01

    This chapter describes the ways in which the MVP model relates to recent research on neuroscience and learning, and demonstrates how those relationships may be used to better understand physiological impacts on motivation, and to facilitate improved learning.

  9. Library learning space--empirical research and perspective.

    Littleton, Dawn; Rethlefsen, Melissa

    2008-01-01

    Navigate the Net columns offer navigation to Web sites of value to medical librarians. For this issue, the authors recognize that librarians are frequently challenged to justify the need for the physical space occupied by a library in the context of the wide availability of electronic resources, ubiquitous student laptops, and competition for space needed by other institutional priorities. While this trend started years ago, it continues to raise a number of important practical and philosophical questions for libraries and the institutions they serve. What is the library for? What is library space best used for? How does the concept of "Library as Place" support informed decisions for librarians and space planners? In this issue, Web-based resources are surveyed that address these questions for libraries generally and health sciences libraries more specifically.

  10. Was Einstein wrong? Space station research may find out

    2002-01-01

    Experiments using ultra-precise clocks on the International Space Station will attempt to check if Einstein's Special Theory of Relativity is correct. Future experiments may also yield evidence of string theory (1 page).

  11. Water Landing Impact of Recovery Space Capsule: A Research Overview

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  12. Fuzzy logic: A "simple" solution for complexities in neurosciences?

    Godil, Saniya Siraj; Shamim, Muhammad Shahzad; Enam, Syed Ather; Qidwai, Uvais

    2011-02-26

    Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum. This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology. The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures. In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences.

  13. Essentializing the binary self: individualism and collectivism in cultural neuroscience

    Martínez Mateo, M.; Cabanis, M.; Stenmanns, J.; Krach, S.

    2013-01-01

    Within the emerging field of Cultural Neurosciences (CN) one branch of research focuses on the neural underpinnings of "individualistic/Western" versus "collectivistic/Eastern" self-views. These studies uncritically adopt essentialist assumptions from classic cross-cultural research, mainly following the tradition of Markus & Kitayama (1991), into the domain of functional neuroimaging. In this comment we analyze recent publications and conference proceedings of the 18t...

  14. Using Email Interviews in Qualitative Educational Research: Creating Space to Think and Time to Talk

    James, Nalita

    2016-01-01

    The article explores how the Internet and email offer space for participants to think and make sense of their experiences in the qualitative research encounter. It draws on a research study that used email interviewing to generate online narratives to understand academic lives and identities through research encounters in virtual space. The…

  15. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  16. The immune system in space, including Earth-based benefits of space-based research.

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  17. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  18. Reflections on Neuroscience in Teacher Education

    Coch, Donna

    2018-01-01

    The majority of teacher preparation programs do not address neuroscience in their curricula. This is curious, as learning occurs in the brain in context and teachers fundamentally foster and facilitate learning. On the one hand, merging neuroscience knowledge into teacher training programs is fraught with challenges, such as reconciling how…

  19. Neuroscience and Special Education. inForum

    Muller, Eve

    2011-01-01

    The purpose of this document is to provide a brief overview of how links are being developed between the rapidly expanding field of neuroscience and the practice of special education. The first part of the document introduces definitions and terminology, provides an overview of how findings from neuroscience are being applied to the field of…

  20. Educational Neuroscience: Its Position, Aims and Expectations

    van der Meulen, Anna; Krabbendam, Lydia; de Ruyter, Doret

    2015-01-01

    An important issue in the discussion on educational neuroscience is the transfer of thought and findings between neuroscience and education. In addition to factual confusions in this transfer in the form of neuromyths, logical confusions, or neuro-misconceptions, can be identified. We consider these transfer difficulties in light of the way…

  1. Progressive Education Standards: A Neuroscience Framework

    O'Grady, Patty

    2011-01-01

    This paper proposes a coherent and unique set of 12 standards, adopting a neuroscience framework for biologically based on school reform. This model of educational principles and practices aligns with the long-standing principles and practices of the Progressive Education Movement in the United States and the emerging principles of neuroscience.…

  2. Teachers' Beliefs about Neuroscience and Education

    Zambo, Debby; Zambo, Ron

    2011-01-01

    Information from neuroscience is readily available to educators, yet instructors of educational psychology and related fields have not investigated teachers' beliefs regarding this information. The purpose of this survey study was to uncover the beliefs 62 teachers held about neuroscience and education. Results indicate there were three types of…

  3. Attachment Theory and Neuroscience for Care Managers.

    Blakely, Thomas J; Dziadosz, Gregory M

    2016-09-01

    This article describes a model for care managers that is based on attachment theory supplemented by knowledge from neuroscience. Together, attachment theory and basic knowledge from neuroscience provide for both an organizing conceptual framework and a scientific, measureable approach to assessment and planning interventions in a care plan.

  4. Educational Neuroscience: Its position, aims and expectations

    van der Meulen, A.N.; Krabbendam, L.; de Ruyter, D.J.

    2015-01-01

    An important issue in the discussion on educational neuroscience is the transfer of thought and findings between neuroscience and education. In addition to factual confusions in this transfer in the form of neuromyths, logical confusions, or neuro-misconceptions, can be identified. We consider these

  5. Research Ethics Boards as Spaces of Marginalization: A Canadian Story

    Patterson, Donna

    2008-01-01

    This article complicates how Canadian universities are pressured to capitalize on research and how these same pressures affect both the collaborative and community-based research within the academy by privileging one type of research and relationships within community over others. Through examining historical influences on Research Ethics Boards…

  6. Researching "race" in lesbian space: a critical reflection.

    Held, Nina

    2009-01-01

    Feminist researchers have acknowledged that racial differences between researcher and researched impact on the research process; however, there has been little concern with how "race" is actually made in/through the research process. If we think "race" as performative and as always in the process of being made then this theoretical claim has crucial implications for research encounters. In this article the author draws on her own research, which focuses on processes of racialization. This ethnographic study was conducted in two lesbian bars in the North West of England. The article illustrates different ways of how "race," in particular Whiteness, operated during the research process. The author critically reflects on her role in "race making" during this process and highlights the importance of acknowledging that researchers are also complicit in this making when doing research where "race" is not the central focus.

  7. Human Research Program: Space Human Factors and Habitability Element

    Russo, Dane M.

    2007-01-01

    The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.

  8. Introduction to The neurosciences and music IV: learning and memory.

    Altenmüller, E; Demorest, S M; Fujioka, T; Halpern, A R; Hannon, E E; Loui, P; Majno, M; Oechslin, M S; Osborne, N; Overy, K; Palmer, C; Peretz, I; Pfordresher, P Q; Särkämö, T; Wan, C Y; Zatorre, R J

    2012-04-01

    The conference entitled "The Neurosciences and Music-IV: Learning and Memory'' was held at the University of Edinburgh from June 9-12, 2011, jointly hosted by the Mariani Foundation and the Institute for Music in Human and Social Development, and involving nearly 500 international delegates. Two opening workshops, three large and vibrant poster sessions, and nine invited symposia introduced a diverse range of recent research findings and discussed current research directions. Here, the proceedings are introduced by the workshop and symposia leaders on topics including working with children, rhythm perception, language processing, cultural learning, memory, musical imagery, neural plasticity, stroke rehabilitation, autism, and amusia. The rich diversity of the interdisciplinary research presented suggests that the future of music neuroscience looks both exciting and promising, and that important implications for music rehabilitation and therapy are being discovered. © 2012 New York Academy of Sciences.

  9. Life sciences research in space: The requirement for animal models

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  10. Bio-inspired nano tools for neuroscience.

    Das, Suradip; Carnicer-Lombarte, Alejandro; Fawcett, James W; Bora, Utpal

    2016-07-01

    Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    1995-10-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  12. Indium phosphide space solar cell research: Where we are and where we are going

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  13. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    1995-01-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  14. Power-up: A Reanalysis of 'Power Failure' in Neuroscience Using Mixture Modeling.

    Nord, Camilla L; Valton, Vincent; Wood, John; Roiser, Jonathan P

    2017-08-23

    Recently, evidence for endemically low statistical power has cast neuroscience findings into doubt. If low statistical power plagues neuroscience, then this reduces confidence in the reported effects. However, if statistical power is not uniformly low, then such blanket mistrust might not be warranted. Here, we provide a different perspective on this issue, analyzing data from an influential study reporting a median power of 21% across 49 meta-analyses (Button et al., 2013). We demonstrate, using Gaussian mixture modeling, that the sample of 730 studies included in that analysis comprises several subcomponents so the use of a single summary statistic is insufficient to characterize the nature of the distribution. We find that statistical power is extremely low for studies included in meta-analyses that reported a null result and that it varies substantially across subfields of neuroscience, with particularly low power in candidate gene association studies. Therefore, whereas power in neuroscience remains a critical issue, the notion that studies are systematically underpowered is not the full story: low power is far from a universal problem. SIGNIFICANCE STATEMENT Recently, researchers across the biomedical and psychological sciences have become concerned with the reliability of results. One marker for reliability is statistical power: the probability of finding a statistically significant result given that the effect exists. Previous evidence suggests that statistical power is low across the field of neuroscience. Our results present a more comprehensive picture of statistical power in neuroscience: on average, studies are indeed underpowered-some very seriously so-but many studies show acceptable or even exemplary statistical power. We show that this heterogeneity in statistical power is common across most subfields in neuroscience. This new, more nuanced picture of statistical power in neuroscience could affect not only scientific understanding, but potentially

  15. Free space in the processes of action research

    Bladt, Mette; Nielsen, Kurt Aagaard

    2013-01-01

    In Scandinavia there exists an action research tradition called critical utopian action research (CUAR). Within CUAR, criticism and utopia is a core activity in the methods used and in the research as such. The utopian concept in this tradition should be understood as a productive concept, and thus...

  16. Exploring the Gendering of Space by Using Memory Work as a Reflexive Research Method

    Lia Bryant

    2007-09-01

    Full Text Available How can memory work be used as a pathway to reflect on the situatedness of the researcher and field of inquiry? The key aim of this article is to contribute to knowledge about the gendering of space developed by feminist geographers by using memory work as a reflexive research method. The authors present a brief review of feminist literature that covers the local and global symbolic meanings of spaces and the power relations within which space is experienced. From the literature they interpret themes of the interconnections between space, place, and time; sexualization of public space; and the bodily praxis of using space. Memories of gendered bodies and landscapes, movement and restricted space, and the disrupting of space allow the exploration of conceptualizations within the literature as active, situated, fragmented, and contextualized.

  17. Innovative Educational Aerospace Research at the Northeast High School Space Research Center

    Luyet, Audra; Matarazzo, Anthony; Folta, David

    1997-01-01

    Northeast High Magnet School of Philadelphia, Pennsylvania is a proud sponsor of the Space Research Center (SPARC). SPARC, a model program of the Medical, Engineering, and Aerospace Magnet school, provides talented students the capability to successfully exercise full simulations of NASA manned missions. These simulations included low-Earth Shuttle missions and Apollo lunar missions in the past, and will focus on a planetary mission to Mars this year. At the end of each scholastic year, a simulated mission, lasting between one and eight days, is performed involving 75 students as specialists in seven teams The groups are comprised of Flight Management, Spacecraft Communications (SatCom), Computer Networking, Spacecraft Design and Engineering, Electronics, Rocketry, Robotics, and Medical teams in either the mission operations center or onboard the spacecraft. Software development activities are also required in support of these simulations The objective of this paper is to present the accomplishments, technology innovations, interactions, and an overview of SPARC with an emphasis on how the program's educational activities parallel NASA mission support and how this education is preparing student for the space frontier.

  18. Brain literate: making neuroscience accessible to a wider audience of undergraduates.

    Salomon, Danielle; Martin-Harris, Laurel; Mullen, Brian; Odegaard, Brian; Zvinyatskovskiy, Aleksey; Chandler, Scott H

    2015-01-01

    The ability to critically evaluate neuroscientific findings is a skill that is rapidly becoming important in non-science professions. As neuroscience research is increasingly being used in law, business, education, and politics, it becomes imperative to educate future leaders in all areas of society about the brain. Undergraduate general education courses are an ideal way to expose students to issues of critical importance, but non-science students may avoid taking a neuroscience course because of the perception that neuroscience is more challenging than other science courses. A recently developed general education cluster course at UCLA aims to make neuroscience more palatable to undergraduates by pairing neuroscientific concepts with philosophy and history, and by building a learning community that supports the development of core academic skills and intellectual growth over the course of a year. This study examined the extent to which the course was successful in delivering neuroscience education to a broader undergraduate community. The results indicate that a majority of students in the course mastered the basics of the discipline regardless of their major. Furthermore, 77% of the non-life science majors (approximately two-thirds of students in the course) indicated that they would not have taken an undergraduate neuroscience course if this one was not offered. The findings also demonstrate that the course helped students develop core academic skills and improved their ability to think critically about current events in neuroscience. Faculty reported that teaching the course was highly rewarding and did not require an inordinate amount of time.

  19. Performance Data Report: Space Medicine Division, Human Research Program, Behavioural Health and Performance Research Element

    Shea, Camille; Keeton, Kathryn E.; Schmidt, Lacey L.; Slack, Kelley J.; Patterson, Holly N.; Leveton, Lauren B.; Holland, Albert W.

    2012-01-01

    This report is the result of a collaborative effort between NASA?s Behavioral Health & Performance (BHP) Research and Operations Group to investigate and determine the availability of data pertaining to behavioral performance (and other pertinent variables) that have been collected by the laboratories at NASA?s Johnson Space Center. BHP?s Operations and Research groups collaborated to systematically identify what types of performance data are needed in relevant BHP performance domains and also to conduct structured interviews with NASA personnel to identify which data do or do not exist currently (and for instances where such data exist, to evaluate the type, quality, accessibility, and confidentiality of those data). The authors defined outcome categories of performance that encapsulate BHP performance domains, mapped BHP Research Risks and Gaps onto those performance outcome categories, and identified and prioritized indicators for each outcome category. The team identified key points of contact (subject matter experts [SMEs]) as potential interviewees, created a template for structured interview questions about sources and accessibility of performance data, and coordinated and conducted structured interviews with the SMEs. The methodology, results, and implications of this effort, as well as forward work needed, are discussed in this report.

  20. Classics in Chemical Neuroscience: Methylphenidate.

    Wenthur, Cody J

    2016-08-17

    As the first drug to see widespread use for the treatment of attention deficit hyperactivity disorder (ADHD), methylphenidate was the forerunner and catalyst to the modern era of rapidly increasing diagnosis, treatment, and medication development for this condition. During its often controversial history, it has variously elucidated the importance of dopamine signaling in memory and attention, provoked concerns about pharmaceutical cognitive enhancement, driven innovation in controlled-release technologies and enantiospecific therapeutics, and stimulated debate about the impact of pharmaceutical sales techniques on the practice of medicine. In this Review, we will illustrate the history and importance of methylphenidate to ADHD treatment and neuroscience in general, as well as provide key information about its synthesis, structure-activity relationship, pharmacological activity, metabolism, manufacturing, FDA-approved indications, and adverse effects.

  1. The Critical Role of the Research Community in Space Weather Planning and Execution

    Robinson, Robert M.; Behnke, Richard A.; Moretto, Therese

    2018-03-01

    The explosion of interest in space weather in the last 25 years has been due to a confluence of efforts all over the globe, motivated by the recognition that events on the Sun and the consequent conditions in interplanetary space and Earth's magnetosphere, ionosphere, and thermosphere can have serious impacts on vital technological systems. The fundamental research conducted at universities, government laboratories, and in the private sector has led to tremendous improvements in the ability to forecast space weather events and predict their impacts on human technology and health. The mobilization of the research community that made this progress possible was the result of a series of actions taken by the National Science Foundation (NSF) to build a national program aimed at space weather. The path forward for space weather is to build on those successes through continued involvement of the research community and support for programs aimed at strengthening basic research and education in academia, the private sector, and government laboratories. Investments in space weather are most effective when applied at the intersection of research and applications. Thus, to achieve the goals set forth originally by the National Space Weather Program, the research community must be fully engaged in the planning, implementation, and execution of space weather activities, currently being coordinated by the Space Weather Operations, Research, and Mitigation Subcommittee under the National Science and Technology Council.

  2. New perspectives on forced migration in the history of twentieth-century neuroscience.

    Stahnisch, Frank W; Russell, Gül

    2016-01-01

    This special issue of the Journal of the History of the Neurosciences, comprised of six articles and one commentary, reflects on the multifold dimensions of intellectual migration in the neurosciences and illustrates them by relevant case studies, biographies, and surveys from twentieth-century history of science and medicine perspectives. The special issue as a whole strives to emphasize the impact of forced migration in the neurosciences and psychiatry from an interdisciplinary perspective by, first, describing the general research topic, second, by showing how new models can be applied to the historiography and social studies of twentieth-century neuroscience, and, third, by providing a deeper understanding of the impact of European émigré researchers on emerging allied fields, such as neurogenetics, biological psychiatry, psychosomatics, and public mental health, etc. as resulting from this process at large.

  3. Genome Engineering with TALE and CRISPR Systems in Neuroscience.

    Lee, Han B; Sundberg, Brynn N; Sigafoos, Ashley N; Clark, Karl J

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience.

  4. Genome Engineering with TALE and CRISPR Systems in Neuroscience

    Lee, Han B.; Sundberg, Brynn N.; Sigafoos, Ashley N.; Clark, Karl J.

    2016-01-01

    Recent advancement in genome engineering technology is changing the landscape of biological research and providing neuroscientists with an opportunity to develop new methodologies to ask critical research questions. This advancement is highlighted by the increased use of programmable DNA-binding agents (PDBAs) such as transcription activator-like effector (TALE) and RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. These PDBAs fused or co-expressed with various effector domains allow precise modification of genomic sequences and gene expression levels. These technologies mirror and extend beyond classic gene targeting methods contributing to the development of novel tools for basic and clinical neuroscience. In this Review, we discuss the recent development in genome engineering and potential applications of this technology in the field of neuroscience. PMID:27092173

  5. New frontiers in the neuroscience of the sense of agency

    Nicole eDavid

    2012-06-01

    Full Text Available The sense that I am the author of my own actions, including the ability to distinguish my own from other people’s actions, is a fundamental building block of our sense of self, on the one hand, and successful social interactions, on the other. Using cognitive neuroscience techniques, researchers have attempted to elucidate the functional basis of this intriguing phenomenon, also trying to explain pathological abnormalities of action awareness in certain psychiatric and neurological disturbances. Recent conceptual, technological and methodological advances suggest several interesting and necessary new leads for future research on the neuroscience of agency. Here I will describe new frontiers for the field such as the need for novel and multifactorial paradigms, anatomically plausible network models for the sense of agency, investigations of the temporal dynamics during agentic processing and ecologically valid virtual reality applications.

  6. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  7. Pathological choice: the neuroscience of gambling and gambling addiction.

    Clark, Luke; Averbeck, Bruno; Payer, Doris; Sescousse, Guillaume; Winstanley, Catharine A; Xue, Gui

    2013-11-06

    Gambling is pertinent to neuroscience research for at least two reasons. First, gambling is a naturalistic and pervasive example of risky decision making, and thus gambling games can provide a paradigm for the investigation of human choice behavior and "irrationality." Second, excessive gambling involvement (i.e., pathological gambling) is currently conceptualized as a behavioral addiction, and research on this condition may provide insights into addictive mechanisms in the absence of exogenous drug effects. This article is a summary of topics covered in a Society for Neuroscience minisymposium, focusing on recent advances in understanding the neural basis of gambling behavior, including translational findings in rodents and nonhuman primates, which have begun to delineate neural circuitry and neurochemistry involved.

  8. A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks

    2017-12-05

    A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views, opinions and/or findings contained in this...Technology (MIT) Title: A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks Report Term: 0-Other Email: tlp...students presented progress and received feedback from the research group . o wrote papers on their research and submitted them to leading conferences

  9. Abstracts of the international scientific-practical conference on space research, technology and conversion-II

    1997-04-01

    The International Conference on space research, technology and conversion-II was held on 16-18 April, 1997 in Tashkent, Uzbekistan. The specialists discussed various aspects of space research, technology and conversion problems. More than 60 talks were presented in the meeting on the following subjects: remote sensing and the processing of satellite information; space navigation and others, including radiation effects in silicon solar cells caused by cosmic radiation. (A.A.D.)

  10. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  11. A research on the excavation, support, and environment control of large scale underground space

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  12. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  13. USA Space Debris Environment, Operations, and Research Updates

    Liou, J.-C.

    2018-01-01

    Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD

  14. Building sustainable neuroscience capacity in Africa: the role of non-profit organisations.

    Karikari, Thomas K; Cobham, Ansa E; Ndams, Iliya S

    2016-02-01

    While advances in neuroscience are helping to improve many aspects of human life, inequalities exist in this field between Africa and more scientifically-advanced continents. Many African countries lack the infrastructure and appropriately-trained scientists for neuroscience education and research. Addressing these challenges would require the development of innovative approaches to help improve scientific competence for neuroscience across the continent. In recent years, science-based non-profit organisations (NPOs) have been supporting the African neuroscience community to build state-of-the-art scientific capacity for sustainable education and research. Some of these contributions have included: the establishment of training courses and workshops to introduce African scientists to powerful-yet-cost-effective experimental model systems; research infrastructural support and assistance to establish research institutes. Other contributions have come in the form of the promotion of scientific networking, public engagement and advocacy for improved neuroscience funding. Here, we discuss the contributions of NPOs to the development of neuroscience in Africa.

  15. Towards a phronetic space for responsible research (and innovation).

    Bardone, Emanuele; Lind, Marianne

    2016-12-01

    The term Responsible Research and Innovation has recently gained currency, as it has been designated to be a key-term in the European research framework Horizon 2020. At the level of European research policy, Responsible Research and Innovation can be viewed as an attempt to reach a broader vision of research and innovation as a public good. The current academic debate may be fairly enriched by considering the role that phronesis may have for RRI. Specifically, in this paper we argue that the current debate might be fruitfully enriched by making a categorial shift. Such a categorial shift involves moving away from the temptation to interpret responsible research and innovation in a technocratic way towards a more pluralistic vision that is rooted in the idea of phronesis. In the present context phronesis points the attention to the cultivation and nurturement of the researcher's formation as a type of engagement with the actual practice of researching, a practice in which researchers (and other parties concerned) are called to apply judgment and exercise discretion in specific and often unique situations without the re-assuring viewpoint of the technician.

  16. Soul, butterfly, mythological nymph: psyche in philosophy and neuroscience.

    Antonakou, Elena I; Triarhou, Lazaros C

    2017-03-01

    The term "psyche" and its derivatives - including "Psychology" and "Psychiatry" - are rooted in classical philosophy and in mythology. Over the centuries, psyche has been the subject of discourse and contemplation, and of fable; it has also come to signify, in entomology, the order of Lepidoptera. In the current surge of research on brain and mind, there is a gradual transition from the psyche (or the "soul") to the specified descriptors defined by the fields of Behavioral, Cognitive and Integrative Neuroscience.

  17. The space psychological research in the Czech Republic

    Šolcová, Iva; Mikšík, O.

    2009-01-01

    Roč. 43, č. 3 (2009), s. 74-76 ISSN 0233-528X Institutional research plan: CEZ:AV0Z70250504 Keywords : aerospace psychological research * Interkosmos * psychological condition * ability to work * small isolated groups Subject RIV: AN - Psychology

  18. Neuroscience and "real world" practice: music as a therapeutic resource for children in zones of conflict.

    Osborne, Nigel

    2012-04-01

    Recent developments in music neuroscience are considered a source for reflection on, and evaluation and development of, musical therapeutic practice in the field, in particular, in relation to traumatized children and postconflict societies. Music neuroscience research is related to practice within a broad biopsychosocial framework. Here, examples are detailed of work from North Uganda, Palestine, and South Thailand. © 2012 New York Academy of Sciences.

  19. Autoethnography and Psychodynamics in Interrelational Spaces of the Research Process

    Dybbroe, Betina; Hansson, Birgitte

    2012-01-01

    This article takes the stance that the subjectivity of the researcher is an integral part of the research process. It should be studied as a key to understanding the interrelational processes of meaning in an interview situation. The article demonstrates how the subjectivity of the researcher can...... be made accessible methodologically and methodically by combining a psychodynamic approach with an autoethnographic approach. The methodical question is therefore how the researcher can conduct introspection and at the same time reflect upon and analyse the central object of investigation. The approach...... is psychoanalytically informed, but autoethnography became the actual vehicle for moving beyond reflections on the psychodynamics represented in the texts. The researcher ventured into an introspection of not only the texts, but also her own feelings, fantasies, and bodily experiences at the time of the interview...

  20. Psychoanalysis and the brain - why did freud abandon neuroscience?

    Northoff, Georg

    2012-01-01

    Sigmund Freud, the founder of psychoanalysis, was initially a neuroscientist but abandoned neuroscience completely after he made a last attempt to link both in his writing, "Project of a Scientific Psychology," in 1895. The reasons for his subsequent disregard of the brain remain unclear though. I here argue that one central reason may be that the approach to the brain during his time was simply not appealing to Freud. More specifically, Freud was interested in revealing the psychological predispositions of psychodynamic processes. However, he was not so much focused on the actual psychological functions themselves which though were the prime focus of the neuroscience at his time and also in current Cognitive Neuroscience. Instead, he probably would have been more interested in the brain's resting state and its constitution of a spatiotemporal structure. I here assume that the resting state activity constitutes a statistically based virtual structure extending and linking the different discrete points in time and space within the brain. That in turn may serve as template, schemata, or grid for all subsequent neural processing during stimulus-induced activity. As such the resting state' spatiotemporal structure may serve as the neural predisposition of what Freud described as "psychological structure." Hence, Freud and also current neuropsychoanalysis may want to focus more on neural predispositions, the necessary non-sufficient conditions, rather than the neural correlates, i.e., sufficient, conditions of psychodynamic processes.

  1. Psychoanalysis and the Brain – Why Did Freud Abandon Neuroscience?

    Northoff, Georg

    2012-01-01

    Sigmund Freud, the founder of psychoanalysis, was initially a neuroscientist but abandoned neuroscience completely after he made a last attempt to link both in his writing, “Project of a Scientific Psychology,” in 1895. The reasons for his subsequent disregard of the brain remain unclear though. I here argue that one central reason may be that the approach to the brain during his time was simply not appealing to Freud. More specifically, Freud was interested in revealing the psychological predispositions of psychodynamic processes. However, he was not so much focused on the actual psychological functions themselves which though were the prime focus of the neuroscience at his time and also in current Cognitive Neuroscience. Instead, he probably would have been more interested in the brain’s resting state and its constitution of a spatiotemporal structure. I here assume that the resting state activity constitutes a statistically based virtual structure extending and linking the different discrete points in time and space within the brain. That in turn may serve as template, schemata, or grid for all subsequent neural processing during stimulus-induced activity. As such the resting state’ spatiotemporal structure may serve as the neural predisposition of what Freud described as “psychological structure.” Hence, Freud and also current neuropsychoanalysis may want to focus more on neural predispositions, the necessary non-sufficient conditions, rather than the neural correlates, i.e., sufficient, conditions of psychodynamic processes. PMID:22485098

  2. Neurogenethics: An emerging discipline at the intersection of ethics, neuroscience, and genomics

    Turhan Canli

    2015-06-01

    Full Text Available The analysis of ethical, legal, and social implications (ELSI associated with genetics (“genethics” has focused on traditional concerns in bioethics, such as privacy and informed consent. The analysis of ELSI associated with neuroscience (“neuroethics” has focused on concerns related to personhood, such as free will or cognitive enhancement. With neurogenomics coming of age, this is an appropriate time to attend to the set of novel concerns that arises when we consider the confluence of these two lines of research. I call this area of ethics inquiry “neurogenethics”, map out the problem space, and highlight future areas of inquiry related to genome editing and gene therapy, optogenetics and memory manipulation, and genomic identity and online communities.

  3. Neurogenethics: An emerging discipline at the intersection of ethics, neuroscience, and genomics.

    Canli, Turhan

    2015-06-01

    The analysis of ethical, legal, and social implications (ELSI) associated with genetics ("genethics") has focused on traditional concerns in bioethics, such as privacy and informed consent. The analysis of ELSI associated with neuroscience ("neuroethics") has focused on concerns related to personhood, such as free will or cognitive enhancement. With neurogenomics coming of age, this is an appropriate time to attend to the set of novel concerns that arises when we consider the confluence of these two lines of research. I call this area of ethics inquiry "neurogenethics", map out the problem space, and highlight future areas of inquiry related to genome editing and gene therapy, optogenetics and memory manipulation, and genomic identity and online communities.

  4. Challenges and opportunities in social neuroscience

    Cacioppo, John T.; Decety, Jean

    2010-01-01

    Social species are so characterized because they form organizations that extend beyond the individual. The goal of social neuroscience is to investigate the biological mechanisms that underlie these social structures, processes, and behavior and the influences between social and neural structures and processes. Such an endeavor is challenging because it necessitates the integration of multiple levels. Mapping across systems and levels (from genome to social groups and cultures) requires interdisciplinary expertise, comparative studies, innovative methods, and integrative conceptual analysis. Examples of how social neuroscience is contributing to our understanding of the functions of the brain and nervous system are described, and societal implications of social neuroscience are considered. PMID:21251011

  5. Mathematical methods in medicine: neuroscience, cardiology and pathology.

    Amigó, José M; Small, Michael

    2017-06-28

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  6. Building a functional multiple intelligences theory to advance educational neuroscience.

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.

  7. Mathematical methods in medicine: neuroscience, cardiology and pathology

    Amigó, José M.

    2017-01-01

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240

  8. The Social Neuroscience of Interpersonal Emotions.

    Müller-Pinzler, Laura; Krach, Sören; Krämer, Ulrike M; Paulus, Frieder M

    In our daily lives, we constantly engage in reciprocal interactions with other individuals and represent ourselves in the context of our surrounding social world. Within social interactions, humans often experience interpersonal emotions such as embarrassment, shame, guilt, or pride. How interpersonal emotions are processed on the neural systems level is of major interest for social neuroscience research. While the configuration of laboratory settings in general is constraining for emotion research, recent neuroimaging investigations came up with new approaches to implement socially interactive and immersive scenarios for the real-life investigation of interpersonal emotions. These studies could show that among other brain regions the so-called mentalizing network, which is typically involved when we represent and make sense of others' states of mind, is associated with interpersonal emotions. The anterior insula/anterior cingulate cortex network at the same time processes one's own bodily arousal during such interpersonal emotional experiences. Current research aimed to explore how we make sense of others' emotional states during social interactions and investigates the modulating factors of our emotional experiences during social interactions. Understanding how interpersonal emotions are processed on the neural systems level may yield significant implications for neuropsychiatric disorders that affect social behavior such as social anxiety disorders or autism.

  9. Reproducibility in Computational Neuroscience Models and Simulations

    McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.

    2016-01-01

    Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845

  10. Public open space, physical activity, urban design and public health: Concepts, methods and research agenda.

    Koohsari, Mohammad Javad; Mavoa, Suzanne; Villanueva, Karen; Sugiyama, Takemi; Badland, Hannah; Kaczynski, Andrew T; Owen, Neville; Giles-Corti, Billie

    2015-05-01

    Public open spaces such as parks and green spaces are key built environment elements within neighbourhoods for encouraging a variety of physical activity behaviours. Over the past decade, there has been a burgeoning number of active living research studies examining the influence of public open space on physical activity. However, the evidence shows mixed associations between different aspects of public open space (e.g., proximity, size, quality) and physical activity. These inconsistencies hinder the development of specific evidence-based guidelines for urban designers and policy-makers for (re)designing public open space to encourage physical activity. This paper aims to move this research agenda forward, by identifying key conceptual and methodological issues that may contribute to inconsistencies in research examining relations between public open space and physical activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the use of Space Station Freedom in support of the SEI - Life science research

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  12. Integration of the Belarusian Space Research Potential Into International University Nanosatellite Programm

    Saetchnikov, Vladimir; Ablameyko, Sergey; Ponariadov, Vladimir

    Belarus has inherited a significant space research potential created back in the Soviet era. It is one of the countries in the world capable of research, engineering and production across a wide range of space technologies, such as remote sensing systems, satellite telecommunication systems and positioning systems etc. Despite these strengths, the participation of Belarusian space organizations in the UN space activity and International research programs is very low. Belarusian State University (BSU) is the leading research and high school education organization of Belarus in several fields of research and development. It was deeply involved into various space research projects, including Soviet Lunar Program, Space Station “Mir”, Space Shuttle “Buran”. From 2004, when the national space programs were restarted, branches of BSU like Institute of Physics and Aerospace Technologies (IPAT), Center for aerospace education, Research laboratory of applied space technologies are leading the research and development works in the field of space communication systems, Earth observation tools and technologies, electronic and optic sensors, etc. The mail fields of activity are: • Hard and software development for small satellites and university satellites in particular. • Development of sensor satellite systems. • Small satellite research experiments (biological and medical in particular). • Earth, airplane and satellite remote monitoring systems including hard and software. • Early warning ecological and industrial Systems. • Geographic information systems of several natural and industrial areas. • Climate change investigation. We have partners from several universities and research institutes from Russian Federation, Ukraine, Kazakhstan and Germany etc. We have a ground station to receive satellite data in RF L and X bands and are very interested to be incorporated into international remote monitoring network. This activity can be combined with

  13. Peripersonal space in the brain.

    di Pellegrino, Giuseppe; Làdavas, Elisabetta

    2015-01-01

    Research in neuroscience reveals that the brain constructs multiple representation of space. Here, we primarily focus on peripersonal space (PPS) representation, the region of space immediately surrounding our bodies and in which objects can be grasped and manipulated. We review convergent results from several generations of studies, including neurophysiological studies in animals, neuropsychological investigations in monkeys and brain-damaged patients with spatial cognition disorders, as well as recent neuroimaging experiments in neurologically normal individuals. Collectively, these studies show that the primate brain constructs multiple, rapidly modifiable representations of space, centered on different body parts (i.e., hand-centered, head-centered, and trunk-centered), which arise through extensive multisensory interactions within a set of interconnected parietal and frontal regions. PPS representations are pivotal in the sensory guidance of motor behavior, allowing us to interact with objects and, as demonstrated by recent studies, with other people in the space around us. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Space Weather Research in the Equatorial Region: A Philosophical Reinforcement

    Chukwuma, Victor; Odunaike, Rasaki; Laoye, John

    Investigations using radio waves reflected from the ionosphere, at high-and mid-latitudes indicate that ionospheric absorption can strongly increase following geomagnetic storms; which appears to suggest some definite relationship between ionospheric radio wave absorption and geomagnetic storms at these latitudes. However, corresponding earlier studies in the equatorial region did not appear to show any explicit relationship between ionospheric radio wave absorption and geomagnetic storm activity. This position appeared acceptable to the existing scientific paradigm, until in an act of paradigm shift, by a change of storm selection criteria, some more recent space weather investigations in the low latitudes showed that ionospheric radio wave absorption in the equatorial region clearly increases after intense storms. Given that these results in the equatorial region stood against the earlier results, this paper presently attempts to highlight their philosophical underpinning and posit that they constitute a scientific statement.

  15. Monte Carlo simulations of Microdosimetry for Space Research at FAIR

    Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Bleicher, Marcus

    2013-01-01

    The exposure to high charge and energy (HZE) particles is one of major concerns for humans during their missions in space. As radiation effects essentialy depend on charge, mass and energy of cosmic-ray particles, the radiation quality has to be investigated, e.g. by means of microdosimetry measurements on the board of a spacecraft. We benchmark the electromagnetic models of the Geant4 toolkit with microdosimetry data obtained with a walled Tissue Equivalent Proportional Counter (TEPC) with beams of HZE particles. Our MCHIT model is able to reproduce in general the response functions and microdosimetry variables for nuclear beams from He to Fe with energies of 80–400 MeV per nucleon.

  16. MessageSpace: a messaging system for health research

    Escobar, Rodrigo D.; Akopian, David; Parra-Medina, Deborah; Esparza, Laura

    2013-03-01

    Mobile Health (mHealth) has emerged as a promising direction for delivery of healthcare services via mobile communication devices such as cell phones. Examples include texting-based interventions for chronic disease monitoring, diabetes management, control of hypertension, smoking cessation, monitoring medication adherence, appointment keeping and medical test result delivery; as well as improving patient-provider communication, health information communication, data collection and access to health records. While existing messaging systems very well support bulk messaging and some polling applications, they are not designed for data collection and processing of health research oriented studies. For that reason known studies based on text-messaging campaigns have been constrained in participant numbers. In order to empower healthcare promotion and education research, this paper presents a system dedicated for healthcare research. It is designed for convenient communication with various study groups, feedback collection and automated processing.

  17. Kennedy Space Center: Constellation Program Electrical Ground Support Equipment Research and Development

    McCoy, Keegan

    2010-01-01

    The Kennedy Space Center (KSC) is NASA's spaceport, launching rockets into space and leading important human spaceflight research. This spring semester, I worked at KSC on Constellation Program electrical ground support equipment through NASA's Undergraduate Student Research Program (USRP). This report includes a discussion of NASA, KSC, and my individual research project. An analysis of Penn State's preparation of me for an internship and my overall impressions of the Penn State and NASA internship experience conclude the report.

  18. The principles and practices of educational neuroscience: Comment on Bowers (2016).

    Howard-Jones, Paul A; Varma, Sashank; Ansari, Daniel; Butterworth, Brian; De Smedt, Bert; Goswami, Usha; Laurillard, Diana; Thomas, Michael S C

    2016-10-01

    In his recent critique of Educational Neuroscience, Bowers argues that neuroscience has no role to play in informing education, which he equates with classroom teaching. Neuroscience, he suggests, adds nothing to what we can learn from psychology. In this commentary, we argue that Bowers' assertions misrepresent the nature and aims of the work in this new field. We suggest that, by contrast, psychological and neural levels of explanation complement rather than compete with each other. Bowers' analysis also fails to include a role for educational expertise-a guiding principle of our new field. On this basis, we conclude that his critique is potentially misleading. We set out the well-documented goals of research in Educational Neuroscience, and show how, in collaboration with educators, significant progress has already been achieved, with the prospect of even greater progress in the future. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Culture in social neuroscience: a review.

    Rule, Nicholas O; Freeman, Jonathan B; Ambady, Nalini

    2013-01-01

    The aim of this review is to highlight an emerging field: the neuroscience of culture. This new field links cross-cultural psychology with cognitive neuroscience across fundamental domains of cognitive and social psychology. We present a summary of studies on emotion, perspective-taking, memory, object perception, attention, language, and the self, showing cultural differences in behavior as well as in neural activation. Although it is still nascent, the broad impact of merging the study of culture with cognitive neuroscience holds mutual distributed benefits for multiple related fields. Thus, cultural neuroscience may be uniquely poised to provide insights and breakthroughs for longstanding questions and problems in the study of behavior and thought, and its capacity for integration across multiple levels of analysis is especially high. These findings attest to the plasticity of the brain and its adaptation to cultural contexts.

  20. A Model for Undergraduate and High School Student Research in Earth and Space Sciences: The New York City Research Initiative

    Scalzo, F.; Johnson, L.; Marchese, P.

    2006-05-01

    The New York City Research Initiative (NYCRI) is a research and academic program that involves high school students, undergraduate and graduate students, and high school teachers in research teams that are led by college/university principal investigators of NASA funded projects and/or NASA scientists. The principal investigators are at 12 colleges/universities within a 50-mile radius of New York City (NYC and surrounding counties, Southern Connecticut and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies (GISS). This program has a summer research institute component in Earth Science and Space Science, and an academic year component that includes the formulation and implementation NASA research based learning units in existing STEM courses by high school and college faculty. NYCRI is a revision and expansion of the Institute on Climate and Planets at GISS and is funded by NASA MURED and the Goddard Space Flight Center's Education Office.

  1. Population disparities in mental health: insights from cultural neuroscience.

    Chiao, Joan Y; Blizinsky, Katherine D

    2013-10-01

    By 2050, nearly 1 in 5 Americans (19%) will be an immigrant, including Hispanics, Blacks, and Asians, compared to the 1 in 8 (12%) in 2005. They will vary in the extent to which they are at risk for mental health disorders. Given this increase in cultural diversity within the United States and costly population health disparities across cultural groups, it is essential to develop a more comprehensive understanding of how culture affects basic psychological and biological mechanisms. We examine these basic mechanisms that underlie population disparities in mental health through cultural neuroscience. We discuss the challenges to and opportunities for cultural neuroscience research to determine sociocultural and biological factors that confer risk for and resilience to mental health disorders across the globe.

  2. Culture, attribution and automaticity: a social cognitive neuroscience view.

    Mason, Malia F; Morris, Michael W

    2010-06-01

    A fundamental challenge facing social perceivers is identifying the cause underlying other people's behavior. Evidence indicates that East Asian perceivers are more likely than Western perceivers to reference the social context when attributing a cause to a target person's actions. One outstanding question is whether this reflects a culture's influence on automatic or on controlled components of causal attribution. After reviewing behavioral evidence that culture can shape automatic mental processes as well as controlled reasoning, we discuss the evidence in favor of cultural differences in automatic and controlled components of causal attribution more specifically. We contend that insights emerging from social cognitive neuroscience research can inform this debate. After introducing an attribution framework popular among social neuroscientists, we consider findings relevant to the automaticity of attribution, before speculating how one could use a social neuroscience approach to clarify whether culture affects automatic, controlled or both types of attribution processes.

  3. Connecting Physical University Spaces with Research-Based Education Strategy

    Carnell, Brent

    2017-01-01

    This paper looks at the link between enhancing education and ensuring an innovative fit-for-purpose estate. It argues that a nuanced approach and joined-up dialogue is needed between university staff whose remit covers these areas. Drawing from fifteen semi-structured interviews with students and staff at a research-intensive university in London,…

  4. Swales' Cars Model and the Metaphor of Research Space: An ...

    ANDCORPgh changing the world

    model has largely focused on cross-cultural and cross-disciplinary variations ... area of evaluations in the literature reviews of research articles in the field of Information. Systems. ... In the humanities, new knowledge emerges through an accretive process in ..... development of traditional music in Ghana are not mentioned.].

  5. Enabling spaces in education research: an agenda for impactful ...

    An enabling schools research agenda could intentionally guide inquiry into that which supports education, where chronic poverty renders society as characteristically less equal. Keywords: barriers to education; buffers in education; egalitarian political philosophy; equality of opportunity; global South education; high risk ...

  6. Dreaming of mathematical neuroscience for half a century.

    Amari, Shun-ichi

    2013-01-01

    Theoreticians have been enchanted by the secrets of the brain for many years: how and why does it work so well? There has been a long history of searching for its mechanisms. Theoretical or even mathematical scientists have proposed various models of neural networks which has led to the birth of a new field of research. We can think of the 'pre-historic' period of Rashevski and Wiener, and then the period of perceptrons which is the beginning of learning machines, neurodynamics approaches, and further connectionist approaches. Now is currently the period of computational neuroscience. I have been working in this field for nearly half a century, and have experienced its repeated rise and fall. Now having reached very old age, I would like to state my own endeavors on establishing mathematical neuroscience for half a century, from a personal, even biased, point of view. It would be my pleasure if my experiences could encourage young researchers to participate in mathematical neuroscience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Educational neuroscience: definitional, methodological, and interpretive issues.

    Byrnes, James P; Vu, Lien T

    2015-01-01

    In this study, we hope to accomplish three aims as follows: (1) provide greater clarity regarding the nature and scope of the field of educational neuroscience, (2) propose a framework for understanding when and how neuroscientific research could be informative for educational practice, and (3) describe some examples of neuroscientific findings from the domains of reading and mathematics that are informative according to this framework. We propose that psychological models of learning-related processes should be the basis of instructional decisions, and that neuroscientific evidence in combination with traditional evidence from psychological experiments should be used to decide among competing psychological models. Our review of the neuroscientific evidence for both reading and mathematics suggests that while much has been learned over the past 20 years, there is still a 'disconnect' between contemporary psychological models that emphasize higher level skills and neuroscientific studies that focus on lower level skills. Moreover, few researchers have used neuroscientific evidence to decide among psychological models, but have focused instead on identifying the brain regions that subtend component skills of reading and math. Nevertheless, neuroscientific studies have confirmed the intrinsic relationship between reading and spoken language, revealed interesting predictive relationships between anatomical structures and reading and math disabilities, and there is the potential for fruitful collaborations between neuroscientists and psychologists in the future. © 2015 John Wiley & Sons, Ltd.

  8. Når neuroscience bliver til neuromyter

    Ejersbo, Lisser Rye

    2016-01-01

    Det kan være svært at skelne mellem sandt og usandt, når forskningselementer fra neuroscience bliver inddraget som argumenter for bestemte metoder indenfor undervisning. Således er det med Jo Boalers nye bog Mathematical Mindset (2016). Boalers ideer bliver brugt meget i Danmark, fordi hendes...... matematikdidaktikske pointer er både interessante og inspirerende, men hendes inddragen af begreber fra neuroscience holder desværre ikke vand....

  9. Space: The Final Frontier-Research Relevant to Mars.

    Boice, John D

    2017-04-01

    A critically important gap in knowledge surrounds the health consequences of exposure to radiation received gradually over time. Much is known about the health effects of brief high-dose exposures, such as from the atomic bombings in Japan, but the concerns today focus on the frequent low-dose exposures received by members of the public, workers, and, as addressed in this paper, astronauts. Additional guidance is needed by the National Aeronautics and Space Administration (NASA) for planning long-term missions where the rate of radiation exposure is gradual over years and the cumulative amounts high. The direct study of low doses and low-dose rates is of immeasurable value in understanding the possible range of health effects from gradual exposures and in providing guidance for radiation protection, not only of workers and the public but also astronauts. The ongoing Million Person Study (MPS) is 10 times larger than the study of the Japanese atomic bomb survivors of 86,000 survivors with estimated doses. The number of workers with >100 mSv career dose is substantially greater. The large study size, broad range of doses, and long follow-up indicate substantial statistical ability to quantify the risk of exposures that are received gradually over time. The study consists of 360,000 U.S. Department of Energy workers from the Manhattan Project; 150,000 nuclear utility workers from the inception of the nuclear age; 115,000 atomic veterans who participated in above-ground atmospheric tests at the Nevada Test Site and the Bikini and Enewetak Atolls and Johnston Island in the Pacific Proving Grounds (PPG); 250,000 radiologists and medical workers; and 130,000 industrial radiographers. NASA uses an individual risk-based system for radiation protection in contrast to the system of dose limits for occupational exposures used by terrestrial-based organizations. The permissible career exposure limit set by NASA for each astronaut is a 3% risk of exposure-induced death (REID

  10. Fuel Cells: Power System Option for Space Research

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  11. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  12. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  13. Usability: Human Research Program - Space Human Factors and Habitability

    Sandor, Aniko; Holden, Kritina L.

    2009-01-01

    The Usability project addresses the need for research in the area of metrics and methodologies used in hardware and software usability testing in order to define quantifiable and verifiable usability requirements. A usability test is a human-in-the-loop evaluation where a participant works through a realistic set of representative tasks using the hardware/software under investigation. The purpose of this research is to define metrics and methodologies for measuring and verifying usability in the aerospace domain in accordance with FY09 focus on errors, consistency, and mobility/maneuverability. Usability metrics must be predictive of success with the interfaces, must be easy to obtain and/or calculate, and must meet the intent of current Human Systems Integration Requirements (HSIR). Methodologies must work within the constraints of the aerospace domain, be cost and time efficient, and be able to be applied without extensive specialized training.

  14. Radio Interferometric Research of Ionosphere by Signals of Space Satellites

    Dugin N.

    2013-03-01

    Full Text Available Since 2012, the Radiophysical Research Institute and the Lobachevsky State University at Nizhny Novgorod, Russia and the Ventspils International Radio Astronomy Centre at Irbene, Latvia are making radio interferometric experiments on study of ionosphere parameters in a quiet (natural state of medium and research of artificial turbulence of the ionosphere, heated by the emission from the SURA facility. Remote diagnostics of the ionosphere is implemented using a method of radio sounding by signals of navigation satellites in combination with the Very Long Baseline Interferometry (VLBI method. As a result of spectral and correlation analysis, interferometric responses of the two-element (RRI–UNN and three-element (RRI–UNN–Irbene interferometers were received by observations of 12 satellites of the navigation systems GLONASS and GPS. Here the first results are reported.

  15. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  16. Taking Risks for the Future of Space Weather Forecasting, Research, and Operations

    Jaynes, A. N.; Baker, D. N.; Kanekal, S. G.; Li, X.; Turner, D. L.

    2017-12-01

    Taking Risks for the Future of Space Weather Forecasting, Research, and Operations The need for highly improved space weather modeling and monitoring is quickly becoming imperative as our society depends ever more on the sensitive technology that builds and connects our world. Instead of relying primarily on tried and true concepts, academic institutions and funding agencies alike should be focusing on truly new and innovative ways to solve this pressing problem. In this exciting time, where student-led groups can launch CubeSats for under a million dollars and companies like SpaceX are actively reducing the cost-cap of access to space, the space physics community should be pushing the boundaries of what is possible to enhance our understanding of the space environment. Taking great risks in instrumentation, mission concepts, operational development, collaborations, and scientific research is the best way to move our field forward to where it needs to be for the betterment of science and society.

  17. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  18. Research progress on the space-flight mutation breeding of woodyplant

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  19. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  20. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m