WorldWideScience

Sample records for space network development

  1. Space Network Devices Developed

    Jones, Robert E.

    2004-01-01

    The NASA Glenn Research Center through a contract with Spectrum Astro, Inc., has been developing space network hardware as an enabling technology using open systems interconnect (OSI) standards for space-based communications applications. The OSI standard is a well-recognized layered reference model that specifies how data should be sent node to node in a communications network. Because of this research and technology development, a space-qualifiable Ethernet-based network interface card (similar to the type found in a networked personal computer) and the associated four-port hub were designed and developed to flight specifications. During this research and development, there also have been many lessons learned for determining approaches for migrating existing spacecraft architectures to an OSI-network-based platform. Industry has recognized the benefits of targeting hardware developed around OSI standards such as Transmission Control Protocol/Internet Protocol (TCP/IP) or similar protocols for use in future generations of space communication systems. Some of these tangible benefits include overall reductions in mission schedule and cost and in system complexity. This development also brings us a step closer to the realization of a principal investigator on a terrestrial Internet site being able to interact with space platform assets in near real time. To develop this hardware, Spectrum Astro first conducted a technology analysis of alternatives study. For this analysis, they looked at the features of three protocol specifications: Ethernet (IEEE 802.3), Firewire (IEEE 1394), and Spacewire (IEEE 1355). A thorough analysis was performed on the basis of criteria such as current protocol performance and suitability for future space applications. Spectrum Astro also projected future influences such as cost, hardware and software availability, throughput performance, and integration procedures for current and transitive space architectures. After a thorough analysis

  2. Space station common module network topology and hardware development

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  3. Developing and Testing SpaceWire Devices and Networks

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  4. Development of a space-systems network testbed

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  5. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  6. The Space Mobile Network

    Israel, David

    2017-01-01

    The definition and development of the next generation space communications and navigation architecture is underway. The primary goals are to remove communications and navigations constraints from missions and to enable increased autonomy. The Space Mobile Network (SMN) is an architectural concept that includes new technology and operations that will provide flight systems with an similar user experience to terrestrial wireless mobile networks. This talk will describe the SMN and its proposed new features, such as Disruption Tolerant Networking (DTN), optical communications, and User Initiated Services (UIS).

  7. Space Network Time Distribution and Synchronization Protocol Development for Mars Proximity Link

    Woo, Simon S.; Gao, Jay L.; Mills, David

    2010-01-01

    Time distribution and synchronization in deep space network are challenging due to long propagation delays, spacecraft movements, and relativistic effects. Further, the Network Time Protocol (NTP) designed for terrestrial networks may not work properly in space. In this work, we consider the time distribution protocol based on time message exchanges similar to Network Time Protocol (NTP). We present the Proximity-1 Space Link Interleaved Time Synchronization (PITS) algorithm that can work with the CCSDS Proximity-1 Space Data Link Protocol. The PITS algorithm provides faster time synchronization via two-way time transfer over proximity links, improves scalability as the number of spacecraft increase, lowers storage space requirement for collecting time samples, and is robust against packet loss and duplication which underlying protocol mechanisms provide.

  8. The Land Transport Network in the Post-Soviet Space- Problems and Prospective Development

    Sergej Schlichter

    2012-10-01

    Full Text Available Road and rail networks in the post-Soviet space are analysedin view of the demands in transportation to be expected inthe 2 I st centwy. The road system is found te1ribly underdel'elopedin terms of density and canying capacity. It widely fails tofulfil the necessary feeder function for the rail system. Both railand road ~ystems need substantial improvements to allow forthe wgent economic recove1y of that lQige area between thosevital and dynamic regions in east (China, south (Middle Eastund west (Europe.

  9. Space station common module power system network topology and hardware development

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  10. On the Development and Application of High Data Rate Architecture (HiDRA) in Future Space Networks

    Hylton, Alan; Raible, Daniel; Clark, Gilbert

    2017-01-01

    Historically, space missions have been severely constrained by their ability to downlink the data they have collected. These constraints are a result of relatively low link rates on the spacecraft as well as limitations on the time during which data can be sent. As part of a coherent strategy to address existing limitations and get more data to the ground more quickly, the Space Communications and Navigation (SCaN) program has been developing an architecture for a future solar system Internet. The High Data Rate Architecture (HiDRA) project is designed to fit into such a future SCaN network. HiDRA's goal is to describe a general packet-based networking capability which can be used to provide assets with efficient networking capabilities while simultaneously reducing the capital costs and operational costs of developing and flying future space systems.Along these lines, this paper begins by reviewing various characteristics of modern satellite design as well as relevant characteristics of emerging technologies (such as free-space optical links capable of working at 100+ Gbps). Next, the paper describes HiDRA's design, and how the system is able to both integrate and support the operation of not only today's high-rate systems, but also the high-rate systems likely to be found in the future. This section also explores both existing and future networking technologies, such as Delay Tolerant Networking (DTN) protocol (RFC4838 citeRFC:1, RFC5050citeRFC:2), and explains how HiDRA supports them. Additionally, this section explores how HiDRA is used for scheduling data movement through both proactive and reactive link management. After this, the paper moves on to explore a reference implementation of HiDRA. This implementation is currently being realized based on a Field Programmable Gate Array (FPGA) memory and interface controller that is itself controlled by a local computer running DTN software. Next, this paper explores HiDRA's natural evolution, which includes an

  11. Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters

    Lehr, Mark E.

    2005-01-01

    A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles.

  12. Challenges of Integrating NASA's Space Communications Networks

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  13. Challenges of Integrating NASAs Space Communication Networks

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  14. NASA's Next Generation Space Geodesy Network

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  15. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  16. Space Shuttle RTOS Bayesian Network

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  17. Transforming phylogenetic networks: Moving beyond tree space.

    Huber, Katharina T; Moulton, Vincent; Wu, Taoyang

    2016-09-07

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transformed into any other such network using only these operations. This generalizes the well-known fact that any phylogenetic tree can be transformed into any other such tree using only NNI operations. It also allows us to define a generalization of tree space and to define some new metrics on unrooted phylogenetic networks. To prove our main results, we employ some fascinating new connections between phylogenetic networks and cubic graphs that we have recently discovered. Our results should be useful in developing new strategies to search for optimal phylogenetic networks, a topic that has recently generated some interest in the literature, as well as for providing new ways to compare networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Modelling dendritic ecological networks in space: An integrated network perspective

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  19. Modelling dendritic ecological networks in space: anintegrated network perspective

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  20. Networking at NASA. Johnson Space Center

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  1. Space biology research development

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  2. Mammalian development in space

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  3. Adaptation of a software development methodology to the implementation of a large-scale data acquisition and control system. [for Deep Space Network

    Madrid, G. A.; Westmoreland, P. T.

    1983-01-01

    A progress report is presented on a program to upgrade the existing NASA Deep Space Network in terms of a redesigned computer-controlled data acquisition system for channelling tracking, telemetry, and command data between a California-based control center and three signal processing centers in Australia, California, and Spain. The methodology for the improvements is oriented towards single subsystem development with consideration for a multi-system and multi-subsystem network of operational software. Details of the existing hardware configurations and data transmission links are provided. The program methodology includes data flow design, interface design and coordination, incremental capability availability, increased inter-subsystem developmental synthesis and testing, system and network level synthesis and testing, and system verification and validation. The software has been implemented thus far to a 65 percent completion level, and the methodology being used to effect the changes, which will permit enhanced tracking and communication with spacecraft, has been concluded to feature effective techniques.

  4. Remote observing with NASA's Deep Space Network

    Kuiper, T. B. H.; Majid, W. A.; Martinez, S.; Garcia-Miro, C.; Rizzo, J. R.

    2012-09-01

    The Deep Space Network (DSN) communicates with spacecraft as far away as the boundary between the Solar System and the interstellar medium. To make this possible, large sensitive antennas at Canberra, Australia, Goldstone, California, and Madrid, Spain, provide for constant communication with interplanetary missions. We describe the procedures for radioastronomical observations using this network. Remote access to science monitor and control computers by authorized observers is provided by two-factor authentication through a gateway at the Jet Propulsion Laboratory (JPL) in Pasadena. To make such observations practical, we have devised schemes based on SSH tunnels and distributed computing. At the very minimum, one can use SSH tunnels and VNC (Virtual Network Computing, a remote desktop software suite) to control the science hosts within the DSN Flight Operations network. In this way we have controlled up to three telescopes simultaneously. However, X-window updates can be slow and there are issues involving incompatible screen sizes and multi-screen displays. Consequently, we are now developing SSH tunnel-based schemes in which instrument control and monitoring, and intense data processing, are done on-site by the remote DSN hosts while data manipulation and graphical display are done at the observer's host. We describe our approaches to various challenges, our experience with what worked well and lessons learned, and directions for future development.

  5. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  6. Security-Enhanced Autonomous Network Management for Space Networking, Phase II

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) program is integrating its three current agency networks: Space Network (SN), Deep Space Network (DSN), and Near...

  7. Joint Hub Network Development

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once.

  8. Space Structure Development

    Smith, Thomas

    2015-01-01

    The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.

  9. Network Community Detection on Metric Space

    Suman Saha

    2015-08-01

    Full Text Available Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings.

  10. A reliability analysis tool for SpaceWire network

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  11. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  12. Joint Hub Network Development

    Cruijssen, F.C.A.M.; Borm, P.E.M.; Dullaert, W.; Hamers, H.J.M.

    2007-01-01

    This paper introduces a framework for joint hub network development. Building a joint physical hub for transhipment of goods is expensive and therefore involves considerable risks for the cooperating companies. In a practical setting, it is unlikely that an entire network will be built at once. Rather, the partners will have a more cautious attitude and build the hub facilities one-by-one. In the proposed framework, every time a new hub is introduced, partners will have the opportunity to dec...

  13. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  14. The Issue Network as a Deliberative Space

    Ørmen, Jacob

    2012-01-01

    to identify relevant political issues online, but it does not manage to bring together the various antagonistic actors in one deliberative space online. In a triangulation of the results from the two separate analyses, the study further finds evidence, which suggests that the relationship between hyperlinks......Through an analysis of the Danish asylum issue network on the Internet, this article discusses the possibilities of the online sphere as a deliberative space, where politics is happening. By assessing the hyperlink structure of the issue network and a subsequent content analysis of the claims...

  15. URBAN COHESION: A PUBLIC SPACE NETWORK ASSESSMENT

    Ana Júlia Pinto

    2015-07-01

    With this in mind, we have analysed one study case in Barcelona – the Barceloneta neighbourhood, a historic quarter outside the old walled city that is now part of its consolidated urban fabric. The analysis of this case allows us to assess both (1 the role that the urban layout plays in the configuration of the public space network, forcing us to reflect on the role of “boundaries” as fundamental elements in the articulation among the local and overall public space networks in the city; and (2 the role of several socio-economic dynamics affecting to the everyday life of these neighbourhoods

  16. Navigation Architecture for a Space Mobile Network

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  17. NASA's Contribution to Global Space Geodesy Networks

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  18. Math Space Mission. [A Product of] the Regional Math Network: A Teacher Invigoration and Curriculum Development Project.

    Harvard Univ., Cambridge, MA. Graduate School of Education.

    This unit is intended to teach estimation skills in such a way as to be relevant and useful to students as they apply them in various problem-solving activities. The teaching activities feature the earth, exploration into space, and the other worlds in the solar system. The teacher's guide contains four modules. Module I suggests the use of…

  19. Deep Space Network Radiometric Remote Sensing Program

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  20. Evolutionary Scheduler for the Deep Space Network

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  1. Creative Network Communities in the Translocal Space of Digital Networks

    Rasa Smite

    2013-01-01

    Full Text Available What should sociological research be in the age of Web 2.0? Considering that the task of “network sociology” is not only empirical research but also the interpretation of tendencies of the network culture, this research explores the rise of network communities within Eastern and Western Europe in the early Internet era. I coined the term creative networks to distinguish these early creative and social activities from today’s popular social networking. Thus I aimed to interpret the meaning of social action; the motivation of creative community actors, their main fields of activities and social organization forms; and the potential that these early developments contain for the future sustainability of networks. Data comprise interviews with networking experts and founders and members of various networks. Investigating respondents’ motivations for creating online networks and communities, and interpreting those terms, allows for comparing the creative networks of the 1990s with today’s social networks and for drawing conclusions.

  2. A Space Operations Network Alternative: Using Globally Connected Research and Education Networks for Space-Based Science Operations

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  3. T-SDN architecture for space and ground integrated optical transport network

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  4. Medical Optimization Network for Space Telemedicine Resources

    Shah, R. V.; Mulcahy, R.; Rubin, D.; Antonsen, E. L.; Kerstman, E. L.; Reyes, D.

    2017-01-01

    INTRODUCTION: Long-duration missions beyond low Earth orbit introduce new constraints to the space medical system such as the inability to evacuate to Earth, communication delays, and limitations in clinical skillsets. NASA recognizes the need to improve capabilities for autonomous care on such missions. As the medical system is developed, it is important to have an ability to evaluate the trade space of what resources will be most important. The Medical Optimization Network for Space Telemedicine Resources was developed for this reason, and is now a system to gauge the relative importance of medical resources in addressing medical conditions. METHODS: A list of medical conditions of potential concern for an exploration mission was referenced from the Integrated Medical Model, a probabilistic model designed to quantify in-flight medical risk. The diagnostic and treatment modalities required to address best and worst-case scenarios of each medical condition, at the terrestrial standard of care, were entered into a database. This list included tangible assets (e.g. medications) and intangible assets (e.g. clinical skills to perform a procedure). A team of physicians working within the Exploration Medical Capability Element of NASA's Human Research Program ranked each of the items listed according to its criticality. Data was then obtained from the IMM for the probability of occurrence of the medical conditions, including a breakdown of best case and worst case, during a Mars reference mission. The probability of occurrence information and criticality for each resource were taken into account during analytics performed using Tableau software. RESULTS: A database and weighting system to evaluate all the diagnostic and treatment modalities was created by combining the probability of condition occurrence data with the criticalities assigned by the physician team. DISCUSSION: Exploration Medical Capabilities research at NASA is focused on providing a medical system to

  5. Mobility and power in networked European space

    Richardson, Tim; Jensen, Ole B.

    This paper seeks to contribute to debates about how urban, social and critical theory can conceptualise the socio-technologies of connection, resilience, mobility, and collapse in contemporary urban space. The paper offers a theoretical frame for conceptualising this New Urban Condition, focusing...... on themes of mobility, power, flow, network and scale. The analysis suggests the importance of close atention to the knowledge claims which are deployed in multi-level struggles to assert smooth futures in face of dysfunction....

  6. Phase-space networks of geometrically frustrated systems.

    Han, Yilong

    2009-11-01

    We illustrate a network approach to the phase-space study by using two geometrical frustration models: antiferromagnet on triangular lattice and square ice. Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase-space studies. The resulting phase spaces share some comon features and establish a class of complex networks with unique Gaussian spectral densities. Although phase-space networks are heterogeneously connected, the systems are still ergodic due to the random Poisson processes. This network approach can be generalized to phase spaces of some other complex systems.

  7. Propagation Characteristics of International Space Station Wireless Local Area Network

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  8. Network development plan 1995

    Anon.

    1995-11-01

    Network plan 1995 concerns several strategic problems, among others environmental policy of power transmission lines. Possibilities of restructuring aerial cable network are described. The state of the existing systems and plans for new network systems are presented. (EG)

  9. Computer network time synchronization the network time protocol on earth and in space

    Mills, David L

    2010-01-01

    Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib

  10. Dynamical Networks Characterization of Space Weather Events

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show

  11. The Dynamic and Changing Development of EERA Networks

    Figueiredo, Maria P.; Grosvenor, Ian; Hoveid, Marit Honerod; Macnab, Natasha

    2014-01-01

    In this article the authors use two EERA networks as a case for a discussion on the development of research networks within the European Educational Research Association (EERA). They contend that EERA networks through their way of working create a European research space. As their case shows, the development of networks is diverse. The emergence…

  12. Complex network analysis of state spaces for random Boolean networks

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  13. Complex network analysis of state spaces for random Boolean networks

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  14. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  15. Space Flight Operations Center local area network

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  16. The establishment of heterogeneous networks in performative spaces

    Suenson, Valinka; Harder, Henrik

    2010-01-01

    This paper presents an empirical research combining the Actor Network Theory with a development of RFID (Radio Frequency Identification) technology for tracking indoor movement behavior. The aim of the paper is to disucss the value of RFID technology as a method for observing heterogeneous networks...... and architecture through this theoretical perspective, it highlights the importance of the user involvement in the performative spaces where materiality becomes an actant on equal terms with the users. This paper discusses the use of RFID technology for tracking indoor movenment behavior as a method for examining...

  17. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  18. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  19. Establishing a Modern Ground Network for Space Geodesy Applications

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  20. Security Policy for a Generic Space Exploration Communication Network Architecture

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  1. Free space optical networks for ultra-broad band services

    Kartalopoulos, Stamatios V

    2011-01-01

    "Free Space Optical Network is a next generation communication network which uses optical waves instead of microwaves, potentially offering faster communication with ultra band width, meaning more complex communication services can be simultaneously offered. This book describes the network concepts in simple language starting with point-to-point free space optics basics and discusses networking, interoperability with existing communication network, and security. An ideal resource for communication professionals just entering the free space optical communication field and graduate students majoring in optical communications"--Provided by publisher.

  2. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  3. Outer space structure and development

    Zeldovich, J.; Novikov, I.

    1975-01-01

    A brief account is presented answering the question of what in fact the outer space we observe consists of. The principle of spatial homogeneity of the universe and the idea of non-stationary cosmology are discussed. The origin and the future development of the universe are explained using the two above mentioned and some other hypotheses. (J.K.)

  4. Outer space structure and development

    Zeldovich, J; Novikov, I

    1975-10-01

    A brief account is presented answering the question of what in fact the outer space we observe consists of. The principle of spatial homogeneity of the universe and the idea of non-stationary cosmology are discussed. The origin and the future development of the universe are explained using the two above mentioned and some other hypotheses.

  5. Network tomography : recent developments

    Castro, R.M.; Coates, M.; Liang, G.; Nowak, R.; Yu, B.

    2004-01-01

    Today’s Internet is a massive, distributed network which continues to explode in size as e-commerce and related activities grow. The heterogeneous and largely unregulated structure of the Internet renders tasks such as dynamic routing, optimized service provision, service level verification and

  6. Transforming phylogenetic networks: Moving beyond tree space

    Huber, Katharina T.; Moulton, Vincent; Wu, Taoyang

    2016-01-01

    Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NNI) operation on phylogenetic trees. We show that any unrooted phylogenetic network can be transforme...

  7. Online Social Networks and the New Organizational Spaces

    Cintia Rodrigues de Oliveira Medeiros

    2013-04-01

    Full Text Available We analyzed the ‘virtuality’ of the social space and the boundaries of organizations from the emergence and dissemination of online social networking. The purpose is to identify how the use of social networks by 10 Brazilian companies enables the redefinition and expansion of organizational space. For the analysis of the data, we used the theory of social space of Lefebvre (2004, which defines three moments of space social production: the imagined space, the lived space and the perceived space. The methodological qualitative approach is done by document analysis from the websites of the companies. We show that the organizational space has new contours with the adoption of online social networks and we analyzed four spatial metaphors: the square, the museum, the temple and the market.

  8. Osculating Spaces of Varieties and Linear Network Codes

    Hansen, Johan P.

    2013-01-01

    We present a general theory to obtain good linear network codes utilizing the osculating nature of algebraic varieties. In particular, we obtain from the osculating spaces of Veronese varieties explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces...... intersects in the same dimension. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possible altered vector space. Ralf Koetter and Frank R. Kschischang introduced a metric on the set af vector spaces and showed that a minimal...... distance decoder for this metric achieves correct decoding if the dimension of the intersection of the transmitted and received vector space is sufficiently large. The obtained osculating spaces of Veronese varieties are equidistant in the above metric. The parameters of the resulting linear network codes...

  9. Osculating Spaces of Varieties and Linear Network Codes

    Hansen, Johan P.

    We present a general theory to obtain good linear network codes utilizing the osculating nature of algebraic varieties. In particular, we obtain from the osculating spaces of Veronese varieties explicit families of equideminsional vector spaces, in which any pair of distinct vector spaces...... intersects in the same dimension. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possible altered vector space. Ralf Koetter and Frank R. Kschischang introduced a metric on the set af vector spaces and showed that a minimal...... distance decoder for this metric achieves correct decoding if the dimension of the intersection of the transmitted and received vector space is sufficiently large. The obtained osculating spaces of Veronese varieties are equidistant in the above metric. The parameters of the resulting linear network codes...

  10. Deep Space Network information system architecture study

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  11. Delay/Disruption Tolerant Networks for Human Space Flight Video Project

    Fink, Patrick W.; Ngo, Phong; Schlesinger, Adam

    2010-01-01

    The movie describes collaboration between NASA and Vint Cerf on the development of Disruption Tolerant Networks (DTN) for use in space exploration. Current evaluation efforts at Johnson Space Center are focused on the use of DTNs in space communications. Tests include the ability of rovers to store data for later display, tracking local and remote habitat inventory using radio-frequency identification tags, and merging networks.

  12. Networking systems design and development

    Chao, Lee

    2009-01-01

    Effectively integrating theory and hands-on practice, Networking Systems Design and Development provides students and IT professionals with the knowledge and skills needed to design, implement, and manage fully functioning network systems using readily available Linux networking tools. Recognizing that most students are beginners in the field of networking, the text provides step-by-step instruction for setting up a virtual lab environment at home. Grounded in real-world applications, this book provides the ideal blend of conceptual instruction and lab work to give students and IT professional

  13. Deep Space Network equipment performance, reliability, and operations management information system

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  14. 3 x 3 free-space optical router based on crossbar network and its control algorithm

    Hou, Peipei; Sun, Jianfeng; Yu, Zhou; Lu, Wei; Wang, Lijuan; Liu, Liren

    2015-08-01

    A 3 × 3 free-space optical router, which comprises optical switches and polarizing beam splitter (PBS) and based on crossbar network, is proposed in this paper. A control algorithm for the 3 × 3 free-space optical router is also developed to achieve rapid control without rearrangement. In order to test the performance of the network based on 3 × 3 free-space optical router and that of the algorithm developed for the optical router, experiments are designed. The experiment results show that the interconnection network based on the 3 × 3 free-space optical router has low cross talk, fast connection speed. Under the control of the algorithm developed, a non-block and real free interconnection network is obtained based on the 3 × 3 free-space optical router we proposed.

  15. SpaceWire model development technology for satellite architecture.

    Eldridge, John M.; Leemaster, Jacob Edward; Van Leeuwen, Brian P.

    2011-09-01

    Packet switched data communications networks that use distributed processing architectures have the potential to simplify the design and development of new, increasingly more sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the amount of redundant hardware required in space-based applications without sacrificing reliability. These concepts were studied using software modeling and simulation, and the results are presented in this report. Models of the commercially available, packet switched data interconnect SpaceWire protocol were developed and used to create network simulations of data networks containing reconfigurable logic with traffic flows for timing system distribution.

  16. Space storable propulsion components development

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  17. Deep Space Network Antenna Logic Controller

    Ahlstrom, Harlow; Morgan, Scott; Hames, Peter; Strain, Martha; Owen, Christopher; Shimizu, Kenneth; Wilson, Karen; Shaller, David; Doktomomtaz, Said; Leung, Patrick

    2007-01-01

    The Antenna Logic Controller (ALC) software controls and monitors the motion control equipment of the 4,000-metric-ton structure of the Deep Space Network 70-meter antenna. This program coordinates the control of 42 hydraulic pumps, while monitoring several interlocks for personnel and equipment safety. Remote operation of the ALC runs via the Antenna Monitor & Control (AMC) computer, which orchestrates the tracking functions of the entire antenna. This software provides a graphical user interface for local control, monitoring, and identification of faults as well as, at a high level, providing for the digital control of the axis brakes so that the servo of the AMC may control the motion of the antenna. Specific functions of the ALC also include routines for startup in cold weather, controlled shutdown for both normal and fault situations, and pump switching on failure. The increased monitoring, the ability to trend key performance characteristics, the improved fault detection and recovery, the centralization of all control at a single panel, and the simplification of the user interface have all reduced the required workforce to run 70-meter antennas. The ALC also increases the antenna availability by reducing the time required to start up the antenna, to diagnose faults, and by providing additional insight into the performance of key parameters that aid in preventive maintenance to avoid key element failure. The ALC User Display (AUD) is a graphical user interface with hierarchical display structure, which provides high-level status information to the operation of the ALC, as well as detailed information for virtually all aspects of the ALC via drill-down displays. The operational status of an item, be it a function or assembly, is shown in the higher-level display. By pressing the item on the display screen, a new screen opens to show more detail of the function/assembly. Navigation tools and the map button allow immediate access to all screens.

  18. Time Synchronization and Distribution Mechanisms for Space Networks

    Woo, Simon S.; Gao, Jay L.; Clare, Loren P.; Mills, David L.

    2011-01-01

    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link.

  19. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  20. Ramp time synchronization. [for NASA Deep Space Network

    Hietzke, W.

    1979-01-01

    A new method of intercontinental clock synchronization has been developed and proposed for possible use by NASA's Deep Space Network (DSN), using a two-way/three-way radio link with a spacecraft. Analysis of preliminary data indicates that the real-time method has an uncertainty of 0.6 microsec, and it is very likely that further work will decrease the uncertainty. Also, the method is compatible with a variety of nonreal-time analysis techniques, which may reduce the uncertainty down to the tens of nanosecond range.

  1. A Network Enabled Platform for Canadian Space Science Data

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE

  2. Experiments in Neural-Network Control of a Free-Flying Space Robot

    Wilson, Edward

    1995-01-01

    Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype...

  3. Riemann-Roch Spaces and Linear Network Codes

    Hansen, Johan P.

    We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal...... number of points for curves of their respective genera. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang %\\cite{DBLP:journals/tit/KoetterK08} introduced...... in the above metric making them suitable for linear network coding....

  4. Practical Application of Neural Networks in State Space Control

    Bendtsen, Jan Dimon

    the networks, although some modifications are needed for the method to apply to the multilayer perceptron network. In connection with the multilayer perceptron networks it is also pointed out how instantaneous, sample-by-sample linearized state space models can be extracted from a trained network, thus opening......In the present thesis we address some problems in discrete-time state space control of nonlinear dynamical systems and attempt to solve them using generic nonlinear models based on artificial neural networks. The main aim of the work is to examine how well such control algorithms perform when...... theoretic notions followed by a detailed description of the topology, neuron functions and learning rules of the two types of neural networks treated in the thesis, the multilayer perceptron and the neurofuzzy networks. In both cases, a Least Squares second-order gradient method is used to train...

  5. Space Launch System Development Status

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  6. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on

  7. Learning State Space Dynamics in Recurrent Networks

    Simard, Patrice Yvon

    Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.

  8. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  9. Collaborative neighbour monitoring in TV white space networks

    Takyi, A

    2016-09-01

    Full Text Available Collaborative sensing among secondary users in television white space (cognitive radio) networks can considerably increase the probability of detecting primary or secondary users. In current collaborative sensing schemes, all collaborative secondary...

  10. An Analysis for the Use of Research and Education Networks and Commercial Network Vendors in Support of Space Based Mission Critical and Non-Critical Networking

    Bradford, Robert N.

    2002-01-01

    Currently, and in the past, dedicated communication circuits and "network services" with very stringent performance requirements are being used to support manned and unmanned mission critical ground operations at GSFC, JSC, MSFC, KSC and other NASA facilities. Because of the evolution of network technology, it is time to investigate using other approaches to providing mission services for space ground operations. The current NASA approach is not in keeping with the evolution of network technologies. In the past decade various research and education networks dedicated to scientific and educational endeavors have emerged, as well as commercial networking providers, that employ advanced networking technologies. These technologies have significantly changed networking in recent years. Significant advances in network routing techniques, various topologies and equipment have made commercial networks very stable and virtually error free. Advances in Dense Wave Division Multiplexing will provide tremendous amounts of bandwidth for the future. The question is: Do these networks, which are controlled and managed centrally, provide a level of service that equals the stringent NASA performance requirements. If they do, what are the implication(s) of using them for critical space based ground operations as they are, without adding high cost contractual performance requirements? A second question is the feasibility of applying the emerging grid technology in space operations. Is it feasible to develop a Space Operations Grid and/or a Space Science Grid? Since these network's connectivity is substantial, both nationally and internationally, development of these sorts of grids may be feasible. The concept of research and education networks has evolved to the international community as well. Currently there are international RENs connecting the US in Chicago to and from Europe, South America, Asia and the Pacific rim, Russia and Canada. And most countries in these areas have their

  11. Latent Space Approaches to Social Network Analysis

    Hoff, Peter D; Raftery, Adrian E; Handcock, Mark S

    2001-01-01

    .... In studies of social networks, recent emphasis has been placed on random graph models where the nodes usually represent individual social actors and the edges represent the presence of a specified...

  12. Space Commercialization and the Development of Space Law

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  13. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  14. TV white space networks deployment: a case study of Mankweng Township in South Africa

    Ramoroka, MT

    2015-12-01

    Full Text Available to communication systems can fasten the reduction of the development gap. In this work we analyze the benefits that can be obtained by application of TV White Space network, i.e. the network that operates in vacated TV band in a cognitive manner. The whole analysis...

  15. Open development networked innovations in international development

    Reilly, Katherine M A

    2014-01-01

    The emergence of open networked models made possible by digital technology has the potential to transform international development. Open network structures allow people to come together to share information, organize, and collaborate. Open development harnesses this power, to create new organizational forms and improve people's lives; it is not only an agenda for research and practice but also a statement about how to approach international development. In this volume, experts explore a variety of applications of openness, addressing challenges as well as opportunities. Open development requires new theoretical tools that focus on real world problems, consider a variety of solutions, and recognize the complexity of local contexts. After exploring the new theoretical terrain, the book describes a range of cases in which open models address such specific development issues as biotechnology research, improving education, and access to scholarly publications. Contributors then examine tensions between open model...

  16. Developing Strategies for Networked Education.

    Peregoy, Richard; Kroder, Stanley

    2000-01-01

    Assesses the strengths, weaknesses, opportunities and threats (SWOT) of the distance learning approach to education, and discusses how one institution, the University of Dallas Graduate School of Management, has developed a progressively expanding networked distance education program. Includes quotes from three students that suggest the quality of…

  17. Deep Space Networking Experiments on the EPOXI Spacecraft

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  18. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  19. Shared protection based virtual network mapping in space division multiplexing optical networks

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  20. SpaceWire: IP, Components, Development Support and Test Equipment

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  1. Networking in gendered regional development

    Mona Hedfeldt; Gun Hedlund

    2011-01-01

    The present Swedish regionalization process creates a lack of institutionalisation called the "regional mess" (Stegmann McCallion 2008:587). According to a state investigation, Sweden has a "fragmented growth- and development policy as well as a weak and unclear regional organisation of society" (SOU 2007:10:18). Old and new structures are intertwined and the question emerges if this situation may create a space for women regarding regional development (Hedfeldt & Hedlund 2009). A multi-level...

  2. Network University of the CIS as a tool for development of academic mobility within a single (unified educational space of the CIS member states

    Гульнара Амангельдиновна Краснова

    2010-03-01

    Full Text Available The article presents the results of the project «Establishment of a network University of the CIS (2008-2010 years» realization, aimed to establish a joint master's programs in the commonwealth, to strengthen international cooperation in the training of highly qualified specialists, specified tasks to further its implementation in 2010.

  3. Recent developments in Lambda networking

    de Laat, C.; Grosso, P.

    About 6 years ago the first baby-steps were made on opening up dark fiber and DWDM infrastructure for direct use by ISP's after the transformation of the old style Telecom sector into a market driven business. Since then Lambda workshops, community groups like GLIF and a number of experiments have led to many implementations of hybrid national research and education networks and lightpath-based circuit exchanges as pioneered by SURFnet in GigaPort and NetherLight in collaboration with StarLight in Chicago and Canarie in Canada. This article looks back on those developments, describes some current open issues and research developments and proposes a concept of terabit networking.

  4. Neutral space analysis for a Boolean network model of the fission yeast cell cycle network

    Gonzalo A Ruz

    2014-01-01

    Full Text Available BACKGROUND: Interactions between genes and their products give rise to complex circuits known as gene regulatory networks (GRN that enable cells to process information and respond to external stimuli. Several important processes for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space. In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast cell cycle network through an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same state sequences of the fission yeast cell cycle. RESULTS: Through simulations it was found that in the generated neutral graph, the functional networks that are not in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more than 10 between the other disconnected functional networks. Significant differences were found between the functional networks in the connected component of the wildtype network and the rest of the network, not only at a topological level, but also at the state space level, where significant differences in the distribution of the basin of attraction for the G1 fixed point was found for deterministic updating schemes. CONCLUSIONS: In general, functional networks in the wildtype network connected component, can mutate up to no more than 3 times, then they reach a point of no return where the networks leave the connected component of the wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space of other biologically interesting networks, and also formulate new biological hypotheses studying the functional networks in the

  5. A growing social network model in geographical space

    Antonioni, Alberto; Tomassini, Marco

    2017-09-01

    In this work we propose a new model for the generation of social networks that includes their often ignored spatial aspects. The model is a growing one and links are created either taking space into account, or disregarding space and only considering the degree of target nodes. These two effects can be mixed linearly in arbitrary proportions through a parameter. We numerically show that for a given range of the combination parameter, and for given mean degree, the generated network class shares many important statistical features with those observed in actual social networks, including the spatial dependence of connections. Moreover, we show that the model provides a good qualitative fit to some measured social networks.

  6. Space Surveillance Network (SSN) Optical Augmentation (SOA)

    1999-04-01

    physical characteristics, and the geocentric and topocentric positions of each satellite in the deep space object catalog. The SKYMAP propagator...maintains the geocentric and topocentric positions and recomputes the position of each object several times a minute. For each scheduling...AINTENANCE Mission Personnel ( Staffing ) Officers 0.0 0.0 0.0 0.0 $90K/person (0) Enlisted 0.0 0.0 0.0 0.0 $45K/person (0) Contractor 20.0

  7. Space development and space science together, an historic opportunity

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  8. Mesh Networking in the Tactical Environment Using White Space Technolog

    2015-12-01

    facilitate the establishment of a point to multi-point network topology . The base station node handles the compilation of data necessary to determine a...the client nodes from the base station node, the number of client nodes, and the network topology . The metrics chosen for evaluation were picked as a...model, are commonly utilized to simulate quadratic path loss across free space [22]. This model uses the following formula to calculate path loss: L

  9. Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China.

    Li, Haifeng; Chen, Wenbo; He, Wei

    2015-10-15

    Green space plays an important role in sustainable urban development and ecology by virtue of multiple environmental, recreational, and economic benefits. Constructing an effective and harmonious urban ecological network and maintaining a sustainable living environment in response to rapid urbanization are the key issues required to be resolved by landscape planners. In this paper, Nanchang City, China was selected as a study area. Based on a series of landscape metrics, the landscape pattern analysis of the current (in 2005) and planned (in 2020) green space system were, respectively, conducted by using FRAGSTATS 3.3 software. Considering the actual situation of the Nanchang urban area, a "one river and two banks, north and south twin cities" ecological network was constructed by using network analysis. Moreover, the ecological network was assessed by using corridor structure analysis, and the improvement of an ecological network on the urban landscape was quantitatively assessed through a comparison between the ecological network and green space system planning. The results indicated that: (1) compared to the green space system in 2005, the planned green space system in 2020 of the Nanchang urban area will decline in both districts (Changnan and Changbei districts). Meanwhile, an increase in patch density and a decrease in mean patch size of green space patches at the landscape level implies the fragmentation of the urban green space landscape. In other words, the planned green space system does not necessarily improve the present green space system; (2) the ecological network of two districts has high corridor density, while Changnan's ecological network has higher connectivity, but Changbei's ecological network is more viable from an economic point of view, since it has relatively higher cost efficiency; (3) decrease in patch density, Euclidean nearest neighbor distance, and an increase in mean patch size and connectivity implied that the ecological network

  10. Metaspace: Financial plan for development in space

    Odonnell, Declan Joseph

    There are no sources for private development monies in space. There are no laws to regulate development in space and protect private investment. In order to cure these basic business problems, we may create a new nation in space, called the Metanation, to provide political focus and financial capacity. It will assume jurisdiction in outer space after a convention in the year 2000 A.D. It would offer to combine with space agencies of earth nations to form a relevant governance and policy entity for mankind and help develop our common heritage aloft.

  11. Automating Deep Space Network scheduling and conflict resolution

    Johnston, Mark D.; Clement, Bradley

    2005-01-01

    The Deep Space Network (DSN) is a central part of NASA's infrastructure for communicating with active space missions, from earth orbit to beyond the solar system. We describe our recent work in modeling the complexities of user requirements, and then scheduling and resolving conflicts on that basis. We emphasize our innovative use of background 'intelligent' assistants' that carry out search asynchrnously while the user is focusing on various aspects of the schedule.

  12. Global Space Weather Observational Network: Challenges and China's Contribution

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  13. Space - the essential dimension of sustainable development

    Buch-Hansen, Mogens

    , economic and social development and their impact on development of space. The structure of space or the territorial structure hereby plays an essential role in the options of further economic and social development and its sustainability. The focus is on support of livelihoods and enhancing human welfare...

  14. The Network Information Management System (NIMS) in the Deep Space Network

    Wales, K. J.

    1983-01-01

    In an effort to better manage enormous amounts of administrative, engineering, and management data that is distributed worldwide, a study was conducted which identified the need for a network support system. The Network Information Management System (NIMS) will provide the Deep Space Network with the tools to provide an easily accessible source of valid information to support management activities and provide a more cost-effective method of acquiring, maintaining, and retrieval data.

  15. OpportunitiesandPerceptionofSpaceProgramsintheDevelopingCountries

    Abubakar, B.

    2007-05-01

    Although the space program as a whole is a true reflection of the level of achievement in human history in the field of Science and Technology, but it is also important to note that there are numbers of communities and societies on this earth that are ignorant about this great achievement, hence leading to the continuous diverting of Potential Astronomers, Aerospace Engineers and Astrologist to other disciplines, thereby undermining the development of the space program over time. It was in view of the above that this research was conducted and came up with the under listed Suggestions/Recommendations:- (1) The European Space Agency (ESA), National Aeronautic Space Agency (NASA) and the Russian Space Agency, should be organising and sponsoring public enlightenment conferences, seminars and workshops towards creating awareness and attracting Potential Astronomers and other Space Scientist mostly in the developing countries into the space program. (2) Esteemed organisations in space programs like NASA, ESA and others should be awarding scholarships to potential space scientist that lacks the financial capability to pursue studies in the field of space science from the developing countries. (3) The European Space Agency, National Aeronautic Space Agency and the Russian Space Agency, should open their offices for the development of the space program in the third world countries. I believe that if the above suggestions/recommendations are adopted and implemented it will lead to the development of the space program in general, otherwise the rate at which potential Astronomers, Aerospace Engineers and Astrologists will be diverting into other disciplines will ever remain on the increase. Thanks for listening.

  16. (abstract) Deep Space Network Radiometric Remote Sensing Program

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  17. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  18. Neural network based satellite tracking for deep space applications

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  19. Feed-Forward Neural Networks and Minimal Search Space Learning

    Neruda, Roman

    2005-01-01

    Roč. 4, č. 12 (2005), s. 1867-1872 ISSN 1109-2750 R&D Projects: GA ČR GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : search space * feed-forward networks * genetic algorithm s Subject RIV: BA - General Mathematics

  20. Space Debris Mitigation CONOPS Development

    2013-06-01

    literature search and review a lone article was found with any discussion of it. As with any net, the concept is to catch space debris objects in the net...travel along the track of the orbit and collect debris along its path. The lone article found contends that the idea “does not work”. Bonnal and...100,000 pieces of debris orbiting the planet , [as] NASA estimated -- 2,600 of them more than [four] inches across. [NASA] called the breakup of the

  1. SOFTCOST - DEEP SPACE NETWORK SOFTWARE COST MODEL

    Tausworthe, R. C.

    1994-01-01

    The early-on estimation of required resources and a schedule for the development and maintenance of software is usually the least precise aspect of the software life cycle. However, it is desirable to make some sort of an orderly and rational attempt at estimation in order to plan and organize an implementation effort. The Software Cost Estimation Model program, SOFTCOST, was developed to provide a consistent automated resource and schedule model which is more formalized than the often used guesswork model based on experience, intuition, and luck. SOFTCOST was developed after the evaluation of a number of existing cost estimation programs indicated that there was a need for a cost estimation program with a wide range of application and adaptability to diverse kinds of software. SOFTCOST combines several software cost models found in the open literature into one comprehensive set of algorithms that compensate for nearly fifty implementation factors relative to size of the task, inherited baseline, organizational and system environment, and difficulty of the task. SOFTCOST produces mean and variance estimates of software size, implementation productivity, recommended staff level, probable duration, amount of computer resources required, and amount and cost of software documentation. Since the confidence level for a project using mean estimates is small, the user is given the opportunity to enter risk-biased values for effort, duration, and staffing, to achieve higher confidence levels. SOFTCOST then produces a PERT/CPM file with subtask efforts, durations, and precedences defined so as to produce the Work Breakdown Structure (WBS) and schedule having the asked-for overall effort and duration. The SOFTCOST program operates in an interactive environment prompting the user for all of the required input. The program builds the supporting PERT data base in a file for later report generation or revision. The PERT schedule and the WBS schedule may be printed and stored in a

  2. Influences of VSAT network on the economical and industrial development

    Lancrenon, B.; Lorent, P.

    1990-10-01

    The adaptable, rapidly assembled and operational VSAT (very small aperature terminal) satellite network is a tool which rapidly provides essential digital infrastructure for business communication networks in order to support and stimulate the development of modern industry. A market analysis is given for VSATs, discussing such topics as applications of the product, retail and distribution, banking finance, and manufacturing industry. The centralized booking of the tourism transport sector is also investigated. The network including the earth stations, the satellite, the systems aspects, and the network management is described in detail and diagrams are provided. Some estimates of space channel cost per year are given.

  3. Complex networks in the Euclidean space of communicability distances

    Estrada, Ernesto

    2012-06-01

    We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.

  4. In-Space Manufacturing Baseline Property Development

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  5. Advanced Space Radiation Detector Technology Development

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  6. Geopolitics, Transnational Spaces and Development

    Farah, Abdulkadir Osman

    2013-01-01

    Major global powers often utilize diverse bilateral and multilateral aid strategies in their relations with developing countries. Since World War II, development aid has been a necessary tool of the US to expand its global status and influence including on the African continent. Successive US gov...

  7. Environmental Development Plan (EDP): space applications

    1978-04-01

    This Environmental Development Plan (EDP) identifies and examines the environmental, safety, health, and socioeconomic (ES and H) issues associated with the ongoing DOE Space Applications Program and the associated research, development, and demonstration programs. The EDP presents an ES and H research and development (R/D) program and strategy for timely resolutions of the issues and satisfaction of the associated requirements necessary for precluding impediments to the space nuclear systems technology. The EDP has been limited to the consideration of: (1) space nuclear power system nuclear fuel fabrication; (2) space nuclear power system heat source fabrication; (3) testing of subsystems and assembled systems; (4) R and D in support of space nuclear system development; (5) nuclear system responses to launch and reentry accidents; and (6) nuclear system environmental behavior and recovery

  8. Reliability issues of free-space communications systems and networks

    Willebrand, Heinz A.

    2003-04-01

    Free space optics (FSO) is a high-speed point-to-point connectivity solution traditionally used in the enterprise campus networking market for building-to-building LAN connectivity. However, more recently some wire line and wireless carriers started to deploy FSO systems in their networks. The requirements on FSO system reliability, meaing both system availability and component reliability, are far more stringent in the carrier market when compared to the requirements in the enterprise market segment. This paper tries to outline some of the aspects that are important to ensure carrier class system reliability.

  9. The Deep Space Network information system in the year 2000

    Markley, R. W.; Beswick, C. A.

    1992-01-01

    The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.

  10. Technological Developments in Networking, Education and Automation

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  11. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  12. NASA deep space network operations planning and preparation

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  13. Gravitational wave searches using the DSN (Deep Space Network)

    Nelson, S.J.; Armstrong, J.W.

    1988-01-01

    The Deep Space Network Doppler spacecraft link is currently the only method available for broadband gravitational wave searches in the 0.01 to 0.001 Hz frequency range. The DSN's role in the worldwide search for gravitational waves is described by first summarizing from the literature current theoretical estimates of gravitational wave strengths and time scales from various astrophysical sources. Current and future detection schemes for ground based and space based detectors are then discussed. Past, present, and future planned or proposed gravitational wave experiments using DSN Doppler tracking are described. Lastly, some major technical challenges to improve gravitational wave sensitivities using the DSN are discussed

  14. Parameter estimation in space systems using recurrent neural networks

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  15. Coordination between Subway and Urban Space: A Networked Approach

    Lei Mao

    2014-05-01

    Full Text Available This paper selects Changsha as a case study and constructs the models of the subway network and the urban spatial network by using planning data. In the network models, the districts of Changsha are regarded as nodes and the connections between each pair of districts are regarded as edges. The method is based on quantitative analysis of the node weights and the edge weights, which are defined in the complex network theory. And the structures of subway and urban space are visualized in the form of networks. Then, through analyzing the discrepancy coefficients of the corresponding nodes and edges, the paper carries out a comparison between the two networks to evaluate the coordination. The results indicate that only 21.4% of districts and 13.2% of district connections have a rational coordination. Finally, the strategies are put forward for optimization, which suggest adjusting subway transit density, regulating land-use intensity and planning new mass transits for the uncoordinated parts.

  16. Towards a Global Hub and a Network for Collaborative Advancing of Space Weather Predictive Capabilities.

    Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.

    2017-12-01

    The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.

  17. Networks as Tools for Sustainable Urban Development

    Jensen, Jesper Ole; Tollin, Nicola

    will be discussed through a case study of a Danish municipal network on Sustainable Development, Dogme 20001. This network has become quite successful in terms of learning and innovation, committing actors, and influencing local policies, to a larger extent than other SUD-networks the municipalities are involved in....... By applying the GREMI2-theories of “innovative milieux” (Aydalot, 1986; Camagni, 1991) to the case study, we will suggest some reasons for the benefits achieved by the Dogme-network, compared to other networks. This analysis will point to the existence of an “innovative milieu” on sustainability within......Due to the increasing number of networks related to sustainable development (SUD) the paper focuses on understanding in which way networks can be considered useful tools for sustainable urban development, taking particularly into consideration the networks potential of spreading innovative policies...

  18. Data systems and computer science space data systems: Onboard networking and testbeds

    Dalton, Dan

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: justification; technology challenges; program description; and state-of-the-art assessment.

  19. Request-Driven Schedule Automation for the Deep Space Network

    Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Call, Jared; Mercado, Marisol

    2010-01-01

    The DSN Scheduling Engine (DSE) has been developed to increase the level of automated scheduling support available to users of NASA s Deep Space Network (DSN). We have adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented approach used up to now. Scheduling requests allow users to declaratively specify patterns and conditions on their DSN service allocations, including timing, resource requirements, gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of additional factors and preferences. The DSE incorporates a model of the key constraints and preferences of the DSN scheduling domain, along with algorithms to expand scheduling requests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied requests. We use time-bounded systematic search with constraint relaxation to return nearby solutions if exact ones cannot be found, where the relaxation options and order are under user control. To explore the usability aspects of our approach we have developed a graphical user interface incorporating some crucial features to make it easier to work with complex scheduling requests. Among these are: progressive revelation of relevant detail, immediate propagation and visual feedback from a user s decisions, and a meeting calendar metaphor for repeated patterns of requests. Even as a prototype, the DSE has been deployed and adopted as the initial step in building the operational DSN schedule, thus representing an important initial validation of our overall approach. The DSE is a core element of the DSN Service Scheduling Software (S(sup 3)), a web-based collaborative scheduling system now under development for deployment to all DSN users.

  20. Open Development : Networked Innovations in International ...

    Open Development : Networked Innovations in International Development. Couverture du livre Open Development: Networked Innovations in International Development. Directeur(s):. Matthew L. Smith et Katherine M. A. Reilly. Maison(s) d'édition: The MIT Press, CRDI. 12 décembre 2013. ISBN : 9780262525411.

  1. Status of SPACE Safety Analysis Code Development

    Lee, Dong Hyuk; Yang, Chang Keun; Kim, Se Yun; Ha, Sang Jun

    2009-01-01

    In 2006, the Korean the Korean nuclear industry started developing a thermal-hydraulic analysis code for safety analysis of PWR(Pressurized Water Reactor). The new code is named as SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). The SPACE code can solve two-fluid, three-field governing equations in one dimensional or three dimensional geometry. The SPACE code has many component models required for modeling a PWR, such as reactor coolant pump, safety injection tank, etc. The programming language used in the new code is C++, for new generation of engineers who are more comfortable with C/C++ than old FORTRAN language. This paper describes general characteristics of SPACE code and current status of SPACE code development

  2. A Software Suite for Testing SpaceWire Devices and Networks

    Mills, Stuart; Parkes, Steve

    2015-09-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass-memory, processors, downlink telemetry, and other on-board sub-systems. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi-directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches. STAR-Dundee’s STAR-System software stack has been designed to meet the needs of engineers designing and developing SpaceWire networks and devices. This paper describes the aims of the software and how those needs were met.

  3. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  4. A Korean Space Situational Awareness Program : OWL Network

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Im, H.; Park, J.

    2012-09-01

    We are going to present a brief introduction to the OWL (Optical Wide-field patroL) network, one of Korean space situational awareness facilities. Primary objectives of the OWL network are 1) to obtain orbital information of Korean domestic LEOs using optical method, 2) to monitor GEO-belt over territory of Korea, and 3) to alleviate collisional risks posed to Korean satellites from space debris. For these purposes, we are planning to build a global network of telescopes which consists of five small wide-field telescopes and one 2m class telescope. The network of small telescopes will be dedicated mainly to the observation of domestic LEOs, but many slots will be open to other scientific programs such as GRB follow-up observations. Main targets of 2m telescope not only include artificial objects such as GEO debris and LEO debris with low inclination and high eccentricity, but also natural objects such as near Earth asteroids. We expect to monitor space objects down to 10cm in size in GEO using the 2m telescope system. Main research topics include size distribution and evolution of space debris. We also expect to utilize this facility for physical characterization and population study of near Earth asteroids. The aperture size of the small telescope system is 0.5m with Rechey-Cretian configuration and its field of view is 1.75 deg x 1.75 deg. It is equipped with 4K CCD with 9um pixel size, and its plate scale is 1.3 arcsec/pixel. A chopper wheel is employed to maximize astrometric solutions in a single CCD frame, and a de-rotator is used to compensate field rotation of the alt-az type mount. We have designed a compact end unit in which three rotating parts (chopper wheel, filter wheel, de-rotator) and a CCD camera are integrated, and dedicated telescope/site control boards for the OWL network. The design of 2m class telescope is still under discussion yet is expected to be fixed in the first half of 2013 at the latest. The OWL network will be operated in a fully

  5. Developing Visualization Techniques for Semantics-based Information Networks

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  6. Developing Personal Network Business Models

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...

  7. Configuring the development space for conceptualization

    Brønnum, Louise; Clausen, Christian

    2013-01-01

    This paper addresses issues of conceptualization in the early stages of concept development noted as the Front End of Innovation [FEI]. We examine this particular development space as a socio technical space where a diversity of technological knowledge, user perspectives and organizational agendas...... meet and interact. Based on a case study from an industrial medical company, the paper addresses and analyses the configuration of the development space in a number of projects aiming to take up user oriented perspectives in their activities. It presents insights on how the FEI was orchestrated...... and staged and how different elements and objects contributed to the configuration of the space in order to make it perform in a certain way. The analysis points at the importance of the configuration processes and indicate how these configurations often may act as more or less hidden limitations on concept...

  8. Role of the Space Station in Private Development of Space

    Uhran, M. L.

    2002-01-01

    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  9. Inclusive Innovation in Biohacker Spaces: The Role of Systems and Networks

    Jeremy de Beer

    2018-02-01

    Full Text Available In this article, we examine the development of biohacker spaces and their impact on innovation systems through the lens of inclusive innovation. Examining issues associated with people, activities, outcomes, and governance, we observe that biohacker spaces offer an alternative approach to biotechnological research outside the orthodox walls of academia, industry, and government. We explain that harnessing the full innovative potential of these spaces depends on flexible legal and regulatory systems, including appropriate biosafety regulations and intellectual property policies and practices, and organic, community-based social and financial networking.

  10. Marshall Space Flight Center Ground Systems Development and Integration

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  11. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  12. Space reactor fuels performance and development issues

    Wewerka, E.M.

    1984-01-01

    Three compact reactor concepts are now under consideration by the US Space Nuclear Power Program (the SP-100 Program) as candidates for the first 100-kWe-class space reactor. Each of these reactor designs puts unique constraints and requirements on the fuels system, and raises issues of fuel systems feasibility and performance. This paper presents a brief overview of the fuel requirements for the proposed space reactor designs, a delineation of the technical feasibility issues that each raises, and a description of the fuel systems development and testing program that has been established to address key technical issues

  13. Research on optic antenna of space laser communication networking

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  14. Experiments in Neural-Network Control of a Free-Flying Space Robot

    Wilson, Edward

    1995-01-01

    Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.

  15. Analysis of Free-Space Optics Development

    Mikołajczyk Janusz

    2017-12-01

    Full Text Available The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO. Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

  16. On the concept of survivability, with application to spacecraft and space-based networks

    Castet, Jean-Francois; Saleh, Joseph H.

    2012-01-01

    Survivability is an important attribute and requirement for military systems. Recently, survivability has become increasingly important for public infrastructure systems as well. In this work, we bring considerations of survivability to bear on space systems. We develop a conceptual framework and quantitative analyses based on stochastic Petri nets (SPN) to characterize and compare the survivability of different space architectures. The architectures here considered are a monolith spacecraft and a space-based network. To build the stochastic Petri net models for the degradations and failures of these two architectures, we conducted statistical analyses of historical multi-state failure data of spacecraft subsystems, and we assembled these subsystems, and their SPN models, in ways to create our monolith and networked systems. Preliminary results indicate, and quantify the extent to which, a space-based network is more survivable than the monolith spacecraft with respect to on-orbit anomalies and failures. For space systems, during the design and acquisition process, different architectures are benchmarked against several metrics; we argue that if survivability is not accounted for, then the evaluation process is likely to be biased in favor of the traditional dominant design, namely the monolith spacecraft. If however in a given context, survivability is a critical requirement for a customer, the survivability framework here proposed, and the stochastic modeling capability developed, can demonstrate the extent to which a networked space architecture may better satisfy this requirement than a monolith spacecraft. These results should be of interest to operators whose space assets require high levels of survivability, especially in the light of emerging threats.

  17. Research on the method of measuring space information network capacity in communication service

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  18. Wireless sensor and mobile ad-hoc networks vehicular and space applications

    Al-Fuqaha, Ala

    2015-01-01

    This book describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self-healing, self-diagnosis, and emergency healthcare notification. This book also: ·         Discusses how multidisciplinary fields can be implemented in a single application ·         Reviews exhaustively the state-of-the-art research in WSN for space and vehicular applications ·         Covers smart systems that have self-healing, self-diagnosis, and emergency healthcare notification

  19. Seeding Event: Creating and Developing Spaces of Entrepreneurial Freedom

    Gaëtan Mourmant

    2012-12-01

    Full Text Available This paper addresses the question of initiating, fostering and growing a vibrant economy by developing Spaces of Entrepreneurial Freedom (SoEF. Establishing and developing the SoEF is explained by a seeding event which is the core category of this grounded theory. In short, a seeding event leads to the patching of a potential, structural “hole”, which may prove valuable to an entrepreneurial network. Seeding events are started by an initiator who will recognize a network opportunity and exploit it. After event designing, the initiators implement the event through bold experimentation and using an adaptive structure. If the event is considered successful, the next stages are refining, growing, templating and finally replicating; these stages may occur one after the other or simultaneously. Through the development of SoEF, we suggest that entrepreneurs, governments, universities, large companies, and other players in the business world can improve the development of entrepreneurship at their respective levels.

  20. Optical subnet concepts for the deep space network

    Shaik, K.; Wonica, D.; Wilhelm, M.

    1993-01-01

    This article describes potential enhancements to the Deep Space Network, based on a subnet of receiving stations that will utilize optical communications technology in the post-2010 era. Two optical subnet concepts are presented that provide full line-of-sight coverage of the ecliptic, 24 hours a day, with high weather availability. The technical characteristics of the optical station and the user terminal are presented, as well as the effects of cloud cover, transmittance through the atmosphere, and background noise during daytime or nighttime operation on the communications link. In addition, this article identifies candidate geographic sites for the two network concepts and includes a link design for a hypothetical Pluto mission in 2015.

  1. Information Network on Rural Development (INRD), Bangladesh.

    Wanasundra, Leelangi

    1994-01-01

    Discusses information networking in Bangladesh and describes the formation of the Information Network on Rural Development (INRD) which was initiated by the Center on Integrated Rural Development for Asia and the Pacific (CIRDAP). Organization, membership, activities, participation, and finance are examined. (four references) (LRW)

  2. Estimating the size of the solution space of metabolic networks

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  3. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  4. Evolution of the large Deep Space Network antennas

    Imbriale, William A.

    1991-12-01

    The evolution of the largest antenna of the US NASA Deep Space Network (DSN) is described. The design, performance analysis, and measurement techniques, beginning with its initial 64-m operation at S-band (2295 MHz) in 1966 and continuing through the present ka-band (32-GHz) operation at 70 m, is described. Although their diameters and mountings differ, these parabolic antennas all employ a Cassegrainian feed system, and each antenna dish surface is constructed of precision-shaped perforated-aluminum panels that are secured to an open steel framework

  5. SCA Waveform Development for Space Telemetry

    Mortensen, Dale J.; Kifle, Multi; Hall, C. Steve; Quinn, Todd M.

    2004-01-01

    The NASA Glenn Research Center is investigating and developing suitable reconfigurable radio architectures for future NASA missions. This effort is examining software-based open-architectures for space based transceivers, as well as common hardware platform architectures. The Joint Tactical Radio System's (JTRS) Software Communications Architecture (SCA) is a candidate for the software approach, but may need modifications or adaptations for use in space. An in-house SCA compliant waveform development focuses on increasing understanding of software defined radio architectures and more specifically the JTRS SCA. Space requirements put a premium on size, mass, and power. This waveform development effort is key to evaluating tradeoffs with the SCA for space applications. Existing NASA telemetry links, as well as Space Exploration Initiative scenarios, are the basis for defining the waveform requirements. Modeling and simulations are being developed to determine signal processing requirements associated with a waveform and a mission-specific computational burden. Implementation of the waveform on a laboratory software defined radio platform is proceeding in an iterative fashion. Parallel top-down and bottom-up design approaches are employed.

  6. A distributed data base management system. [for Deep Space Network

    Bryan, A. I.

    1975-01-01

    Major system design features of a distributed data management system for the NASA Deep Space Network (DSN) designed for continuous two-way deep space communications are described. The reasons for which the distributed data base utilizing third-generation minicomputers is selected as the optimum approach for the DSN are threefold: (1) with a distributed master data base, valid data is available in real-time to support DSN management activities at each location; (2) data base integrity is the responsibility of local management; and (3) the data acquisition/distribution and processing power of a third-generation computer enables the computer to function successfully as a data handler or as an on-line process controller. The concept of the distributed data base is discussed along with the software, data base integrity, and hardware used. The data analysis/update constraint is examined.

  7. Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

    Xu Lei

    Full Text Available EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs are extracted using spatial independent component analysis (ICA in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA. Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI. Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

  8. Inference on network statistics by restricting to the network space: applications to sexual history data.

    Goyal, Ravi; De Gruttola, Victor

    2018-01-30

    Analysis of sexual history data intended to describe sexual networks presents many challenges arising from the fact that most surveys collect information on only a very small fraction of the population of interest. In addition, partners are rarely identified and responses are subject to reporting biases. Typically, each network statistic of interest, such as mean number of sexual partners for men or women, is estimated independently of other network statistics. There is, however, a complex relationship among networks statistics; and knowledge of these relationships can aid in addressing concerns mentioned earlier. We develop a novel method that constrains a posterior predictive distribution of a collection of network statistics in order to leverage the relationships among network statistics in making inference about network properties of interest. The method ensures that inference on network properties is compatible with an actual network. Through extensive simulation studies, we also demonstrate that use of this method can improve estimates in settings where there is uncertainty that arises both from sampling and from systematic reporting bias compared with currently available approaches to estimation. To illustrate the method, we apply it to estimate network statistics using data from the Chicago Health and Social Life Survey. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  10. Modeling social networks in geographic space: approach and empirical application

    Arentze, T.A.; Berg, van den P.E.W.; Timmermans, H.J.P.

    2012-01-01

    Social activities are responsible for a large proportion of travel demands of individuals. Modeling of the social network of a studied population offers a basis to predict social travel in a more comprehensive way than currently is possible. In this paper we develop a method to generate a whole

  11. Technology transfer of military space microprocessor developments

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  12. Intoxigenic digital spaces? Youth, social networking sites and alcohol marketing.

    Griffiths, Richard; Casswell, Sally

    2010-09-01

    To examine how young people in New Zealand engage with alcohol and reproduce alcohol marketing messages and alcohol-related branding in 'Bebo', a popular social networking site (SNS) on the Internet. Data are drawn from information posted on approximately 150 Bebo Web pages and analysed by way of textual analysis and cyberspace ethnography. Social networking sites, such as Bebo, provide young people with a digital space in which to share a range of alcohol marketing messages via peer-to-peer transmission. Bebo also enables youth to communicate to one another how they consume alcohol and their views of alcohol marketing messages. The information being shared by young people who use Bebo is openly provided in the form of personal information, forum comments, digital photographs and answering quizzes about their engagement with alcohol. Through this sharing of information in the digital Internet environment, young people are creating 'intoxigenic social identities' as well as 'intoxigenic digital spaces' that further contribute towards the normalisation of youth consumption of alcohol. A better understanding of how youth are using the Internet to share their experiences with alcohol and engagement with alcohol-related messages is crucial to public health research as alcohol marketing practices rapidly evolve.

  13. Plasma contactor development for Space Station

    Patterson, Michael J.; Hamley, John A.; Sarmiento, Charles J.; Manzella, David H.; Sarver-Verhey, Timothy; Soulas, George C.; Nelson, Amy

    1993-01-01

    Plasma contactors have been baselined for the Space Station (SS) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and, in particular, the technology development effort on ion thrustor systems. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this pre-flight development program these will all be brought to breadboard or engineering model status. Development efforts for the plasma contactor include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor unit design selected for the SS is an enclosed keeper, xenon hollow cathode plasma source. This paper discusses the test results and development status of the plasma contactor unit subsystem for the SS.

  14. Indicators for establishing SME product development networks

    Post, G.J.J.; Hop, L.; Aken, van J.E.

    2001-01-01

    The results of research into SME product development networks are presented. The paper provides insight to the process of establishing such networks and the use of indicators in the design and monitoring of this process. It is based on five extensive case studies and in addition on several in-depth

  15. Learning Networks for Professional Development & Lifelong Learning

    Brouns, Francis; Sloep, Peter

    2009-01-01

    Brouns, F., & Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation of the Learning Network Programme for a Korean delegation of Chonnam National University and Dankook University (researchers dr. Jeeheon Ryu and dr. Minjeong Kim and a Group of PhD and

  16. Developing aircraft photonic networks for airplane systems

    White, Henry J.; Brownjohn, Nick; Baptista, João

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  17. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  18. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  19. Z-2 Prototype Space Suit Development

    Ross, Amy; Rhodes, Richard; Graziosi, David; Jones, Bobby; Lee, Ryan; Haque, Bazle Z.; Gillespie, John W., Jr.

    2014-01-01

    NASA's Z-2 prototype space suit is the highest fidelity pressure garment from both hardware and systems design perspectives since the Space Shuttle Extravehicular Mobility Unit (EMU) was developed in the late 1970's. Upon completion the Z-2 will be tested in the 11 foot human-rated vacuum chamber and the Neutral Buoyancy Laboratory (NBL) at the NASA Johnson Space Center to assess the design and to determine applicability of the configuration to micro-, low- (asteroid), and planetary- (surface) gravity missions. This paper discusses the 'firsts' that the Z-2 represents. For example, the Z-2 sizes to the smallest suit scye bearing plane distance for at least the last 25 years and is being designed with the most intensive use of human models with the suit model.

  20. Developing networks to support science teachers work

    Sillasen, Martin Krabbe; Valero, Paola

    2012-01-01

    In educational research literature constructing networks among practitioners has been suggested as a strategy to support teachers’ professional development (Huberman, 1995; Jackson & Temperley, 2007; Van Driel, Beijaard, & Verloop, 2001). The purpose of this paper is to report on a study about how...... networks provide opportunities for teachers from different schools to collaborate on improving the quality of their own science teaching practices. These networks exist at the meso-level of the educational system between the micro-realities of teachers’ individual practice and the macro-level, where...... to develop collaborative activities in primary science teacher communities in schools to improve individual teachers practice and in networks between teachers from different schools in each municipality. Each network was organized and moderated by a municipal science coordinator....

  1. Learning Networks for Professional Development & Lifelong Learning

    Sloep, Peter

    2009-01-01

    Sloep, P. B. (2009). Learning Networks for Professional Development & Lifelong Learning. Presentation at a NeLLL seminar with Etienne Wenger held at the Open Universiteit Nederland. September, 10, 2009, Heerlen, The Netherlands.

  2. Development of the Global Measles Laboratory Network.

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  3. The European Network for Lifelong Competence Development

    Burgos, Daniel

    2006-01-01

    Burgos, D. (2006). The European Network for Lifelong Competence Development. Presentation at the Professional Training Facts 2006 conference. November 15th, Stuttgart, Germany: TENCompetence. Retrieved November 20th, 2006, from http://dspace.learningnetworks.org

  4. Millimeterwave Space Power Grid architecture development 2012

    Komerath, Narayanan; Dessanti, Brendan; Shah, Shaan

    This is an update of the Space Power Grid architecture for space-based solar power with an improved design of the collector/converter link, the primary heater and the radiator of the active thermal control system. The Space Power Grid offers an evolutionary approach towards TeraWatt-level Space-based solar power. The use of millimeter wave frequencies (around 220GHz) and Low-Mid Earth Orbits shrinks the size of the space and ground infrastructure to manageable levels. In prior work we showed that using Brayton cycle conversion of solar power allows large economies of scale compared to the linear mass-power relationship of photovoltaic conversion. With high-temperature materials permitting 3600 K temperature in the primary heater, over 80 percent cycle efficiency was shown with a closed helium cycle for the 1GW converter satellite which formed the core element of the architecture. Work done since the last IEEE conference has shown that the use of waveguides incorporated into lighter-than-air antenna platforms, can overcome the difficulties in transmitting millimeter wave power through the moist, dense lower atmosphere. A graphene-based radiator design conservatively meets the mass budget for the waste heat rejection system needed for the compressor inlet temperature. Placing the ultralight Mirasol collectors in lower orbits overcomes the solar beam spot size problem of high-orbit collection. The architecture begins by establishing a power exchange with terrestrial renewable energy plants, creating an early revenue generation approach with low investment. The approach allows for technology development and demonstration of high power millimeter wave technology. A multinational experiment using the International Space Station and another power exchange satellite is proposed to gather required data and experience, thus reducing the technical and policy risks. The full-scale architecture deploys pairs of Mirasol sunlight collectors and Girasol 1 GW converter satellites t

  5. Shape, size, and robustness: feasible regions in the parameter space of biochemical networks.

    Adel Dayarian

    2009-01-01

    Full Text Available The concept of robustness of regulatory networks has received much attention in the last decade. One measure of robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which the system is functional. In this paper, we show that, in addition to volume, the geometry of this region has important consequences for the robustness and the fragility of a network. We develop an approximation within which we could algebraically specify the feasible region. We analyze the segment polarity gene network to illustrate our approach. The study of random walks in the parameter space and how they exit the feasible region provide us with a rich perspective on the different modes of failure of this network model. In particular, we found that, between two alternative ways of activating Wingless, one is more robust than the other. Our method provides a more complete measure of robustness to parameter variation. As a general modeling strategy, our approach is an interesting alternative to Boolean representation of biochemical networks.

  6. Space Launch System Accelerated Booster Development Cycle

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  7. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  8. Development of space foods using radiation technology

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  9. Development of space foods using radiation technology

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  10. Delay/Disruption Tolerance Networking (DTN) Implementation and Utilization Options on the International Space Station

    Holbrook, Mark; Pitts, Robert Lee; Gifford, Kevin K.; Jenkins, Andrew; Kuzminsky, Sebastian

    2010-01-01

    The International Space Station (ISS) is in an operational configuration and nearing final assembly. With its maturity and diverse payloads onboard, the opportunity exists to extend the orbital lab into a facility to exercise and demonstrate Delay/Disruption Tolerant Networking (DTN). DTN is an end-to-end network service providing communications through environments characterized by intermittent connectivity, variable delays, high bit error rates, asymmetric links and simplex links. The DTN protocols, also known as bundle protocols, provide a store-and-forward capability to accommodate end-to-end network services. Key capabilities of the bundling protocols include: the Ability to cope with intermittent connectivity, the Ability to take advantage of scheduled and opportunistic connectivity (in addition to always up connectivity), Custody Transfer, and end-to-end security. Colorado University at Boulder and the Huntsville Operational Support Center (HOSC) have been developing a DTN capability utilizing the Commercial Generic Bioprocessing Apparatus (CGBA) payload resources onboard the ISS, at the Boulder Payload Operations Center (POC) and at the HOSC. The DTN capability is in parallel with and is designed to augment current capabilities. The architecture consists of DTN endpoint nodes on the ISS and at the Boulder POC, and a DTN node at the HOSC. The DTN network is composed of two implementations; the Interplanetary Overlay Network (ION) and the open source DTN2 implementation. This paper presents the architecture, implementation, and lessons learned. By being able to handle the types of environments described above, the DTN technology will be instrumental in extending networks into deep space to support future missions to other planets and other solar system points of interest. Thus, this paper also discusses how this technology will be applicable to these types of deep space exploration missions.

  11. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  12. Software for Allocating Resources in the Deep Space Network

    Wang, Yeou-Fang; Borden, Chester; Zendejas, Silvino; Baldwin, John

    2003-01-01

    TIGRAS 2.0 is a computer program designed to satisfy a need for improved means for analyzing the tracking demands of interplanetary space-flight missions upon the set of ground antenna resources of the Deep Space Network (DSN) and for allocating those resources. Written in Microsoft Visual C++, TIGRAS 2.0 provides a single rich graphical analysis environment for use by diverse DSN personnel, by connecting to various data sources (relational databases or files) based on the stages of the analyses being performed. Notable among the algorithms implemented by TIGRAS 2.0 are a DSN antenna-load-forecasting algorithm and a conflict-aware DSN schedule-generating algorithm. Computers running TIGRAS 2.0 can also be connected using SOAP/XML to a Web services server that provides analysis services via the World Wide Web. TIGRAS 2.0 supports multiple windows and multiple panes in each window for users to view and use information, all in the same environment, to eliminate repeated switching among various application programs and Web pages. TIGRAS 2.0 enables the use of multiple windows for various requirements, trajectory-based time intervals during which spacecraft are viewable, ground resources, forecasts, and schedules. Each window includes a time navigation pane, a selection pane, a graphical display pane, a list pane, and a statistics pane.

  13. Future Mission Trends and their Implications for the Deep Space Network

    Abraham, Douglas S.

    2006-01-01

    Planning for the upgrade and/or replacement of Deep Space Network (DSN) assets that typically operate for forty or more years necessitates understanding potential customer needs as far into the future as possible. This paper describes the methodology Deep Space Network (DSN) planners use to develop this understanding, some key future mission trends that have emerged from application of this methodology, and the implications of the trends for the DSN's future evolution. For NASA's current plans out to 2030, these trends suggest the need to accommodate: three times as many communication links, downlink rates two orders of magnitude greater than today's, uplink rates some four orders of magnitude greater, and end-to-end link difficulties two-to-three orders of magnitude greater. To meet these challenges, both DSN capacity and capability will need to increase.

  14. Optical power allocation for adaptive transmissions in wavelength-division multiplexing free space optical networks

    Hui Zhou

    2015-08-01

    Full Text Available Attracting increasing attention in recent years, the Free Space Optics (FSO technology has been recognized as a cost-effective wireless access technology for multi-Gigabit rate wireless networks. Radio on Free Space Optics (RoFSO provides a new approach to support various bandwidth-intensive wireless services in an optical wireless link. In an RoFSO system using wavelength-division multiplexing (WDM, it is possible to concurrently transmit multiple data streams consisting of various wireless services at very high rate. In this paper, we investigate the problem of optical power allocation under power budget and eye safety constraints for adaptive WDM transmission in RoFSO networks. We develop power allocation schemes for adaptive WDM transmissions to combat the effect of weather turbulence on RoFSO links. Simulation results show that WDM RoFSO can support high data rates even over long distance or under bad weather conditions with an adequate system design.

  15. Space Surveillance Network: New Way Proposed To Support Commercial and Foreign Entities

    Shays, Christopher

    2002-01-01

    DOD uses the U.S. space surveillance network to track active and inactive satellites and space debris generated from launch vehicles and satellite breakups, and the agency catalogs and provides these data to DOD organizations, U.S...

  16. Deep Space Network Antenna Monitoring Using Adaptive Time Series Methods and Hidden Markov Models

    Smyth, Padhraic; Mellstrom, Jeff

    1993-01-01

    The Deep Space Network (DSN)(designed and operated by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration (NASA) provides end-to-end telecommunication capabilities between earth and various interplanetary spacecraft throughout the solar system.

  17. Reliable Transport over SpaceWire for James Webb Space Telescope (JWST) Focal Plane Electronics (FPE) Network

    Rakow, Glenn; Schnurr, Richard; Dailey, Christopher; Shakoorzadeh, Kamdin

    2003-01-01

    combination of requirements necessitates a redundant, fault tolerant, high- speed, low mass, low power network with a low Bit error Rate(1E-9- 1E-12). The ISIM systems team performed many studies of the various network architectures that meeting these requirements. The architecture selected uses the Spacewire protocol, with the addition of a new transport and network layer added to implement end-to-end reliable transport. The network and reliable transport mechanism must be implemented in hardware because of the high average information rate and the restriction on the ability of the detectors to buffer data due to power and size restrictions. This network and transport mechanism was designed to be compatible with existing Spacewire links and routers so that existing equipment and designs may be leveraged upon. The transport layer specification is being coordinated with European Space Agency (ESA), Spacewire Working Group and the Consultative Committee for Space Data System (CCSDS) PlK Standard Onboard Interface (SOIF) panel, with the intent of developing a standard for reliable transport for Spacewire. Changes to the protocol presented are likely since negotiations are ongoing with these groups. A block of RTL VHDL that implements a multi-port Spacewire router with an external user interface will be developed and integrated with an existing Spacewire Link design. The external user interface will be the local interface that sources and sinks packets onto and off of the network (Figure 3). The external user interface implements the network and transport layer and handles acknowledgements and re-tries of packets for reliable transport over the network. Because the design is written in RTL, it may be ported to any technology but will initially be targeted to the new Actel Accelerator series (AX) part. Each link will run at 160 Mbps and the power will be about 0.165 Watt per link worst case in the Actel AX.

  18. 78 FR 17418 - Rural Health Information Technology Network Development Grant

    2013-03-21

    ... Information Technology Network Development Grant AGENCY: Health Resources and Services Administration (HRSA...-competitive replacement award under the Rural Health Information Technology Network Development Grant (RHITND... relinquishing its fiduciary responsibilities for the Rural Health Information Technology Network Development...

  19. Social Network Analysis Identifies Key Participants in Conservation Development.

    Farr, Cooper M; Reed, Sarah E; Pejchar, Liba

    2018-05-01

    Understanding patterns of participation in private lands conservation, which is often implemented voluntarily by individual citizens and private organizations, could improve its effectiveness at combating biodiversity loss. We used social network analysis (SNA) to examine participation in conservation development (CD), a private land conservation strategy that clusters houses in a small portion of a property while preserving the remaining land as protected open space. Using data from public records for six counties in Colorado, USA, we compared CD participation patterns among counties and identified actors that most often work with others to implement CDs. We found that social network characteristics differed among counties. The network density, or proportion of connections in the network, varied from fewer than 2 to nearly 15%, and was higher in counties with smaller populations and fewer CDs. Centralization, or the degree to which connections are held disproportionately by a few key actors, was not correlated strongly with any county characteristics. Network characteristics were not correlated with the prevalence of wildlife-friendly design features in CDs. The most highly connected actors were biological and geological consultants, surveyors, and engineers. Our work demonstrates a new application of SNA to land-use planning, in which CD network patterns are examined and key actors are identified. For better conservation outcomes of CD, we recommend using network patterns to guide strategies for outreach and information dissemination, and engaging with highly connected actor types to encourage widespread adoption of best practices for CD design and stewardship.

  20. Space Flight Software Development Software for Intelligent System Health Management

    Trevino, Luis C.; Crumbley, Tim

    2004-01-01

    The slide presentation examines the Marshall Space Flight Center Flight Software Branch, including software development projects, mission critical space flight software development, software technical insight, advanced software development technologies, and continuous improvement in the software development processes and methods.

  1. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  2. Functional brain networks develop from a "local to distributed" organization.

    Damien A Fair

    2009-05-01

    Full Text Available The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI, graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength between regions close in anatomical space and 'integration' (an increased correlation strength between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults

  3. Functional brain networks develop from a "local to distributed" organization.

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have

  4. Devices development and techniques research for space life sciences

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  5. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  6. Satellite ATM Networks: Architectures and Guidelines Developed

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  7. Clausewitz on Space: Developing Military Space Theory Through a Comparative Analysis

    Streland, Arnold

    1999-01-01

    .... Our commercial space industry has become a huge economic center of gravity for our nation. Our enemies are discovering the benefits of space by developing their own systems and purchasing commercial space services...

  8. Core reactivity estimation in space reactors using recurrent dynamic networks

    Parlos, Alexander G.; Tsai, Wei K.

    1991-01-01

    A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.

  9. Cross-platform wireless sensor network development

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open...

  10. The development of brain network architecture

    Wierenga, Lara M.; van den Heuvel, Martijn P.; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A.; Durston, Sarah

    2016-01-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes

  11. Quantum Gravity Gradiometer Development for Space

    Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute

    2006-01-01

    Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.

  12. NASA's Space Launch System Development Status

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  13. Optimization of space system development resources

    Kosmann, William J.; Sarkani, Shahram; Mazzuchi, Thomas

    2013-06-01

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level cost growths ranging from 23% to 77%. A new study of 26 historical NASA Science instrument set developments using expert judgment to reallocate key development resources has an average cost growth of 73.77%. Twice in history, a barter-based mechanism has been used to reallocate key development resources during instrument development. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to reallocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource reallocation simulation was used to perform 300 instrument development simulations, using barter to reallocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource reallocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource reallocation should work on spacecraft development as well as it has worked on instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key

  14. Developing a network: the PMM process.

    Kamara, A

    1997-11-01

    Since 1988, the Prevention of Maternal Mortality (PMM) Network has developed, implemented and evaluated projects that focus directly on prevention of maternal deaths. The Network, which consists of 11 multidisciplinary teams in West Africa and one at Columbia University, grew from discussions between the Carnegie Corporation of New York and researchers at Columbia School of Public Health. Its goals are: to strengthen capacities in developing countries; to provide program models for preventing maternal deaths; and to inform policymakers about the importance of maternal mortality. This paper describes the development and functioning of the Network. The initial steps included identifying interested partners in Africa and encouraging them to form multidisciplinary teams. Each African team received two grants: one to perform a needs assessment and then another to develop and implement projects based on the results. The Columbia team provided technical assistance in a variety of ways, including site visits, workshops and correspondence. Teams tested program models and reported findings both to local policymakers and in international fora. Collaboration with government and community leaders helped facilitate progress at all stages. At the PMM Network Results Conference in 1996, the teams decided to continue their work by forming the Regional PMM (RPMM) Network, an entirely African entity.

  15. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  16. Technology development in market networks

    Olerup, B.

    2001-01-01

    Technology procurement is used as an environmental control means in Sweden to promote the manufacturing and sale of energy-efficient technologies. The public authority in charge makes use of the market mechanism in alternating co-operative and competitive elements. The fragmented market, with its standardised products for many small customers, is brought together to specify desired product developments. These demands also include other qualities besides energy efficiency. A contest is announced in which a possible future market is indicated to manufacturers. Efforts are made to enlarge the market to motivate their investment and to keep down the unit cost. Each side in the deal is thus given an incentive to act in the desired direction. (author)

  17. Product Platform Development in Industrial Networks

    Karlsson, Christer; Skold, Martin

    2011-01-01

    The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number o...... of platforms and product brands serve as the key dimensions when distinguishing the different strategies. Each strategy has its own challenges and raises various issues to deal with.......The article examines the strategic issues involved in the deployment of product platform development in an industrial network. The move entails identifying the types and characteristics of generically different product platform strategies and clarifying strategic motives and differences. Number...

  18. Developing a Framework for Effective Network Capacity Planning

    Yaprak, Ece

    2005-01-01

    As Internet traffic continues to grow exponentially, developing a clearer understanding of, and appropriately measuring, network's performance is becoming ever more critical. An important challenge faced by the Information Resources Directorate (IRD) at the Johnson Space Center in this context remains not only monitoring and maintaining a secure network, but also better understanding the capacity and future growth potential boundaries of its network. This requires capacity planning which involves modeling and simulating different network alternatives, and incorporating changes in design as technologies, components, configurations, and applications change, to determine optimal solutions in light of IRD's goals, objectives and strategies. My primary task this summer was to address this need. I evaluated network-modeling tools from OPNET Technologies Inc. and Compuware Corporation. I generated a baseline model for Building 45 using both tools by importing "real" topology/traffic information using IRD's various network management tools. I compared each tool against the other in terms of the advantages and disadvantages of both tools to accomplish IRD's goals. I also prepared step-by-step "how to design a baseline model" tutorial for both OPNET and Compuware products.

  19. Space, place and body: temporary coalitions, nodes in a network

    Kerith Power

    2012-12-01

    Full Text Available The articles in this collection share a concern for place, space and bodies as frameworks for thinking about and conducting educational research. The authors range in experience from senior academics, independent educators, beginning and emerging new researchers spanning a range of educational sectors. The articles originate from connections forged within and between Australia and northern countries with visits back and forth between 2004 and 2010. Some of the writers have met each other in these travels and others have not. All have encountered and participated in some way in the work of the space place and body research group, which originated in 2007 as a named research ‘node’ at Monash University.   The space place and body group formed as a result of a process designed to re-imagine research in the Faculty of Education at Monash University in order to address ‘the big questions of our time’. As a leading global university with campuses in Asia and Europe as well as several in Australia, the Dean of the Faculty cited recent evidence that the field of educational research had become too narrowly focused and that new approaches were needed to enliven the field and move it forward. Individualistic research was no longer supported and groups were formed organically around coalitions of interest. The purpose of the space place and body group was to come together to generate new conceptual, theoretical and methodological resources within the core concepts of space, place and body by collaborating across our differences. In the early phase of our development we focused on linked identity (ontological and knowledge (epistemological work, at the intersection of postcolonial and poststructural approaches to place in educational research. A specific interest in alternative and creative methodologies emerged from these onto-epistemological activities.   As part of our process we initiated temporary definitions of space, place and body, to

  20. NEREUS- Network of European Regions Using Space - an initiative of regions to spread the use and understanding of space technologies across Europe

    Ayazi, Roya

    2013-04-01

    NEREUS- Network of European Regions Using Space - an initiative of regions to spread the use and understanding of space technologies across Europe (Roya Ayazi, Secretary General NEREUS nereus.bruxelles@euroinbox.com) NEREUS currently unites 25 European regions and 39 Associate Members with the common objective to spread the use and understanding of space technologies across Europe for the benefit of regions and their citizens. As voice of European Regions, NEREUS serves as an advocate for the regions in matters of space uses and also as a direct channel to the regional users of space technologies (such as local authorities, SMEs, universities and research institutes and citizens). EO/GMES, Global Satellite Navigation and Telecommunication are identified by the NEREUS Political Charta as core areas of cooperation. NEREUS holds the view that broad societal awareness and involvement is vital to fully exploit Euope's space systems. Understanding the potentials of Copernicus and EGNOS/Galileo is in the first place an essential step for the development of the downstream sector. Therefore NEREUS makes special efforts to contribute with numerous network activities to communicate and promote the added value of space uses for public policies but also as valuable new business opportunities. In economic terms space uses are suited to stimulate economic growth and innovation dynamics at regional level. The network community produced several illustrative communication tools (publications, video, web-based tools, mobile NEREUS-exhibition) portraying examples how regions already use space systems and the concrete benefits for the citizens. Most of the NEREUS-publications and video are online: www.nereus-regions.eu. Pooling a considerable wealth of capabilities and expertise, the network offers its members a dynamic platform to collaborate and share experiences and knowledge inter regionally. But these tools were not only the outcome of an intensive regional collaboration but

  1. Discrete fracture network code development

    Dershowitz, W.; Doe, T.; Shuttle, D.; Eiben, T.; Fox, A.; Emsley, S.; Ahlstrom, E. [Golder Associates Inc., Redmond, Washington (United States)

    1999-02-01

    This report presents the results of fracture flow model development and application performed by Golder Associates Inc. during the fiscal year 1998. The primary objective of the Golder Associates work scope was to provide theoretical and modelling support to the JNC performance assessment effort in fiscal year 2000. In addition, Golder Associates provided technical support to JNC for the Aespoe project. Major efforts for performance assessment support included extensive flow and transport simulations, analysis of pathway simplification, research on excavation damage zone effects, software verification and cross-verification, and analysis of confidence bounds on Monte Carlo simulations. In addition, a Fickian diffusion algorithm was implemented for Laplace Transform Galerkin solute transport. Support for the Aespoe project included predictive modelling of sorbing tracer transport in the TRUE-1 rock block, analysis of 1 km geochemical transport pathways for Task 5', and data analysis and experimental design for the TRUE Block Scale experiment. Technical information about Golder Associates support to JNC is provided in the appendices to this report. (author)

  2. NASA space radiation transport code development consortium

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  3. Co-Operative Learning and Development Networks.

    Hodgson, V.; McConnell, D.

    1995-01-01

    Discusses the theory, nature, and benefits of cooperative learning. Considers the Cooperative Learning and Development Network (CLDN) trial in the JITOL (Just in Time Open Learning) project and examines the relationship between theories about cooperative learning and the reality of a group of professionals participating in a virtual cooperative…

  4. Comprehensive information system development and networking in ...

    Background/Aim: Hospital Information System(HIS) and Networking development is now the most important technology that must be embraced by all hospitals and clinics these days. Patients sometimes used to face problems in order to have quick and good services in the hospitals, often due to delay in searching for the ...

  5. Learning in Networks for Sustainable Development

    Lansu, Angelique; Boon, Jo; Sloep, Peter; Van Dam-Mieras, Rietje

    2010-01-01

    The didactic model of remote internships described in this study provides the flexibility needed to support networked learners, i.e. to facilitate the development and subsequent assessment of their competences. The heterogeneity of the participants (students, employers, tutors) in the learning

  6. Development of steering system in network environment

    Kanagawa, Fumihiro; Noguchi, So; Yamashita, Hideo

    2002-01-01

    We have been developing the steering system, which can successively observe the-data obtained during the numerical computation and change the parameters in the analysis. Moreover, this system is also extended to link the network. By using this system, a user can easily detect errors immediately and achieve the rapid and accurate analysis with lower computation cost. (Author)

  7. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    Guo, T. H.; Musgrave, J.

    1992-11-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using

  8. Operation of a Data Acquisition, Transfer, and Storage System for the Global Space-Weather Observation Network

    T Nagatsuma

    2014-10-01

    Full Text Available A system to optimize the management of global space-weather observation networks has been developed by the National Institute of Information and Communications Technology (NICT. Named the WONM (Wide-area Observation Network Monitoring system, it enables data acquisition, transfer, and storage through connection to the NICT Science Cloud, and has been supplied to observatories for supporting space-weather forecast and research. This system provides us with easier management of data collection than our previously employed systems by means of autonomous system recovery, periodical state monitoring, and dynamic warning procedures. Operation of the WONM system is introduced in this report.

  9. Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network

    Cheung, Kar-Ming; Jennings, Esther

    2013-01-01

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  10. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  11. Development of the brain's functional network architecture.

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  12. Development of Healthy Cities networks in Europe.

    Goepel, Eberhard

    2007-01-01

    The Healthy Cities network in Europe was inspired by the Ottawa Charter for Health Promotion when it was launched in 1987. The networking process was initiated by the WHO Regional Office for Europe, but developed its own dynamics in different European countries during a time marked by fundamental political transformations in many of the countries of Eastern Europe. The networks then connected with the 'Local Agenda 21' and the 'Sustainable Cities and Towns Campaign' to create a new and broader programmatic agenda at the local level. In particular, the ''Aalborg plus 10 - commitments"--of local governments in 2004 have the potential to inspire a new phase of participatory and sustainable policies at the level of local communities in Europe. However, the extent to which these initiatives will influence the macro-politics of the European Union towards a proclaimed "Europe of Citizens" remains to be watched carefully during the coming years.

  13. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  14. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  15. NETWORKING - THE URBAN AND REGIONAL DEVELOPMENT STRATEGY?

    MARIA NOWICKA-SKOWRON

    2011-01-01

    Full Text Available The concept of innovations embraces everything that is connected with creation and application of new knowledge in order to win competitive advantage. A traditional approach applied by organizational and management sciences are not enough to explain and manage the development of enterprises as well as that of cities, regions and countries. According to a new approach to innovativeness, creation of innovations depends on a complex/system approach. A phenomenon of particular importance is the approach to network pro-innovation structures from the urban and regional point of view. What makes a network work is a mutual relation between actors who have same rights to access and participate in the network. The whole system must be perceived by every actor. Simultaneously, every actor is partially responsible for the whole. The nature of networking can be understood as a differentiated system of relations (particularly personal ones inside the network. Tolerance and trust are other foundations of information flow and information return.

  16. Developing a Virtual Network of Research Observatories

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  17. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  18. Performance Analysis of Space Information Networks with Backbone Satellite Relaying for Vehicular Networks

    Jian Jiao

    2017-01-01

    Full Text Available Space Information Network (SIN with backbone satellites relaying for vehicular network (VN communications is regarded as an effective strategy to provide diverse vehicular services in a seamless, efficient, and cost-effective manner in rural areas and highways. In this paper, we investigate the performance of SIN return channel cooperative communications via an amplify-and-forward (AF backbone satellite relaying for VN communications, where we assume that both of the source-destination and relay-destination links undergo Shadowed-Rician fading and the source-relay link follows Rician fading, respectively. In this SIN-assisted VN communication scenario, we first obtain the approximate statistical distributions of the equivalent end-to-end signal-to-noise ratio (SNR of the system. Then, we derive the closed-form expressions to efficiently evaluate the average symbol error rate (ASER of the system. Furthermore, the ASER expressions are taking into account the effect of satellite perturbation of the backbone relaying satellite, which reveal the accumulated error of the antenna pointing error. Finally, simulation results are provided to verify the accuracy of our theoretical analysis and show the impact of various parameters on the system performance.

  19. Electric space heating scheduling for real-time explicit power control in active distribution networks

    Costanzo, Giuseppe Tommaso; Bernstein, Andrey; Chamorro, Lorenzo Reyes

    2015-01-01

    This paper presents a systematic approach for abstracting the flexibility of a building space heating system and using it within a composable framework for real-time explicit power control of microgrids and, more in general, active distribution networks. In particular, the proposed approach...... is developed within the context of a previously defined microgrid control framework, called COMMELEC, conceived for the explicit and real-time control of these specific networks. The designed control algorithm is totally independent from the need of a building model and allows exploiting the intrinsic thermal...... inertia for real-time control. The paper first discusses the general approach, then it proves its validity via dedicated simulations performed on specific case study composed by the CIGRE LV microgrid benchmark proposed by the Cigré TF C6.04.02....

  20. Space Surveillance Network and Analysis Model (SSNAM) Performance Improvements

    Butkus, Albert; Roe, Kevin; Mitchell, Barbara L; Payne, Timothy

    2007-01-01

    ... capacity by sensor, models for sensors yet to be created, user defined weather conditions, National Aeronautical and Space Administration catalog growth model including space debris, and solar flux just to name a few...

  1. Energy Storage Technology Development for Space Exploration

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  2. Prediction of Thermal Environment in a Large Space Using Artificial Neural Network

    Hyun-Jung Yoon

    2018-02-01

    Full Text Available Since the thermal environment of large space buildings such as stadiums can vary depending on the location of the stands, it is important to divide them into different zones and evaluate their thermal environment separately. The thermal environment can be evaluated using physical values measured with the sensors, but the occupant density of the stadium stands is high, which limits the locations available to install the sensors. As a method to resolve the limitations of installing the sensors, we propose a method to predict the thermal environment of each zone in a large space. We set six key thermal factors affecting the thermal environment in a large space to be predicted factors (indoor air temperature, mean radiant temperature, and clothing and the fixed factors (air velocity, metabolic rate, and relative humidity. Using artificial neural network (ANN models and the outdoor air temperature and the surface temperature of the interior walls around the stands as input data, we developed a method to predict the three thermal factors. Learning and verification datasets were established using STAR CCM+ (2016.10, Siemens PLM software, Plano, TX, USA. An analysis of each model’s prediction results showed that the prediction accuracy increased with the number of learning data points. The thermal environment evaluation process developed in this study can be used to control heating, ventilation, and air conditioning (HVAC facilities in each zone in a large space building with sufficient learning by ANN models at the building testing or the evaluation stage.

  3. Label Space Reduction in MPLS Networks: How Much Can A Single Stacked Label Do?

    Solano, Fernando; Stidsen, Thomas K.; Fabregat, Ramon

    2008-01-01

    Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS-allowing the config......Most network operators have considered reducing LSR label spaces (number of labels used) as a way of simplifying management of underlaying virtual private networks (VPNs) and therefore reducing operational expenditure (OPEX). The IETF outlined the label merging feature in MPLS...

  4. Novel Photobioreactor Development for Space Applications

    National Aeronautics and Space Administration — Capability for controlled and efficient cultivation of microbial cells in microgravity environments opens the possibility for a plethora of applications. One such...

  5. Lessons learned from the design of chemical space networks and opportunities for new applications.

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer-Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  6. Lessons learned from the design of chemical space networks and opportunities for new applications

    Vogt, Martin; Stumpfe, Dagmar; Maggiora, Gerald M.; Bajorath, Jürgen

    2016-03-01

    The concept of chemical space is of fundamental relevance in chemical informatics and computer-aided drug discovery. In a series of articles published in the Journal of Computer- Aided Molecular Design, principles of chemical space design were evaluated, molecular networks proposed as an alternative to conventional coordinate-based chemical reference spaces, and different types of chemical space networks (CSNs) constructed and analyzed. Central to the generation of CSNs was the way in which molecular similarity relationships were assessed and a primary focal point was the network-based representation of biologically relevant chemical space. The design and comparison of CSNs based upon alternative similarity measures can be viewed as an evolutionary path with interesting lessons learned along the way. CSN design has matured to the point that such chemical space representations can be used in practice. In this contribution, highlights from the sequence of CSN design efforts are discussed in context, providing a perspective for future practical applications.

  7. Uplink-Downlink: A History of the Deep Space Network, 1957-1997

    Mudgway, Douglas J.; Launius, Roger (Technical Monitor)

    2001-01-01

    In these pages, the informed reader will discover a simple description of what the Deep Space Network (DSN) is about, and how it works an aspect of NASA's spectacular planetary program that seldom found its way into the popular media coverage of those major events. Future historical researchers will find a complete record of the origin and birth of the DSN, its subsequent development and expansion over the ensuing four decades, and a description of the way in which the DSN was used to fulfill the purpose for which it was created. At the same time, the specialist reader is provided with an abundant source of technical references that address every aspect of the advanced telecommunications technology on which the success of the DSN depended. And finally, archivists, educators, outreach managers, and article writers will have ready recourse to the inner workings of the DSN and how they related to the more publicly visible events of the planetary space program.

  8. The public space of social media connected cultures of the network society

    Tierney, Therese

    2013-01-01

    Social media is restructuring urban practices-through ad-hoc experimentation, commercial software development, and communities of participation. This book is the first to consider how practices contained within social media are situated within a larger genealogy of public space, including theories of communal identity, civitas and democracy, the fete, and self-expression. Through empirical research, the actual social practices of participants of networked publics are described and analyzed. Documenting how online counterpublics use the Internet to transmit classified photos, mobilize activists, and challenge the status quo, Tierney argues that online activities do not stop in online conversations; they are physically grounded through mobile GPS coordinates which are then transformed into activities in physical space-the street, the plaza, the places where people have traditionally gathered to demonstrate and express their opinions publicly.

  9. Developing cyber security architecture for military networks using cognitive networking

    Kärkkäinen, Anssi

    2015-01-01

    In recent years, the importance of cyber security has increased. Cyber security has not become a critical issue only for governmental or business actors, but also for armed forces that nowadays rely on national or even global networks in their daily activities. The Network Centric Warfare (NCW) paradigm has increased the significance of networking during last decades as it enables information superiority in which military combat power increased by networking the battlefield actors from perspe...

  10. Place, networks, space: theorising the geographies of social movements

    Nicholls, W.J.

    2009-01-01

    This essay examines how geography affects the different types of networks underlying social movements. The principal argument of the paper is that networks forged in particular places and at great distances play distinctive yet complementary functions in broad-based social movements. Not only does

  11. Identity Practices of Multilingual Writers in Social Networking Spaces

    Chen, Hsin-I

    2013-01-01

    This study examines the literacy practices of two multilingual writers in social networking communities. The findings show that the multilingual writers explored and reappropriated symbolic resources afforded by the social networking site as they aligned themselves with particular collective and personal identities at local and global levels.…

  12. Operations Plan for Support Network Development

    None

    2008-06-30

    This report describes the operational processes and strategies that are building a support network for the National Security Technology Incubator (NSTI) program. The NSTI program currently is under development as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Grant No. DE FG52-07NA28084. Although the NSTI program offers a wide array of in-house business services, there are a certain number of services that will be provided by entities outside of Arrowhead Center. This report identifies the steps needed to develop an appropriate support network. The Arrowhead Center is working with external service providers and key stakeholders to establish feasible referral and implementation mechanics offering NSTI program participants the most comprehensive incubation services possible.

  13. Towards the development of European networks

    Hanreich, G.

    2004-01-01

    The second AFG (French Gas Association) forum, held on June 17, addressed the issue of links between European networks with presentations by Guenther Hainreich, Director of Trans-European Networks for the European Commission Energy and Transport DG, and Loannis Galanis, Assistant Unit Director for the European Commission Energy and Transport DG. The choice for this topic has been influenced by the opening of gas markets in Europe which supposes that two conditions are fulfilled: first, the existence of gas availabilities, and second, the development of transportation, storage and LNG terminal infrastructures. In this context, the national policies are today the regional variations of a European policy at the service of the reinforcement of isolated areas and of the sustain of expanding areas. It is thus necessary to consider the European point-of-view about the existing infrastructures, their development and their financing means

  14. Cortical networks for encoding near and far space in the non-human primate.

    Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann

    2018-04-19

    While extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal, prefrontal and premotor regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Advanced lightweight optics development for space applications

    Bilbro, James W.

    1998-01-01

    A considerable amount of effort over the past year has been devoted to exploring ultra-lightweight optics for two specific NASA programs, the Next Generation Space Telescope (NGST), and the High Throughput X-ray Spectrometer (HTXS). Experimental investigations have been undertaken in a variety of materials including glass, composites, nickel, beryllium, Carbon fiber reinforced Silicon Carbide (CSiC), Reaction Bonded Silicon Carbide, Chemical Vapor Deposited Silicon Carbide, and Silicon. Overall results of these investigations will be summarized, and specific details will be provided concerning the in-house development of ultra-lightweight nickel replication for both grazing incidence and normal incidence optics. This will include x-ray test results of the grazing incidence optic and cryogenic test results of the normal incidence optic. The status of two 1.5 meter diameter demonstration mirrors for NGST will also be presented. These two demonstrations are aimed at establishing the capability to manufacture and test mirrors that have an areal density of 15 kilograms per square meter. Efforts in thin membrane mirrors and Fresnel lenses will also be briefly discussed

  16. Space shuttle prototype check valve development

    Tellier, G. F.

    1976-01-01

    Contaminant-resistant seal designs and a dynamically stable prototype check valve for the orbital maneuvering and reaction control helium pressurization systems of the space shuttle were developed. Polymer and carbide seal models were designed and tested. Perfluoroelastomers compatible with N2O4 and N2H4 types were evaluated and compared with Teflon in flat and captive seal models. Low load sealing and contamination resistance tests demonstrated cutter seal superiority over polymer seals. Ceramic and carbide materials were evaluated for N2O4 service using exposure to RFNA as a worst case screen; chemically vapor deposited tungsten carbide was shown to be impervious to the acid after 6 months immersion. A unique carbide shell poppet/cutter seat check valve was designed and tested to demonstrate low cracking pressure ( 2.0 psid), dynamic stability under all test bench flow conditions, contamination resistance (0.001 inch CRES wires cut with 1.5 pound seat load) and long life of 100,000 cycles (leakage 1.0 scc/hr helium from 0.1 to 400 psig).

  17. THE DISTRIBUTION NETWORK DEVELOPEMENT IN PRINT MEDIA

    Loredana Iordache

    2012-09-01

    Full Text Available In this article, we identify the characteristics of the distribution networks in print media and the features ofmarketing in mass media, emphasising the attempts initiated by the press in the context of the financial crisis. Theresearch was conducted through a case study on regional newspaper,, Gazeta de Sud'' The main problems analyzedwere decreasing newspaper circulation and advertising. The research taken into account trends and developmentsworldwide print media as well as print media particularities of Romania, with a focus on identifying factors thatcontributed to the closure of a significant number of newspapers, or their transition from printed version online format.The paper is mainly focused on some practical issues related to the way of organizing the print media sales networks,the authors elaborating proposals for the implementation of certain measures to increase the circulation, on the onehand, and on the hand, to increase the sale of ad space in the newspaper. Compared with other products, thenewspaper has unique characteristics caused by daily changing content, and therefore the product itself. Having ahighly perishable, the content of media products should always seen in relation to time, which requires more rapiddistribution and continuous production.

  18. Applying network theory to animal movements to identify properties of landscape space use.

    Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George

    2018-04-01

    Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a

  19. Developing Viable Financing Models for Space Tourism

    Eilingsfeld, F.; Schaetzler, D.

    2002-01-01

    Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.

  20. SCONES: Secure Content-Oriented Networking for Exploring Space, Phase I

    National Aeronautics and Space Administration — We envision a secure content-oriented internetwork as a natural generalization of the cache-and-forward architecture inherent in delay-tolerant networks. Using our...

  1. RFID-Enabled Navigation and Communication Networks for Long-Duration Space Missions, Phase I

    National Aeronautics and Space Administration — Virtual EM Inc. proposes a system that employs semi-passive RFID sensors with carbon nanotube inkjet-printed antenna and solar powered mesh-networked beacons. The...

  2. Strategic Networks for Sustainable Tourism Development

    Ivelyna Krasteva Yoveva

    2014-12-01

    Full Text Available This paper proposes an innovative approach towards introduction of an up-to-date sustainable development philosophy founded on the principles of combination and balance of common and individual interests on multilateral perspective, i.e. individuals vs. organizations, public groups vs. governmental authorities, industry vs. macroeconomic development, nation states vs. international regional development etc. The optimal implementation of such an approach is imminently dependent on an authentic self-awareness of own identity, values, purposes and motivation for positive contribution to the common well-being. The author’s arguments are based on the conviction that when more individuals and organizations harness deeper understanding of the mutual benefits within their operations area and undertake collaborative efforts to solve common problem their steadfast long-term development may be secured even in times of social-economic-political-eco-etc. crises and within a dynamically changing environment.Main purpose of current article is the concentration of the research on looking for and applying the principles of consistency, exchange of good collaborative practices and consequently strategic and operational utilization of the synergy effect, systems thinking and the holistic approach. Collaborative efforts would lead to greater effectiveness and optimization that satisfies individual and common interests in multiple environmental dimensions. The study aims to analyze the potential of a new network paradigm for provision of effectively applied strategies within the contemporary sustainable development context.Some good practices within the area of joint development of sustainable strategic networks in tourism industry in Bulgaria are presented. A case study of a culinary and hospitality cluster recently established in the Dobrudzha region is about to demonstrates the strategic network viability and sustainability in a contemporary agricultural

  3. Strategy development management of Multimodal Transport Network

    Nesterova Natalia S.

    2016-01-01

    Full Text Available The article gives a brief overview of works on the development of transport infrastructure for multimodal transportation and integration of Russian transport system into the international transport corridors. The technology for control of the strategy, that changes shape and capacity of Multi-modal Transport Network (MTN, is considered as part of the methodology for designing and development of MTN. This technology allows to carry out strategic and operational management of the strategy implementation based on the use of the balanced scorecard.

  4. A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks

    2017-12-05

    A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views, opinions and/or findings contained in this...Technology (MIT) Title: A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks Report Term: 0-Other Email: tlp...students presented progress and received feedback from the research group . o wrote papers on their research and submitted them to leading conferences

  5. Text in social networking Web sites: A word frequency analysis of Live Spaces

    Thelwall, Mike

    2008-01-01

    Social networking sites are owned by a wide section of society and seem to dominate Web usage. Despite much research into this phenomenon, little systematic data is available. This article partially fills this gap with a pilot text analysis of one social networking site, Live Spaces. The text in 3,071 English language Live Spaces sites was monitored daily for six months and word frequency statistics calculated and compared with those from the British National Corpus. The results confirmed the...

  6. Free-space optics technology employed in an UMTS release 4 bearer independent core network access part

    Bibac, Ionut

    2005-08-01

    The UMTS Bearer Independent Core Network program introduced the 3rd Generation Partnership Program Release 4 BICN architecture into the legacy UMTS TDM-switched network. BICN is the application of calI server archltecture for voice and circuit switched data, enabling the provisioning of traditional circuit-switched services using a packet-switched transport network. Today"s business climate has made it essential for service providers to develop a comprehensive networking strategy that means introduction of RCBICN networks. The R4-BICN solution to the evolution of the Core Network in UMTS will enable operators to significantly reduce the capital and operational costs of delivering both traditional voice sewices and new multimedia services. To build the optical backbone, which can support the third generation (3G) packetized infrastructure, the operators could choose a fibre connection, or they could retain the benefits of a wireless connectivity by using a FSO - Free Space Optical lmk, the only wireless technology available that is capable of achieving data rates up to 2.4 Gbit/s. FSO offers viable alternatives for both core transmission networks and for replacing microwaves links in NodeB - RNC access networks. The paper and presentation aim to demonstrate the manner in which FSO products and networks are employed into R4-BICN design solutions.

  7. Regulatory networks and connected components of the neutral space. A look at functional islands

    Boldhaus, G.; Klemm, K.

    2010-09-01

    The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into ≈ 4.7 × 108 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.

  8. Development of a prototype real-time automated filter for operational deep space navigation

    Masters, W. C.; Pollmeier, V. M.

    1994-01-01

    Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.

  9. NETWORKING - THE URBAN AND REGIONAL DEVELOPMENT STRATEGY?

    PIOTR PACHURA

    2008-01-01

    Full Text Available It has become more and more common to claim that the concept of innovations embraces everything that is connected with creation and application of new knowledge in order to win competitive advantage. In this respect innovations concern as well, apart from technology, economy, society and culture. A traditional approach applied by organizational and management sciences is not enough to explain and manage the development of enterprises as well as that of cities, regions and countries. Simultaneously, according to a new approach to innovativeness, creation of innovations depends on a complex/system approach. The word complex is vital since this approach should embrace the complexity of innovative networks as well as complexity of relations of cooperation and the whole network environment together with social context.

  10. The development of a cislunar space infrastructure

    Buck, C. A.; Johnson, A. S.; Mcglinchey, J. M.; Ryan, K. D.

    1989-01-01

    The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed.

  11. Development of IT-based data communication network technology

    Hong, Seok Boong; Jeong, K. I.; Yoo, Y. R.

    2010-10-01

    - Developing broadband high-reliability real-time communications technology for NPP - Developing reliability and performance validation technology for communications network - Developing security technology for NPP communications network - Developing field communications network for harsh environment of NPP - International standard registration(Oct. 28, 2009, IEC 61500

  12. RD networks and regional knowledge production in Europe : Evidence from a space-time model

    Wanzenböck, Iris; Piribauer, Philipp

    2018-01-01

    In this study we estimate space-time impacts of the embeddedness in R&D networks on regional knowledge production using a dynamic spatial panel data model with non-linear effects for 229 European NUTS 2 regions in the period 1998–2010. Embeddedness refers to the positioning in networks where nodes

  13. Innovations and networking fostering tourist destination development in Slovakia

    Gajdošík Tomáš

    2017-12-01

    Full Text Available The paper focuses on the implementation of innovations and networking in the sector of tourism in two Slovak mountain destinations of international significance. The main objective of the paper is to identify and evaluate how innovations and networking contribute to tourist destination development in Slovakia. The implementation of institutional innovation resulted in the establishment of formal and informal networks. The developed networks consist of representatives of all sectors co-ordinating all relevant stakeholders. Formal and informal networks and the collaboration among stakeholders have launched other types of innovations in the tourism sector. The interactions and intensity of relations among stakeholders are analysed by network analysis. Destinations are compared with the network of the same size and density through quantitative network characteristics. Based on empirical research we investigate the impact of networks and innovations on tourist destination development. Due to the synergy effect of networking and implementation of multiple innovations, tourist destination development is observed.

  14. The development of brain network architecture.

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Architectural Options for a Future Deep Space Optical Communications Network

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  16. Application of Mobile-ip to Space and Aeronautical Networks

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  17. Enabling Sustainable Exploration through the Commercial Development of Space

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  18. Development of schizogenous intercellular spaces in plants

    Kimitsune eIshizaki

    2015-07-01

    Full Text Available Gas exchange is essential for multicellular organisms. In contrast to the circulatory systems of animals, land plants have tissues with intercellular spaces (ICSs, called aerenchyma, that are critical for efficient gas exchange. Plants form ICSs by two different mechanisms: schizogeny, where localized cell separation creates spaces; and lysogeny, where cells die to create intercellular spaces. In schizogenous ICS formation, specific molecular mechanisms regulate the sites of cell separation and coordinate extensive reorganization of cell walls. Emerging evidence suggests the involvement of extracellular signaling, mediated by peptide ligands and leucine-rich repeat receptor-like kinases, in the regulation of cell wall remodeling during cell separation. Recent work on the liverwort Marchantia polymorpha has demonstrated a critical role for a plasma membrane-associated plant U-box E3 ubiquitin ligase in ICS formation. In this review, I discuss the mechanism of schizogenous ICS formation, focusing on the potential role of extracellular signaling in the regulation of cell separation.

  19. Differential Space-Time Modulation for Wideband Wireless Networks

    Li, Hongbin

    2006-01-01

    .... The objective was to provide full spatio-spectral diversity and coding gain at affordable decoding complexity without the burden of estimating the underlying space-time frequency-selective channel...

  20. The Deep Space Network: The challenges of the next 20 years - The 21st century

    Dumas, L. N.; Edwards, C. D.; Hall, J. R.; Posner, E. C.

    1990-01-01

    The Deep Space Network (DSN) has been the radio navigation and communications link between NASA's lunar and deep space missions for 30 years. In this paper, new mission opportunities over the next 20 years are discussed. The system design drivers and the DSN architectural concepts for those challenges are briefly considered.

  1. Demonstration of Self-Training Autonomous Neural Networks in Space Vehicle Docking Simulations

    Patrick, M. Clinton; Thaler, Stephen L.; Stevenson-Chavis, Katherine

    2006-01-01

    Neural Networks have been under examination for decades in many areas of research, with varying degrees of success and acceptance. Key goals of computer learning, rapid problem solution, and automatic adaptation have been elusive at best. This paper summarizes efforts at NASA's Marshall Space Flight Center harnessing such technology to autonomous space vehicle docking for the purpose of evaluating applicability to future missions.

  2. Geometry on the parameter space of the belief propagation algorithm on Bayesian networks

    Watanabe, Yodai [National Institute of Informatics, Research Organization of Information and Systems, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan)

    2006-01-30

    This Letter considers a geometrical structure on the parameter space of the belief propagation algorithm on Bayesian networks. The statistical manifold of posterior distributions is introduced, and the expression for the information metric on the manifold is derived. The expression is used to construct a cost function which can be regarded as a measure of the distance in the parameter space.

  3. Very Small Satellite Design for Space Sensor Networks

    2008-06-01

    Literature Review 25 Clyde Space Power Pumpkin Computer Microhard Comm SSTL GPS User Payload Pumpkin Structure Figure 2-10. CUTE-I CubeSat [69...Structure Pumpkin [244] Skeletonized 155 $1,350* $810* EPS Clyde Space [245] CubeSat EPS 310 $25,240* $19,252* DH Pumpkin [244] FM430 90 $1,200* $720...satellite miniaturisation since 1993 and probably before. Furthermore, the term itself has been diluted from the pure literal form, eventually

  4. Major technological innovations introduced in the large antennas of the Deep Space Network

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  5. Low Emission Development Strategies: The Role of Networks and Knowledge Platforms

    Benioff, Ron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bazilian, Morgan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kecman, Ana [United Nations Industrial Development Organization, Vienna (Austria); De Simone, Giuseppe [United Nations Industrial Development Organization, Vienna (Austria); Kitaoka, Kazuki [United Nations Industrial Development Organization, Vienna (Austria); Ploutakhina, Marina [United Nations Industrial Development Organization, Vienna (Austria); Radka, M. [United Nations Environment Programme, Nairobi (Kenya)

    2013-09-01

    Considerable effort has been made to address the transition to low-carbon economy. A key focus of these efforts has been on the development of national low-emissions developments strategies (LEDS). One enabler of these plans is the existence of well-functioning national, regional and international low-emission development networks and knowledge platforms. To better understand the role of LEDS, weexamine this area in relation to network theory. We present a review of strengths and weaknesses of existing LEDS networks that builds on the findings of a study conducted by the Coordinated Low Emission Assistance Network (CLEAN). Based on the insights from theory and a mapping of the climate-related network space, we identify opportunities for further refinement of LEDS networks.

  6. Organizational Metamorphosis in Space Research and Development.

    Tompkins, Phillip K.

    1978-01-01

    The communicative, and therefore organizational and managerial, aspects of the Marshall Space Flight Center's (MSFC) metamorphosis from Saturn V to Skylab are analyzed. MSFC's consistent successes are attributed to the organization's commitment to communication systems, its technical integrity, and its single-minded purpose. (JMF)

  7. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  8. Developing A Generic Optical Avionic Network

    Zhang, Jiang; An, Yi; Berger, Michael Stübert

    2011-01-01

    We propose a generic optical network design for future avionic systems in order to reduce the weight and power consumption of current networks on board. A three-layered network structure over a ring optical network topology is suggested, as it can provide full reconfiguration flexibility...... and support a wide range of avionic applications. Segregation can be made on different hierarchies according to system criticality and security requirements. The structure of each layer is discussed in detail. Two network configurations are presented, focusing on how to support different network services...... by such a network. Finally, three redundancy scenarios are discussed and compared....

  9. State of the art survey of network operating systems development

    1985-01-01

    The results of the State-of-the-Art Survey of Network Operating Systems (NOS) performed for Goddard Space Flight Center are presented. NOS functional characteristics are presented in terms of user communication data migration, job migration, network control, and common functional categories. Products (current or future) as well as research and prototyping efforts are summarized. The NOS products which are revelant to the space station and its activities are evaluated.

  10. Community Health Global Network and Sustainable Development

    Rebekah Young

    2016-01-01

    Full Text Available With the achievements, failures and passing of the Millennium Development Goals (MDG, the world has turned its eyes to the Sustainable Development Goals (SDG, designed to foster sustainable social, economic and environmental development over the next 15 years.(1 Community-led initiatives are increasingly being recognised as playing a key role in realising sustainable community development and in the aspirations of universal healthcare.(2 In many parts of the world, faith-based organisations are some of the main players in community-led development and health care.(3 Community Health Global Network (CHGN creates links between organisations, with the purpose being to encourage communities to recognise their assets and abilities, identify shared concerns and discover solutions together, in order to define and lead their futures in sustainable ways.(4 CHGN has facilitated the development of collaborative groups of health and development initiatives called ‘Clusters’ in several countries including India, Bangladesh, Kenya, Tanzania, Zambia and Myanmar. In March 2016 these Clusters met together in an International Forum, to share learnings, experiences, challenges, achievements and to encourage one another. Discussions held throughout the forum suggest that the CHGN model is helping to promote effective, sustainable development and health care provision on both a local and a global scale.

  11. Reconceptualising Diasporic Intellectual Networks: Mobile Scholars in Transnational Space

    Chen, Qiongqiong; Koyama, Jill P.

    2013-01-01

    In this article, we explore how Chinese scholars in the USA recount their transnational collaborations and linkages. Guided by post-colonial theories and cultural studies of transnational academic mobility, we utilise in-depth interviews to resituate the scholars' experiences within a discourse of diasporic intellectual networks. We argue that…

  12. Space Environmental Viewing and Analysis Network (SEVAN) – characteristics and first operation results

    Chilingarian, Ashot; Arakelyan, Karen; Avakyan, Karen; Bostanjyan, Nikolaj; Chilingaryan, Suren; Pokhsraryan, D; Sargsyan, D; Reymers, A

    2013-01-01

    Space Environmental Viewing and Analysis Network is a worldwide network of identical particle detectors located at middle and low latitudes aimed to improve fundamental research of space weather conditions and to provide short- and long-term forecasts of the dangerous consequences of space storms. SEVAN detected changing fluxes of different species of secondary cosmic rays at different altitudes and latitudes, thus turning SEVAN into a powerful integrated device used to explore solar modulation effects. Till to now the SEVAN modules are installed at Aragats Space Environmental Centre in Armenia (3 units at altitudes 800, 2000 and 3200 m a.s.l.), Bulgaria (Moussala), Croatia and India (New-Delhi JNU.) and now under installation in Slovakia, LomnitskySchtit). Recently SEVAN detectors were used for research of new high-energy phenomena originated in terrestrial atmosphere – Thunderstorm Ground Enhancements (TGEs). In 2011 first joint measurements of solar modulation effects were detected by SEVAN network, now under analysis.

  13. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Jisheng Zhang

    2015-06-01

    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  14. Green space development in shrinking cities – opportunities and constraints

    Stefanie Rößler

    2008-01-01

    Full Text Available Green space development means both a strategy and a need to cope with the spatial transformation of cities as a consequence of socio-demographic change. This paper focuses on the opportunities and challenges of planning and implementing green spaces in shrinking cities. Based on a doctoral thesis, empirical results regarding the relevance of green spaces and strategies in the process of urban restructuring will be discussed. Concerned cities develop specific framework concepts to face spatial transformation. It is assumed that in shrinking cities the influence of green spaces and as well as their significance for urban form will change. Results of case studies in shrinking cities of Eastern Germany will be discussed with regard to their strategies and the instruments facing the challenges of green space development. The presented findings might be also relevant for urban development in (partially growing cities, enhancing green space development as a part of sustainable cities.

  15. Commercial space development needs cheap launchers

    Benson, James William

    1998-01-01

    SpaceDev is in the market for a deep space launch, and we are not going to pay $50 million for it. There is an ongoing debate about the elasticity of demand related to launch costs. On the one hand there are the ``big iron'' NASA and DoD contractors who say that there is no market for small or inexpensive launchers, that lowering launch costs will not result in significantly more launches, and that the current uncompetitive pricing scheme is appropriate. On the other hand are commercial companies which compete in the real world, and who say that there would be innumerable new launches if prices were to drop dramatically. I participated directly in the microcomputer revolution, and saw first hand what happened to the big iron computer companies who failed to see or heed the handwriting on the wall. We are at the same stage in the space access revolution that personal computers were in the late '70s and early '80s. The global economy is about to be changed in ways that are just as unpredictable as those changes wrought after the introduction of the personal computer. Companies which fail to innovate and keep producing only big iron will suffer the same fate as IBM and all the now-extinct mainframe and minicomputer companies. A few will remain, but with a small share of the market, never again to be in a position to dominate.

  16. Jamming Attack in Wireless Sensor Network: From Time to Space

    Sun, Yanqiang; Wang, Xiaodong; Zhou, Xingming

    Classical jamming attack models in the time domain have been proposed, such as constant jammer, random jammer, and reactive jammer. In this letter, we consider a new problem: given k jammers, how does the attacker minimize the pair-wise connectivity among the nodes in a Wireless Sensor Network (WSN)? We call this problem k-Jammer Deployment Problem (k-JDP). To the best of our knowledge, this is the first attempt at considering the position-critical jamming attack against wireless sensor network. We mainly make three contributions. First, we prove that the decision version of k-JDP is NP-complete even in the ideal situation where the attacker has full knowledge of the topology information of sensor network. Second, we propose a mathematical formulation based on Integer Programming (IP) model which yields an optimal solution. Third, we present a heuristic algorithm HAJDP, and compare it with the IP model. Numerical results show that our heuristic algorithm is computationally efficient.

  17. The Global Muon Detector Network -GMDN and the space situational awareness

    Schuch, Nelson Jorge; Munakata, Kazuoki; Dal Lago, Alisson; Marcos Denardini, Clezio; Echer, Ezequiel; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; Rigozo, Nivaor R.; Petry, Adriano; Kirsch Pinheiro, Damaris; Braga, Carlos Roberto; Vinicius Dias Silveira, Marcos; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; Ramos Vieira, Lucas; Kemmerich, Níkolas; Kato, Chihiro; Fushishita, Akira; Fujii, Zenjirou; Bieber, John W.; Evenson, Paul; Kuwabara, Takao; Duldig, Marcus L.; Humble, John E.; Chilingarian, Ashot; Sabbah, Ismail; Jansen, Frank

    Space weather forecasting is a very important tool for the space situational awareness to the space objects, the space environment and related threats and risks for manned and non-manned spacecrafts. The global network of ground based multi-directional detectors (GMDN) can be considered as one example of an important emerging Space Situational Awareness program around the world, since its requirements needs global technical, scientific and logistic collab-oration between several countries in different continents. ICMEs accompanied by a strong shock often forms a high-energy galactic cosmic rays (GCRs) depleted region behind the shock known as a Forbush decrease. The ICME arrival also causes a systematic variation in the GCR streaming (i.e. the directional anisotropy of intensity). The magnitude of the streaming is small (about 1 % or less), but its variation is relevant. Some particles from this suppressed density region traveling with about the speed of light leak into the upstream region, much faster than the approaching shock, creating the possibility of being observed at the earth, by a global net-work of ground based multi-directional detectors (GMDN), as precursory loss-cone anisotropy. Loss-cones are typically visible 4-8 hours ahead of shock arrival for shocks associated with ma-jor geomagnetic storms. A multi-directional muon detector for detection of GCR was installed in 2001, through an international cooperation between Brazil, Japan and USA, and has been in operation since then at the Southern Space Observatory -SSO/CRS/INPE -MCT, (29.4° S, 53.8° W, 480m a.s.l), Sao Martinho da Serra, RS, in southern Brazil. The detector's capability and sensitivity were upgraded in 2005. The observations conducted by this detector are used for forecasting the arrival of the geomagnetic storm and their interplanetary coronal mass ejec-tion (ICME) drivers in the near-earth geospace. The detector measures high-energy GCRs by detecting secondary muons produced from the

  18. Space Shuttle GN and C Development History and Evolution

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  19. THE PROSPECTS OF DEVELOPMENT OF ELECTRIC POWER NETWORK IN GEORGIA

    Mshvidobadze, T.

    2007-01-01

    The possibility of application of one of the versions of development of the electric power network in Georgia is disscussed. The algorithm of grouping of the versions of power network development, which allows choosing the optimal network configuration under indefinite conditions, is offered. The experiments have demonstrated that the same optimal decision can be found by considerable reduction in the number of versions. (author)

  20. Legal considerations for urban underground space development in Malaysia

    F. Zaini

    2017-12-01

    Full Text Available In 2008, the Malaysia land code, named the National Land Code 1965 (NLC 1965, was amended to add Part Five (A to deal with the disposal of underground space. In addition, the Circular of the Director General of Lands and Mines No. 1/2008 was issued to assist the application of Part Five (A of the NLC 1965. However, the legislation is still questionable and has instigated many arguments among numerous actors. Therefore, this research was undertaken to examine legal considerations for the development of underground space. The focus is on four legal considerations, namely underground space ownership, the bundle of rights, depth, and underground space utilization. Rooted in qualitative methods, interviews were conducted with respondents involved in the development of underground space in Malaysia. The obtained data were then analyzed descriptively. The findings differentiated the rights of landowners for surface land and underground space, and their liability for damages and the depth. It was indicated that the current legislation in Malaysia, namely Part Five (A of the NLC 1965 and the Circular of the Director General of Lands and Mines No. 1/2008, is adequate to facilitate the development of underground space in terms of legal considerations. However, to further facilitate the development of underground land in the future, based on the research, four enhancements are recommended for legal considerations pertaining to the development of underground space in Malaysia. Keywords: Underground space, Legal consideration, Land right, Urban development

  1. Commercialization is Required for Sustainable Space Exploration and Development

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  2. Space network scheduling benchmark: A proof-of-concept process for technology transfer

    Moe, Karen; Happell, Nadine; Hayden, B. J.; Barclay, Cathy

    1993-01-01

    This paper describes a detailed proof-of-concept activity to evaluate flexible scheduling technology as implemented in the Request Oriented Scheduling Engine (ROSE) and applied to Space Network (SN) scheduling. The criteria developed for an operational evaluation of a reusable scheduling system is addressed including a methodology to prove that the proposed system performs at least as well as the current system in function and performance. The improvement of the new technology must be demonstrated and evaluated against the cost of making changes. Finally, there is a need to show significant improvement in SN operational procedures. Successful completion of a proof-of-concept would eventually lead to an operational concept and implementation transition plan, which is outside the scope of this paper. However, a high-fidelity benchmark using actual SN scheduling requests has been designed to test the ROSE scheduling tool. The benchmark evaluation methodology, scheduling data, and preliminary results are described.

  3. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  4. Channel coding in the space station data system network

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  5. Leadership Development in Digital Spaces Through Mentoring, Coaching, and Advising.

    Guthrie, Kathy L; Meriwether, Jason L

    2018-06-01

    The increasing population of students engaging in online and digital spaces poses unique leadership development challenges in mentoring, coaching, and advising. This chapter discusses the importance of using digital spaces for leadership development and students' sense of belonging. © 2018 Wiley Periodicals, Inc.

  6. User community development for the space transportation system/Skylab

    Archer, J. L.; Beauchamp, N. A.

    1974-01-01

    The New User Function plan for identifying beneficial uses of space is described. Critical issues such as funding, manpower, and protection of user proprietary rights are discussed along with common barriers which impede the development of a user community. Studies for developing methodologies of identifying new users and uses of the space transportation system are included.

  7. Networking capability and new product development

    Mu, J.; Di Benedetto, A.C.

    2012-01-01

    Current research on network theory remains largely focused on structures and outcomes without exploring the capability that firms need to build efficient and effective networks to their advantage. In this paper, we take a networking capability view in studying inter-firm relationships. We assume

  8. NAVIGATING PROTOTYPING SPACES FOR CO-DESIGN OF ACTOR-NETWORKS

    Pedersen, Signe; Brodersen, Søsser

    2017-01-01

    of diverse actors in what we term prototyping spaces. In these prototyping spaces, prototypes play an important role in visualising controversies, enabling matters of concern to be negotiated, and making knowledge transparent throughout the design process. Based on a case study of a pilot program to make...... of temporary prototyping spaces, which are to be staged and facilitated to allow various actors to negotiate matters of concern. Designers then translate the resulting knowledge and insights into pro-totypes for use in subsequent spaces and eventually into an actor-network com-prising the final solution....

  9. Definition of technology development missions for early space stations: Large space structures

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  10. Design of a mission network system using SpaceWire for scientific payloads onboard the Arase spacecraft

    Takashima, Takeshi; Ogawa, Emiko; Asamura, Kazushi; Hikishima, Mitsuru

    2018-05-01

    Arase is a small scientific satellite program conducted by the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency, which is dedicated to the detailed study of the radiation belts around Earth through in situ observations. In particular, the goal is to directly observe the interaction between plasma waves and particles, which cause the generation of high-energy electrons. To observe the waves and particles in detail, we must record large volumes of burst data with high transmission rates through onboard mission network systems. For this purpose, we developed a high-speed and highly reliable mission network based on SpaceWire, as well as a new and large memory data recorder equipped with a data search function based on observation time (the time index, TI, is the satellite time starting from when the spacecraft is powered on.) with respect to the orbital data generated in large quantities. By adopting a new transaction concept of a ring topology network with SpaceWire, we could secure a redundant mission network system without using large routers and having to suppress the increase in cable weight. We confirmed that their orbit performs as designed.[Figure not available: see fulltext.

  11. Revealing dynamics and consequences of fit and misfit between formal and informal networks in multi-institutional product development collaborations

    Kratzer, J.; Gemuenden, Hans G.; Lettl, Christopher

    The study presents a longitudinal examination about dynamics and consequences of fit and misfit between formally ascribed design interfaces and informal communication networks in two large multi-institutional product development collaborations in space industry. Findings: (1) formally ascribed

  12. Real-time estimation of free spaces in regulated on-street parking spaces using artificial neural networks

    Magaña Suarez, M.

    2016-07-01

    In this paper we will develop a methodology for estimating the percentage of free parking spaces available in the area of the city where a user is interested through a real-time query in a mobile app. The smartphone screen will provide a colour-coded map of the requested area that indicates the saturation state of the parking spaces. (Author)

  13. Experimental Evaluation of Optically Polished Aluminum Panels on the Deep Space Network's 34 Meter Antenna

    Vilnrotter, V.

    2011-01-01

    The potential development of large aperture ground?based "photon bucket" optical receivers for deep space communications has received considerable attention recently. One approach currently under investigation is to polish the aluminum reflector panels of 34?meter microwave antennas to high reflectance, and accept the relatively large spotsize generated by state of?the?art polished aluminum panels. Theoretical analyses of receiving antenna pointing, temporal synchronization and data detection have been addressed in previous papers. Here we describe the experimental effort currently underway at the Deep Space Network (DSN) Goldstone Communications Complex in California, to test and verify these concepts in a realistic operational environment. Two polished aluminum panels (a standard DSN panel polished to high reflectance, and a custom designed aluminum panel with much better surface quality) have been mounted on the 34 meter research antenna at Deep?Space Station 13 (DSS?13), and a remotely controlled CCD camera with a large CCD sensor in a weather?proof container has been installed next to the subreflector, pointed directly at the custom polished panel. The point?spread function (PSF) generated by the Vertex polished panel has been determined to be smaller than the sensor of the CCD camera, hence a detailed picture of the PSF can be obtained every few seconds, and the sensor array data processed to determine the center of the intensity distribution. In addition to estimating the center coordinates, expected communications performance can also been evaluated with the recorded data. The results of preliminary pointing experiments with the Vertex polished panel receiver using the planet Jupiter to simulate the PSF generated by a deep?space optical transmitter are presented and discussed in this paper.

  14. Networks In Real Space: Characteristics and Analysis for Biology and Mechanics

    Modes, Carl; Magnasco, Marcelo; Katifori, Eleni

    Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.

  15. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space.

    Wei Zheng

    Full Text Available This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones.

  16. Standard compliant channel selection scheme for TV white space networks

    Masonta, MT

    2014-08-01

    Full Text Available CHANNEL DECISION SCHEME The proposed channel selection model is performed based on the flowchart shown in Fig. 1. We assume that the TVWS- BS is authorised and registered with the national GSDB. The model starts when the TVWS-BS queries the GSDB after...-BS will query the GSDB after a predefined period of time until at least more than one channel is available to allow the channel allocation process to start. Fig. 1: Proposed channel selection scheme flowchart A. White Space Channel Attributes Collection Based...

  17. Long-range planning cost model for support of future space missions by the deep space network

    Sherif, J. S.; Remer, D. S.; Buchanan, H. R.

    1990-01-01

    A simple model is suggested to do long-range planning cost estimates for Deep Space Network (DSP) support of future space missions. The model estimates total DSN preparation costs and the annual distribution of these costs for long-range budgetary planning. The cost model is based on actual DSN preparation costs from four space missions: Galileo, Voyager (Uranus), Voyager (Neptune), and Magellan. The model was tested against the four projects and gave cost estimates that range from 18 percent above the actual total preparation costs of the projects to 25 percent below. The model was also compared to two other independent projects: Viking and Mariner Jupiter/Saturn (MJS later became Voyager). The model gave cost estimates that range from 2 percent (for Viking) to 10 percent (for MJS) below the actual total preparation costs of these missions.

  18. Social Network Facebook in News: Comparisiion of Space Dedicated to Social Network Facebook ads its Content in Czech Media in the Years 2009 and 2011

    Bezdíčková, Andrea

    2012-01-01

    Diploma thesis "Social Network Facebook in News: Comparison of Space Dedicated to Social Network Facebook and its Content in Czech Media in the Years 2009 and 2011", is dedicated to the way of use and citation of social network Facebook in the selected news media. The paper summarizes the establishment and strengthening of online media, particularly the phenomenon of social networks on the example of social network Facebook, and their influence on the transformation of the media sector, news ...

  19. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  20. Introduction to modern dynamics chaos, networks, space and time

    Nolte, David D

    2015-01-01

    The best parts of physics are the last topics that our students ever see. These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many high-tech businesses. Topics such as traffic on the World Wide Web, the spread of epidemics through globally-mobile populations, or the synchronization of global economies are governed by universal principles just as profound as Newton's laws. Nonetheless, the conventional university physics curriculum reserves most of these topics for advanced graduate study. Two justifications are given for this situation: first, that the mathematical tools needed to understand these topics are beyond the skill set of undergraduate students, and second, that these are speciality topics with no common theme and little overlap. Introduction to Modern Dynamics dispels these myths. The structure of this book combines the three main topics of modern dynamics - chaos theory, dynamics on complex networks, and gener...

  1. Scientific, statistical, practical, and regulatory considerations in design space development.

    Debevec, Veronika; Srčič, Stanko; Horvat, Matej

    2018-03-01

    The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.

  2. The Status of Development of Electromagnetic Pumps for Space Application

    Kwak, J. S.; Kim, K. H.; Jeong, J. S.; Kim, Hee Reyoung

    2013-01-01

    Korea lunched this research as a part of the small nuclear power generation technology development for space. In this study, investigated are the basic principle and types of electromagnetic pump and the trend of electromagnetic pump technology development in foreign nations. The survey and analysis give the understanding of the suitability and prospect of electromagnetic pumps as space application technology in Korea. The analysis on the status of the development of electromagnetic pumps was carried out for the application to space environment. It was found that USA was approaching the research and development of electromagnetic pumps for space application. Most electromagnetic pumps surveyed have the efficiency between 35% and 50% where that of AC conduction pump is less than 6%. Further study was thought to have to be given for the mechanical and material characteristics, and the applicability of electromagnetic pumps for space nuclear reactor

  3. Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections

    Tchorowski, Nicole; Murawski, Robert

    2014-01-01

    New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option

  4. Learning characteristics of a space-time neural network as a tether skiprope observer

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  5. THE PREPARATION OF A SPECIALIST IN NETWORKING CULTURAL-EDUCATIONAL SPACE OF UNIVERSITY

    Zinaida Kekeeva

    2015-12-01

    Full Text Available The article deals with specialist preparation problems in networking cultural-educational space of the University. The authors consider the role of networking technologies in quality improvement of educational services in the conditions of the international cooperation. They also substantiate the process of entering the future experts in the working environment, the formation of their professional and personal competencies. The article reveals priority areas of training new generation specialists in the cultural and educational space of the university taking into account modern educational trends in the world.

  6. Role of Structural Asymmetry in Controlling Drop Spacing in Microfluidic Ladder Networks

    Wang, William; Maddala, Jeevan; Vanapalli, Siva; Rengasamy, Raghunathan

    2012-02-01

    Manipulation of drop spacing is crucial to many processes in microfluidic devices including drop coalescence, detection and storage. Microfluidic ladder networks ---where two droplet-carrying parallel channels are connected by narrow bypass channels through which the motion of drops is forbidden---have been proposed as a means to control relative separation between pairs of drops. Prior studies in microfluidic ladder networks with vertical bypasses, which possess fore-aft structural symmetry, have revealed that pairs of drops can only undergo reduction in drop spacing at the ladder exit. We investigate the dynamics of drops in microfluidic ladder networks with both vertical and slanted bypasses. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative spacing between drops, enabling them to contract, synchronize, expand or even flip at the ladder exit. Our experiments confirm all the behaviors predicted by theory. Numerical analysis further shows that ladders containing several identical bypasses can only linearly transform the input drop spacing. Finally, we find that ladders with specific combinations of vertical and slanted bypasses can generate non-linear transformation of input drop spacing, despite the absence of drop decision-making events at the bypass junctions.

  7. Source Space Analysis of Event-Related Dynamic Reorganization of Brain Networks

    Andreas A. Ioannides

    2012-01-01

    Full Text Available How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  8. Source space analysis of event-related dynamic reorganization of brain networks.

    Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A

    2012-01-01

    How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  9. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  10. Critical Technologies for the Development of Future Space Elevator Systems

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  11. Social networking spaces from Facebook to Twitter and everything in between

    Kelsey, Todd

    2010-01-01

    What the heck is Facebook? Twitter? Blogging? This book answers these questions and explains how to use a variety of social networking sites to keep in touch, stay in business, and have fun. This book covers the main social networking ""spaces,"" and introduces some of the ways people are enjoying them within a family or business context. It includes information on posting pictures, using add-ons, and working with Facebook and LinkedIn groups. It also covers the phenomenon of Twitter, including how it has grown and the road ahead. This book also covers how you can use the various networks toge

  12. Advances in Artificial Neural Networks - Methodological Development and Application

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  13. Social networks for innovation and new product development

    Leenders, R.T.A.J.; Dolfsma, W.

    2016-01-01

    In this article we first provide a brief introduction into social network analysis, focusing on the measures and approaches that are used in the empirical contributions in this special issue. Second, we discuss the role of social networks in new product development. Social networks are inherently

  14. Earth Regimes Network Evolution Study (ERNESt): Introducing the Space Mobile Network

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  15. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and

  16. Technology Development and Demonstration Concepts for the Space Elevator

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  17. Advances in Artificial Neural Networks – Methodological Development and Application

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  18. The Community-based Organizations Working Group of the Space Science Education Support Network

    Lutz, J. H.; Lowes, L. L.; Asplund, S.

    2004-12-01

    The NASA Space Science Support Network Community-based Organizations Working Group (CBOWG) has been working for the past two years on issues surrounding afterschool programs and programs for youth (e.g., Girl Scouts, Boy Scouts, Boys and Girls Clubs, 4-H, summer camps, afterschool and weekend programs for various ages, programs with emphases on minority youth). In this session the co-leaders of the CBOWG will discuss the challenges of working with community-based organizations on a regional or national level. We will highlight some ties that we have forged with the National Institute for Out of School Time (NIOST) and the National Afterschool Association (NAA). We will also talk about efforts to coordinate how various entities within NASA cooperate with community-based organizations to serve the best interests of these groups. We will give a couple of examples of how NASA space science organizations have partnered with community-based organizations. The session will include some handouts of information and resources that the CBOWG has found useful in developing an understanding of this segment of informal education groups. We would like to thank NASA for providing resources to support the work of the CBOWG.

  19. Creating Fiscal Space for Social Sectors Development in Tanzania ...

    This paper discusses fiscal space creation and use in the context of development of social sectors in Tanzania. The paper observes that Tanzania is making good progress in creating and using her fiscal space. The priority being accorded to social sectors, especially in education and health is in the right direction. However ...

  20. Professional development and human resources management in networks

    Evgeniy Rudnev

    2016-05-01

    Full Text Available Social networks occupy more places in development of people and organizations. Confidence in institutions and social networking are different and based on referentiality in Internet. For communication in network persons choose a different strategies and behavior in LinkedIn, resources of whom may be in different degree are interesting in Human Resources Management for organizations. Members of different social groups and cultures demonstrate some differences in interaction with Russian identity native. There are gender differences behavior in networks. Participating in groups need ethical behavior and norms in social networking for professional development and communication in future.

  1. Moral Spaces in MySpace: Preservice Teachers' Perspectives about Ethical Issues in Social Networking

    Foulger, Teresa S.; Ewbank, Ann Dutton; Kay, Adam; Popp, Sharon Osborn; Carter, Heather Lynn

    2009-01-01

    MySpace and Facebook are innovative digital communication tools that surpass traditional means of social interaction. However, in some instances in which educators have used these tools, public reactions to them have resulted in sanctions. With the notion that traditional ideas of privacy and teacher conduct are not yet defined in online worlds,…

  2. Space Product Development: Bringing the Benefits of Space Down to Earth

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  3. The network evolves | IDRC - International Development Research ...

    2011-07-08

    Jul 8, 2011 ... For the 19 young scholars brought together by the Poverty Research Network, the rewards have been substantial. Lu Ming, who describes his experience with the group as “just fantastic,” likens the network to a bridge – connecting China to Canada, and linking researchers to each other and to scholars ...

  4. Space Technology and Network Centric Warfare: A Strategic Paradox

    Ginter, Karl

    2007-01-01

    The Department of Defense (DoD) force transformation is in large measure predicated on harnessing and exploiting the benefits of shared information on the battlefield to develop a common operating picture...

  5. (Congressional Interest) Network Information and Space Security Center

    2011-09-30

    Zagreb , Croatia (City of Zagreb funding). Conducted three days of meetings with City/University of Zagreb , Croatia officials to structure terms for a...partnership with UCCS. In the short-term, UCCS will develop and deliver several courses in homeland security and assist the University of Zagreb in... Zagreb in maturing the Center of Excellence and designing, developing and delivering masters and doctoral degrees in homeland security. Hosted a group of

  6. Design and implementation of an inter-agency, multi-mission space flight operations network interface

    Byrne, R.; Scharf, M.; Doan, D.; Liu, J.; Willems, A.

    2004-01-01

    An advanced network interface was designed and implemented by a team from the Jet Propulsion Lab with support from the European Space Operations Center. This poster shows the requirements for the interface, the design, the topology, the testing and lessons learned from the whole implementation.

  7. Networks: Innovation, Growth and Sustainable Development

    Peter Johnston

    2013-05-01

    Full Text Available The emergence of the Internet as a measureable manifestation of our social and economic relationships changed the domination of networks in our lives. From about 2000, the internet has allowed us to study and understand the type of networks in which we live, and to model their behaviour. The Internet has fundamentally changed the distribution of wealth. The rich became richer simply because of the larger scale of the trading network and stretched national wealth distributions. Network effects are therefore likely to be responsible for much of the perceived increases in inequalities in the last 20-30 years, and policies to tackle poverty must therefore address the extent to which the poor can engage with society's networks of wealth creation. The greatest challenge to continued growth and prosperity, and therefore to peace and justice, is climate change. The potential cost of inaction on climate change could be as high. Our self-organising social networks have structured our societies and economies, and are now reflected in our technology networks. We can now replicate their evolution in computer simulations and can therefore better assess how to deal with the greatest challenges facing us in the next few decades.

  8. Virtual Spaces and Networks in Geographical Education and Research

    Chalmers, Lex

    2009-01-01

    This paper relates developments in the use of Internet-based communication technologies to contemporary exchanges of geographical ideas and content. A brief history of the Internet provides the basis for a review of uses of broadband Internet in contemporary Geography. Two themes are explored: the first is the concept of virtual communities of…

  9. TV white space opportunity for cognitive radio networks

    Masonta, MT

    2012-10-01

    Full Text Available to benefit from the digital dividend brought about by the DSO, regulators from the developed countries are promoting license-exempt cognitive radio (CR) access to TVWS. However, there is a need to understand how much TVWS is available in South Africa...

  10. The Worldly Space: The Digital University in Network Time

    Hassan, Robert

    2017-01-01

    This article considers the effect of information technology upon teaching, learning and research in the "digital university". In less than a generation the university has become a business like any other. It does so in the determining context of neoliberal globalisation and the computer revolution. The university develops through what we…

  11. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  12. Network public opinion space sentiment tendency analyze based on recurrent convolution neural network

    Zhang, Gaowei; Xu, Lingyu; Wang, Lei

    2018-04-01

    The purpose of this chapter is to analyze the investor's psychological characteristics and investment decision-making behavior characteristics, to study the investor sentiment under the network public opinion, and then analyze from three aspects: First, investor sentiment analysis and how to spread in the online media; The influence mechanism of investor's emotion on the stock market and its effect; the third one is to measure the investor's emotion based on the degree of attention, trying hard to sort out the internal relations between the investor's sentiment and the network public opinion and the stock market, in order to lay the theoretical foundation of this article.

  13. Approach to developing reliable space reactor power systems

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  14. Options for development of space fission propulsion systems

    Houts, Mike; Van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission systems have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed

  15. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  16. Strategic Roadmap for the Development of an Interstellar Space Program

    Gifra, M.; Peeters, W.

    Recent technological advances and scientific discoveries, particularly in astronomy and space technology, are opening our minds into the deepest realms of the universe, and also they are bringing a new era of space exploration and development. This sense of entering into a new era of space exploration is being boosted by the permanent discovery of new planets - to date, there are 684 confirmed extrasolar planets [1] - outside our solar system. The possibility that astronomers may soon find a habitable extrasolar planet near Earth and the recent advances in space propulsion that could reduce travel times have stimulated the space community to consider the development of an interstellar manned mission. But this scenario of entering into a new era of space development is ultimately contingent on the outcome of the actual world's economic crisis. The current financial crisis, on top of recent national and sovereign debts problems, could have serious consequences for space exploration and development as the national budgets for space activities are to freeze [2].This paper proposes a multi-decade space program for an interstellar manned mission. It designs a roadmap for the achievement of interstellar flight capability within a timeframe of 40 years, and also considers different scenarios where various technological and economical constraints are taken into account in order to know if such a space endeavour could be viable. It combines macro-level scenarios with a strategic roadmap to provide a framework for condensing all information in one map and timeframe, thus linking decision-making with plausible scenarios. The paper also explores the state of the art of space technologies 20 to 40 years in the future and its potential economic impact. It estimates the funding requirements, possible sources of funds, and the potential returns.The Interstellar Space Program proposed in this paper has the potential to help solve the global crisis by bringing a new landscape of

  17. The development and work procedures to super speed network for the growing demands for the network

    Nosaki, Nobuhisa; Aoki, Kazuhisa

    2001-01-01

    Following the recently growing demands for the network, the modification of Local Area Network (LAN) and Wide Area Network (WAN) to super speed network have been reviewed in the Japan Nuclear Cycle Development Institute (JNC). Though the modification of the LAN to super speed network is being developed this year in Heisei 13 fiscal year, it of the WAN was developed in Heisei 12 fiscal year. In spite of various issues, technical reviews and etc., there are a lot of benefits and merit for the super speed network of the WAN and though the modification of it and reduction of the running cost are contradictory to each other, both of those have been achieved in the JNC. This paper introduces the development and work procedures for the WAN. (author)

  18. Southern African Development Research Network | IDRC ...

    ... to craft policies for fruitful integration into the global economy and inclusive growth. ... The grant will support a broad-based research network, the Southern Africa ... researchers based in regional institutions; transforming selected institutions ...

  19. Networks (2005) | IDRC - International Development Research Centre

    2016-04-25

    Apr 25, 2016 ... These may include what are called teams, alliances, partnerships, exchanges, joint ... IDRC has always recognized the importance of networks in supporting ... A comprehensive strategic evaluation, launched in 2004, began ...

  20. Seductive Atmospheres: Using tools to effectuate spaces for Leadership Development

    Elmholdt, Kasper Trolle; Clausen, Rune Thorbjørn; Madsen, Mona T

    2018-01-01

    Hospital, this study investigates how a business game is used as a tool to effectuate episodic spaces for leadership development. The study reveals three tool affordances and discusses how they enable and constrain episodic spaces for development and further develops the notion of seductive atmospheres......This study applies an affordance lens to understand the use of management tools and how atmospheres for change and development are created and exploited. Drawing on an ethnographic case study of a consultant-facilitated change intervention among a group of research leaders at a Danish Public...... as an important mechanism. The article suggests that a broader understanding of the use of tools and the role of atmospheres is essential for understanding how episodic spaces for development come to work in relation to organizational change and development....

  1. An approach to developing user interfaces for space systems

    Shackelford, Keith; McKinney, Karen

    1993-08-01

    Inherent weakness in the traditional waterfall model of software development has led to the definition of the spiral model. The spiral model software development lifecycle model, however, has not been applied to NASA projects. This paper describes its use in developing real time user interface software for an Environmental Control and Life Support System (ECLSS) Process Control Prototype at NASA's Marshall Space Flight Center.

  2. Topological structure of the space of phenotypes: the case of RNA neutral networks.

    Jacobo Aguirre

    Full Text Available The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence and phenotype (approximated by the secondary structure fold are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.

  3. The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding.

    Testolin, Alberto; De Filippo De Grazia, Michele; Zorzi, Marco

    2017-01-01

    The recent "deep learning revolution" in artificial neural networks had strong impact and widespread deployment for engineering applications, but the use of deep learning for neurocomputational modeling has been so far limited. In this article we argue that unsupervised deep learning represents an important step forward for improving neurocomputational models of perception and cognition, because it emphasizes the role of generative learning as opposed to discriminative (supervised) learning. As a case study, we present a series of simulations investigating the emergence of neural coding of visual space for sensorimotor transformations. We compare different network architectures commonly used as building blocks for unsupervised deep learning by systematically testing the type of receptive fields and gain modulation developed by the hidden neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are stochastic, generative networks with bidirectional connections trained using contrastive divergence, with autoencoders, which are deterministic networks trained using error backpropagation. For both learning architectures we also explore the role of sparse coding, which has been identified as a fundamental principle of neural computation. The unsupervised models are then compared with supervised, feed-forward networks that learn an explicit mapping between different spatial reference frames. Our simulations show that both architectural and learning constraints strongly influenced the emergent coding of visual space in terms of distribution of tuning functions at the level of single neurons. Unsupervised models, and particularly RBMs, were found to more closely adhere to neurophysiological data from single-cell recordings in the primate parietal cortex. These results provide new insights into how basic properties of artificial neural networks might be relevant for modeling neural information processing in biological systems.

  4. Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations

    Burleigh, Scott C.

    2008-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology composed of scheduled, bounded communication contacts in a network built on the Delay-Tolerant Networking (DTN) architecture. It is designed to support operations in a space network based on DTN, but it also could be used in terrestrial applications where operation according to a predefined schedule is preferable to opportunistic communication, as in a low-power sensor network. This paper will describe the operation of the CGR system and explain how it can enable data delivery over scheduled transmission opportunities, fully utilizing the available transmission capacity, without knowing the current state of any bundle protocol node (other than the local node itself) and without exhausting processing resources at any bundle router.

  5. Time Development in the Early History of Social Networks

    Bruun, Jesper; Bearden, Ian

    2014-01-01

    Studies of the time development of empirical networks usually investigate late stages where lasting connections have already stabilized. Empirical data on early network history are rare but needed for a better understanding of how social network topology develops in real life. Studying students who...... are beginning their studies at a university with no or few prior connections to each other offers a unique opportunity to investigate the formation and early development of link patterns and community structure in social networks. During a nine week introductory physics course, first year physics students were...... asked to identify those with whom they communicated about problem solving in physics during the preceding week. We use these students' self reports to produce time dependent student interaction networks. We investigate these networks to elucidate possible effects of different student attributes in early...

  6. Federal Plan for Advanced Networking Research and Development

    Networking and Information Technology Research and Development, Executive Office of the President — In the four decades since Federal research first enabled computers to send and receive data over networks, U.S. government research and development R and D in...

  7. Agro-food chains and networks for development

    Ruben, R.; Slingerland, M.A.; Nijhoff, G.H.

    2006-01-01

    Agro-food chains and networks play an increasingly important role in providing access to markets for producers from developing countries. In developing countries companies become integrated into geographically dispersed supply networks that link producers, traders and processors from the South with

  8. Core Support to Global Development Network (GND) - Phase II ...

    The Global Development Network (GDN) was launched by the World Bank in 1999 on the premise that good policy research, properly applied, can accelerate development and improve people's lives. Working mainly through regional networks, GDN supports economic and, increasingly, social science research in and on ...

  9. Networks for Life; scenario development of an ecological network in Cheshire County

    Rooij, van S.A.M.; Steingröver, E.G.; Opdam, P.F.M.

    2003-01-01

    In this report, a vision for ecological networks in Cheshire County is developed and presented. This vision is developed in close interaction with the County Council. The vision contains a proposal for sound ecological networks of meres and mosses, heathland, rivers, woodland and grassland. A

  10. Space technology transfer to developing countries: opportunities and difficulties

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  11. Ethernet access network based on free-space optic deployment technology

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  12. Agencies Collaborate, Develop a Cyanobacteria Assessment Network

    This collaborative effort integrates the efforts of the U.S. Environmental Protection Agency (EPA), National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and U.S. Geological Survey (USGS) to provide an approach for mainstrea...

  13. Developing equivalent circuits for radial distribution networks

    Prada, Ricardo; Coelho, Agnelo; Rodrigues, Anselmo [Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Electrical Engineering], Emails: prada@ele.puc-rio.br, agnelo@ele.puc-rio.br, nebulok_99@yahoo.com; Silva, Maria da Guia da [Federal University of Maranhao, Sao Luiz, MA (Brazil). Dept. of Electrical Engineering

    2009-07-01

    This paper presents a method for evaluating External Equivalent in Electric Distribution Networks (EDN).The proposed method has as its main objectives the reduction of the computational costs in distribution network reconfiguration, investigation of the optimal allocation of banks of capacitors, investigation of the allocation of distributed generation, etc. In these sorts of problems a large number of alternative projects must be assessed in order to identify the optimal solution. The optimal solution comes up with the voltage level in the load points within specified limits. Consequently, the EDN must retain the external network load points but without major increasing in the dimension of the equivalent circuit. The proposed method has been tested and validated in a substation of the Electricity Utility of Maranhao - CEMAR, in Brazil. (author)

  14. Advanced Engineering Environments for Space Transportation System Development

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  15. The role of nuclear reactors in space exploration and development

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  16. Robotics development for the enhancement of space endeavors

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  17. Tianshuishi space breeding current situation and developing trend

    Wang Fuquan; Song Jianrong; Zhang Zhongping; Guo Zhenfang

    2012-01-01

    Tianshuishi is located in Xi'an to lanzhou among two big cities, the five space launch, has vegetables, food, grasses, flowers, rape, melon and fruit, Chinese traditional medicine, amount of 8 categories of crops, such as the 22 new material after carrying the ground breeding work. Only vegetables on identified 23 aerospace new varieties. After ten years of space breeding, summarizes the present situation of Tianshuishi space breeding, development experience, characteristic, trends, and puts forward the development space breeding Tianshuishi organization and breeding of talent from the matching policy and grow up incentive mechanism, strengthen the cooperation and all over the country, establishing fiscal policy support from the aspects such as advice. (authors)

  18. Development of laser weld monitoring system for PWR space grid

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  19. Continuing Development for Free-Piston Stirling Space Power Systems

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  20. Joint Curriculum Developments in the Field of Virtual Space Design

    Mullins, Michael; Zupancic, Tadeja; Juvancic, Matevz

    2006-01-01

    initiates a discussion-forum to raise and discuss open questions of joint curriculum development in the field of virtual space design, especially where CVE-s take the key role within the educational process. The starting points of the discussion can be found in the ongoing endeavours of the e......The topic of joint degrees is high on the higher education policy agenda. The eCAADe 2006 theme offers the opportunity to investigate the topic from the aspect of virtual space design, especially within the second conference topic: communicating within mediated spaces (CVE-s). The paper proposed...

  1. ESPACIO UBICUO COMO RED DE OBJETOS / UBIQUITOUS SPACE AS A NETWORK OF OBJECTS

    Manuel Cerdá Pérez

    2016-05-01

    Full Text Available RESUMEN La aplicación de las tecnologías digitales en todos los ámbitos de la vida humana está provocando la aparición de una nueva manera de entender el espacio arquitectónico derivado de su integración en él. Ello se puede extrapolar a la arquitectura más íntimamente ligada al habitar humano, la de la vivienda. Para ello se establecen una serie de paralelismos conceptuales con aquel otro momento clave en la evolución del espacio doméstico ocurrido a finales del siglo XX en el que los objetos técnicos cobraron protagonismo sobre el espacio que los albergaba. Estos paralelismos se fundamentan en el cambio de estatus sufrido por dichos objetos, hoy ya terminales de información conectados en red e implementados tanto en los espacios naturales y artificiales como en la propia persona y su vestimenta, sin olvidar los profundos cambios sufridos por el sujeto actual y sus relaciones sociales. En base a ello, se ilustra la evolución que ha sufrido el concepto de “espacio residencial” ligada a los nuevos modos de habitar contemporáneos. SUMMARY The application of digital technologies in all areas of human life is causing the emergence of a new way of understanding our integration with architectural space. This can be extrapolated to the architectural design that is most closely linked to humans – our homes. A series of conceptual parallels are established with the other key moment in the development of domestic space that happened at the end of the 20th century when technical objects became more important than the space that housed them. These parallels are based on the change of status suffered by these objects when they were converted into networked information terminals and implemented in natural and artificial spaces (such as on the person and their clothing. People and their social relations have also suffered profound changes. This article illustrates the changes in the concept of ‘residential space’ linked to new ways of

  2. Progress made by the South African light metals development network

    Damm, O

    2009-01-01

    Full Text Available Through focused investment by the CSIR, the South African Innovation Fund, the Automotive Industry Development Centre and the Department of Science and Technology over the past eight years, the national Light Metals Development Network has been...

  3. White space communication advances, developments and engineering challenges

    Johnson, David

    2015-01-01

    This monograph presents a collection of major developments leading toward the implementation of white space technology - an emerging wireless standard for using wireless spectrum in locations where it is unused by licensed users. Some of the key research areas in the field are covered. These include emerging standards, technical insights from early pilots and simulations, software defined radio platforms, geo-location spectrum databases and current white space spectrum usage in India and South Africa.

  4. Ecology and Space – Backbone Directions of Human Civilization Development

    Evgenii P. Prokopiev

    2013-01-01

    Full Text Available The article briefly describes the features and possible ways of space technologies development (special attention is attached to the problematic issues of physics, chemistry and antimatter technology; the problem of positron annihilation in matter (positronium, including positron processes, positron states and annihilation process, which is the component of fundamental and practical important problem of antimatter. The space technologies of the future – the most important problems of antimatter application are considered on the basis of Internet data.

  5. Space-based societal applications—Relevance in developing countries

    Bhaskaranarayana, A.; Varadarajan, C.; Hegde, V. S.

    2009-11-01

    Space technology has the vast potential for addressing a variety of societal problems of the developing countries, particularly in the areas of communication, education and health sectors, land and water resources management, disaster management and weather forecasting. Both remote sensing and communication technologies can be used to achieve this goal. With its primary emphasis on application of space technology, on an end-to-end basis, towards national development, the Indian Space Programme has distinguished itself as one of the most cost-effective and development-oriented space programmes in the world. Developing nations are faced with the enormous task of carrying development-oriented education to the masses at the lower strata of their societies. One important feature of these populations is their large number and the spread over vast and remote areas of these nations, making the reaching out to them a difficult task. Satellite communication (Satcom) technology offers the unique capability of simultaneously reaching out to very large numbers, spread over vast areas, including the remote corners of the country. It is a strong tool to support development education. India has been amongst the first few nations to explore and put to use the Satcom technology for education and development-oriented services to the rural masses. Most of the developing countries have inadequate infrastructure to provide proper medical care to the rural population. Availability of specialist doctors in rural areas is a major bottleneck. Use of Satcom and information technology to connect rural clinics to urban hospitals through telemedicine systems is one of the solutions; and India has embarked upon an effective satellite-based telemedicine programme. Space technology is also useful in disaster warning and management related applications. Use of satellite systems and beacons for locating the distressed units on land, sea or air is well known to us. Indian Space Research Organisation

  6. Design and development of correlation techniques to maintain a space surveillance system catalogue

    Olmedo, E.; Sánchez Ortiz, Noelia; Lerate, Mercedes; Belló-Mora, Miguel; Klinkrad, H.

    2009-10-01

    A growing interest exists in a future, autonomous European Space Surveillance System (ESSS). Currently, most of the knowledge about Earth-orbiting space objects is based on information provided by the USASPACECOM. This paper presents the required initial orbit determination (IOD) and correlation techniques to process optical measurements. Former studies were focused on the handling of radar measurements, which are summarised with the aim of describing a global procedure for processing hybrid measurement types (combination of radar and optic data for catalogue maintenance). The introduction of manoeuvres are presented due to their importance in the space object catalogue maintenance. The detection of uncatalogued objects and the successful correlation of already catalogued objects involve two different tasks for telescopes: survey and tasking. Assumptions for both strategies are developed on the basis of the previous work developed at the University of Berne (see [T. Flohrer, T. Schildknecht, R. Musci, E. Stöveken, Performance estimation for GEO space surveillance, Advances in Space Research 35 (2005). [1]; T. Flohrer, T. Schildknecht, R. Musci, Proposed strategies for optical observations in a future European Space Surveillance Network, presented in the 36th COSPAR Scientific Assembly (2006). [2]; R. Musci, T. Schildknecht, M. Ploner, Orbit improvement for GEO objects using follow-up observations, Advances in Space Research 34 (2004). [3]; R. Musci, T. Schildknecht, M. Ploner, G. Beutler, Orbit improvement for GTO objects using follow-up observations, Advances in Space Research 35 (2005). [4]; R. Musci, T. Schildknecht, T. Flohrer, G. Beutler, Concept for a catalogue of space debris in GEO, Proceedings of the Fourth European Conference on Space Debris, (ESA SP-587, 2005). [5

  7. Heuristics Applied in the Development of Advanced Space Mission Concepts

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  8. Network performance analysis of the Limpopo TV white space (TVWS) trial network

    Masonta, MT

    2015-09-01

    Full Text Available Singapore with new com- mercial pilots. United Kingdom, Office of Communications State- ment, Available online at: http://news.microsoft.com/ensg/2013/06/16/ crossingthechasmando/. [Accessed: 21-Feb-2015], 2013. [19] NICT. Trials of TV white space... commercial pilot study in Singapore [18], started in 2013 considered a variety of commercial services that could be deployed using TVWS technology in a terrain where traditional wireless deployment would be difficult. These included various monitoring appli...

  9. Developing Principal Instructional Leadership through Collaborative Networking

    Cone, Mariah Bahar

    2010-01-01

    This study examines what occurs when principals of urban schools meet together to learn and improve their instructional leadership in collaborative principal networks designed to support, sustain, and provide ongoing principal capacity building. Principal leadership is considered second only to teaching in its ability to improve schools, yet few…

  10. Exploring Social Networking: Developing Critical Literacies

    Watson, Pauline

    2012-01-01

    While schools have been using computers within their classrooms for years now, there has been a purposeful ignoring of the growing power of social networks such as Facebook and Twitter. Many schools ban students from accessing and using sites such as Facebook at school and many English and literacy teachers ignore or deny their value as a teaching…

  11. Developing a robust wireless sensor network structure for environmental sensing

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  12. The role of nuclear reactors in space exploration and development

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  13. Transitions across place and space – Spatial transitions in an Actor Network perspective

    Kerndrup, Søren; Mosgaard, Mette

    2012-01-01

    , that interactions and relations in these networks in spite of their focus on proximity, locality and regional development are integrated in multiple scalar interactions. These multiscalar interactions and relations are mediated by objects and artefacts, and therefore they are often not seen as part of the networks.......The empirical and theoretical frameworks of transitions focus mainly on specific scale of change e.g. local, regional or national transitions. One reason for this lack of an integrative framework of territorial and spatial distribution of transitions process is the ambition of transition framework...... network perspective in order to develop the spatial dimensions of transitions. The paper is based on an ongoing research project of spatial dimensions of the transitions in energy production and consumption networks in the northern part of Denmark. The paper show by using an actor network perspective...

  14. Observability and Estimation of Distributed Space Systems via Local Information-Exchange Networks

    Fathpour, Nanaz; Hadaegh, Fred Y.; Mesbahi, Mehran; Rahmani, Amirreza

    2011-01-01

    Spacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a

  15. Developing security tools of WSN and WBAN networks applications

    A M El-Bendary, Mohsen

    2015-01-01

    This book focuses on two of the most rapidly developing areas in wireless technology (WT) applications, namely, wireless sensors networks (WSNs) and wireless body area networks (WBANs). These networks can be considered smart applications of the recent WT revolutions. The book presents various security tools and scenarios for the proposed enhanced-security of WSNs, which are supplemented with numerous computer simulations. In the computer simulation section, WSN modeling is addressed using MATLAB programming language.

  16. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  17. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  18. Transformational Technologies to Expedite Space Access and Development

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  19. Nearest Neighbor Search in the Metric Space of a Complex Network for Community Detection

    Suman Saha

    2016-03-01

    Full Text Available The objective of this article is to bridge the gap between two important research directions: (1 nearest neighbor search, which is a fundamental computational tool for large data analysis; and (2 complex network analysis, which deals with large real graphs but is generally studied via graph theoretic analysis or spectral analysis. In this article, we have studied the nearest neighbor search problem in a complex network by the development of a suitable notion of nearness. The computation of efficient nearest neighbor search among the nodes of a complex network using the metric tree and locality sensitive hashing (LSH are also studied and experimented. For evaluation of the proposed nearest neighbor search in a complex network, we applied it to a network community detection problem. Experiments are performed to verify the usefulness of nearness measures for the complex networks, the role of metric tree and LSH to compute fast and approximate node nearness and the the efficiency of community detection using nearest neighbor search. We observed that nearest neighbor between network nodes is a very efficient tool to explore better the community structure of the real networks. Several efficient approximation schemes are very useful for large networks, which hardly made any degradation of results, whereas they save lot of computational times, and nearest neighbor based community detection approach is very competitive in terms of efficiency and time.

  20. Networked Learning and Network Science: Potential Applications to Health Professionals' Continuing Education and Development.

    Margolis, Alvaro; Parboosingh, John

    2015-01-01

    Prior interpersonal relationships and interactivity among members of professional associations may impact the learning process in continuing medical education (CME). On the other hand, CME programs that encourage interactivity between participants may impact structures and behaviors in these professional associations. With the advent of information and communication technologies, new communication spaces have emerged that have the potential to enhance networked learning in national and international professional associations and increase the effectiveness of CME for health professionals. In this article, network science, based on the application of network theory and other theories, is proposed as an approach to better understand the contribution networking and interactivity between health professionals in professional communities make to their learning and adoption of new practices over time. © 2015 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on Continuing Medical Education, Association for Hospital Medical Education.

  1. Report of the committee on a commercially developed space facility

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  2. Table-driven configuration and formatting of telemetry data in the Deep Space Network

    Manning, Evan

    1994-01-01

    With a restructured software architecture for telemetry system control and data processing, the NASA/Deep Space Network (DSN) has substantially improved its ability to accommodate a wide variety of spacecraft in an era of 'better, faster, cheaper'. In the new architecture, the permanent software implements all capabilities needed by any system user, and text tables specify how these capabilities are to be used for each spacecraft. Most changes can now be made rapidly, outside of the traditional software development cycle. The system can be updated to support a new spacecraft through table changes rather than software changes, reducing the implementation, test, and delivery cycle for such a change from three months to three weeks. The mechanical separation of the text table files from the program software, with tables only loaded into memory when that mission is being supported, dramatically reduces the level of regression testing required. The format of each table is a different compromise between ease of human interpretation, efficiency of computer interpretation, and flexibility.

  3. Time Analyzer for Time Synchronization and Monitor of the Deep Space Network

    Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert

    2003-01-01

    A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for

  4. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  5. Sample selection via angular distance in the space of the arguments of an artificial neural network

    Fernández Jaramillo, J. M.; Mayerle, R.

    2018-05-01

    In the construction of an artificial neural network (ANN) a proper data splitting of the available samples plays a major role in the training process. This selection of subsets for training, testing and validation affects the generalization ability of the neural network. Also the number of samples has an impact in the time required for the design of the ANN and the training. This paper introduces an efficient and simple method for reducing the set of samples used for training a neural network. The method reduces the required time to calculate the network coefficients, while keeping the diversity and avoiding overtraining the ANN due the presence of similar samples. The proposed method is based on the calculation of the angle between two vectors, each one representing one input of the neural network. When the angle formed among samples is smaller than a defined threshold only one input is accepted for the training. The accepted inputs are scattered throughout the sample space. Tidal records are used to demonstrate the proposed method. The results of a cross-validation show that with few inputs the quality of the outputs is not accurate and depends on the selection of the first sample, but as the number of inputs increases the accuracy is improved and differences among the scenarios with a different starting sample have and important reduction. A comparison with the K-means clustering algorithm shows that for this application the proposed method with a smaller number of samples is producing a more accurate network.

  6. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  7. Conceptual Developments & Capacity Building in Environmental Networks

    Lehmann, Martin

    2008-01-01

    Moving from largely command and control measures in the 70s and 80s, through cleaner production and self-regulatory initiatives in the 90s, the emphasis in the new millennium is more on using networks and partnerships as levers for promoting a greening of industry. Predominantly since the 1992 Rio...... corporate stakeholders, civil society and government on the responsible nature of their business practices. So-called ‘Green Networks’, ‘Cleaner Production Centres’, ‘Waste Minimisation Clubs’ are among the highlighted alternatives to governmental regulation. While being promoted as an option...... for governments in the South to make up for lack of sufficient environmental legislation and enforcement, the majority of these examples, however, stem from countries in the North. In terms of public–private partnerships, one of the foremost Danish initiatives is the Green Network in the former county of Vejle...

  8. Effect of space structures against development of transport infrastructure in Banda Aceh by using the concept of transit oriented development

    Noer, Fadhly; Matondang, A. Rahim; Sirojuzilam, Saleh, Sofyan M.

    2017-11-01

    Due to the shifting of city urban development causing the shift of city services center, so there is a change in space pattern and space structure in Banda Aceh, then resulting urban sprawl which can lead to congestion problem occurs on the arterial road in Banda Aceh, it can be seen from the increasing number of vehicles per year by 6%. Another issue occurs by urban sprawl is not well organized of settlement due to the uncontrolled use of space so that caused grouping or the differences in socioeconomic strata that can impact to the complexity of population mobility problem. From this background problem considered to be solved by a concept that is Transit Oriented Development (TOD), that is a concept of transportation development in co-operation with spatial. This research will get the model of transportation infrastructure development with TOD concept that can handle transportation problem in Banda Aceh, due to change of spatial structure, and to find whether TOD concept can use for the area that has a population in medium density range. The result that is obtained equation so the space structure is: Space Structure = 0.520 + 0.206X3 + 0.264X6 + 0.100X7 and Transportation Infrastructure Development = -1.457 + 0.652X1 + 0.388X5 + 0.235X6 + 0.222X7 + 0.327X8, So results obtained with path analysis method obtained variable influences, node ratio, network connectivity, travel frequency, travel destination, travel cost, and travel time, it has a lower value when direct effect with transportation infrastructure development, but if the indirect effect through the structure of space has a greater influence, can be seen from spatial structure path scheme - transportation infrastructure development.

  9. A versatile framework for cooperative hub network development

    Cruijssen, F.C.A.M.; Borm, P.; Dullaert, W.; Hamers, H.

    2010-01-01

    This paper introduces a framework for cooperative hub network development. Building a joint physical hub for the transshipment of goods is expensive and, therefore, involves considerable risks for cooperating companies. In a practical setting, it is unlikely that an entire network will be built at

  10. A versatile framework for cooperative hub network development

    Cruijssen, Frans; Borm, Peter; Dullaert, Wout; Hamers, Herbert

    This paper introduces a framework for cooperative hub network development. Building a joint physical hub for the transshipment of goods is expensive and, therefore, involves considerable risks for cooperating companies. In a practical setting, it is unlikely that an entire network will be built at

  11. Social networks and human development / Redes sociales y desarrollo humano

    Sara Gallego Trijueque

    2011-10-01

    Full Text Available The aim of this work is a brief introduction to the concept of social networks and their importance in society. Social networks have been responsible over the centuries to preserve community values, in addition to being facilitators of social interaction in human development processes, through communication and relationships between individuals.

  12. Leveraging social networks for agricultural development in Africa

    Ross, Martha

    2017-01-01

    This thesis contributes to a growing literature that explores relationships between social networks and innovation diffusion within a developing country context. Given this context, the networks of interest within this thesis are the offline interpersonal relationships between community members.

  13. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through which they reassess their held thoughts and make sense of their experiences together with others.

  14. Networking for Learning The role of Networking in a Lifelong Learner's Professional Development

    Rajagopal, Kamakshi

    2016-01-01

    This dissertation discusses the role the social activity of networking plays in lifelong learners’ professional and personal continuous development. The main hypothesis of this thesis is that networking is a learning strategy for lifelong learners, in which conversations are key activities through

  15. Exploring sets of molecules from patents and relationships to other active compounds in chemical space networks

    Kunimoto, Ryo; Bajorath, Jürgen

    2017-09-01

    Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities. The design of network representations that combine patent molecules and other bioactive compounds and view patent information in the context of current bioactive chemical space aids in the analysis of patents and further extends the use of molecular networks to explore structure-activity relationships.

  16. Space evolution model and empirical analysis of an urban public transport network

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  17. A computational approach to extinction events in chemical reaction networks with discrete state spaces.

    Johnston, Matthew D

    2017-12-01

    Recent work of Johnston et al. has produced sufficient conditions on the structure of a chemical reaction network which guarantee that the corresponding discrete state space system exhibits an extinction event. The conditions consist of a series of systems of equalities and inequalities on the edges of a modified reaction network called a domination-expanded reaction network. In this paper, we present a computational implementation of these conditions written in Python and apply the program on examples drawn from the biochemical literature. We also run the program on 458 models from the European Bioinformatics Institute's BioModels Database and report our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Influences of brain development and ageing on cortical interactive networks.

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Topology of Innovation Spaces in the Knowledge Networks Emerging through Questions-And-Answers

    Andjelković, Miroslav; Tadić, Bosiljka; Mitrović Dankulov, Marija; Rajković, Milan; Melnik, Roderick

    2016-01-01

    The communication processes of knowledge creation represent a particular class of human dynamics where the expertise of individuals plays a substantial role, thus offering a unique possibility to study the structure of knowledge networks from online data. Here, we use the empirical evidence from questions-and-answers in mathematics to analyse the emergence of the network of knowledge contents (or tags) as the individual experts use them in the process. After removing extra edges from the network-associated graph, we apply the methods of algebraic topology of graphs to examine the structure of higher-order combinatorial spaces in networks for four consecutive time intervals. We find that the ranking distributions of the suitably scaled topological dimensions of nodes fall into a unique curve for all time intervals and filtering levels, suggesting a robust architecture of knowledge networks. Moreover, these networks preserve the logical structure of knowledge within emergent communities of nodes, labeled according to a standard mathematical classification scheme. Further, we investigate the appearance of new contents over time and their innovative combinations, which expand the knowledge network. In each network, we identify an innovation channel as a subgraph of triangles and larger simplices to which new tags attach. Our results show that the increasing topological complexity of the innovation channels contributes to network’s architecture over different time periods, and is consistent with temporal correlations of the occurrence of new tags. The methodology applies to a wide class of data with the suitable temporal resolution and clearly identified knowledge-content units. PMID:27171149

  20. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  1. Local multipoint distribution system (LDMS) versus free-space optical (FSO) networks

    Willebrand, Heinz A.; Clark, Gerald R.; Willson, Bryan; Andreu von Euw, Christian G.; Roy, Joe; Mayhew, Laurel M.

    2001-11-01

    This paper compares two emerging broadband access methodologies, Free Space Optics (FSO) and Local Multipoint Distribution System (LMDS) and the atmospheric propagation characteristics of each when exposed to a dynamically changing channel. The comparison focuses on bandwidth, availability, and distance requirements for the new broadband market and how LMDS and FSO can be used to meet these requirements. Possible network topologies and their associated costs are examined. This comparison takes into account the total cost of deployment, including equipment costs, installation fees, access fees, and spectrum licensing fees. LMDS and FSO are compared on speed of deployment, scalability, aggregate bandwidth, and bandwidth per customer. Present and projected capabilities of each technology are considered for their suitability in different locations in the network, from the Wide Area Network (WAN), to the Metropolitan Area Network (MAN), all the way to Last Mile Access. There is a discussion on the relative performance of LMDS and FSO, focusing on the different factors that can affect link availability. Since network design is a large factor in assuring overall reliability, the flexibility of each technology with regard to network design is compared. LMDS and FSO are both line of sight, space-propagated technologies, and as such, they are both susceptible to path impediments and atmospheric attenuation, dispersion, scattering, and absorption. LMDS and FSO are affected very differently by different meteorological phenomena. Problematic atmospheric conditions are, specifically scintillation, rainfall, and fog, are examined. In addition to a discussion of these conditions, various techniques for minimizing atmospheric and environmental effects are investigated. The paper concludes with a summary of findings and recommendations for a number of broadband wireless applications.

  2. Calibration and performance measurements for the nasa deep space network aperture enhancement project (daep)

    LaBelle, Remi C.; Rochblatt, David J.

    2018-06-01

    The NASA Deep Space Network (DSN) has recently constructed two new 34-m antennas at the Canberra Deep Space Communications Complex (CDSCC). These new antennas are part of the larger DAEP project to add six new 34-m antennas to the DSN, including two in Madrid, three in Canberra and one in Goldstone (California). The DAEP project included development and implementation of several new technologies for the X, and Ka (32 GHz) -band uplink and downlink electronics. The electronics upgrades were driven by several different considerations, including parts obsolescence, cost reduction, improved reliability and maintainability, and capability to meet future performance requirements. The new antennas are required to support TT&C links for all of the NASA deep-space spacecraft, as well as for several international partners. Some of these missions, such as Voyager 1 and 2, have very limited link budgets, which results in demanding requirements for system G/T performance. These antennas are also required to support radio science missions with several spacecraft, which dictate some demanding requirements for spectral purity, amplitude stability and phase stability for both the uplink and downlink electronics. After completion of these upgrades, a comprehensive campaign of tests and measurements took place to characterize the electronics and calibrate the antennas. Radiometric measurement techniques were applied to characterize, calibrate, and optimize the performance of the antenna parameters. These included optical and RF high-resolution holographic and total power radiometry techniques. The methodology and techniques utilized for the measurement and calibration of the antennas is described in this paper. Lessons learned (not all discussed in this paper) from the commissioning of the first antenna (DSS-35) were applied to the commissioning of the second antenna (DSS-36). These resulted in achieving antenna aperture efficiency of 66% (for DSS-36), at Ka-Band (32-Ghz), which is

  3. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting

    2015-01-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)

  4. DEVELOPMENT OF INNOVATIVE PROCESSES IN THE COMPANIES OF SPACE INDUSTRY

    Katrina B. Dobrova

    2016-01-01

    Full Text Available In this article, the proposals to improve the theoretical and methodological base for the development of innovative technologies aerospace industry are made based on an analysis of its current state and the study of the factors influencing this process at every stage, as well as the goals and objectives of the modernization of the Russian economy. The relevance of the study due to the fact that the rocket and space industry is regarded as an important component of sustainable socio-economic development and a guarantee of national security. Having our own space rocket means significantly promotes sound public policy in accordance with the doctrines, strategies, concepts and programs in the political, economic, social, military, environmental, scientific, technological, information and other fields. It was noted that the study of features of the commercialization of innovative technologies of the Russian Federation, the space industry is crucial to determine the factors and conditions for successful implementation of the development industry, the search of promising directions of development of the space industry and the economy as a whole. Emphasis is placed on the formation of the basic elements of innovation infrastructure and the creation of effective mechanisms of commercialization, creation of actual operating business on their basis, investment in the development of the aerospace industry, including using the tools of public-private partnerships and venture financing.

  5. Impact of Anthropogenic Factor on Urboecological Space Development

    Kuprina Tamara

    2016-01-01

    Full Text Available The article discusses the issues of the impact of the anthropogenic factor on urboecological space development. The issues are considered taking into account retrospective theoretical data to show the process of Anthropoecology development as a new branch of sociological science. At present the noosphere acquires features of anthropoecosystems having a number of parameters from the endogenous and exogenous point of view. Anthropoecology has special socio-cultural significance as considers the interaction of all actors of international space. There introduced the new branch Ecopsycology as the outer world is the reflection of the inner human world. There is a definition of the sustainability of ecological system. In the practical part of the article there is an example of academic mobility as the basis of the human potential with possible transfer into the human capital supporting by survey data. In conclusion there are recommendations on management and adaptation of the anthropogenic factor (a kind of biogenesis in modern urboecological space.

  6. Timing subsystem development: Network synchronization experiments

    Backe, K. R.

    1983-01-01

    This paper describes a program in which several experimental timing subsystem prototypes were designed, fabricated, and field tested using a small network of troposcatter and microwave digital communication links. This equipment was responsible for modem/radio interfacing, time interval measurement, clock adjustment and distribution, synchronization technique, and node to node information exchange. Presented are discussions of the design approach, measurement plan, and performance assessment methods. Recommendations are made based on the findings of the test program and an evaluation of the design of both the hardware and software elements of the timing subsystem prototypes.

  7. Development and Analysis of a VANET Network

    Corral Zapata, Adrian

    2017-01-01

    Se denomina red vehicular ad hoc (en inglés Vehicular Ad Hoc Network, VANET) a una red de comunicación inalámbrica para la transmisión de información entre vehículos y elementos de la infraestructura de la carretera. La tecnología utilizada se engloba dentro de los sistemas inteligentes de transporte (en inglés Intelligent Transport Systems, ITS). El objetivo principal de las redes de comunicación vehiculares son la transmisión de información útil entre los elementos presentes en la carretera...

  8. Development of Countermeasure and Application technologies to Space Radiation

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-01

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  9. Development of Countermeasure and Application technologies to Space Radiation

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun

    2009-02-15

    Basic studies to evaluate the microbial activity changes by irradiation, and identify the composting microorganisms using the hyperthermal composter were conducted. And establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. And, successful induction of hibernation-like animation (reduction in body temperature and heartbeat rate) were monitored after HIT injection to mice. The space Bibimbap was developed by a combination treatment of 0.4% baking powder, soaking for 45 min, cooking, freezing, and packaging. It could be consumed easily after rehydration for 10 with 70 .deg. C water, which can be supplied from the International Space Station. And Bulgogi steak developed by combination treatment of packaging, freezing, antioxidant, charcoal and irradiation is a ready-to-eat type and has long shelf-life at the room temperature. Four foods items (Kimchi, Ramen, Saengshik bar, Sujeonggwa) were certified for the use in space flight conditions of 30 days by IBMP to be supplied to the first Korean astronaut, So-Yeon Lee, who accomplished space missions (sensory comparison test) at the International Space Station in 2008. To participate in the nutritional and physiological evaluation of Korean space foods in the MARS-500 project and evaluation of growth change in radio-durable micro organisms and plant seeds by space flight using BION-M1 satellite, a series of meeting were held in Russia and Korea

  10. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  11. Three-dimensional studies on resorption spaces and developing osteons.

    Tappen, N C

    1977-07-01

    Resorption spaces and their continuations as developing osteons were traced in serial cross sections from decalcified long bones of dogs, baboons and a man, and from a human rib. Processes of formation of osteons and transverse (Volkmann's) canals can be inferred from three-dimensional studies. Deposits of new osseous tissue begin to line the walls of the spaces soon after termination of resorption. The first deposits are osteoid, usually stained very darkly by the silver nitrate procedure utilized, but a lighter osteoid zone adjacent to the canals occurs frequently. Osteoid linings continue to be produced as lamellar bone forms around them; the large canals of immature osteons usually narrow very gradually. Frequently they terminate both proximally and distally as resorption spaces, indicating that osteons often advance in opposite directions as they develop. Osteoclasts of resorption spaces tunnel preferentially into highly mineralized bone, and usually do not use previously existing canals as templates for their advance. Osteons evidently originate by localized resorption of one side of the wall of an existing vascular channel in bone, with subsequent orientation of the resorption front along the axis of the shaft. Advancing resorption spaces also apparently stimulate the formation of numerous additional transverse canal connections to neighboring longitudinal canals. Serial tracing and silver nitrate differential staining combine to reveal many of the processes of bone remodeling at work, and facilitate quantitative treatment of the data. Further uses in studies of bone tissue and associated cells are recommended.

  12. Green product development : What does the country product space imply?

    Fraccascia, Luca; Giannoccaro, Ilaria; Albino, Vito

    This paper contributes to green product development by identifying the green products with the highest potential for growth in a country. To address our aim, we use the concept of product proximity and product space and, borrowing from the results of recent studies on complexity economics, we

  13. Space station high gain antenna concept definition and technology development

    Wade, W. D.

    1972-01-01

    The layout of a technology base is reported from which a mechanically gimballed, directional antenna can be developed to support a manned space station proposed for the late 1970's. The effort includes the concept definition for the antenna assembly, an evaluation of available technology, the design of critical subassemblies and the design of critical subassembly tests.

  14. Design and Development of the Space Shuttle Tail Service Masts

    Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.

    1977-01-01

    The successful launch of a space shuttle vehicle depends on the proper operation of two tail service masts (TSMs). Reliable TSM operation is assured through a comprehensive design, development, and testing program. The results of the concept verification test (CVT) and the resulting impact on prototype TSM design are presented. The design criteria are outlined, and the proposed prototype TSM tests are described.

  15. Dobson space telescope: development of an optical payload of the next generation

    Segert, Tom; Danziger, Björn; Gork, Daniel; Lieder, Matthias

    2017-11-01

    The Dobson Space Telescope (DST) is a research project of the Department of Astronautics at the TUBerlin. For Development and commercialisation there is a close cooperation with the network of the Berlin Space Industry (RIBB). Major Partner is the Astro- und Feinwerktechnik Adlershof GmbH a specialist for space structures and head of the industry consortia which built the DLR BIRD micro satellite. The aim of the project is to develop a new type of deployable telescope that can overcome the mass and volume limitations of small satellites. With the DST payload micro satellites of the 100kg class will be able to carry 50cm main mirror diameter optics (→ 1m GSD). Basis of this technology is the fact that a telescope is mainly empty space between the optical elements. To fold down the telescope during launch and to undfold it after the satellite reached its orbit can save 70% of payload volume and 50% of payload mass. Since these advantages continue along the value added chain DST is of highest priority for the next generation of commercial EO micro satellites. Since 2002 the key technologies for DST have been developed in test benches in Labs of TU-Berlin and were tested on board a ESA parabolic flight campaign in 2005. The development team at TU-Berlin currently prepares the foundation of a start-up company for further development and commercialisation of DST.

  16. Impacts of space weather and space climate on pipeline network operations

    Trichtchenko, Larisa

    2014-05-01

    The geomagnetic fluctuations are accompanied by geo-electric (telluric) field and telluric currents at the surface of the Earth and in the pipelines. These currents interfere with pipeline corrosion protection, creating pipe-to-soil potential (PSP) fluctuations. It impacts pipeline operations in two ways. One is that non-disturbed "true" level of the protection is not known, which might lead to the wrong conclusions that a pipeline coating is damaged and digging out the section of the pipeline is needed. The other effect is changes in the electrical conditions in the pipeline-soil interface, compromising the corrosion protection and possibly causing enhancement of the corrosion. The global trend for construction of more pipelines in northern regions means placing them into areas where natural geomagnetic variations are larger and consequently telluric activity is more extreme, in comparison with pipelines located further south. This paper describes the solutions implemented as the result of the two projects done by NRCan researchers led by the author on request from pipeline companies. Two methods were proposed and implemented to address the problems. One is the statistical estimation of the telluric activity in the area of the planned pipelines. These statistical considerations then used as guidance in the design of corrosion protection systems to counteract the excessive corrosion. The other, to deal with the corrupted results during the pipeline surveys, is to forecast the geomagnetic storms for proper planning of the surveys. In addition, the developed telluric activity identification tool can be used in the analysis of the corrupted survey data.

  17. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  18. Sexual health promotion on social networking sites: a process evaluation of The FaceSpace Project.

    Nguyen, Phuong; Gold, Judy; Pedrana, Alisa; Chang, Shanton; Howard, Steve; Ilic, Olivia; Hellard, Margaret; Stoove, Mark

    2013-07-01

    This article reports findings from an evaluation of reach and engagement of The FaceSpace Project, a novel sexual health promotion project delivered through social networking sites that targeted young people aged 16-29 years. Multiple methods were used to evaluate project reach and engagement. The evaluation focussed on quantitative data (online usage statistics, online surveys), complemented by available qualitative data (project team meeting notes). The project reached 900 fans who were mostly between 18 and 34 years of age. The most successful ways of increasing audience reach were via Facebook advertisements and tagging photos of young people attending a music festival on the project Facebook page. Peaks in Facebook page interactions (comments and "likes") coincided with recruitment peaks and when videos were posted. However, video views varied greatly between postings. Feedback from the project team for increasing engagement in future social networking site interventions included having one centralized Facebook page and using episodic videos. This evaluation is among the first to assess the use of social networking sites for sexual health promotion and provides information to inform the implementation and evaluation of future projects using new media. Social networking sites offer great potential to reach and engage young people for sexual health promotion. However, further work is required to improve implementation and promote audience reach and engagement as well as to determine effectiveness of social networking sites in changing knowledge, attitudes, and behaviors. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  19. A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    Zander, Carol S.

    1988-01-01

    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.

  20. NETWORK FOLKLORE AND ITS ROLE IN THE FORMATION OF A COLLECTIVE COGNITIVE SPACE

    Anastasija Belovodskaja

    2014-04-01

    Full Text Available The global implementation of information-communicative technologies into every sphere of human activity is being accompanied by the emergence of new forms of communication, le­ading to inevitable changes in the means of both the representation and reception of information. In this respect, the field of interest encompasses research into modern anonymous network creative writing, which, as a result of the technological qualities of the Internet space, produces such texts that require particular skills in both comprehension and reproduction. In turn, the products of network folklore, as they spontaneously spread on the Internet, acquire the status of particular signs of a precedent nature. At the same time, the very nature of anonymous network creative writing—amusing and colloquial—raises the attractiveness of such texts and facilitates their reception, allowing them to be used for manipulative aims. The fact that such network folklore can influence the process of idea-formation in society is predetermined by the fact that, by definition, it is the milieu where collective representations are condensed and transmitted. Thus, network folklore is in the focus of attention not only in folklore studies, but is extremely topical for research in such fields as cognitive science, linguistic-cultural studies, public relations, speech effect, and any others which take interest in the processes of keeping, receiving, and transmitting information.

  1. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  2. Developing hybrid near-space technologies for affordable access to suborbital space

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  3. Quantum neural networks: Current status and prospects for development

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  4. Development of a Space Station Operations Management System

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  5. Development of a Space Station Operations Management System

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  6. Americium-241 radioisotope thermoelectric generator development for space applications

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal

    2013-01-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  7. Americium-241 radioisotope thermoelectric generator development for space applications

    Ambrosi, Richard; Williams, Hugo; Samara-Ratna, Piyal, E-mail: rma8@le.ac.uk [University of Leicester, (United Kingdom); and others

    2013-07-01

    Space nuclear power systems are under development in the UK in collaboration with European partners as part of a European Space Agency (ESA) programme. Radioisotope thermoelectric generators (RTG) are an important element of this new capability in Europe. RTG systems being developed in Europe are targeting the 10 W electric to 50 W electric power generation range adopting a modular scalable approach to the design. Radiogenic decay heat from radioisotopes can be converted to electrical power by using appropriate semiconductor based thermoelectric materials. The plan for Europe is to develop radioisotope space nuclear power systems based on both thermoelectric and Stirling power conversion systems. Although primarily focused on delivering up to 50 W of electrical power, the European radioisotope thermoelectric system development programme is targeting americium-241 as a fuel source and is maximizing the use of commercially available thermoelectric manufacturing processes in order to accelerate the development of power conversion systems. The use of americium provides an economic solution at high isotopic purity and is product of a separation process from stored plutonium produced during the reprocessing of civil nuclear fuel. A laboratory prototype that uses electrical heating as a substitute for the radioisotope was developed to validate the designs. This prototype has now been tested. This paper outlines the requirements for a European americium-241 fuelled RTG, describes the most recent updates in system design and provides further insight into recent laboratory prototype test campaigns. (author)

  8. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  9. Evaluation of Private Sector Roles in Space Resource Development

    Lamassoure, Elisabeth S.; Blair, Brad R.; Diaz, Javier; Oderman, Mark; Duke, Michael B.; Vaucher, Marc; Manvi, Ramachandra; Easter, Robert W.

    2003-01-01

    An integrated engineering and financial modeling approach has been developed and used to evaluate the potential for private sector investment in space resource development, and to assess possible roles of the public sector in fostering private interest. This paper presents the modeling approach and its results for a transportation service using propellant extracted from lunar regolith. The analysis starts with careful case study definition, including an analysis of the customer base and market requirements, which are the basis for design of a modular, scalable space architecture. The derived non-recurring, recurring and operations costs become inputs for a `standard' financial model, as used in any commercial business plan. This model generates pro forma financial statements, calculates the amount of capitalization required, and generates return on equity calculations using two valuation metrics of direct interest to private investors: market enterprise value and multiples of key financial measures. Use of this model on an architecture to sell transportation services in Earth orbit based on lunar propellants shows how to rapidly test various assumptions and identify interesting architectural options, key areas for investment in exploration and technology, or innovative business approaches that could produce an economically viable industry. The same approach can be used to evaluate any other possible private ventures in space, and conclude on the respective roles of NASA and the private sector in space resource development and solar system exploration.

  10. Lunar Station: The Next Logical Step in Space Development

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  11. Applying a Space-Based Security Recovery Scheme for Critical Homeland Security Cyberinfrastructure Utilizing the NASA Tracking and Data Relay (TDRS) Based Space Network

    Shaw, Harry C.; McLaughlin, Brian; Stocklin, Frank; Fortin, Andre; Israel, David; Dissanayake, Asoka; Gilliand, Denise; LaFontaine, Richard; Broomandan, Richard; Hyunh, Nancy

    2015-01-01

    Protection of the national infrastructure is a high priority for cybersecurity of the homeland. Critical infrastructure such as the national power grid, commercial financial networks, and communications networks have been successfully invaded and re-invaded from foreign and domestic attackers. The ability to re-establish authentication and confidentiality of the network participants via secure channels that have not been compromised would be an important countermeasure to compromise of our critical network infrastructure. This paper describes a concept of operations by which the NASA Tracking and Data Relay (TDRS) constellation of spacecraft in conjunction with the White Sands Complex (WSC) Ground Station host a security recovery system for re-establishing secure network communications in the event of a national or regional cyberattack. Users would perform security and network restoral functions via a Broadcast Satellite Service (BSS) from the TDRS constellation. The BSS enrollment only requires that each network location have a receive antenna and satellite receiver. This would be no more complex than setting up a DIRECTTV-like receiver at each network location with separate network connectivity. A GEO BSS would allow a mass re-enrollment of network nodes (up to nationwide) simultaneously depending upon downlink characteristics. This paper details the spectrum requirements, link budget, notional assets and communications requirements for the scheme. It describes the architecture of such a system and the manner in which it leverages off of the existing secure infrastructure which is already in place and managed by the NASAGSFC Space Network Project.

  12. Health Physics Innovations Developed During Cassini for Future Space Applications

    Nickell, Rodney E.; Rutherford, Theresa M.; Marmaro, George M.

    1999-01-01

    The long history of space flight includes missions that used Space Nuclear Auxiliary Power devices, starting with the Transit 4A Spacecraft (1961), continuing through the Apollo, Pioneer, Viking, Voyager, Galileo, Ulysses, Mars Pathfinder, and most recently, Cassini (1997). All Major Radiological Source (MRS) missions were processed at Kennedy Space Center/Cape Canaveral Air Station (KSC/CCAS) Launch Site in full compliance with program and regulatory requirements. The cumulative experience gained supporting these past missions has led to significant innovations which will be useful for benchmarking future MRS mission ground processing. Innovations developed during ground support for the Cassini mission include official declaration of sealed-source classifications, utilization of a mobile analytical laboratory, employment of a computerized dosimetry record management system, and cross-utilization of personnel from related disciplines.

  13. Transforming knowledge across domains in the temporary development spaces

    Brønnum, Louise

    This paper addresses transformation of knowledge across different knowledge domains and competencies in the Front End of Innovation (FEI) [Koen 2002].We examine the temporary spaces [Clausen, Yoshinaka 2007] that emerge when different knowledge domains are brought into play (implicit or explicit......) in staging innovative concept development. FEI appears as temporary spaces for innovative processes; and studies have pointed out the limited uptake of user knowledge (Elgaard Jensen 2012). This paper will discuss the possibilities and barriers for uptake of user knowledge in FEI in relation...... to the constitutions of these temporary spaces. There seems to be a limited understanding of: how knowledge is transferred and transformed into design objects facilitating a process where knowledge enables innovative thinking across knowledge boundaries. The paper is based on empirical data primarily from case studies...

  14. Use of a Lunar Outpost for Developing Space Settlement Technologies

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory

  15. Development of global cortical networks in early infancy.

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  16. Space facilities: Meeting future needs for research, development, and operations

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  17. Developments of space station; Uchu station no kaihatsu

    Hashimoto, H. [National Space Development Agency of Japan, Tokyo (Japan)

    1996-03-05

    This paper introduces the Japanese experiment module (JEM) in developing a space station. The JEM consists of systems of a pressurizing section, an exposure section, a pressurizing portion of a supply section, a manipulator and an exposure portion of the supply section. The pressurizing section circulates and controls air so that crews can perform experiments under pressurized environment. The exposure section is a part in which experiments are carried out under exposure environment. The supply section runs between a station and the ground, with required devices loaded on it. The manipulator performs attaching a payload for the exposure section and replaces experimental samples. The JEM undergoes a schedule of fabricating an engineering model, testing for a certification a prototype flight model, and putting the model on a flight. The pressurizing section, exposure section and manipulator are at the stage of system tests. Surveillance of the JEM and control of the experiments are carried out at the Tsukuba Space Center. The Center is composed of a space experiment building, a zero-gravity environment testing building, an astronaut training building, a space station operating building, and a space station testing building. 7 figs., 2 tabs.

  18. PHARAO space atomic clock: new developments on the laser source

    Saccoccio, Muriel; Loesel, Jacques; Coatantiec, Claude; Simon, Eric; Laurent, Philippe; Lemonde, Pierre; Maksimovic, I.; Abgrall, M.

    2017-11-01

    The PHARAO project purpose is to open the way for a new atomic clock generation in space, where laser cooling techniques and microgravity allow high frequency stability and accuracy. The French space agency, CNES is funding and managing the clock construction. The French SYRTE and LKB laboratories are scientific and technical advisers for the clock requirements and the follow-up of subsystem development in industrial companies. EADS SODERN is developing two main subsystems of the PHARAO clock: the Laser Source and the Cesium Tube where atoms are cooled, launched, selected and detected by laser beams. The Laser Source includes an optical bench and electronic devices to generate the laser beams required. This paper describes PHARAO and the role laser beams play in its principle of operation. Then we present the Laser Source design, the technologies involved, and the status of development. Lastly, we focus of a key equipment to reach the performances expected, which is the Extended Cavity Laser Diode.

  19. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  20. Self-organized criticality in developing neuronal networks.

    Christian Tetzlaff

    Full Text Available Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV of cortical cell cultures (n = 20 and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV is followed by a supercritical (≈20 DIV and then a subcritical one (≈36 DIV until the network finally reaches stable criticality (≈58 DIV. Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro.

  1. Efficient Geo-Computational Algorithms for Constructing Space-Time Prisms in Road Networks

    Hui-Ping Chen

    2016-11-01

    Full Text Available The Space-time prism (STP is a key concept in time geography for analyzing human activity-travel behavior under various Space-time constraints. Most existing time-geographic studies use a straightforward algorithm to construct STPs in road networks by using two one-to-all shortest path searches. However, this straightforward algorithm can introduce considerable computational overhead, given the fact that accessible links in a STP are generally a small portion of the whole network. To address this issue, an efficient geo-computational algorithm, called NTP-A*, is proposed. The proposed NTP-A* algorithm employs the A* and branch-and-bound techniques to discard inaccessible links during two shortest path searches, and thereby improves the STP construction performance. Comprehensive computational experiments are carried out to demonstrate the computational advantage of the proposed algorithm. Several implementation techniques, including the label-correcting technique and the hybrid link-node labeling technique, are discussed and analyzed. Experimental results show that the proposed NTP-A* algorithm can significantly improve STP construction performance in large-scale road networks by a factor of 100, compared with existing algorithms.

  2. Muslim Young People Online: “Acts of Citizenship” in Socially Networked Spaces

    Amelia Johns

    2014-08-01

    Full Text Available This paper reviews the current literature regarding Muslim young people’s online social networking and participatory practices with the aim of examining whether these practices open up new spaces of civic engagement and political participation. The paper focuses on the experiences of young Muslims living in western societies, where, since September 11, the ability to assert claims as citizens in the public arena has diminished. The paper draws upon Isin & Nielsen’s (2008 “acts of citizenship” to define the online practices of many Muslim youth, for whom the internet provides a space where new performances of citizenship are enacted outside of formal citizenship rights and spaces of participation. These “acts" are evaluated in light of theories which articulate the changing nature of publics and the public sphere in a digital era. The paper will use this conceptual framework in conjunction with the literature review to explore whether virtual, online spaces offer young Muslims an opportunity to create a more inclusive discursive space to interact with co-citizens, engage with social and political issues and assert their citizen rights than is otherwise afforded by formal political structures; a need highlighted by policies which target minority Muslim young people for greater civic participation but which do not reflect the interests and values of Muslim young people.

  3. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.

    Zhang, Bijun; Vogt, Martin; Maggiora, Gerald M; Bajorath, Jürgen

    2015-10-01

    Chemical space networks (CSNs) have recently been introduced as an alternative to other coordinate-free and coordinate-based chemical space representations. In CSNs, nodes represent compounds and edges pairwise similarity relationships. In addition, nodes are annotated with compound property information such as biological activity. CSNs have been applied to view biologically relevant chemical space in comparison to random chemical space samples and found to display well-resolved topologies at low edge density levels. The way in which molecular similarity relationships are assessed is an important determinant of CSN topology. Previous CSN versions were based on numerical similarity functions or the assessment of substructure-based similarity. Herein, we report a new CSN design that is based upon combined numerical and substructure similarity evaluation. This has been facilitated by calculating numerical similarity values on the basis of maximum common substructures (MCSs) of compounds, leading to the introduction of MCS-based CSNs (MCS-CSNs). This CSN design combines advantages of continuous numerical similarity functions with a robust and chemically intuitive substructure-based assessment. Compared to earlier version of CSNs, MCS-CSNs are characterized by a further improved organization of local compound communities as exemplified by the delineation of drug-like subspaces in regions of biologically relevant chemical space.

  4. TRENDS IN THE DEVELOPMENT OF MARKETING COMMUNICATIONS IN THE GLOBAL INTERACTIVE SPACE

    N. Kochkina

    2014-09-01

    Full Text Available The article identifies trends in the development of marketing communications in the global interactive space by analyzing the factors of their functioning and researching motivation of viral audience. It is revealed the prevalence of interactive technologies in today's information space and the growth dynamics of interactive advertising market. It is proved that favorable conditions for marketing communications' functioning forms the basis for the development of viral advertising as an effective communication tool for untraditional impact on potential customers. The popularity of social networks as a major source of viral messages is determined. The motivation of YouTube audience, which provides a resonant video viewing and retransmission, is investigated. Gender and age differences that stipulate communication affect on consumers are identified. Cyclic social consciousness is observed that demands further research of viral audience, including constructing scenarios of viral behavior.

  5. Development of magnetostrictive active members for control of space structures

    Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.

    1992-08-01

    The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.

  6. Managing Programmatic Risk for Complex Space System Developments

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  7. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  8. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  9. The development of medical networks through ICT in Japan

    Tsutomu Nakamura

    2016-09-01

    Full Text Available This paper examines how medical networks using Information and Communications Technology (ICT have been constructed, and what kind of spatial impact they have on the existing medical care provision system. The results are reported below. In Japan, each prefecture implements its own regional health care program for the appropriate allocation of medical resources. However, regional disparities in such allocation have not yet been resolved. ICT applied to two cases (the Wakashio Medical Network in Chiba Prefecture and the Haniwa Health and Welfare Network in Miyazaki Prefecture has promoted functional division and cooperation among medical institutions as well as the efficient use of resources on medical networks. Factors contributing to the construction of these networks and their continued utilization include strong leadership of central hospitals in the regions, and the fact that they have managed to solve problems related to system development and operation costs. However, differences in medical network awareness between doctors and patients, as well as the constraints of network maintenance costs, force participating doctors in ICT field. In this way, medical networks become a way to complement existing medical delivery systems.

  10. Development of space simulation / net-laboratory system

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  11. OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.

    Zhou, Guangyan; Xia, Jianguo

    2018-06-07

    Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.

  12. Brain anatomical networks in early human brain development.

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  13. Analysis of the partnership network in the clean development mechanism

    Kang, Moon Jung; Park, Jihyoun

    2013-01-01

    The clean development mechanism (CDM) is a global collaborative action proposed at the Kyoto Protocol in response to climate change issues. The CDM contributes to cost-efficient reduction of greenhouse gas emissions in industrialized countries and promotes sustainable development in developing countries. Its fundamental framework is based on partnerships between industrialized and developing countries. This study employs social network analysis to investigate the dynamics of the partnership networks observed in 3816 CDM projects registered in the database of the United Nations Framework Convention on Climate Change over the period of 2005 to 2011. Our three main findings can be summarized as follows. First, the CDM partnership network is a small world; however, its density tends to decrease as the number of participants for a CDM project decreases. Second, the partnership networks’ leading groups tend to shift from partner countries into host countries. Third, a host country that pursues more partnership-based projects takes better control of resources and knowledge-flow in the ego-network formed around that country, and can thus better utilize global resources for its CDM projects. - Highlights: ► We investigate dynamics of the international partnership networks of CDM projects. ► The density of CDM networks tends to decrease by time. ► The partnership networks’ leading groups tend to shift into host countries. ► A host country with more partnerships better utilizes global knowledge resources.

  14. A federated information management system for the Deep Space Network. M.S. Thesis - Univ. of Southern California

    Dobinson, E.

    1982-01-01

    General requirements for an information management system for the deep space network (DSN) are examined. A concise review of available database management system technology is presented. It is recommended that a federation of logically decentralized databases be implemented for the Network Information Management System of the DSN. Overall characteristics of the federation are specified, as well as reasons for adopting this approach.

  15. Filling the gap in the European administrative space: The role of administrative networks in EU implementation and enforcement

    Mastenbroek, E.; Sindbjerg Martinsen, D.

    2018-01-01

    European administrative networks (EANs) are a key building block of the European Administrative Space (EAS). Crucially, they are to fill the gap between the EU’s policy ambitions and its limited administrative capacities. Whereas ample research has been done on policy preparation networks, the role

  16. Developing Space Weather products and services in Europe – Preface to the Special Issue on COST Action ES0803

    Belehaki Anna

    2014-01-01

    Full Text Available COST Action ES0803 “Developing Space Weather products and services in Europe” primarily aimed at forming an interdisciplinary network among European scientists dealing with different issues relevant to Geospace as well as warning system developers and operators in order to assess existing Space Weather products and recommend new ones. The work that has been implemented from 2008 to 2012 resulted in advances in modeling and predicting Space Weather, in recommendations for the validation of Space Weather models, in proposals for new Space Weather products and services, and in dissemination, training, and outreach activities. This preface summarizes the most important achievements of this European activity that are detailed in this special issue by the key scientists who participated in COST Action ES0803.

  17. Developed hydraulic simulation model for water pipeline networks

    A. Ayad

    2013-03-01

    Full Text Available A numerical method that uses linear graph theory is presented for both steady state, and extended period simulation in a pipe network including its hydraulic components (pumps, valves, junctions, etc.. The developed model is based on the Extended Linear Graph Theory (ELGT technique. This technique is modified to include new network components such as flow control valves and tanks. The technique also expanded for extended period simulation (EPS. A newly modified method for the calculation of updated flows improving the convergence rate is being introduced. Both benchmarks, ad Actual networks are analyzed to check the reliability of the proposed method. The results reveal the finer performance of the proposed method.

  18. Leak Signature Space: An Original Representation for Robust Leak Location in Water Distribution Networks

    Myrna V. Casillas

    2015-03-01

    Full Text Available In this paper, an original model-based scheme for leak location using pressure sensors in water distribution networks is introduced. The proposed approach is based on a new representation called the Leak Signature Space (LSS that associates a specific signature to each leak location being minimally affected by leak magnitude. The LSS considers a linear model approximation of the relation between pressure residuals and leaks that is projected onto a selected hyperplane. This new approach allows to infer the location of a given leak by comparing the position of its signature with other leak signatures. Moreover, two ways of improving the method’s robustness are proposed. First, by associating a domain of influence to each signature and second, through a time horizon analysis. The efficiency of the method is highlighted by means of a real network using several scenarios involving different number of sensors and considering the presence of noise in the measurements.

  19. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  20. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  1. Ten-Year Network Development Plan - 2015 edition, executive summary

    2016-01-01

    Complying with the European and French laws, each year, RTE prepares and publicizes a Ten-Year Network Development Plan (NDP) to meet the expectations of its stakeholders and customers. The NDP lists the network development projects that RTE plans to complete and commission over a 3-year period and presents the main power transmission infrastructure work envisaged for the next Ten-years. Beyond, it outlines the possible network adaptation needs for a variety of energy transition scenarios. Over the next 10 years, the network investments will make it possible to: - Meet the goals of the Regional Climate Air Energy Plans, - Create 4 GW of extra offshore wind generation integration capacity and 10 GW of additional interconnection capacity, 2/3 more than the current capacity, - Enable the development of economically and demographically dynamic areas, with safe and high-standard electricity supply. In the coming decade, RTE plans: - 1,200 km of new underground and sub-sea DC links, along with their associated converter stations; - 600 km of existing equipment upgrades or new overhead 400 kV AC circuits substituting existing power lines. - and, at the same time, nearly 900 km of underground lines and just over 400 km of overhead 225 kV AC lines should be built. 400 projects are listed in this NDP: - 21% of the operations are on overhead lines (for 3/4 new lines or upgrade and for 1/4 dismantling of existing assets) - 27% concern new underground lines; - 52% on substation adaptations (about 20 new RTE substations and 100 new customer substations connected). Globally, nearly 80% of the network is developed underground or sub-sea. This edition of the Network Development plan is further enriched. In particular, it explains more thoroughly the link between the integration of renewable energy and the entailed development of the transmission network. It also provides a focus on smart grids. This edition relies on mid and long term scenarios describing the evolution of the

  2. Lifelong learning networks for sustainable regional development

    De Kraker, Joop; Cörvers, Ron; Ruelle, Christine; Valkering, Pieter

    2010-01-01

    Sustainable regional development is a participatory, multi-actor process, involving a diversity of societal stakeholders, administrators, policy makers, practitioners and scientific experts. In this process, mutual and collective learning plays a major role as participants have to exchange and

  3. South Asian Network for Development and Environmental ...

    SANDEE) seeks to build research capacity in the area of poverty, economic development and environmental change in Bangladesh, Bhutan, India, Nepal, Pakistan, the Maldives and Sri Lanka. It does so through research, training, policy dialogue, ...

  4. Developer Network : Open Source Personal Digital Assistant ...

    Each project used a different software, however, and this proved costly in terms of ... development and evaluation of PDACT, a Palm TM pilot interviewing system ... IWRA/IDRC webinar on climate change and adaptive water management.

  5. The Design Space of Multi-Language Development Environments

    Pfeiffer, Rolf-Helge; Wasowski, Andrzej

    2014-01-01

    Non-trivial software systems integrate many artifacts expressed in multiple modeling and program- ming languages. However, even though these artifacts heavily depend on each other, existing development envi- ronments do not sufficiently support handling relations between artifacts in different...... languages. By means of a literature survey, tool prototyping and experiments we study the design space of multi-language development environments (MLDEs)—tools that consider the cross-language relations as first artifacts. We ask: what is the state of the art in the MLDE space? What are the design choices...... and challenges faced by tool builders? To what extent MLDEs are desired by users, and for what support features? Our main conclusions are that (a) cross-language re- lations are ubiquitous and troublesome in multi-language systems, (b) users highly appreciated cross-language sup- port mechanisms of MLDEs and (c...

  6. Networked Instrumentation Element

    National Aeronautics and Space Administration — Armstrong researchers have developed a networked instrumentation system that connects modern experimental payloads to existing analog and digital communications...

  7. Fiber Laser Component Testing for Space Qualification Protocol Development

    Falvey, S.; Buelow, M.; Nelson, B.; Starcher, Y.; Thienel, L.; Rhodes, C.; Tull, Jackson; Drape, T.; Westfall, C.

    A test protocol for the space qualifying of Ytterbium-doped diode-pumped fiber laser (DPFL) components was developed under the Bright Light effort, sponsored by AFRL/VSE. A literature search was performed and summarized in an AMOS 2005 conference paper that formed the building blocks for the development of the test protocol. The test protocol was developed from the experience of the Bright Light team, the information in the literature search, and the results of a study of the Telcordia standards. Based on this protocol developed, test procedures and acceptance criteria for a series of vibration, thermal/vacuum, and radiation exposure tests were developed for selected fiber laser components. Northrop Grumman led the effort in vibration and thermal testing of these components at the Aerospace Engineering Facility on Kirtland Air Force Base, NM. The results of the tests conducted have been evaluated. This paper discusses the vibration and thermal testing that was executed to validate the test protocol. The lessons learned will aid in future assessments and definition of space qualification protocols. Components representative of major items within a Ytterbium-doped diode-pumped fiber laser were selected for testing; including fibers, isolators, combiners, fiber Bragg gratings, and laser diodes. Selection of the components was based on guidelines to test multiple models of typical fiber laser components. A goal of the effort was to test two models (i.e. different manufacturers) of each type of article selected, representing different technologies for the same type of device. The test articles did not include subsystems or systems. These components and parts may not be available commercial-off-the-shelf (COTS), and, in fact, many are custom articles, or newly developed by the manufacturer. The primary goal for this effort is a completed taxonomy that lists all relevant laser components, modules, subsystems, and interfaces, and cites the documentation for space

  8. The Impact of Traffic Prioritization on Deep Space Network Mission Traffic

    Jennings, Esther; Segui, John; Gao, Jay; Clare, Loren; Abraham, Douglas

    2011-01-01

    A select number of missions supported by NASA's Deep Space Network (DSN) are demanding very high data rates. For example, the Kepler Mission was launched March 7, 2009 and at that time required the highest data rate of any NASA mission, with maximum rates of 4.33 Mb/s being provided via Ka band downlinks. The James Webb Space Telescope will require a maximum 28 Mb/s science downlink data rate also using Ka band links; as of this writing the launch is scheduled for a June 2014 launch. The Lunar Reconnaissance Orbiter, launched June 18, 2009, has demonstrated data rates at 100 Mb/s at lunar-Earth distances using NASA's Near Earth Network (NEN) and K-band. As further advances are made in high data rate space telecommunications, particularly with emerging optical systems, it is expected that large surges in demand on the supporting ground systems will ensue. A performance analysis of the impact of high variance in demand has been conducted using our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) simulation tool. A comparison is made regarding the incorporation of Quality of Service (QoS) mechanisms and the resulting ground-to-ground Wide Area Network (WAN) bandwidth necessary to meet latency requirements across different user missions. It is shown that substantial reduction in WAN bandwidth may be realized through QoS techniques when low data rate users with low-latency needs are mixed with high data rate users having delay-tolerant traffic.

  9. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the

  10. On the rationality of network development : the case of the Belgian highway network

    Vanoutrive, Thomas; Damme, Van, Ilja; De Block, Greet

    2016-01-01

    Abstract: The development of transport networks has been explained, predicted and planned using a variety of methodological approaches. These range from narrative historical accounts to the application of models borrowed from the natural sciences, the latter being predominant in the field of transport economics. Probably the most remarkable example is the mimicking of highway networks by slime mould in Petri dishes. The aim of this paper is to examine and compare methods used to hypothesise o...

  11. Preliminary design work on a DSN VLBI correlator. [Deep Space Network

    Lushbaugh, W. A.; Layland, J. W.

    1978-01-01

    The Deep Space Network is in the process of fielding high-density digital instrumentation recorders for support of the Pioneer Venus 1978 entry experiment and other related tasks. It has long been obvious that these recorders would also serve well as the recording medium for very long base interferometry (VLBI) experiments with relatively weak radio sources, provided that a suitable correlation processor for these tape recordings could be established. The overall design and current status of a VLBI correlator designed to mate with these tape recorders are described.

  12. Social networks and expertise development for Australian breast radiologists.

    Taba, Seyedamir Tavakoli; Hossain, Liaquat; Willis, Karen; Lewis, Sarah

    2017-02-11

    In this study, we explore the nexus between social networks and expertise development of Australian breast radiologists. Background literature has shown that a lack of appropriate social networks and interaction among certain professional group(s) may be an obstacle for knowledge acquisition, information flow and expertise sharing. To date there have not been any systematic studies investigating how social networks and expertise development are interconnected and whether this leads to improved performance for breast radiologists. This study explores the value of social networks in building expertise alongside with other constructs of performance for the Australian radiology workforce using semi-structured in-depth interviews with 17 breast radiologists. The findings from this study emphasise the influences of knowledge transfer and learning through social networks and interactions as well as knowledge acquisition and development through experience and feedback. The results also show that accessibility to learning resources and a variety of timely feedback on performance through the information and communication technologies (ICT) is likely to facilitate improved performance and build social support. We argue that radiologists' and, in particular, breast radiologists' work performance, needs to be explored not only through individual numerical characteristics but also by analysing the social context and peer support networks in which they operate and we identify multidisciplinary care as a core entity of social learning.

  13. Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features

    Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios

    2018-04-01

    We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.

  14. Networking Skills as a Career Development Practice: Lessons from the Earth Science Women's Network (ESWN)

    Hastings, M. G.; Kontak, R.; Holloway, T.; Marin-Spiotta, E.; Steiner, A. L.; Wiedinmyer, C.; Adams, A. S.; de Boer, A. M.; Staudt, A. C.; Fiore, A. M.

    2010-12-01

    Professional networking is often cited as an important component of scientific career development, yet there are few resources for early career scientists to develop and build networks. Personal networks can provide opportunities to learn about organizational culture and procedures, expectations, advancement opportunities, and best practices. They provide access to mentors and job placement opportunities, new scientific collaborations, speaker and conference invitations, increased scientific visibility, reduced isolation, and a stronger feeling of community. There is evidence in the literature that a sense of community positively affects the engagement and retention of underrepresented groups, including women, in science. Thus women scientists may particularly benefit from becoming part of a network. The Earth Science Women’s Network (ESWN) began in 2002 as an informal peer-to-peer mentoring initiative among a few recent Ph.D.s. The network has grown exponentially to include over 1000 women scientists across the globe. Surveys of our membership about ESWN report positive impacts on the careers of women in Earth sciences, particularly those in early career stages. Through ESWN, women share both professional and personal advice, establish research collaborations, communicate strategies on work/life balance, connect with women at various stages of their careers, and provide perspectives from cultures across the globe. We present lessons learned through the formal and informal activities promoted by ESWN in support of the career development of women Earth scientists.

  15. Virtual learning networks for sustainable development

    De Kraker, Joop; Cörvers, Ron

    2010-01-01

    Sustainable development is a participatory, multi-actor process. In this process, learning plays a major role as participants have to exchange and integrate a diversity of perspectives and types of knowledge and expertise in order to arrive at innovative, jointly supported solutions. Virtual

  16. Open Development: Networked Innovations in International ...

    2013-12-12

    Dec 12, 2013 ... Open development harnesses this power to create new organizational ... of applications of openness, addressing challenges as well as opportunities. ... research, improving education, and access to scholarly publications. ... Call for new OWSD Fellowships for Early Career Women Scientists now open.

  17. Open Development: Networked Innovations in International ...

    Principles travel, the exact models don't—either between contexts or domains. ..... In Canada, an open data policy helped the government recover $3.2 billion in taxes, ... Growth of openness practices is arguably part of “a more widespread ...... Other developing nations and consortia of nations including India, Malaysia, the ...

  18. Developer Network : Open Source Personal Digital Assistant ...

    Articles de revue. Handheld computers for survey and trial data collection in resource-poor settings : development and evaluation of PDACT, a Palm TM pilot interviewing system ... L'Initiative des conseils subventionnaires de la recherche scientifique en Afrique subsaharienne remporte le prix de la diplomatie scientifique.

  19. Network dynamics in the healthy and epileptic developing brain

    Richard Rosch

    2018-03-01

    Full Text Available Electroencephalography (EEG allows recording of cortical activity at high temporal resolution. EEG recordings can be summarized along different dimensions using network-level quantitative measures, such as channel-to-channel correlation, or band power distributions across channels. These reveal network patterns that unfold over a range of different timescales and can be tracked dynamically. Here we describe the dynamics of network state transitions in EEG recordings of spontaneous brain activity in normally developing infants and infants with severe early infantile epileptic encephalopathies (n = 8, age: 1–8 months. We describe differences in measures of EEG dynamics derived from band power, and correlation-based summaries of network-wide brain activity. We further show that EEGs from different patient groups and controls may be distinguishable on a small set of the novel quantitative measures introduced here, which describe dynamic network state switching. Quantitative measures related to the sharpness of switching from one correlation pattern to another show the largest differences between groups. These findings reveal that the early epileptic encephalopathies are associated with characteristic dynamic features at the network level. Quantitative network-based analyses like the one presented here may in the future inform the clinical use of quantitative EEG for diagnosis.

  20. Comparative empirical analysis of flow-weighted transit route networks in R-space and evolution modeling

    Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei

    2017-05-01

    Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.