WorldWideScience

Sample records for space monitor communications

  1. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  2. Free space optical communication

    CERN Document Server

    Kaushal, Hemani; Kar, Subrat

    2017-01-01

    This book provides an in-depth understanding of free space optical (FSO) communication with a particular emphasis on optical beam propagation through atmospheric turbulence. The book is structured in such a way that it provides a basic framework for the beginners and also gives a concise description from a designer’s perspective. The book provides an exposure to FSO technology, fundamental limitations, design methodologies, system trade-offs, acquisition, tracking and pointing (ATP) techniques and link-feasibility analysis. The contents of this book will be of interest to professionals and researchers alike. The book may also be used as a textbook for engineering coursework and professional training.

  3. CMS Space Monitoring

    Science.gov (United States)

    Ratnikova, N.; Huang, C.-H.; Sanchez-Hernandez, A.; Wildish, T.; Zhang, X.

    2014-06-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  4. CMS Space Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Ratnikova, N. [Fermilab; Huang, C.-H. [Fermilab; Sanchez-Hernandez, A. [CINVESTAV, IPN; Wildish, T. [Princeton U.; Zhang, X. [Beijing, Inst. High Energy Phys.

    2014-01-01

    During the first LHC run, CMS stored about one hundred petabytes of data. Storage accounting and monitoring help to meet the challenges of storage management, such as efficient space utilization, fair share between users and groups and resource planning. We present a newly developed CMS space monitoring system based on the storage metadata dumps produced at the sites. The information extracted from the storage dumps is aggregated and uploaded to a central database. A web based data service is provided to retrieve the information for a given time interval and a range of sites, so it can be further aggregated and presented in the desired format. The system has been designed based on the analysis of CMS monitoring requirements and experiences of the other LHC experiments. In this paper, we demonstrate how the existing software components of the CMS data placement system, PhEDEx, have been re-used, dramatically reducing the development effort.

  5. Silicon Photonics for Space Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is aimed to address level two "Optical Communication and Navigation" needs within the "5.0 Communications, Navigation, and Orbital Debris Tracking and...

  6. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  7. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  8. Optical space communication: An overview

    International Nuclear Information System (INIS)

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  9. Environment monitoring from space

    International Nuclear Information System (INIS)

    Takagi, M.

    1994-01-01

    Environmental problems such as acid rain, ozone depletion, deforestation, erosion, and the greenhouse effect are of increasing concern, and continuous earth observation from artificial satellites has been contributing significant information on the environment since the 1960s. Earth observation from space has the advantages of wide area coverage at potentially high resolutions, periodic and long-term observation capability, data acquisition with uniform quality and repeatability, and ability to observe using different types of sensors. Problems to be solved in earth observation include the need for preprocessing of satellite data, understanding the relationship between observed physical parameters and objects, and the high volume of data for processing. In Japan, a research project on the higher-order utilization of remote sensing data from space was organized in 1985, and the results led to recognition of the importance of satellite observation. It was then decided to undertake a program to improve the understanding of the earth environment by satellite. Five research plans were selected: a basic study on earth observation by microwaves; global change analysis of the biosphere; a study of the physical process of the water cycle over land; a study of air-sea interaction; and higher-order processing of earth observation information. In recognition of the international nature of satellite data, as well as the capabilities of Canada and Japan in computer, communication, and multimedia technologies, bilateral cooperation is proposed in the area of earth environment information systems based on satellite observation

  10. Digital communication with fetal monitors.

    Science.gov (United States)

    Bozóki, Z

    1997-11-01

    Fetal heart rate (FHR) values in the averaged format that are provided by commercial computed cardiotocography analysis systems may be unsuitable for special analysis purposes. I developed a communication software program to obtain any measured values of fetal monitors for individual analysis of computed cardiotocography. The software program was used to study the data continuity of beat-to-beat FHR values as an experiment for chaos theory and power spectrum analysis. The results indicated that the signal loss was recognized at a precision of 95%. The described method of digital communication with fetal monitors was found to be useful for individual purposes in the field of computed cardiotocography analysis.

  11. Space weather effects on communications

    Science.gov (United States)

    Lanzerotti, Louis J.

    In the 150 years since the advent of the first electrical communication system - the electrical telegraph - the diversity of communications technologies that are embedded within space-affected environments have vastly increased. The increasing sophistication of these communications technologies, and how their installation and operations may relate to the environments in which they are embedded, requires ever more sophisticated understanding of natural physical phenomena. At the same time, the business environment for most present-day communications technologies that are affected by space phenomena is very dynamic. The commercial and national security deployment and use of these technologies do not wait for optimum knowledge of possible environmental effects to be acquired before new technological embodiments are created, implemented, and marketed. Indeed, those companies that might foolishly seek perfectionist understanding of natural effects can be left behind by the marketplace. A well-considered balance is needed between seeking ever deeper understanding of physical phenomena and implementing `engineering' solutions to current crises. The research community must try to understand, and operate in, this dynamic environment.

  12. Communicating space weather to policymakers and the wider public

    Science.gov (United States)

    Ferreira, Bárbara

    2014-05-01

    As a natural hazard, space weather has the potential to affect space- and ground-based technological systems and cause harm to human health. As such, it is important to properly communicate this topic to policymakers and the general public alike, informing them (without being unnecessarily alarmist) about the potential impact of space-weather phenomena and how these can be monitored and mitigated. On the other hand, space weather is related to interesting phenomena on the Sun such as coronal-mass ejections, and incorporates one of the most beautiful displays in the Earth and its nearby space environment: aurora. These exciting and fascinating aspects of space weather should be cultivated when communicating this topic to the wider public, particularly to younger audiences. Researchers have a key role to play in communicating space weather to both policymakers and the wider public. Space scientists should have an active role in informing policy decisions on space-weather monitoring and forecasting, for example. And they can exercise their communication skills by talking about space weather to school children and the public in general. This presentation will focus on ways to communicate space weather to wider audiences, particularly policymakers. It will also address the role researchers can play in this activity to help bridge the gap between the space science community and the public.

  13. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  14. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  15. Monitoring distributed object and component communication

    NARCIS (Netherlands)

    Diakov, N.K.

    2004-01-01

    This thesis presents our work in the area of monitoring distributed software applications (DSAs). We produce three main results: (1) a design approach for building monitoring systems, (2) a design of a system for MOnitoring Distributed Object and Component Communication (MODOCC) behavior in

  16. Space industrialization - Education. [via communication satellites

    Science.gov (United States)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  17. Space-bounded communication complexity

    DEFF Research Database (Denmark)

    Brody, Joshua Eric; Chen, Shiteng; Papakonstantinou, Periklis A.

    2013-01-01

    communicate his entire input. However, what if the players are limited in their ability to recall parts of their interaction? We introduce memory models for 2-party communication complexity. Our general model is as follows: two computationally unrestricted players, Alice and Bob, each have s(n) bits of memory....... When a player receives a bit of communication, he "compresses" his state. This compression may be an arbitrary function of his current memory contents, his input, and the bit of communication just received; the only restriction is that the compression must return at most s(n) bits. We obtain memory...... controls two types of memory: (i) a large, oblivious memory, where updates are only a function of the received bit and the current memory content, and (ii) a smaller, non-oblivious/general memory, where updates can be a function of the input given to Bob. We exhibit natural protocols where this semi...

  18. The human communication space towards I-centric communications

    CERN Document Server

    Arbanowski, S; Steglich, S; Popescu-Zeletin, R

    2001-01-01

    A variety of concepts for service integration and corresponding systems have been developed. On one hand, they aim for the interworking and integration of classical telecommunications and data communications services. On the other, they are focusing on universal service access from a variety of end-user systems. Many of the technical problems, resulting from service integration and service personalisation, have been solved. However, all these systems are driven by the concept of providing several technologies to users by keeping the peculiarity of each service. Looking at human communication behaviour and communication space, it is obvious that human beings interact habitually in a set of contexts with their environment. The individual information preferences and needs, persons to interact with, and the set of devices controlled by each individual define their personal communication space. Following this view, a new approach is to build communication systems not on the basis of specific technologies, but on t...

  19. Transition From NASA Space Communication Systems to Commerical Communication Products

    Science.gov (United States)

    Ghazvinian, Farzad; Lindsey, William C.

    1994-01-01

    Transitioning from twenty-five years of space communication system architecting, engineering and development to creating and marketing of commercial communication system hardware and software products is no simple task for small, high-tech system engineering companies whose major source of revenue has been the U.S. Government. Yet, many small businesses are faced with this onerous and perplexing task. The purpose of this talk/paper is to present one small business (LinCom) approach to taking advantage of the systems engineering expertise and knowledge captured in physical neural networks and simulation software by supporting numerous National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) projects, e.g., Space Shuttle, TDRSS, Space Station, DCSC, Milstar, etc. The innovative ingredients needed for a systems house to transition to a wireless communication system products house that supports personal communication services and networks (PCS and PCN) development in a global economy will be discussed. Efficient methods for using past government sponsored space system research and development to transition to VLSI communication chip set products will be presented along with notions of how synergy between government and industry can be maintained to benefit both parties.

  20. BAKNET - Communication network for radiation monitoring devices

    International Nuclear Information System (INIS)

    Cohen, Y.; Wengrowicz, U.; Tirosh, D.; Barak, D.

    1997-01-01

    A system, based on a new concept of controlling and monitoring distributed radiation monitors, has been developed and approved at the NRCN. The system, named B AKNET Network , consists of a series of communication adapters connected to a main PC via an RS-485 communication network (see Fig. 1). The network's maximal length is 1200 meters and it enables connection of up to 128 adapters. The BAKNET adapters are designed to interface output signals of different types of stationary radiation monitors to a main PC. The BAKNET adapters' interface type includes: digital, analog, RS-232, and mixed output signals. This allows versatile interfacing of different stationary radiation monitors to the main computer. The connection to the main computer is via an RS-485 network, utilizing an identical communication protocol. The PC software, written in C ++ under MS-Windows, consists of two main programs. The first is the data collection program and the second is the Human Machine Interface (HMI). (authors)

  1. Free Space Optical Communication for Tactical Operations

    Science.gov (United States)

    2016-09-01

    higher energy level to a lower energy level. The photons are focused to optical lenses before transmission into the air medium. The primary purpose...Security of a free space optical transmission . (n.d.). SONA Optical Wireless , [Online]. Available: http://htcbn.com/HTC_Profile_CD/fSONA/APPNOTE...almost always require on-the-move wireless communications. Radio frequency (RF) communication is used to fill the gap, but RF systems are hard pressed to

  2. Religion and Communication Spaces. A Semio-pragmatic Approach

    Directory of Open Access Journals (Sweden)

    Roger Odin

    2015-11-01

    Full Text Available Following the reflection initiated in his book The Spaces of Communication, Roger Odin suggests a new distinction between physical communication spaces and mental communication spaces (spaces that we have inside us. The suggestion is exemplified by three film analyses dedicated to the relationships between religion and communication.

  3. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    Science.gov (United States)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  4. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  5. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  6. GSFC contamination monitors for Space Station

    Science.gov (United States)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  7. Communications interface for plant monitoring system

    International Nuclear Information System (INIS)

    Lee, K.L.; Morgan, F.A.

    1988-01-01

    This paper presents the communications interface for an intelligent color graphic system which PSE and G developed as part of a plant monitoring system. The intelligent graphic system is designed to off-load traditional host functions such as dynamic graphic updates, keyboard handling and alarm display. The distributed system's data and synchronization problems and their solutions are discussed

  8. Downlink Fiber Laser Transmitter for Deep Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Space Communications and Navigation (SCaN) roadmap, calls for an integrated network approach to communication and navigation needs for robotic and human space...

  9. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Baeten, J.C.M.; Bergstra, J.A.

    1991-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  10. Asynchronous communication in real space process algebra

    NARCIS (Netherlands)

    Bergstra, J.A.; Baeten, J.C.M.

    1992-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a

  11. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  12. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  13. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  14. The near coastal environment monitored from space

    International Nuclear Information System (INIS)

    Szekielda, K.H.

    1977-01-01

    The optical information required for monitoring the marine environment from space is discussed and applied for the near coastal area. By categorizing coastal features it is possible to recognize coastal regions to a high degree and to indentify water masses derived from land sources and sewage dumping sites. It is concluded that monitoring from space can be used as a tool in environmental planning. (orig.) [de

  15. Diamond Electron-Spin Clocks For Space Navigation and Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision clocks are needed in a broad range of applications, including satellite communication, high-bandwidth wireless communication, computing systems, and...

  16. Deep space optical communication via relay satellite

    Science.gov (United States)

    Dolinar, S.; Vilnrotter, V.; Gagliardi, R.

    1981-01-01

    The application of optical communications for a deep space link via an earth-orbiting relay satellite is discussed. The system uses optical frequencies for the free-space channel and RF links for atmospheric transmission. The relay satellite is in geostationary orbit and contains the optics necessary for data processing and formatting. It returns the data to earth through the RF terrestrial link and also transmits an optical beacon to the satellite for spacecraft return pointing and for the alignment of the transmitting optics. Future work will turn to modulation and coding, pointing and tracking, and optical-RF interfacing.

  17. Digital communication constraints in prior space missions

    Science.gov (United States)

    Yassine, Nathan K.

    2004-01-01

    Digital communication is crucial for space endeavors. Jt transmits scientific and command data between earth stations and the spacecraft crew. It facilitates communications between astronauts, and provides live coverage during all phases of the mission. Digital communications provide ground stations and spacecraft crew precise data on the spacecraft position throughout the entire mission. Lessons learned from prior space missions are valuable for our new lunar and Mars missions set by our president s speech. These data will save our agency time and money, and set course our current developing technologies. Limitations on digital communications equipment pertaining mass, volume, data rate, frequency, antenna type and size, modulation, format, and power in the passed space missions are of particular interest. This activity is in support of ongoing communication architectural studies pertaining to robotic and human lunar exploration. The design capabilities and functionalities will depend on the space and power allocated for digital communication equipment. My contribution will be gathering these data, write a report, and present it to Communications Technology Division Staff. Antenna design is very carefully studied for each mission scenario. Currently, Phased array antennas are being developed for the lunar mission. Phased array antennas use little power, and electronically steer a beam instead of DC motors. There are 615 patches in the phased array antenna. These patches have to be modified to have high yield. 50 patches were created for testing. My part is to assist in the characterization of these patch antennas, and determine whether or not certain modifications to quartz micro-strip patch radiators result in a significant yield to warrant proceeding with repairs to the prototype 19 GHz ferroelectric reflect-array antenna. This work requires learning how to calibrate an automatic network, and mounting and testing antennas in coaxial fixtures. The purpose of this

  18. Asynchronous communication in real space process algebra

    OpenAIRE

    Baeten, JCM Jos; Bergstra, JA Jan

    1990-01-01

    A version of classical real space process algebra is given in which messages travel with constant speed through a three-dimensional medium. It follows that communication is asynchronous and has a broadcasting character. A state operator is used to describe asynchronous message transfer and a priority mechanism allows to express the broadcasting mechanism. As an application, a protocol is specified in which the receiver moves with respect to the sender.

  19. Free-space communication with over 100 spatial modes

    CSIR Research Space (South Africa)

    Rosales-Guzmán, C

    2016-10-01

    Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...

  20. Extreme events monitoring from space

    Science.gov (United States)

    Kerr, Yann; Bitar, Ahmad Al; Mahmoodi, Ali; Richaume, Philippe; Al-Yaari, Amen; Wigneron, Jean-Pierre

    2016-04-01

    The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3), vegetation water content over land, and ocean salinity. These geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches, and in particular in improving model forecasts. The Soil Moisture and Ocean Salinity mission has now been collecting data for 6 years. The whole data set has just been reprocessed (Version 620 for levels 1 and 2 and version 3 for level 3 CATDS). After 6 years it seems important to start using data for having a look at anomalies and see how they can relate to large scale events The purpose of this communication is to present the mission results after more than six years in orbit in a climatic trend perspective, as through such a period anomalies can be detected. Thereby we benefit from consistent datasets provided through the latest reprocessing using most recent algorithm enhancements. Using the above mentioned products it is possible to follow large events such as the evolution of the droughts in North America, or water fraction evolution over the Amazonian basin. In this occasion we will focus on the analysis of SMOS and ancillary products anomalies to reveal two climatic trends, the temporal evolution of water storage over the Indian continent in relation to rainfall anomalies, and the global impact of El Nino types of events on the general water storage distribution. This presentation shows in detail the use of long term data sets of L-band microwave radiometry in two specific cases, namely droughts and water budget over a large basin. Several other analyses are under way currently. Obviously, vegetation water content, but also dielectric constant, are carrying a wealth

  1. Implementation of a Space Communications Cognitive Engine

    Science.gov (United States)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  2. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  3. 47 CFR 25.273 - Duties regarding space communications transmissions.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Duties regarding space communications transmissions. 25.273 Section 25.273 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.273 Duties regarding space...

  4. Research in space commercialization, technology transfer and communications, vol. 2

    Science.gov (United States)

    Dunn, D. A.; Agnew, C. E.

    1983-01-01

    Spectrum management, models for evaluating communications systems, and implications of communications regulations for NASA are considered as major parts of communications policy. Marketing LANDSAT products in developing countries, a political systems analysis of LANDSAT, and private financing and operation of the space operations center (space station) are discussed. Investment requirements, risks, government support, and other primary business and management considerations are examined.

  5. Discovery deep space optical communications (DSOC) transceiver

    Science.gov (United States)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  6. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  7. High Power Uplink Amplifier for Deep Space Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  8. High Power Uplink Amplifier for Deep Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  9. Securing Data for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's vision of data exchange between space and ground nodes would involve the space network accessing public infrastructure such as the internet. Hence, advanced...

  10. Space weather monitoring by groundbased means

    CERN Document Server

    Troshichev, Oleg

    2012-01-01

    This book demonstrates that the method, based on the ground polar cap magnetic observations is a reliable diagnosis of the solar wind energy coming into the magnetosphere Method for the uninterruptive monitoring of the magnetosphere state (i.e. space weather). It shows that the solar wind energy pumping power, can be described by the PC growth rate, thus, the magnetospheric substorms features are predetermined by the PC dynamics. Furthermore, it goes on to show that the beginning and ending of magnetic storms is predictable. The magnetic storm start only if the solar energy input into the magn

  11. Development of infrared communication in radiation protection and monitoring

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Choithramani, S.J.; Sharma, D.N.; Abani, M.C.

    2003-01-01

    Infra-red communication has many important applications in instrumentation and control. Different types of nuclear instruments are used for radiation protection and surveillance program. The application of this mode of communication in these instruments helps in monitoring of inaccessible or high radiation field areas by avoiding undue exposure to the occupational worker. The demand for remotely controlled monitoring instruments and wireless data communication in the mobile computing environment has rapidly increased. This is due to the increasing need for on-line radiological data analysis with minimum human interventions, especially so if the monitoring is in hazardous environment. The wireless communication can be achieved using different communication methodology for short and long range communication. The infrared based communication is used for different applications for short range up to 9-10 meters. The use of this mode of communication has been implemented in some of the radiation monitoring instruments developed in house. The evaluation of data communication using this mode was conducted for the systems like Environmental Radiation Monitor (ERM) and results showed that data communication error is less than 0.1% up to 10 meter distance. (author)

  12. Japan's telecommunications - New initiatives in space communications

    Science.gov (United States)

    Iida, T.

    1992-04-01

    Despite recent advances in optical transmission technology, intensive R&D work in the field of satellite communications is now being undertaken in Japan. It is believed that satellites offer advantages in several important areas, including wide coverage broadcasting, immediacy of service, suitability for the implementation of HDTV, and advantages in disaster communications and other social services. Here, some experimental projects in the field of satellite communications planned in Japan for the 1990s are summarized. In particular, attention is given to broadcast satellite development, intersatellite links, advanced mobile communication concepts, large antenna assembly experiment, small satellite R&D, and Pan-Pacific information network experiment.

  13. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  14. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  15. Spectrum Scarcity and Free Space Optical Communications

    KAUST Repository

    Alouini, Mohamed-Slim

    2014-01-01

    Exact and asymptotic studies of the average error probability of wireless communication systems over generalized fading channels have been extensively pursued over the last two decades. In contrast, studies and results dealing with the channel

  16. Communication plan of GPS monitoring system based on the Internet

    Science.gov (United States)

    Xing, Xiangpeng; Liu, Zhenan; Bao, Yuanlu

    2005-11-01

    In GPS monitoring system, wireless communications network is necessary to keep base station in contact with mobile stations. Public communications network and personal communications network can't work well all the time. In this article, an economical communications network that can be competent for communication of GPS monitoring system is introduced. Personal communications network is used in this GPS monitoring system. In order to enlarge the coverage area and to expand the capacity of the personal communications network, the concept of cellular radio system is introduced. Because only the non-adjacent cells can use the same frequency channel, handoff of mobile station is extremely important when it goes in another cell. The mobile station of the system will know its own longitude and latitude by receiving data from GPS satellites all the time, so it can change its working frequency channel according to its position. Internet, instead of personal communication cable, is used to connect the base stations. So the communications network has the advantage of public communications network and personal one.

  17. The museum foyer as a transformative space of communication

    DEFF Research Database (Denmark)

    Laursen, Ditte; Kristiansen, Erik; Drotner, Kirsten

    2016-01-01

    has four transformative functions, and we ask the following question: How do people entering the museum practise these transformative functions so as to become visitors – and become non-visitors again on leaving? Answers are provided through an empirical analysis of the foyer as a transformative...... communicative space. Based on qualitative studies of four divergent Danish museums and a science centre, we demonstrate that the foyer’s communicative space supports transformative functions consisting of multiple phases before and after the visit itself, namely arrival–orientation–service–preparation (before......This article explores how we may study physical museum foyers as multilayered spaces of communication. Based on a critical examination of ways in which the museum foyer is conceptualised in the research literature, we define the foyer as a transformative space of communication for visitors which...

  18. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar; Park, Kihong; Alouini, Mohamed-Slim

    2014-01-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can

  19. Exotic Optical Beam Classes for Free-Space Communication

    Science.gov (United States)

    2016-03-24

    wandering of an optical vortex is one of the significant problems with the application of vortex beams to FSO applications. From a geometrical optics ...AFRL-AFOSR-VA-TR-2016-0131 Exotic optical beam classes for free-space communication Greg Gbur UNIVERSITY OF NOTH CAROLINA AT CHARLOTTE Final Report...12-2015 4. TITLE AND SUBTITLE Exotic optical beam classes for free-space communication 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0009 5c

  20. Diaspora: Multilingual and Intercultural Communication across Time and Space

    Science.gov (United States)

    Wei, Li; Hua, Zhu

    2013-01-01

    The nature of diaspora is changing in the 21st century. Yet many of the communication issues remain the same. At the heart of it is multilingual and intercultural communication across time and space. There is much that applied linguists can contribute to the understanding of diaspora in the era of globalization. This article discusses some of the…

  1. Space Communications Capability Roadmap Interim Review

    Science.gov (United States)

    Spearing, Robert; Regan, Michael

    2005-01-01

    Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.

  2. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  3. Space communication and radar with lasers

    NARCIS (Netherlands)

    Witteman, W.J.

    2005-01-01

    Sensitive heterodyne detection with lasers applied .to radar and satellite communication is seriously hampered by the large electronic bandwidth due to random Doppler shift and frequency instability. These drawbacks can be circumvented by dual signal heterodyne detection. The system consists of

  4. MMIC technology for advanced space communications systems

    Science.gov (United States)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  5. MMIC technology for advanced space communications systems

    Science.gov (United States)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  6. Space Shuttle Communications Coverage Analysis for Thermal Tile Inspection

    Science.gov (United States)

    Kroll, Quin D.; Hwu, Shian U.; Upanavage, Matthew; Boster, John P.; Chavez, Mark A.

    2009-01-01

    The space shuttle ultra-high frequency Space-to-Space Communication System has to provide adequate communication coverage for astronauts who are performing thermal tile inspection and repair on the underside of the space shuttle orbiter (SSO). Careful planning and quantitative assessment are necessary to ensure successful system operations and mission safety in this work environment. This study assesses communication systems performance for astronauts who are working in the underside, non-line-of-sight shadow region on the space shuttle. All of the space shuttle and International Space Station (ISS) transmitting antennas are blocked by the SSO structure. To ensure communication coverage at planned inspection worksites, the signal strength and link margin between the SSO/ISS antennas and the extravehicular activity astronauts, whose line-of-sight is blocked by vehicle structure, was analyzed. Investigations were performed using rigorous computational electromagnetic modeling techniques. Signal strength was obtained by computing the reflected and diffracted fields along the signal propagation paths between transmitting and receiving antennas. Radio frequency (RF) coverage was determined for thermal tile inspection and repair missions using the results of this computation. Analysis results from this paper are important in formulating the limits on reliable communication range and RF coverage at planned underside inspection and repair worksites.

  7. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  8. Vessel noise cuts down communication space for vocalizing fish and marine mammals.

    Science.gov (United States)

    Putland, Rosalyn L; Merchant, Nathan D; Farcas, Adrian; Radford, Craig A

    2018-04-01

    Anthropogenic noise across the world's oceans threatens the ability of vocalizing marine species to communicate. Some species vocalize at key life stages or whilst foraging, and disruption to the acoustic habitat at these times could lead to adverse consequences at the population level. To investigate the risk of these impacts, we investigated the effect of vessel noise on the communication space of the Bryde's whale Balaenoptera edeni, an endangered species which vocalizes at low frequencies, and bigeye Pempheris adspersa, a nocturnal fish species which uses contact calls to maintain group cohesion while foraging. By combining long-term acoustic monitoring data with AIS vessel-tracking data and acoustic propagation modelling, the impact of vessel noise on their communication space was determined. Routine vessel passages cut down communication space by up to 61.5% for bigeyes and 87.4% for Bryde's whales. This influence of vessel noise on communication space exceeded natural variability for between 3.9 and 18.9% of the monitoring period. Additionally, during the closest point of approach of a large commercial vessel, communication space of both species was reduced by a maximum of 99% compared to the ambient soundscape. These results suggest that vessel noise reduces communication space beyond the evolutionary context of these species and may have chronic effects on these populations. To combat this risk, we propose the application or extension of ship speed restrictions in ecologically significant areas, since our results indicate a reduction in sound source levels for vessels transiting at lower speeds. © 2017 John Wiley & Sons Ltd.

  9. Unified Communications for Space Inventory Management

    Science.gov (United States)

    Gifford, Kevin K.; Fink, Patrick W.; Barton, Richard; Ngo, Phong H.

    2009-01-01

    To help assure mission success for long-duration exploration activities, NASA is actively pursuing wireless technologies that promote situational awareness and autonomy. Wireless technologies are typically extensible, offer freedom from wire tethers, readily support redundancy, offer potential for decreased wire weight, and can represent dissimilar implementation for increased reliability. In addition, wireless technologies can enable additional situational awareness that otherwise would be infeasible. For example, addition of wired sensors, the need for which might not have been apparent at the outset of a program, night be extremely costly due in part to the necessary routing of cables through the vehicle. RFID, or radio frequency identification, is a wireless technology with the potential for significant savings and increased reliability and safety in space operations. Perhaps the most obvious savings relate to the application of inventory management. A fully automated inventory management system is highly desirable for long-term sustaining operations in space environments. This assertion is evidenced by inventory activities on the International Space Station, which represents the most extensive inventory tracking experience base in the history of space operations. In the short tern, handheld RFID readers offer substantial savings owing to reduced crew time for inventory audits. Over the long term, a combination of improved RFID technology and operational concepts modified to fully utilize the technology should result in space based inventory management that is highly reliable and requires very little crew time. In addition to inventory management, RFID is likely to find space applications in real-time location and tracking systems. These could vary from coarse-resolution RFID portals to the high resolution afforded by ultra-wideband (UWB) RFID. Longer range RFID technologies that leverage passive surface acoustic wave (SAW) devices are being investigated to

  10. Beaconless Pointing for Deep-Space Optical Communication

    Science.gov (United States)

    Swank, Aaron J.; Aretskin-Hariton, Eliot; Le, Dzu K.; Sands, Obed S.; Wroblewski, Adam

    2016-01-01

    Free space optical communication is of interest to NASA as a complement to existing radio frequency communication methods. The potential for an increase in science data return capability over current radio-frequency communications is the primary objective. Deep space optical communication requires laser beam pointing accuracy on the order of a few microradians. The laser beam pointing approach discussed here operates without the aid of a terrestrial uplink beacon. Precision pointing is obtained from an on-board star tracker in combination with inertial rate sensors and an outgoing beam reference vector. The beaconless optical pointing system presented in this work is the current approach for the Integrated Radio and Optical Communication (iROC) project.

  11. Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Benjamin, T.; Scozzafava, J.; Khatri, F.; Sharma, J.; Parvin, B.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    This paper provides an overview of different options at Earth to provide Deep Space optical communication services. It is based mainly on work done for the Mars Laser Communications Demonstration (MLCD) Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It also reports preliminary conclusions from the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telecommunications Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  12. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  13. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  14. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  15. Free-space communication based on quantum cascade laser

    International Nuclear Information System (INIS)

    Liu Chuanwei; Zhai Shenqiang; Zhang Jinchuan; Zhou Yuhong; Jia Zhiwei; Liu Fengqi; Wang Zhanguo

    2015-01-01

    A free-space communication based on a mid-infrared quantum cascade laser (QCL) is presented. A room-temperature continuous-wave distributed-feedback (DFB) QCL combined with a mid-infrared detector comprise the basic unit of the communication system. Sinusoidal signals at a highest frequency of 40 MHz and modulated video signals with a carrier frequency of 30 MHz were successfully transmitted with this experimental setup. Our research has provided a proof-of-concept demonstration of space optical communication application with QCL. The highest operation frequency of our setup was determined by the circuit-limited modulation bandwidth. A high performance communication system can be obtained with improved modulation circuit system. (paper)

  16. Software Defined Radio Architecture Contributions to Next Generation Space Communications

    Science.gov (United States)

    Kacpura, Thomas J.; Eddy, Wesley M.; Smith, Carl R.; Liebetreu, John

    2015-01-01

    Space communications architecture concepts, comprising the elements of the system, the interactions among them, and the principles that govern their development, are essential factors in developing National Aeronautics and Space Administration (NASA) future exploration and science missions. Accordingly, vital architectural attributes encompass flexibility, the extensibility to insert future capabilities, and to enable evolution to provide interoperability with other current and future systems. Space communications architectures and technologies for this century must satisfy a growing set of requirements, including those for Earth sensing, collaborative observation missions, robotic scientific missions, human missions for exploration of the Moon and Mars where surface activities require supporting communications, and in-space observatories for observing the earth, as well as other star systems and the universe. An advanced, integrated, communications infrastructure will enable the reliable, multipoint, high-data-rate capabilities needed on demand to provide continuous, maximum coverage for areas of concentrated activity. Importantly, the cost/value proposition of the future architecture must be an integral part of its design; an affordable and sustainable architecture is indispensable within anticipated future budget environments. Effective architecture design informs decision makers with insight into the capabilities needed to efficiently satisfy the demanding space-communication requirements of future missions and formulate appropriate requirements. A driving requirement for the architecture is the extensibility to address new requirements and provide low-cost on-ramps for new capabilities insertion, ensuring graceful growth as new functionality and new technologies are infused into the network infrastructure. In addition to extensibility, another key architectural attribute of the space communication equipment's interoperability with other NASA communications

  17. Security Policy for a Generic Space Exploration Communication Network Architecture

    Science.gov (United States)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  18. Spectrum Scarcity and Free Space Optical Communications

    KAUST Repository

    Alouini, Mohamed-Slim

    2014-01-06

    Exact and asymptotic studies of the average error probability of wireless communication systems over generalized fading channels have been extensively pursued over the last two decades. In contrast, studies and results dealing with the channel capacity in these environments have been more scarce. In the first part of this talk, we present a generic moment generating function-based approach for the exact computation of the channel capacity in such kind of environments. The resulting formulas are applicable to systems having channel state information (CSI) at the receiver and employing maximal-ratio combining or equal-gain combining multichannel reception. The analysis covers the case where the combined paths are not necessarily independent or identically distributed. In all cases, the proposed approach leads to an expression of the ergodic capacity involving a single finite-range integral, which can be easily computed numerically. In the second part of the talk, we focus on the asymptotic analysis of the capacity in the high and low signal-to-noise ratio (SNR) regimes. More specifically, we offer new simple closed-form formulas that give an intuitive understanding of the capacity behavior at these two extreme regimes. Our characterization covers not only the case where the CSI is available only at the receiver but also the case where the CSI is available at both the transmitter and receiver.

  19. Seals monitoring systems using wireless communications

    International Nuclear Information System (INIS)

    Hermand, Guillaume; Bertrand, Johan; Farhoud, Radwan; Suzuki, Kei; ETO, Jiro; Tanabe, Hiromi; Takamura, Hisashi; Suyama, Yasuhiro

    2012-01-01

    Document available in extended abstract form only. Wireless monitoring based on electromagnetic waves is a promising application for deep geological nuclear waste repositories. It should allow data transmission without installing wires across the various seals (disposal cell plugs, gallery plugs, shaft plugs). Developments of the wireless system (e.g. transmitter and receiver) are in progress in order to fit the repository requirements. A common research program has been elaborated by RWMC and Andra. The present work aims at developing the wireless monitoring technology to intermediate level waste (ILW) disposal facilities concept. In this concept, ILW packages will be emplaced in disposal cells with concrete liner. After the operational phase, the cells will be backfilled with sealing material. In practice, this work demonstrates the feasibility of adapting and optimizing the wireless transmission system for specific repository cases. After preliminary transmission studies, it was decided to make a representative test in situ of a wireless transmission through the clay from a sealed side to an accessible side of the repository. In order to reduce the attenuation of magnetic flux caused by steel components between the transmitter and the receiver, the receiving antenna is installed in a dedicated borehole (drilled from the accessible side). Two types of reception antennas have been designed. According to its coil orientation, type A antenna measures the electromagnetic wave perpendicular to the borehole axis. On the other hand, type B antenna with a coil set in-line with the tubular casing, measures the electromagnetic wave parallel to the borehole axis. The outside cylinder (pressure tight case) is made of PVC considering the attenuation of electromagnetic flux. According to the direction of electromagnetic flux and position of the boreholes in the final repository design, type A or type B will be chosen. For the 'representative' test, a borehole, TSF1002 has been

  20. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  1. Complex networks in the Euclidean space of communicability distances

    Science.gov (United States)

    Estrada, Ernesto

    2012-06-01

    We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.

  2. Communications among elements of a space construction ensemble

    Science.gov (United States)

    Davis, Randal L.; Grasso, Christopher A.

    1989-01-01

    Space construction projects will require careful coordination between managers, designers, manufacturers, operators, astronauts, and robots with large volumes of information of varying resolution, timeliness, and accuracy flowing between the distributed participants over computer communications networks. Within the CSC Operations Branch, we are researching the requirements and options for such communications. Based on our work to date, we feel that communications standards being developed by the International Standards Organization, the CCITT, and other groups can be applied to space construction. We are currently studying in depth how such standards can be used to communicate with robots and automated construction equipment used in a space project. Specifically, we are looking at how the Manufacturing Automation Protocol (MAP) and the Manufacturing Message Specification (MMS), which tie together computers and machines in automated factories, might be applied to space construction projects. Together with our CSC industrial partner Computer Technology Associates, we are developing a MAP/MMS companion standard for space construction and we will produce software to allow the MAP/MMS protocol to be used in our CSC operations testbed.

  3. Research into command, control, and communications in space construction

    Science.gov (United States)

    Davis, Randal

    1990-01-01

    Coordinating and controlling large numbers of autonomous or semi-autonomous robot elements in a space construction activity will present problems that are very different from most command and control problems encountered in the space business. As part of our research into the feasibility of robot constructors in space, the CSC Operations Group is examining a variety of command, control, and communications (C3) issues. Two major questions being asked are: can we apply C3 techniques and technologies already developed for use in space; and are there suitable terrestrial solutions for extraterrestrial C3 problems? An overview of the control architectures, command strategies, and communications technologies that we are examining is provided and plans for simulations and demonstrations of our concepts are described.

  4. Influence of social connectedness, commu-nication and monitoring ...

    African Journals Online (AJOL)

    This paper examines connectedness to, communication with and monitoring of unmarried adolescents in Ghana by parents, other adults, friends and key social institutions and the roles these groups play with respect to adolescent sexual activity. The paper draws on 2004 nationally-representative survey data and ...

  5. Research on optic antenna of space laser communication networking

    Science.gov (United States)

    Meng, Li-Xin; Li, Long; Zhang, Li-zhong; Zhao, Shan-shan; Jiang, Hui-lin

    2013-08-01

    With the highlights of the high transmission rate, large capacity, strong anti-interference and anti-capture ability, good security and small light, space laser communication becomes an important hotspot. At present, the focus of research of the laser communication system is point to point communication structure. However, from the application point of view, both the realization of space laser communication among multiple points and the establishment of the information transmission network can really have the practical value. Aiming at the problem of space laser communication network, this article puts forward the general idea about optical antenna to achieve multiple tracking goals at the same time. Through the analysis of the optical antenna, and the comparing of the current commonly used mirror driving mechanism, a new mirror driving mechanism is designed. The azimuth motion, containing circular grating feedback, is driven by torque motor,voice coil motor of fan produces pitch motion that has fan-shaped grating feedback, so that compression of the structure size to improve the efficiency of the reflector assembly. Through the establishment of the driving mechanism and the kinematic model of 3D entity, the relationship between the single drive azimuth and pitch angle following the angle of incident light is explained. The biggest ideal view area affecting the optical antenna is obtained by the simulation analysis of the kinematics model using MATLAB. The several factors of field overlap area and blind area offers a theoretical basis for structure optimization and control system for the subsequent optical antenna design.

  6. Development of laser weld monitoring system for PWR space grid

    International Nuclear Information System (INIS)

    Chung, Chin Man; Kim, Cheol Jung; Kim, Min Suk

    1998-06-01

    The laser welding monitoring system was developed to inspect PWR space grid welding for KNFC. The demands for this optical monitoring system were applied to Q.C. and process control in space grid welding. The thermal radiation signal from weld pool can be get the variation of weld pool size. The weld pool size and depth are verified by analyzed wavelength signals from weld pool. Applied this monitoring system in space grid weld, improved the weld productivity. (author). 4 refs., 5 tabs., 31 figs

  7. Free Space Optics Communication for Mobile Military Platforms

    Science.gov (United States)

    2003-12-01

    Federal Communications Commission FDA Food and Drug Administration FOV Field-of-View FSO Free Space Optics FWHM Full Width at Half Maximum Gbps...Physique et de Métrologie des Oscillateurs (LPMO) du CNRS UPR3203, associé à l’Université de Franche -Comté, 15 March 2002 [Schenk 2000] H. Schenk

  8. Robust free-space optical communication for indoor information environment

    Science.gov (United States)

    Nakada, Toyohisa; Itoh, Hideo; Kunifuji, Susumu; Nakashima, Hideyuki

    2003-10-01

    The purpose of our study is to establish a robust communication, while keeping security and privacy, between a handheld communicator and the surrounding information environment. From the viewpoint of low power consumption, we have been developing a reflectivity modulating communication module composed of a liquid crystal light modulator and a corner-reflecting mirror sheet. We installed a corner-reflecting sheet instead of light scattering sheet in a handheld videogame machine with a display screen with a reflection-type liquid crystal. Infrared (IR) LED illuminator attached next to the IR camera of a base station illuminates all the room, and the terminal send their data to the base station by switching ON and OFF of the reflected IR beam. Intensity of reflected light differs with the position and the direction of the terminal, and sometimes the intensity of OFF signal at a certain condition is brighter than that of ON signal at another condition. To improve the communication quality, use of machine learning technique is a possibility of the solution. In this paper, we compare various machine learning techniques for the purpose of free space optical communication, and propose a new algorithm that improves the robustness of the data link. Evaluation using an actual free-space communication system is also described.

  9. SPACE COMMUNICATION AND THE MASS MEDIA. A UNESCO REPORT ON THE OCCASION OF THE 1963 SPACE COMMUNICATIONS CONFERENCE. REPORTS AND PAPERS ON MASS COMMUNICATION.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    THIS REPORT DEFINES AND ANALYZES POTENTIAL ASPECTS OF WORLDWIDE COMMUNICATION BY SATELLITE, LISTS TECHNICAL PROBLEMS, AND SUGGESTS USES OF SPACE COMMUNICATION TO PROMOTE EDUCATION, CULTURAL EXCHANGE, AND INFORMATION FLOW. IT IS AVAILABLE FOR $0.50 FROM NATIONAL DISTRIBUTORS OF UNESCO PUBLICATIONS, OR FROM UNESCO, PLACE DE FONTENDOY, PARIS-7E,…

  10. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  11. Overview of some projects of SNPS for global space communication

    International Nuclear Information System (INIS)

    Ivanov, E.; Ghitaykin, V.; Ionkin, V.; Dubinin, A.; Pyshko, A.

    2001-01-01

    In this presentation we focused on three variants of prospective concepts of SNPS. They are intended to solve tasks of global space communication (GSC) as nearest future tasks in space. Modern concepts of the application of power technology in space believe in using an onboard source of energy for maintenance of self-transportation of the vehicle into geostationary orbit (GSO). There are three more prospective systems as follows: gas cooled nuclear reactor with hybrid thermal engine and machine power converter; nuclear reactor cooled by liquid metal and with a thermoelectric power generating system; nuclear reactor with Li cooling and a thermionic and thermoelectric power generator on board. The choice of a concept must fit strong requirements such as: space nuclear power unit is aimed to be used in a powerful mission; space power unit must be able to maintain the dual - mode regime of vehicle operation (self - transportation and long life in geosynchronous orbit [GEO]); nuclear rector of unit must be safety and it must be designed in such a way that it will ensure minimum size of the complete system; the elements of the considered technology can be used for the creation of NPPI and with other sources of heat (for example, radioisotope); the degree of technical and technological readiness of units of the thermal and power circuit of installation is estimated to be high and is defined by a number of technological developments in air, space and nuclear branches; nuclear reactor and heat transfer equipment should work in a normal mode, which can be very reliably confirmed for other high-temperature nuclear systems. Considering these concepts we practically consider one of possible strategy of developing of complex system of nuclear power engineering. It is the strategy of step-by-step development of space engineering with real application of them in commercial, scientific and other powerful missions in the nearest and deep space. As starting point of this activity is

  12. An Introduction to Free-space Optical Communications

    Directory of Open Access Journals (Sweden)

    H. Henniger

    2010-06-01

    Full Text Available Over the last two decades free-space optical communication (FSO has become more and more interesting as an adjunct or alternative to radio frequency communication. This article gives an overview of the challenges a system designer has to consider while implementing an FSO system. Typical gains and losses along the path from the transmitter through the medium to the receiver are introduced in this article. Detailed discussions of these topics can be found in this special issue of the Radioengineering Journal.

  13. Distress detection, location, and communications using advanced space technology

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  14. Laser guide stars for optical free-space communications

    Science.gov (United States)

    Mata-Calvo, Ramon; Bonaccini Calia, Domenico; Barrios, Ricardo; Centrone, Mauro; Giggenbach, Dirk; Lombardi, Gianluca; Becker, Peter; Zayer, Igor

    2017-02-01

    The German Aerospace Center (DLR) and the European Southern Observatory (ESO) performed a measurement campaign together in April and July 2016 at Teide-Observatory (Tenerife), with the support of the European Space Agency (ESA), to investigate the use of laser guide stars (LGS) in ground to space optical communications. Atmospheric turbulence causes strong signal fluctuations in the uplink, due to scintillation and beam wander. In space communications, the use of the downlink channel as reference for pointing and for pre-distortion adaptive optics is limited by the size of the isokinetic and isoplanatic angle in relation to the required point-ahead angle. Pointing and phase errors due to the decorrelation between downward and upward beam due to the point-ahead angle may have a severe impact on the required transmit power and the stability of the communications link. LGSs provide a self-tailored reference to any optical ground-to-space link, independently of turbulence conditions and required point-ahead angle. In photon-starved links, typically in deep-space scenarios, LGSs allow dedicating all downlink received signal to communications purposes, increasing the available link margin. The scope of the joint DLR-ESO measurement campaign was, first, to measure the absolute value of the beam wander (uplink-tilt) using a LGS, taking a natural star as a reference, and, second, to characterize the decrease of correlation between uplink-tilt and downlink-tilt with respect to the angular separation between both sources. This paper describes the experiments performed during the measurement campaigns, providing an overview of the measured data and the first outcomes of the data post-processing.

  15. Distributed Space Missions for Earth System Monitoring

    CERN Document Server

    2013-01-01

    A key addition to Springer's Space Technology Library series, this edited volume features the work of dozens of authors and offers a wealth of perspectives on distributed Earth observation missions. In sum, it is an eloquent synthesis of the fullest possible range of current approaches to a fast-developing field characterized by growing membership of the 'space club' to include nations formerly regarded as part of the Third World. The volume's four discrete sections focus on the topic's various aspects, including the key theoretical and technical issues arising from the division of payloads onto different satellites. The first is devoted to analyzing distributed synthetic aperture radars, with bi- and multi-static radars receiving separate treatment. This is followed by a full discussion of relative dynamics, guidance, navigation and control. Here, the separate topics of design; establishment, maintenance and control; and measurements are developed with relative trajectory as a reference point, while the dis...

  16. Students attendance monitoring using near field communication technology

    OpenAIRE

    Stakėnas, Tautvydas

    2017-01-01

    Today, near field communication technology (NFC) is one of the most popular automatic identification technologies. There is a lot of research and development in this area trying to make as much use of this technology as possible, and in coming years many new applications and research areas will continue to appear. In this paper the author examines NFC technology application for student’s attendance monitoring. In the first part of the thesis NFC uses, application methods and security levels a...

  17. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  18. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  19. Geospace monitoring for space weather research and operation

    Directory of Open Access Journals (Sweden)

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  20. Geospace monitoring for space weather research and operation

    Science.gov (United States)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  1. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  2. Radio-wave propagation for space communications systems

    Science.gov (United States)

    Ippolito, L. J.

    1981-01-01

    The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.

  3. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  4. UniSat-5: a space-based optical system for space debris monitoring

    Science.gov (United States)

    Di Roberto, Riccardo; Cappelletti, Chantal

    2012-07-01

    Micro-satellite missions, thanks to the miniaturization process of electronic components, now have a broader range of applications. Gauss Group at School of Aerospace Engineering has been a pioneer in educational micro-satellites, namely with UNISAT and EDUSAT missions. Moreover it has been long involved in space debris related studies, such as optical observations as well as mitigation. A new project is under development for a compact digital imaging system. The purpose will be in situ observation of space debris on board Unisat-5 micro-satellite. One of the key elements of observing on orbit is that many atmospheric phenomena would be avoided, such as diffraction and EM absorption. Hence images would gain more contrast and solar spectral irradiance would be higher for the whole visible spectrum Earlier limitations of power and instrument size prevented the inclusion of these payloads in educational satellite missions. The system is composed of an optical tube, a camera, C band and S band transceivers and two antennas. The system is independent from the rest of the spacecraft. The optical tube is a Schmidt-Cassegrain reflector, and the magnitude limit is 13. The camera is equipped with a panchromatic 5Mpix sensor, capable of direct video streaming, as well as local storage of recorded images. The transceivers operate on ISM 2.4GHz and 5 GHz Wi-Fi bands, and they provide stand-alone communication capabilities to the payload, and Unisat-5 OBDH can switch between the two. Both transceivers are connected to their respective custom-designed patch antenna. The ground segment is constituted of a high gain antenna dish, which will use the same transceiver on board the spacecraft as the feed, in order to establish a TCP/IP wireless link. Every component of this system is a consumer grade product. Therefore price reduction of cutting edge imaging technology now allows the use of professional instruments, that combined with the new wireless technology developed for

  5. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  6. High-capacity Free-space Optical Communications with Orbital Angular Momentum

    Data.gov (United States)

    National Aeronautics and Space Administration — As the demand for high data returns from space science missions continues, significant improvements over the current radiofrequency (RF) communications architectures...

  7. Optimized autonomous space in-situ sensor web for volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  8. Development of the Free-space Optical Communications Analysis Software (FOCAS)

    Science.gov (United States)

    Jeganathan, M.; Mecherle, G.; Lesh, J.

    1998-01-01

    The Free-space Optical Communications Analysis Software (FOCAS) was developed at the Jet Propulsion Laboratory (JPL) to provide mission planners, systems engineers and communications engineers with an easy to use tool to analyze optical communications link.

  9. Health Monitoring System Based on Intra-Body Communication

    Science.gov (United States)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model

  10. Atmosphere and water quality monitoring on Space Station Freedom

    Science.gov (United States)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  11. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  12. Free-Space Quantum Communication with a Portable Quantum Memory

    Science.gov (United States)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  13. Intensity position modulation for free-space laser communication system

    Science.gov (United States)

    Jangjoo, Alireza; Faghihi, F.

    2004-12-01

    In this research a novel modulation technique for free-space laser communication system called Intensity Position Modulation (IPM) is carried out. According to TEM00 mode of a laser beam and by linear fitting on the Gaussian function as an approximation, the variation of linear part on the reverse biased pn photodiode produced alternating currents which contain the information. Here, no characteristic property of the beam as intensity or frequency is changed and only the beam position moves laterally. We demonstrated that in this method no bandwidth is required, so it is possible to reduce the background radiation noise by narrowband filtering of the carrier. The fidelity of the analog voice communication system which is made upon the IPM is satisfactory and we are able to transmit the audio signals up to 1Km.

  14. Applications of Microwave Photonics in Radio Astronomy and Space Communication

    Science.gov (United States)

    D'Addario, Larry R.; Shillue, William P.

    2006-01-01

    An overview of narrow band vs wide band signals is given. Topics discussed included signal transmission, reference distribution and photonic antenna metrology. Examples of VLA, ALMA, ATA and DSN arrays are given. . Arrays of small antennas have become more cost-effective than large antennas for achieving large total aperture or gain, both for astronomy and for communication. It is concluded that emerging applications involving arrays of many antennas require low-cost optical communication of both wide bandwidth and narrow bandwidth; development of round-trip correction schemes enables timing precision; and free-space laser beams with microwave modulation allow structural metrology with approx 100 micrometer precision over distances of 200 meters.

  15. Planets as background noise sources in free space optical communications

    Science.gov (United States)

    Katz, J.

    1986-01-01

    Background noise generated by planets is the dominant noise source in most deep space direct detection optical communications systems. Earlier approximate analyses of this problem are based on simplified blackbody calculations and can yield results that may be inaccurate by up to an order of magnitude. Various other factors that need to be taken into consideration, such as the phase angle and the actual spectral dependence of the planet albedo, in order to obtain a more accurate estimate of the noise magnitude are examined.

  16. Video semaphore decoding for free-space optical communication

    Science.gov (United States)

    Last, Matthew; Fisher, Brian; Ezekwe, Chinwuba; Hubert, Sean M.; Patel, Sheetal; Hollar, Seth; Leibowitz, Brian S.; Pister, Kristofer S. J.

    2001-04-01

    Using teal-time image processing we have demonstrated a low bit-rate free-space optical communication system at a range of more than 20km with an average optical transmission power of less than 2mW. The transmitter is an autonomous one cubic inch microprocessor-controlled sensor node with a laser diode output. The receiver is a standard CCD camera with a 1-inch aperture lens, and both hardware and software implementations of the video semaphore decoding algorithm. With this system sensor data can be reliably transmitted 21 km form San Francisco to Berkeley.

  17. Space station communications and tracking equipment management/control system

    Science.gov (United States)

    Kapell, M. H.; Seyl, J. W.

    1982-01-01

    Design details of a communications and tracking (C and T) local area network and the distribution system requirements for the prospective space station are described. The hardware will be constructed of LRUs, including those for baseband, RF, and antenna subsystems. It is noted that the C and T equipment must be routed throughout the station to accommodate growth of the station. Configurations of the C and T modules will therefore be dependent on the function of the space station module where they are located. A block diagram is provided of a sample C and T hardware distribution configuration. A topology and protocol will be needed to accommodate new terminals, wide bandwidths, bidirectional message transmission, and distributed functioning. Consideration will be given to collisions occurring in the data transmission channels.

  18. Challenges for deep space communications in the 1990s

    Science.gov (United States)

    Dumas, Larry N.; Hornstein, Robert M.

    1991-01-01

    The discussion of NASA's Deep Space Network (DSN) examines the evolving character of aerospace missions and the corresponding changes in the DSN architecture. Deep space missions are reviewed, and it is noted that the two 34-m and the 70-m antenna subnets of the DSN are heavily loaded and more use is expected. High operational workload and the challenge of network cross-support are the design drivers for a flexible DSN architecture configuration. Incorporated in the design are antenna arraying for aperture augmentation, beam-waveguide antennas for frequency agility, and connectivity with non-DSN sites for cross-support. Compatibility between spacecraft and ground-facility designs is important for establishing common international standards of communication and data-system specification.

  19. Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.

    2008-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be

  20. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  1. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    Science.gov (United States)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  2. Essential Biodiversity Variables: A framework for communication between the biodiversity community and space agencies

    Science.gov (United States)

    Leidner, A. K.; Skidmore, A. K.; Turner, W. W.; Geller, G. N.

    2017-12-01

    The biodiversity community is working towards developing a consensus on a set of Essential Biodiversity Variables (EBVs) that can be used to measure and monitor biodiversity change over time. These EBVs will inform research, modeling, policy, and assessment efforts. The synoptic coverage provided by satellite data make remote sensing a particularly important observation tool to inform many EBVs. Biodiversity is a relatively new subject matter for space agencies, and thus the definition, description, and requirements of EBVs with a significant remote sensing component can foster ways for the biodiversity community to clearly and concisely communicate observational needs to space agencies and the Committee on Earth Observing Satellites (CEOS, the international coordinating body for civilian space agencies). Here, we present an overview of EBVs with a particular emphasis on those for which remote sensing will play a significant role and also report on the results of recent workshops to prioritize and refine EBVs. Our goal is to provide a framework for the biodiversity community to coalesce around a set of observational needs to convey to space agencies. Compared to many physical science disciplines, the biodiversity community represents a wide range of sub-disciplines and organizations (academia, non-governmental organizations, research institutes, national and local natural resource management agencies, etc.), which creates additional challenges when communicating needs to space agencies unfamiliar with the topic. EBVs thus offer a communication pathway that could increase awareness within space agencies of the uses of remote sensing for biodiversity research and applications, which in turn could foster greater use of remote sensing in the broader biodiversity community.

  3. Superconducting Nanowire Single Photon Detectors for High-Data-Rate Deep-Space Optical Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — High data rate deep space optical communication (DSOC) links for manned and unmanned space exploration have been identified by NASA as a critical future capability,...

  4. Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring

    Science.gov (United States)

    Su, Yang

    This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross

  5. Environmental monitors in the Midcourse Space Experiments (MSX)

    Science.gov (United States)

    Uy, O. M.

    1993-01-01

    The Midcourse Space Experiment (MSX) is an SDIO sponsored space based sensor experiment with a full complement of optical sensors. Because of the possible deleterious effect of both molecular and particulate contamination on these sensors, a suite of environmental monitoring instruments are also being flown with the spacecraft. These instruments are the Total Pressure Sensor based on the cold-cathode gauge, a quadrupole mass spectrometer, a Bennett-type ion mass spectrometer, a cryogenic quartz crystal microbalance (QCM), four temperature-controlled QCM's, and a Xenon and Krypton Flash Lamp Experiment. These instruments have been fully space-qualified, are compact and low cost, and are possible candidate sensors for near-term planetary and atmospheric monitoring. The philosophy adopted during design and fabrication, calibration and ground testing, and modeling will be discussed .

  6. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  7. Quantum cryptography for secure free-space communications

    International Nuclear Information System (INIS)

    Hughes, R.J.; Buttler, W.T.; Kwiat, P.G.; Lamoreaux, S.K.; Luther, G.G.; Morgan, G.L.; Nordholt, J.E.; Peterson, C.G.

    1999-01-01

    The secure distribution of the secret random bit sequences known as key material, is an essential precursor to their use for the encryption and decryption of confidential communications. Quantum cryptography is a new technique for secure key distribution with single-photon transmissions: Heisenberg's uncertainty principle ensures that an adversary can neither successfully tap the key transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). The authors have developed experimental quantum cryptography systems based on the transmission of non-orthogonal photon polarization states to generate shared key material over line-of-sight optical links. Key material is built up using the transmission of a single-photon per bit of an initial secret random sequence. A quantum-mechanically random subset of this sequence is identified, becoming the key material after a data reconciliation stage with the sender. The authors have developed and tested a free-space quantum key distribution (QKD) system over an outdoor optical path of ∼1 km at Los Alamos National Laboratory under nighttime conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, they examine the feasibility of surface to satellite QKD

  8. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  9. Monitoring of offshore wind farm using reliable communication

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.G.; Gajranib, K.; Bhargavac, A. [Rajasthan Technical Univ.. Dept. of Electrical Engineering, Kota (India)

    2012-07-01

    Due to rapid exhaustion of fossil fuels, new renewable technologies for electricity generation are insisted upon to meet the continuous growing demand of energy all across the globe. Wind energy as a green energy is a favorable option, among other available renewable sources. The offshore wind farm capacity is growing rapidly, but it's uncertain and intermittent nature offers great challenges to power system engineers. The cost of repair and down time, results into extensive damage and reduced profitability. This necessitates the requirement of fast and reliable communication network for the monitoring and controlling of the wind farm. In this paper, we have proposed the communication network for medium offshore wind farm (160MW). The wind farm consists of four clusters; each cluster comprises of 10 Wind Turbines (WTs), each of capacity 4MW. A WT can be represented by nine logical nodes according to IEC-61400-25 standard. The functions of logical nodes are modeled in terms of analogue /status/control information. The wind farm has been modeled in OPNET modeler and the performance of the communication network is evaluated in terms of End to End delay and packet drop, using Synchronous Optical NETwork (SONET) standard. (Author)

  10. Monitoring of offshore wind farm using reliable communication

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K G; Gajranib, K; Bhargavac, A [Rajasthan Technical Univ. Dept. of Electrical Engineering, Kota (India)

    2012-07-01

    Due to rapid exhaustion of fossil fuels, new renewable technologies for electricity generation are insisted upon to meet the continuous growing demand of energy all across the globe. Wind energy as a green energy is a favorable option, among other available renewable sources. The offshore wind farm capacity is growing rapidly, but it's uncertain and intermittent nature offers great challenges to power system engineers. The cost of repair and down time, results into extensive damage and reduced profitability. This necessitates the requirement of fast and reliable communication network for the monitoring and controlling of the wind farm. In this paper, we have proposed the communication network for medium offshore wind farm (160MW). The wind farm consists of four clusters; each cluster comprises of 10 Wind Turbines (WTs), each of capacity 4MW. A WT can be represented by nine logical nodes according to IEC-61400-25 standard. The functions of logical nodes are modeled in terms of analogue /status/control information. The wind farm has been modeled in OPNET modeler and the performance of the communication network is evaluated in terms of End to End delay and packet drop, using Synchronous Optical NETwork (SONET) standard. (Author)

  11. Secure space-to-space interferometric communications and its nexus to the physics of quantum entanglement

    Science.gov (United States)

    Duarte, F. J.

    2016-12-01

    The history of the probability amplitude equation | ψ > = ( | x , y > - | y , x > ) applicable to quanta pairs, propagating in different directions with entangled polarizations, is reviewed and traced back to the 1947-1949 period. The interferometric Dirac foundations common to | ψ > = ( | x , y > - | y , x > ) and the generalized N-slit interferometric equation, for indistinguishable quanta, are also described. The results from a series of experiments on N-slit laser interferometers, with intra interferometric propagation paths up to 527 m, are reviewed. Particular attention is given to explain the generation of interferometric characters, for secure space-to-space communications, which immediately collapse on attempts of interception. The design of a low divergence N-slit laser interferometer for low Earth orbit-low Earth orbit (LEO-LEO), and LEO-geostationary Earth orbit (LEO-GEO), secure interferometric communications is described and a weight assessment is provided.

  12. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    Science.gov (United States)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  13. Research on Retro-reflecting Modulation in Space Optical Communication System

    Science.gov (United States)

    Zhu, Yifeng; Wang, Guannan

    2018-01-01

    Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.

  14. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  15. General Purpose Data-Driven Monitoring for Space Operations

    Science.gov (United States)

    Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.

    2009-01-01

    As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault

  16. The communications in early warning network for radiation monitoring

    International Nuclear Information System (INIS)

    Oyoun, M.B.; Al-Hussin, Mohamad; Fares, Adnan; Al-Oulabi, Yasser; Othman, Ibrahim

    1992-07-01

    The objectives of early warning network are: The determination of gamma radiation (background) levels in air which depend on location and time, evaluation of any situation resulting from radiation or nuclear accident out of boarder, and after that reporting the emergency situation to relevant authorities on the national and international levels. Monitoring stations were installed using Gm tubes to cover boarder lines from south to north and east to west as follows: Damascus, Darra, Latakia, Tartous, Aleppo, Kamishly, Ragaa, and Qunitra. The following modes of communication: Telephone line, leased line, direct connection, and Syrian data network were used in the Syrian early network. This project was carried out in cooperation with IAEA under project no. RER/9/003. (author). 22 figs., 1 tab

  17. European Communication Monitor: Current developments, issues and tendencies of the professional practice of public relations in Europe

    NARCIS (Netherlands)

    Moreno, A.; Zerfass, A.; Tench, R.; Verčič, D.; Verhoeven, P.

    2009-01-01

    The European Communication Monitor (ECM) research explores the current developments for communications disciplines, practices and instruments. It is an extensive research project to monitor trends in communication management, analyse the changing framework for the profession driven by European

  18. Precoded generalized space shift keying for indoor visible light communications

    KAUST Repository

    Kadampot, Ishaque Ashar

    2014-09-01

    We consider a visible light communication system with 2 transmit light emitting diodes (LED) and nr receive photodiodes. An optical generalized space shift keying modulation scheme is considered for the transmission of bits where each LED can be either in ON state or OFF state at a given time. With this set-up, we design in this paper a precoder for this modulation scheme given the channel state information to improve the bit error rate performance of the system. As conventional precoding techniques for radio frequency at the transmitter cannot be applied to the optical intensity channel, we formulate an optimization problem with constraints for this specific channel. An analytical solution for the precoder is derived and the system performance is compared with and without precoder.

  19. Precision time distribution within a deep space communications complex

    Science.gov (United States)

    Curtright, J. B.

    1972-01-01

    The Precision Time Distribution System (PTDS) at the Golstone Deep Space Communications Complex is a practical application of existing technology to the solution of a local problem. The problem was to synchronize four station timing systems to a master source with a relative accuracy consistently and significantly better than 10 microseconds. The solution involved combining a precision timing source, an automatic error detection assembly and a microwave distribution network into an operational system. Upon activation of the completed PTDS two years ago, synchronization accuracy at Goldstone (two station relative) was improved by an order of magnitude. It is felt that the validation of the PTDS mechanization is now completed. Other facilities which have site dispersion and synchronization accuracy requirements similar to Goldstone may find the PTDS mechanization useful in solving their problem. At present, the two station relative synchronization accuracy at Goldstone is better than one microsecond.

  20. An Array of Optical Receivers for Deep-Space Communications

    Science.gov (United States)

    Vilnrotter, Chi-Wung; Srinivasan, Meera; Andrews, Kenneth

    2007-01-01

    An array of small optical receivers is proposed as an alternative to a single large optical receiver for high-data-rate communications in NASA s Deep Space Network (DSN). Because the telescope for a single receiver capable of satisfying DSN requirements must be greater than 10 m in diameter, the design, building, and testing of the telescope would be very difficult and expensive. The proposed array would utilize commercially available telescopes of 1-m or smaller diameter and, therefore, could be developed and verified with considerably less difficulty and expense. The essential difference between a single-aperture optical-communications receiver and an optical-array receiver is that a single-aperture receiver focuses all of the light energy it collects onto the surface of an optical detector, whereas an array receiver focuses portions of the total collected energy onto separate detectors, optically detects each fractional energy component, then combines the electrical signal from the array of detector outputs to form the observable, or "decision statistic," used to decode the transmitted data. A conceptual block diagram identifying the key components of the optical-array receiver suitable for deep-space telemetry reception is shown in the figure. The most conspicuous feature of the receiver is the large number of small- to medium-size telescopes, with individual apertures and number of telescopes selected to make up the desired total collecting area. This array of telescopes is envisioned to be fully computer- controlled via the user interface and prediction-driven to achieve rough pointing and tracking of the desired spacecraft. Fine-pointing and tracking functions then take over to keep each telescope pointed toward the source, despite imperfect pointing predictions, telescope-drive errors, and vibration caused by wind.

  1. Fast QC-LDPC code for free space optical communication

    Science.gov (United States)

    Wang, Jin; Zhang, Qi; Udeh, Chinonso Paschal; Wu, Rangzhong

    2017-02-01

    Free Space Optical (FSO) Communication systems use the atmosphere as a propagation medium. Hence the atmospheric turbulence effects lead to multiplicative noise related with signal intensity. In order to suppress the signal fading induced by multiplicative noise, we propose a fast Quasi-Cyclic (QC) Low-Density Parity-Check (LDPC) code for FSO Communication systems. As a linear block code based on sparse matrix, the performances of QC-LDPC is extremely near to the Shannon limit. Currently, the studies on LDPC code in FSO Communications is mainly focused on Gauss-channel and Rayleigh-channel, respectively. In this study, the LDPC code design over atmospheric turbulence channel which is nether Gauss-channel nor Rayleigh-channel is closer to the practical situation. Based on the characteristics of atmospheric channel, which is modeled as logarithmic-normal distribution and K-distribution, we designed a special QC-LDPC code, and deduced the log-likelihood ratio (LLR). An irregular QC-LDPC code for fast coding, of which the rates are variable, is proposed in this paper. The proposed code achieves excellent performance of LDPC codes and can present the characteristics of high efficiency in low rate, stable in high rate and less number of iteration. The result of belief propagation (BP) decoding shows that the bit error rate (BER) obviously reduced as the Signal-to-Noise Ratio (SNR) increased. Therefore, the LDPC channel coding technology can effectively improve the performance of FSO. At the same time, the BER, after decoding reduces with the increase of SNR arbitrarily, and not having error limitation platform phenomenon with error rate slowing down.

  2. The Global Communication Infrastructure of the International Monitoring System

    Science.gov (United States)

    Lastowka, L.; Gray, A.; Anichenko, A.

    2007-05-01

    The Global Communications Infrastructure (GCI) employs 6 satellites in various frequency bands distributed around the globe. Communications with the PTS (Provisional Technical Secretariat) in Vienna, Austria are achieved through VSAT technologies, international leased data circuits and Virtual Private Network (VPN) connections over the Internet. To date, 210 independent VSAT circuits have been connected to Vienna as well as special circuits connecting to the Antarctic and to independent sub-networks. Data volumes from all technologies currently reach 8 Gigabytes per day. The first level of support and a 24/7 help desk remains with the GCI contractor, but performance is monitored actively by the PTS/GCI operations team. GCI operations are being progressively introduced into the PTS operations centre. An Operations centre fully integrated with the GCI segment of the IMS network will ensure a more focused response to incidents and will maximize the availability of the IMS network. Existing trouble tickets systems are being merged to ensure the commission manages GCI incidents in the context of the IMS as a whole. A focus on a single source of data for GCI network performance has enabled reporting systems to be developed which allow for improved and automated reports. The contracted availability for each individual virtual circuit is 99.5% and this performance is regularly reviewed on a monthly basis

  3. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  4. The USGS Geomagnetism Program and its role in Space-Weather Monitoring

    Science.gov (United States)

    Love, Jeffrey J.; Finn, Carol A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.

  5. Atmosphere composition monitor for space station and advanced missions application

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions

  6. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  7. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  8. 2017 International Conference on Space Science and Communication

    Science.gov (United States)

    2017-05-01

    Table of Content Preface 2017 International Conference on Space Science and CommunicationSpace Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration & Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  9. 2017 International Conference on Space Science and Communication

    International Nuclear Information System (INIS)

    2017-01-01

    Table of Content Preface 2017 International Conference on Space Science and CommunicationSpace Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration and Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  10. Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly...

  11. High-Efficiency, High-Power Laser Transmitter for Deep-Space Communication, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — There is demand for vastly improved deep space satellite communications links. As data rates dramatically increase due to new sensor technologies and the desire to...

  12. Highly Sensitive Photon Counting Detectors for Deep Space Optical Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of a photon-counting photodetector is proposed to advance the state-of the-art in deep space optical communications technology. The proposed detector...

  13. Programmable High-Rate Multi-Mission Receiver for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current and upcoming NASA space links require both highly reliable low-rate communications links supporting critical TT&C, ranging and voice services and highly...

  14. European Communication Monitor 2009: an institutionalized view of how public relations and communication management professionals face the economic and media crises in Europe

    NARCIS (Netherlands)

    Moreno, Á.; Verhoeven, P.; Tench, R.; Zerfass, A.

    2010-01-01

    The European Communication Monitor (ECM) is an extensive longitudinal research project to monitor trends in public relations and communication management and analyze the changing framework for the profession in Europe. The 2009 ECM edition identifies the main characteristics of individual

  15. Status and development trends of the National Space Monitoring System of the Republic of Kazakhstan

    International Nuclear Information System (INIS)

    Sultangazin, U.M.; Spivak, L.F.

    2005-01-01

    Principles of construction and architecture of space monitoring of Kazakhstan are presented, structure and specifications of space and ground segments are described, top-priority tasks of monitoring are determined. (author)

  16. Free-space laser communication technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 11, 12, 1988

    Science.gov (United States)

    Koepf, Gerhard A.; Begley, David L.

    1988-01-01

    The present conference discusses topics in free-space laser communications, laser link characteristics, satellite laser communication systems, optoelectronic components for laser communications, and space laser subsystem technologies. Attention is given to Space Station-based deep-space communication experiments, the application of intersatellite links to operational satellite systems, high-power 0.87 micron channel substrate planar lasers for spaceborne communications, a ground experiment using a CO2 laser transceiver for free-space communications, studies of laser ranging to the TOPEX satellite, diffraction-limited tracking for space communications, and the compact implementation of a real-time, acoustooptic SAR processor.

  17. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  18. Quantum Limits of Space-to-Ground Optical Communications

    Science.gov (United States)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  19. Alamos: An International Collaboration to Provide a Space Based Environmental Monitoring Solution for the Deep Space Network

    Science.gov (United States)

    Kennedy, S. O.; Dunn, A.; Lecomte, J.; Buchheim, K.; Johansson, E.; Berger, T.

    2018-02-01

    This abstract proposes the advantages of an externally mounted instrument in support of the human physiology, space biology, and human health and performance key science area. Alamos provides Space-Based Environmental Monitoring capabilities.

  20. 76 FR 75523 - Vessel Monitoring Systems; Approved Mobile Transmitting Units and Communications Service...

    Science.gov (United States)

    2011-12-02

    ... Monitoring Systems; Approved Mobile Transmitting Units and Communications Service Providers for Use in... relevant features of the enhanced mobile transmitting unit (E-MTU) VMS and communications service providers... with the Orbcomm mobile communications provider service. Skymate can be reached at 866-SKYMATE and...

  1. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    Science.gov (United States)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  2. Modular space station, phase B extension. Information management advanced development. Volume 2: Communications terminal breadboard

    Science.gov (United States)

    Gerber, C. R.

    1972-01-01

    The design and development of the communications terminal breadboard for the modular space station are discussed. The subjects presented are: (1) history of communications terminal breadboard, (2) requirements analysis, (3) technology goals in terminal design, and (4) communications terminal board integration tests.

  3. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    Science.gov (United States)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  4. Application of spinal code for performance improvement in free-space optical communications

    Science.gov (United States)

    Saiki, Naoya; Okamoto, Eiji; Takenaka, Hideki; Toyoshima, Morio

    2017-09-01

    In recent years, the demand for high-capacity communication has grown, and fiber-optic transmission is being used in wired communications to meet this demand. Similarly, free-space optics (FSO), which is an optical wireless communication technology that uses laser light, has attracted much attention and has been considered as a suitable alternative to satisfy this demand in wireless communications. Free-space optical communication uses a hundred THz frequency band and allows for high-speed and radio-regulation free transmission, which may provide a solution for the current shortage of radio frequency bands.

  5. Nanobarcode gene expression monitoring system for potential miniaturized space applications

    Science.gov (United States)

    Ruan, Weiming; Eastman, P. Scott; Cooke, Patrick A.; Park, Jennifer S.; Chu, Julia S. F.; Gray, Joe W.; Li, Song; Chen, Fanqing Frank

    Manned mission to space has been threatened by various cosmos risks including radiation, mirogravity, vacuum, confinement, etc., which may cause genetic variations of astronauts and eventually lead to damages of their health. Thus, the development of small biomedical devices, which can monitor astronaut gene expression changes, is useful for future long-term space missions. Using magnetic microbeads packed with nanocrystal quantum dots at controlled ratios, we were able to generate highly multiplexed nanobarcodes, which can encode a flexible panel of genes. Also, by using a reporter quantum dot, this nanobarcode platform can monitor and quantify gene expression level with improved speed and sensitivity. As a comparison, we studied TGF-β1 induced transcription changes in human bone marrow mesenchymal stem cells with both the nanobarcode microbead system and the Affymetrix GeneChip ® HTA system, which is currently considered as the industrial standard. Though using only 1/20 of the sample RNA, the nanobarcode system showed sensitivity equivalent to Affymetrix GeneChip ® system. The coefficient of variation, dynamic range, and accuracy of the nanobarcodes measurement is equivalent to that of the GeneChip ® HTA system. Therefore, this newly invented nanobarcode microbead platform is thought to be sensitive, flexible, cost-effective and accurate in a level equivalent to the conventional methods. As an extension of the use of this new platform, spacecrafts may carry this miniaturized system as a diagnostic tool for the astronauts.

  6. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    Directory of Open Access Journals (Sweden)

    Michael J. Krasowski

    2013-01-01

    Full Text Available The Communications Interface Board (CIB is an improved communications architecture that was demonstrated on the International Space Station (ISS. ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  7. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  8. An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring

    Science.gov (United States)

    Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.

    2006-12-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.

  9. SPACE RADIATION ENVIRONMENT MONITORED BY KITSAT-1 AND KITSAT-2

    Directory of Open Access Journals (Sweden)

    Y. H. Shin

    1996-06-01

    Full Text Available The results of space radiation experiments carried out on board the first two Korean technology demonstration microsatellites are presented in this paper. The first satellite, KITSAT-1, launched in August 1992, carries a radiation monitoring payload called cosmic ray experiment(CRE for characterizing the low-earth orbit(LEO radiation environment. The CRE consists of two sub-systems: the cosmic particle experiment (CPE and the total dose experiment(TDE. In addition, single event upset(SEUrates of the program memory and the RAM disk are also monitored. The second satellite, KITSAT-2, launched in September 1993, carries a newly developed 32-bit on-board computer(OBC, KASCOM(KAIST satellite computer in addition to OBC186. SEUs ocurred in the KASCOM, as well as in the program memory and RAM disk memory, have been monitored since the beginning of the satellite operation. These two satellites, which are very similar in structures but different in orbits, provide a unique opportunity to study the effects of the radiation environment characterized by the orbit.

  10. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  11. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    Science.gov (United States)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  12. Free Space Optics – Monitoring Setup for Experimental Link

    Directory of Open Access Journals (Sweden)

    Ján Tóth

    2015-12-01

    Full Text Available This paper deals with advanced Free Space Optics communication technology. Two FSO nodes are needed in order to make a connection. Laser diodes are used as light sources. Simple OOK modulation is involved in this technology. FSO system offers multiple advantages indeed. However, a direct visibility is required in order to set up a communication link. This fact yields perhaps the most significant weakness of this technology. Obviously, there is no a chance to fight the weather phenomena like fog, heavy rain, dust and many other particles which are naturally present in the atmosphere. That’s why there is a key task to find a suitable solution to keep FSO link working with high reliability and availability. It turns out that it’s necessary to have knowledge about weather situation when FSO link operates (liquid water content - LWC, geographical location, particle size distribution, average particle diameter, temperature, humidity, wind conditions, pressure and many other variable weather parameters. It’s obvious that having most of mentioned parameter’s values stored in database (implicitly in charts would be really beneficial. This paper presents some of mentioned indicators continuously gathered from several sensors located close to one of FSO nodes.

  13. An Ultrasonic Wireless Sensor Network for Data Communication and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical Structural Health Monitoring (SHM) uses embedded ultrasonic transducers exclusively for non-destructive evaluation (NDE) purposes, whereas data transfer is...

  14. Free Space Optical Communication in the Military Environment

    Science.gov (United States)

    2014-09-01

    Charles River [6]. Even much earlier than Paul Revere’s ride, optical communication had developed into the semaphore or optical telegraph. The...forms of basic optical communication that are still commonplace today include semaphore flags and signal lamps utilized by navies around the world

  15. Space-Time Code Designs for Broadband Wireless Communications

    National Research Council Canada - National Science Library

    Xia, Xiang-Gen

    2005-01-01

    The goal of this research is to design new space AND time codes, such as complex orthogonal space AND time block codes with rate above 1/2 from complex orthogonal designs for QAM, PSK, and CPM signals...

  16. AI mass spectrometers for space shuttle health monitoring

    Science.gov (United States)

    Adams, F. W.

    1991-01-01

    The facility Hazardous Gas Detection System (HGDS) at Kennedy Space Center (KSC) is a mass spectrometer based gas analyzer. Two instruments make up the HGDS, which is installed in a prime/backup arrangement, with the option of using both analyzers on the same sample line, or on two different lines simultaneously. It is used for monitoring the Shuttle during fuel loading, countdown, and drainback, if necessary. The use of complex instruments, operated over many shifts, has caused problems in tracking the status of the ground support equipment (GSE) and the vehicle. A requirement for overall system reliability has been a major force in the development of Shuttle GSE, and is the ultimate driver in the choice to pursue artificial intelligence (AI) techniques for Shuttle and Advanced Launch System (ALS) mass spectrometer systems. Shuttle applications of AI are detailed.

  17. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  18. Iris Transponder-Communications and Navigation for Deep Space

    Science.gov (United States)

    Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.

    2014-01-01

    The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.

  19. Monitoring the change of coastal zones from space

    Science.gov (United States)

    Cazenave, A. A.; Le Cozannet, G.; Benveniste, J.; Woodworth, P. L.

    2017-12-01

    The world's coastal zones, where an important fraction of the world population is currently living, are under serious threat because of coastal erosion, cyclones, storms, and salinization of estuaries and coastal aquifers. In the future, these hazards are expected to increase due to the combined effects of sea level rise, climate change, human activities and population increase. The response of coastal environments to natural and anthropogenic forcing factors (including climate change) depends on the characteristics of the forcing agents, as well as on the internal properties of the coastal systems, that remain poorly known and mostly un-surveyed at global scale. To better understand changes affecting coastal zones and to provide useful information to decision makers, various types of observations with global coverage need to be collected and analysed. Observations from space appear as an important complement to existing in situ observing systems (e.g., regional tide gauge networks). In this presentation, we discuss the benefit of systematic coastal monitoring from space, addressing both observations of forcing agents and of the coastal response. We highlight the need for a global coastal sea level data set based on retracked nadir altimetry missions and new SAR technology.

  20. A Study for Optimum Space-to-Ground Communication Concept for CubeSat and SmallSat Platforms

    Data.gov (United States)

    National Aeronautics and Space Administration — This study is to explore the communication architecture for future space-to-ground CubeSat/SmallSat communication, through simulations, analyses, and identifying...

  1. Space Tweetup - from a participant to a Mars Tweetup organizer and a new format of space communication

    Science.gov (United States)

    Haider, O.; Groemer, G.

    2014-01-01

    In September 2011, the European Space Agency (ESA) and the German Space Agency (DLR) organized the first European SpaceTweetup during the German Aerospace day. One of the authors was one of 60 participants at this SpaceTweetup in Cologne and experienced the concept of a Tweetup and the engagement of the participants from the inside view. Building upon this experience, the Austrian Space Forum (OeWF) organized the first Austrian MarsTweetup during the “Dachstein Mars analog simulation”. Between 27 Apr,2001 and May,2012, a five day Mars simulation was conducted by the Austrian Space Forum and international research partners at the Giant Ice caves at the Dachstein region in Austria. During this field test, the Aouda.X spacesuit simulator and selected geophysical and life-science related experiments were conducted. In this paper we outline the potential and limitations of social media and how to engage the general public to participate and communicate about space projects through their own experience. We show examples of material SpaceTweetup participants produced e.g. hundreds of tweets during the actual event, blog entries, photo galleries and how space communication can benefit from it. Our considerations on organizing a SpaceTweetup are complemented with a section on lessons learned.

  2. URBAN SPRAWL MODELING, AIR QUALITY MONITORING AND RISK COMMUNICATION: THE NORTHEAST OHIO PROJECT

    Science.gov (United States)

    The Northeast Ohio Urban Sprawl, Air Quality Monitoring, and Communications Project (hereafter called the Northeast Ohio Project) provides local environmental and health information useful to residents, local officials, community planners, and others in a 15 county region in the ...

  3. Fire monitoring from space: from research to operation

    Science.gov (United States)

    Pergola, Nicola; Filizzola, Carolina; Corrado, Rosita; Coviello, Irina; lacava, Teodosio; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Tramutoli, Valerio

    2013-04-01

    Each summer fires rage through European forests, burning hundreds of thousands of hectares per year, as a result of the many (up to 60000) forest fires that usually occur annually in Europe. Fires can threaten public health and safety, destroy property and cause economic damages. Despite of their medium extension (the average burnt area is less than 6 ha), much smaller if compared with other regions like the USA and Canada, the number of simultaneous active fires in Europe can be very high, fomented by weather conditions that, especially in summer times and for countries of South Europe, are particularly favourable to a rapid and dramatic development of flames. Fires still are not only a social problem, but also an environmental emergency, producing a continuous impoverishment of forests and possibly indirectly triggering other natural hazards (e.g. making slopes, without the trees action, more prone to landslides). Additionally, there is a general concern about the loss of biodiversity and the contribution to land degradation that fires may cause. Earth Observation satellite systems have been largely tested for fire detection and monitoring from space. Their spectral capability, synoptic view and revisit times can offer an added value in the operational use not only in real time, during fires fighting activities, but also in near-real or delay time during the phases of risk management and mitigation. However, the practice of an actual operational use of satellite products by end-users is still not usual at European level. This work is based on the experience carried out jointly by CNR-IMAA and the National Civil Protection Department (DPC), in the framework of a five-year agreement in which the operational use of an Earth observation satellite system for fires spotting and monitoring is tested. Satellite-based products, developed not only for detecting fires but also for continuously monitoring their evolution in time domain, have been provided to Civil Protection

  4. Study on Communication Methods for Electric Power High-voltage Equipment Monitoring System

    Directory of Open Access Journals (Sweden)

    Jia Yu Chen

    2018-02-01

    Full Text Available Real-time monitoring of high-voltage equipment in substations is beneficial for early detection of faults. The use of wireless sensor networks to build monitoring system is an effective way, but the data collection is a difficult task. The author introduces a real-time monitoring system based on ZIGBEE and mobile communication technology. The system includes multiple monitoring points and terminal platforms. Each monitoring point consists of a number of sensor nodes to form a ZIGBEE network, detecting relevant parameters, coordinator node data collected one by one, known as linear transmission, and finally to the monitoring platform through the mobile communication network. This paper presents a fusion algorithm for monitoring cell data acquisition to reduce the amount of data uploaded to the base station. In addition, multi-hop routing algorithm based on opportunistic routing is proposed to balance network energy and improve network transmission rate and efficiency.

  5. Sender’s Self-Monitoring Traits: Conducive Factors Affecting Interpersonal Communication among Turkish University Students

    OpenAIRE

    Sütcü, Cem Sefa; Algül, And; Uralman, N Hanzade

    2015-01-01

    Self-monitoring researches show that high self-monitoring individuals have not only ability to self-disclosure but also have ability to facilitate others’ disclosure. The aim of this paper is to define this conducive factors understanding which communication skills of university students in Turkey facilitate others’ disclosure and create dialogic communication. In this study, 24 questions have been directed at participants, in order to make a determination in relation to the conducive skills ...

  6. Characterization of the Marine Atmosphere for Free-Space Optical Communication

    National Research Council Canada - National Science Library

    Thomas, Linda M. Wasiczko; Moore, Christopher I; Burris, Harris R; Suite, Michele; Stell, Mena; Murphy, James; Gilbreath, G. C; Rabinovich, William; Scharpf, William

    2006-01-01

    The Chesapeake Bay Detachment of the Naval Research Laboratory (NRL-CBD) provides an ideal environment for characterizing the effects of the marine atmosphere on free space optical communication links...

  7. Communications Relay and Human-Assisted Sample Return from the Deep Space Gateway

    Science.gov (United States)

    Cichan, T.; Hopkins, J. B.; Bierhaus, B.; Murrow, D. W.

    2018-02-01

    The Deep Space Gateway can enable or enhance exploration of the lunar surface through two capabilities: 1. communications relay, opening up access to the lunar farside, and 2. sample return, enhancing the ability to return large sample masses.

  8. On the performance of free-space optical communication systems with multiuser diversity

    KAUST Repository

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD

  9. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  10. Key issues of public relations of Europe: findings from the European Communication Monitor 2007-2014

    NARCIS (Netherlands)

    Verčič, D.; Verhoeven, P.; Zerfass, A.

    2014-01-01

    European Communication Monitor is the largest longitudinal research project in public relations practice in the world. Data collected annually from 2007 to 2014 show that practitioners perceive five issues as the most important for their work: linking business strategy and communication, coping with

  11. 75 FR 63445 - Vessel Monitoring Systems; Approved Mobile Transmitting Units and Communications Service...

    Science.gov (United States)

    2010-10-15

    ... Monitoring Systems; Approved Mobile Transmitting Units and Communications Service Providers for Use in the... features of the VMS. ADDRESSES: To obtain copies of the list of NOAA-approved VMS mobile transmitting units and NOAA-approved VMS communications service providers, please contact the VMS Support Center at...

  12. Preliminary results of a test of a longitudinal phase-space monitor

    International Nuclear Information System (INIS)

    Kikutani, Eiji; Funakoshi, Yoshihiro; Kawamoto, Takashi; Mimashi, Toshihiro

    1994-01-01

    A prototype of a longitudinal phase-space monitor has been developed in TRISTAN Main Ring at KEK. The principle of the monitor and its basic components are explained. Also a result of a preliminary beam test is given. (author)

  13. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  14. Space Nuclear Power Public and Stakeholder Risk Communication

    Science.gov (United States)

    Dawson, Sandra M.; Sklar, Maria

    2005-01-01

    The 1986 Challenger accident coupled with the Chernobyl nuclear reactor accident increased public concern about the safety of spacecraft using nuclear technology. While three nuclear powered spacecraft had been launched before 1986 with little public interest, future nuclear powered missions would see significantly more public concern and require NASA to increase its efforts to communicate mission risks to the public. In 1987 a separate risk communication area within the Launch Approval Planning Group of the Jet Propulsion Laboratory was created to address public concern about the health, environmental, and safety risks of NASA missions. The lessons learned from the risk communication strategies developed for the nuclear powered Galileo, Ulysses, and Cassini missions are reviewed in this paper and recommendations are given as to how these lessons can be applied to future NASA missions that may use nuclear power systems and other potentially controversial NASA missions.

  15. Economic benefits of the Space Station to commercial communication satellite operators

    Science.gov (United States)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  16. A review on channel models in free space optical communication systems

    Science.gov (United States)

    Anbarasi, K.; Hemanth, C.; Sangeetha, R. G.

    2017-12-01

    Free Space Optical communication (FSO) is a wireless communication technology which uses light to transmit the data in free space. FSO has advantages like unlicensed spectrum and higher bandwidth. In this paper FSO system merits and demerits, challenges in FSO, and various channel models are discussed. To mitigate the turbulence in FSO the mitigation techniques like relaying, diversity schemes and adopting different modulation techniques used in different channels are discussed and its performance comparison is given.

  17. Bio-Inspired Autonomous Communications Systems with Anomaly Detection Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate BioComm, a bio-inspired autonomous communications system (ACS) aimed at dynamically reconfiguring and redeploying autonomous...

  18. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  19. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    Science.gov (United States)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  20. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  1. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  2. General Purpose Data-Driven System Monitoring for Space Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern space propulsion and exploration system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using...

  3. THE ASPECTS OF THE INFORMATIONAL-COMMUNICATIVE COMPETENCE’S MONITORING

    Directory of Open Access Journals (Sweden)

    Kseniya O. Morozova

    2012-12-01

    The structure of the pedagogical monitoring program, its main components such as forms, methods, criteria are described in the article. The program included special case for each component of IC-competence’s structure. The ways of the effective realization and development of monitoring the basic knowledge, skills and attitudes of the information-communication competence are determined in the work.

  4. Scalable Continuous Range Monitoring of Moving Objects in Symbolic Indoor Space

    DEFF Research Database (Denmark)

    Yang, Bin; Lu, Hua; Jensen, Christian Søndergaard

    2009-01-01

    Indoor spaces accommodate large populations of individuals. The continuous range monitoring of such objects can be used as a foundation for a wide variety of applications, e.g., space planning, way finding, and security. Indoor space differs from outdoor space in that symbolic locations, e...

  5. White space communication advances, developments and engineering challenges

    CERN Document Server

    Johnson, David

    2015-01-01

    This monograph presents a collection of major developments leading toward the implementation of white space technology - an emerging wireless standard for using wireless spectrum in locations where it is unused by licensed users. Some of the key research areas in the field are covered. These include emerging standards, technical insights from early pilots and simulations, software defined radio platforms, geo-location spectrum databases and current white space spectrum usage in India and South Africa.

  6. Space environment monitoring by low-altitude operational satellites

    International Nuclear Information System (INIS)

    Kroehl, H.W.

    1982-01-01

    The primary task of the Defense Meteorological Satellite Program (DMSP) is the acquisition of meteorological data in the visual and infrared spectral regions. The Air Weather Service operates two satellites in low-altitude, sun-synchronous, polar orbits at 850 km altitude, 98.7 deg inclination, 101.5 minute period and dawn-dusk or noon-midnight equatorial crossing times. Special DMSP sensors of interest to the space science community are the precipitating electron spectrometer, the terrestrial noise receiver, and the topside ionosphere plasma monitor. Data from low-altitude, meteorological satellites can be used to build empirical models of precipitating electron characteristics of the auroral zone and polar cap. The Tiros-NOAA satellite program complements the DMSP program. The orbital elements are the same as DMSP's, except for the times of equatorial crossing, and the tilt of the orbital plane. The Tiros-NOAA program meets the civilian community's needs for meteorological data as the DMSP program does for the military

  7. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  8. Bio monitoring: lead concentration in Asuncion space characterization

    International Nuclear Information System (INIS)

    Kochmann, S.; Doncel, F.; Ortiz, M.; Insaurralde, A.; Barua de Souberlich, G.

    2001-01-01

    When air has polluting agents, a injurious effects potential to the health exists. Most of Lead, one of the most important pollutants due to the great damage that it causes to the human sort and other living organisms by his extensive diffusion; one is in the Asuncion urban atmosphere, probably located on particle suspended originating of the transmission of automotive vehicles; the same ones, by their greater surface of aggregation, increase the viability of toxic compound adsorption and the dissolution or absorption of gaseous polluting agents. One takes ahead to a preliminary program of Bio monitoring using plants, to establish the relative levels of the polluting agent, in places where the detailed knowledge of the concentration of the same one is not fundamental. In front of direct studies this one is an accessible alternative by its relative low cost and its generalisation possibility. The sampling is made in nucleus Zones selected randomly in Asuncion, taking in consideration the prevalence from movable sources and the continuous and gradual vehicle park increase and its conditions, with the consequent increase of transmissions in the atmosphere. Tillandsia sp. is used and X-rays Fluorescence for the measurements, jointly with the application of suitable statistical tools, since for the characterisation of plans of elements that are in particulate matter, allow to the simultaneous determination of interest elements and correlations significant establishment, applicable to environmental studies. With the collected data it is made the interpolation and extrapolation, with the objective to space characterise the Lead concentration in Asuncion

  9. Medical Error Avoidance in Intraoperative Neurophysiological Monitoring: The Communication Imperative.

    Science.gov (United States)

    Skinner, Stan; Holdefer, Robert; McAuliffe, John J; Sala, Francesco

    2017-11-01

    Error avoidance in medicine follows similar rules that apply within the design and operation of other complex systems. The error-reduction concepts that best fit the conduct of testing during intraoperative neuromonitoring are forgiving design (reversibility of signal loss to avoid/prevent injury) and system redundancy (reduction of false reports by the multiplication of the error rate of tests independently assessing the same structure). However, error reduction in intraoperative neuromonitoring is complicated by the dichotomous roles (and biases) of the neurophysiologist (test recording and interpretation) and surgeon (intervention). This "interventional cascade" can be given as follows: test → interpretation → communication → intervention → outcome. Observational and controlled trials within operating rooms demonstrate that optimized communication, collaboration, and situational awareness result in fewer errors. Well-functioning operating room collaboration depends on familiarity and trust among colleagues. Checklists represent one method to initially enhance communication and avoid obvious errors. All intraoperative neuromonitoring supervisors should strive to use sufficient means to secure situational awareness and trusted communication/collaboration. Face-to-face audiovisual teleconnections may help repair deficiencies when a particular practice model disallows personal operating room availability. All supervising intraoperative neurophysiologists need to reject an insular or deferential or distant mindset.

  10. Design and implementation of data acquisition, communication and monitoring system for photovoltaic power station in microgrid

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei; Pei, Wei; Qi, Zhiping; Kong, Li [Institute of Electrical Engineering, CAS, Beijing (China)

    2008-07-01

    This paper presents the design and realization of data acquisition, communication and monitoring system for photovoltaic power station. The data acquisition module including filter algorithm and signal modulation circuit uses the digital signal processor (DSP) as the main processor, it can realize accurate real-time data acquisition; The data communication module uses Ethernet as communication network between PV system and MicroGrid. The gateway using ARM microprocessor can realize protocol conversion and bidirectional communication between CAN Bus and Ethernet; The monitoring unit with friendly human-machine interface keeps real-time performance monitoring of PV system to realize automation control. The results of experiment show that the system is practicable and effective. (orig.)

  11. Development of network communication function for digitalized neutron flux monitoring instrument

    International Nuclear Information System (INIS)

    Li Kai; Zhang Liangju; Chen Xiaojun; Li Baoxiang

    2002-01-01

    It is essential for a digitalized Neutron Flux Monitoring Instrument to communicate with other parts of Instrumentation and Control System in a network environment, and it is fairly different from the case of traditional analogue nuclear instrumentation. How to satisfy all the requirements of different network structure and communication protocol, which might be adopted in different target nuclear power plant, is a key issue in the design and development of a digitalized neutron flux monitoring instrument. The author describes the overall communication scheme, mainly discusses the design idea and the requirements of the communication interfaces and the implementation of the RS-485 interface as an example of the digitalized neutron flux monitoring instrument, which is under development in the institute

  12. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    Science.gov (United States)

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  13. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements

    Science.gov (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.

    2003-01-01

    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  14. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  15. The ethics of communicative process: Discourse, otherness, and public space

    Directory of Open Access Journals (Sweden)

    Ângela Cristina Salgueiro Marques

    2011-09-01

    Full Text Available The aim of this paper is to reflect on ethical-moral questions that are present in different dimensions of the contemporary communicative processes. At a first moment, I explain how Habermas defines the concept of discourse ethics witch is capable to allow the articulation and negotiation among the plurality of points of view and citizens in the current societies. In addition, I confer prominence to the role media play in the interconnection of different audiences and dispersed speeches in order to guarantee possibilities of renewal of collective debates in the public sphere. I therefore propose that an ethics of communication instead of be restrained to media devices and its operative dynamics, should consider their connections with citizens’ concrete practices and experiences.

  16. Application of near field communication for health monitoring in daily life.

    Science.gov (United States)

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  17. User manual of the CATSS system (version 1.0) communication analysis tool for space station

    Science.gov (United States)

    Tsang, C. S.; Su, Y. T.; Lindsey, W. C.

    1983-01-01

    The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.

  18. Multi-detector environmental radiation monitor with multichannel data communication for Indian Environmental Radiation Monitoring Network (IERMON)

    International Nuclear Information System (INIS)

    Patel, M.D.; Ratheesh, M.P.; Prakasha, M.S.; Salunkhe, S.S.; Vinod Kumar, A.; Puranik, V.D.; Nair, C.K.G.

    2011-01-01

    A solar powered system for online monitoring of environmental radiation with multiple detectors has been designed, developed and produced. Multiple GM tube detectors have been used to extend the range of measurement from 50 nano Gy/hr to 20 Gy/hr and to enhance the reliability of the system. Online data communication using GSM based and direct LAN based communication has been incorporated. Options for use of power supply from mains powered and battery powered have been enabled. Care has been taken to make it weather-proof, compact, elegant and reliable. The development is a part of the ongoing program of country-wide deployment of radiation monitors under 'Indian Environmental Radiation MOnitoring Network' (IERMON). (author)

  19. Polarization tracking system for free-space optical communication, including quantum communication

    Science.gov (United States)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen; Hughes, Richard John

    2018-01-09

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  20. Communication techniques and challenges for wireless food quality monitoring.

    Science.gov (United States)

    Jedermann, Reiner; Pötsch, Thomas; Lloyd, Chanaka

    2014-06-13

    Remote measurement of product core temperature is an important prerequisite to improve the cool chain of food products and reduce losses. This paper examines and shows possible solutions to technical challenges that still hinder practical applications of wireless sensor networks in the field of food transport supervision. The high signal attenuation by water-containing products limits the communication range to less than 0.5 m for the commonly used 2.4 GHz radio chips. By theoretical analysis of the dependency of signal attenuation on the operating frequency, we show that the signal attenuation can be largely reduced by the use of 433 MHz or 866 MHz devices, but forwarding of messages over multiple hops inside a sensor network is mostly unavoidable to guarantee full coverage of a packed container. Communication protocols have to provide compatibility with widely accepted standards for integration into the global Internet, which has been achieved by programming an implementation of the constrained application protocol for wireless sensor nodes and integrating into IPv6-based networks. The sensor's battery lifetime can be extended by optimizing communication protocols and by in-network pre-processing of the sensor data. The feasibility of remote freight supervision was demonstrated by our full-scale 'Intelligent Container' prototype.

  1. Face threatening acts in familiar communicational space in ...

    African Journals Online (AJOL)

    Such a constitution of face is referred to as a Face Threatening Act. This paper studies the face threatening acts in the interactional space among characters in Adichie's Purple Hibiscus and establishes how those acts aid or mar the illocutionary goals of participants. The study concludes that the 'face' is inseparable from ...

  2. DD-Amp for Deep Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AlGaN/GaN MMICs on SiC substrates will be utilized to achieve Power Added Efficiencies (PAE) in excess of 60%. These wide band-gap solid-state semiconductors will be...

  3. Power Line Communication (PLC) in Space - Current Status and Outlook

    Science.gov (United States)

    Wolf, J.

    2012-05-01

    The Power Line Communication (PLC) technology as known from various terrestrial applications, e.g. in building automation, in the automotive sector and on aircraft, appears to be a promising technology for the use on spacecraft. Starting from a critical overview on existing terrestrial PLC applications with their pros and cons, the paper gives a motivation for the introduction of the PLC technology on spacecraft, discusses the potential areas where it can be applied and is highlighting the potential problem areas. A short overview of on-going ESA PLC activities is provided and an outlook is given.

  4. Parental Monitoring, Parent-Adolescent Communication, and Adolescents' Trust in Their Parents in China.

    Directory of Open Access Journals (Sweden)

    Liuhua Ying

    Full Text Available Trust is an important aspect of interpersonal relationships, but little is known about adolescents' interpersonal trust. The aim of the present study was to examine the associations among parental monitoring, parent-adolescent communication, and adolescents' trust in their parents in China.Data in this study were collected as part of the cross-sectional study of children in China. 3349 adolescents (female 48.6%, age range of 12-15 years were randomly selected from 35 secondary schools in April, 2009 and administered to the Adolescent Interpersonal Trust Scale, the Parental Monitoring Scale, and the Parent-Adolescent Communication Scale.Adolescents' trust in their parents was positively related to parental monitoring and parent-adolescent communication. Furthermore, parent-adolescent communication mediated the association between parental monitoring and adolescents' trust in their parents. The mediation model fit data of both genders and three age groups equally well.Parental monitoring and parent-adolescent communication play an importance role in fostering adolescents' trust in their parents.

  5. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    Science.gov (United States)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  6. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  7. The Effects of Space Environment on Wireless Communication Devices' Performance

    OpenAIRE

    Landon, Hillyard; Dennison, JR

    2012-01-01

    This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbi...

  8. Methods and Devices for Space Optical Communications Using Laser Beams

    Science.gov (United States)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  9. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Science.gov (United States)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  10. Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.

    Science.gov (United States)

    Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John

    2010-05-01

    An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.

  11. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    Science.gov (United States)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  12. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  13. Reliability issues of free-space communications systems and networks

    Science.gov (United States)

    Willebrand, Heinz A.

    2003-04-01

    Free space optics (FSO) is a high-speed point-to-point connectivity solution traditionally used in the enterprise campus networking market for building-to-building LAN connectivity. However, more recently some wire line and wireless carriers started to deploy FSO systems in their networks. The requirements on FSO system reliability, meaing both system availability and component reliability, are far more stringent in the carrier market when compared to the requirements in the enterprise market segment. This paper tries to outline some of the aspects that are important to ensure carrier class system reliability.

  14. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  15. Near Earth Architectural Options for a Future Deep Space Optical Communications Network

    Science.gov (United States)

    Edwards, B. L.; Liebrecht, P. E.; Fitzgerald, R. J.

    2004-01-01

    In the near future the National Aeronautics and Space Administration anticipates a significant increase in demand for long-haul communications services from deep space to Earth. Distances will range from 0.1 to 40 AU, with data rate requirements in the 1's to 1000's of Mbits/second. The near term demand is driven by NASA's Space Science Enterprise which wishes to deploy more capable instruments onboard spacecraft and increase the number of deep space missions. The long term demand is driven by missions with extreme communications challenges such as very high data rates from the outer planets, supporting sub-surface exploration, or supporting NASA's Human Exploration and Development of Space Enterprise beyond Earth orbit. Laser communications is a revolutionary communications technology that will dramatically increase NASA's ability to transmit information across the solar system. Lasercom sends information using beams of light and optical elements, such as telescopes and optical amplifiers, rather than RF signals, amplifiers, and antennas. This paper provides an overview of different network options at Earth to meet NASA's deep space lasercom requirements. It is based mainly on work done for the Mars Laser Communications Demonstration Project, a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done for the Tracking and Data Relay Satellite System Continuation Study at GSFC. A lasercom flight terminal will be flown on the Mars Telesat Orbiter (MTO) to be launched by NASA in 2009, and will be the first high rate deep space demonstration of this revolutionary technology.

  16. Communicating with the public: space of nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto, E-mail: pmaffei@ipen.br, E-mail: araquino@usp.br, E-mail: amgordon@ipen.br, E-mail: rloliveira@ipen.br, E-mail: rpadua@ipen.br, E-mail: mmvieira@ipen.br, E-mail: rvicente@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  17. Communicating with the public: space of nuclear technology

    International Nuclear Information System (INIS)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto

    2011-01-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  18. TRENDS IN THE DEVELOPMENT OF MARKETING COMMUNICATIONS IN THE GLOBAL INTERACTIVE SPACE

    Directory of Open Access Journals (Sweden)

    N. Kochkina

    2014-09-01

    Full Text Available The article identifies trends in the development of marketing communications in the global interactive space by analyzing the factors of their functioning and researching motivation of viral audience. It is revealed the prevalence of interactive technologies in today's information space and the growth dynamics of interactive advertising market. It is proved that favorable conditions for marketing communications' functioning forms the basis for the development of viral advertising as an effective communication tool for untraditional impact on potential customers. The popularity of social networks as a major source of viral messages is determined. The motivation of YouTube audience, which provides a resonant video viewing and retransmission, is investigated. Gender and age differences that stipulate communication affect on consumers are identified. Cyclic social consciousness is observed that demands further research of viral audience, including constructing scenarios of viral behavior.

  19. Overlapping and permeability: Research on the pattern hierarchy of communication space and design strategy based on environmental behavior

    Science.gov (United States)

    Leilei, Sun; Liang, Zhang; Bing, Chen; Hong, Xi

    2017-11-01

    This thesis is to analyze the basic pattern hierarchy of communication space by using the theory of environmental psychology and behavior combined with relevant principles in architecture, to evaluate the design and improvement of communication space in specific meaning, and to bring new observation ideas and innovation in design methods to the system of space, environment and behavior.

  20. Toward Continental-scale Rainfall Monitoring Using Commercial Microwave Links From Cellular Communication Networks

    Science.gov (United States)

    Uijlenhoet, R.; Leijnse, H.; Overeem, A.

    2017-12-01

    Accurate and timely surface precipitation measurements are crucial for water resources management, agriculture, weather prediction, climate research, as well as ground validation of satellite-based precipitation estimates. However, the majority of the land surface of the earth lacks such data, and in many parts of the world the density of surface precipitation gauging networks is even rapidly declining. This development can potentially be counteracted by using received signal level data from the enormous number of microwave links used worldwide in commercial cellular communication networks. Along such links, radio signals propagate from a transmitting antenna at one base station to a receiving antenna at another base station. Rain-induced attenuation and, subsequently, path-averaged rainfall intensity can be retrieved from the signal's attenuation between transmitter and receiver. We have previously shown how one such a network can be used to retrieve the space-time dynamics of rainfall for an entire country (The Netherlands, ˜35,500 km2), based on an unprecedented number of links (˜2,400) and a rainfall retrieval algorithm that can be applied in real time. This demonstrated the potential of such networks for real-time rainfall monitoring, in particular in those parts of the world where networks of dedicated ground-based rainfall sensors are often virtually absent. The presentation will focus on the potential for upscaling this technique to continental-scale rainfall monitoring in Europe. In addition, several examples of recent applications of this technique on other continents (South America, Africa, Asia and Australia) will be given.

  1. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    Science.gov (United States)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  2. Obstacle evasion in free-space optical communications utilizing Airy beams

    Science.gov (United States)

    Zhu, Guoxuan; Wen, Yuanhui; Wu, Xiong; Chen, Yujie; Liu, Jie; Yu, Siyuan

    2018-03-01

    A high speed free-space optical communication system capable of self-bending signal transmission around line-of-sight obstacles is proposed and demonstrated. Airy beams are generated and controlled to achieve different propagating trajectories, and the signal transmission characteristics of these beams around the obstacle are investigated. Our results confirm that, by optimising their ballistic trajectories, Airy beams are able to bypass obstacles with more signal energy and thus improve the communication performance compared with normal Gaussian beams.

  3. Preface to the special issue on ;Optical Communications Exploiting the Space Domain;

    Science.gov (United States)

    Wang, Jian; Yu, Siyuan; Li, Guifang

    2018-02-01

    The demand for high capacity optical communications will continue to be driven by the exponential growth of global internet traffic. Optical communications are about the exploitation of different physical dimensions of light waves, including complex amplitude, frequency (or wavelength), time, polarization, etc. Conventional techniques such as wavelength-division multiplexing (WDM), time-division multiplexing (TDM) and polarization-division multiplexing (PDM) have almost reached their scalability limits. Space domain is the only known physical dimension left and space-division multiplexing (SDM) seems the only option to further scale the transmission capacity and spectral efficiency of optical communications. In recent years, few-mode fiber (FMF), multi-mode fiber (MMF), multi-core fiber (MCF) and few-mode multi-core fiber (FM-MCF) have been widely explored as promising candidates for fiber-based SDM. The challenges for SDM include efficient (de)multiplexer, amplifiers, and multiple-input multiple-output (MIMO) digital signal processing (DSP) techniques. Photonic integration will also be a key technology to SDM. Meanwhile, free-space and underwater optical communications have also exploited the space domain to increase the transmission capacity and spectral efficiency. The challenges include long-distance transmission limited by propagation loss, divergence, scattering and turbulence. Very recently, helically phased light beams carrying orbital angular momentum (OAM) have also seen potential applications both in free-space, underwater and fiber-based optical communications. Actually, different mode bases such as linearly polarized (LP) modes and OAM modes can be employed for SDM. Additionally, SDM could be used in chip-scale photonic interconnects and data center optical interconnects. Quantum processing exploiting the space domain is of great interest. The information capacity limit and physical layer security in SDM optical communications systems are important

  4. Definition of a near real time microbiological monitor for space vehicles

    Science.gov (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.

    1989-01-01

    Efforts to identify the ideal candidate to serve as the biological monitor on the space station Freedom are discussed. The literature review, the evaluation scheme, descriptions of candidate monitors, experimental studies, test beds, and culture techniques are discussed. Particular attention is given to descriptions of five candidate monitors or monitoring techniques: laser light scattering, primary fluorescence, secondary fluorescence, the volatile product detector, and the surface acoustic wave detector.

  5. The Synthesis Method of Automated System of Operational Planning in Low-Space Communication System Messaging

    Directory of Open Access Journals (Sweden)

    Serhii Kovbasiuk

    2017-04-01

    Full Text Available One of the reasons for the decrease of efficiency in low-speed communication systems, satellite communication, which are based on nanoplatform is a high degree of operational planning centralisation. To overcome this problem the method which carries out the distribution of tasks of communications operational planning minimizing the exchange of information between spatially remote sites, and takes into account the computing performance of software and hardware was developed. The technique is based on the use of methods of structural and parametric synthesis, simulation and statistical analysis of the results. Its use allows to obtain the optimal structure of the automated system of operational planning in low-space communication system messaging evaluation of efficiency in terms of fixed communication of information load.

  6. Overview of some projects of SNPS for global space communication

    International Nuclear Information System (INIS)

    Ivanov, E.; Ghitajkin, V.; Ionkin, V.; Dubinin, A.; Pyshko, A.

    2000-01-01

    Modem concepts of the application of power technology in space believe in using an onboard source of energy for maintenance of self-transportation of the vehicle into working geosynchronous orbit (GEO). This can result in reduction of the cost of all installation and the number of rocket starts. There we present several conceptual projects of nuclear power installations. Power units developed with, IPPE's participation are intended for long term supply of electricity to the vehicle in GEO and to maintain self-transportation of capabilities. Considered units include a tiny, fast neutron nuclear reactor, radiation shield, control system, cooling system (radiator) and power conversion system. Additionally, they must also include a rocket engine to maintain the dual-mode regime. This may be an electric-stationary ion jet (with Xe as working body) and a thermal engine such as hybrid or NRE. There are three more prospective systems as follows: (a) gas cooled nuclear reactor with hybrid thermal engine and machine power converter; (b) nuclear reactor cooled by liquid metal and with a thermoelectric power generating system; (c) nuclear reactor with Li cooling and a thermionic and thermoelectric power generator on board. All considered schemes have two thermal circuits and use thermal pipes in the radiator. Two final concepts are based on a Xe electric jet; these differ from first concept by having a lower working body mass but a longer transportation period from basic orbit into GEO. (authors)

  7. Near Earth space plasma monitoring under COST 296

    Czech Academy of Sciences Publication Activity Database

    Altadill, D.; Boška, Josef; Cander, Lj. R.; Gulyaeva, T.; Reinisch, B. W.; Romano, V.; Krankowski, A.; Bremer, J.; Belehaki, A.; Stanislawska, I.; Jakowski, N.; Scotto, C.

    2009-01-01

    Roč. 52, 3/4 (2009), s. 221-234 ISSN 1593-5213 R&D Projects: GA MŠk OC 091 Institutional research plan: CEZ:AV0Z30420517 Keywords : Ionosphere * monitoring * data validation * monitoring techniques * campaigns * dissemination Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.548, year: 2009 http://www.annalsofgeophysics.eu/index.php/annals/article/view/4562

  8. Striction-based Power Monitoring in Space Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The program delivers a completely new technology solution to isolation and sensing of power flow (current and voltage). Based on striction materials technology,...

  9. Collaborative neighbour monitoring in TV white space networks

    CSIR Research Space (South Africa)

    Takyi, A

    2016-09-01

    Full Text Available Collaborative sensing among secondary users in television white space (cognitive radio) networks can considerably increase the probability of detecting primary or secondary users. In current collaborative sensing schemes, all collaborative secondary...

  10. Optical Real-Time Space Radiation Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  11. Available data sources for monitoring non-communicable diseases and their risk factors in South Africa

    DEFF Research Database (Denmark)

    Wandai, M.; Aagaard-Hansen, Jens; Day, C.

    2017-01-01

    Background. Health information systems for monitoring chronic non-communicable diseases (NCDs) in South Africa (SA) are relatively less advanced than those for infectious diseases (particularly tuberculosis and HIV) and for maternal and child health. NCDs are now the largest cause of premature mo...

  12. Communication and Monitoring- Necessary Processes for Managing and Measuring Conflicts, Absenteeism, Fluctuation and Work Accidents

    Directory of Open Access Journals (Sweden)

    Tănăsescu Dorina Antoneta

    2015-06-01

    Full Text Available In any organizations, between employees, between employees and management are inevitabily appearing conflicts, absenteeism, personnel fluctuation and work accidents (CAFA factors. To diminish the impact of these social dysfunctions, organizations must pay attention to the effective managing and monitoring using performance indicators and an effective communication process and implementing a good plan of evaluation.

  13. [Pilot plan for a mobile health communication and monitoring system for people with diabetes].

    Science.gov (United States)

    Alcayaga, Claudia; Pérez, Janet Carola; Bustamante, Claudia; Campos, Solange; Lange, Ilta; Zuñiga, Francisca

    2014-01-01

    mHealth is a practical, useful, and available tool for one-way or two-way communication between health professionals and patients. It is especially promising in countries such as Chile, with widespread and growing mobile telephone coverage that is very well accepted by the public. Our objective is to demonstrate the process for designing a mobile communication and monitoring model, aimed at providing communication between professionals in primary healthcare centers and their patients, to facilitate timely diagnosis and initiation of treatment for type 2 diabetes. This model's characteristics include use of mobile telephones as a communication tool, a one-way method (from health centers to patients), integration into in-person care delivered at health centers, use of different communication strategies (voice and written), and integrated functioning using open-source software. The system includes personalized communication, automated voice communication, and automated written communication using short message service (SMS). We describe the strategies and components of the system. The lessons learned include the contribution from successful implementation of COSMOS (consolidated online modulated operating systems), a technological innovation, to support the health care of people with suspected type 2 diabetes in primary healthcare centers. Working together with teams in the field is essential to this achievement.

  14. Making media work in space: an interdisciplinary perspective on media and communication requirements for current and future space communities

    Science.gov (United States)

    Babidge, S.; Cokley, J.; Gordon, F.; Louw, E.

    2005-10-01

    As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.

  15. Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality

    Science.gov (United States)

    Gisin, Nicolas

    2013-03-01

    Experimental violations of Bell inequalities using space-like separated measurements precludes the explanation of quantum correlations through causal influences propagating at subluminal speed. Yet, ``everything looks as if the two parties somehow communicate behind the scene.'' We investigate the assumption that they do so at a speed faster than light, though finite. Such an assumption doesn't respect the spirit of Einstein relativity. However, it is not crystal clear that such ``communication behind the scene'' would contradict relativity. Indeed, one could imagine that this communication remains for ever hidden to humans, i.e. that it could not be controlled by humans, only Nature exploits it to produce correlations that can't be explained by usual common causes. To define faster than light hidden communication requires a universal privileged reference frame in which this faster than light speed is defined. Again, such a universal privileged frame is not in the spirit of relativity, but it is also clearly not in contradiction: for example the reference frame in which the cosmic microwave background radiation is isotropic defines such a privileged frame. Hence, a priori, a hidden communication explanation is not more surprising than nonlocality. We prove that for any finite speed, such models predict correlations that can be exploited for faster-than-light communication. This superluminal communication doesn't require access to any hidden physical quantities, but only the manipulation of measurement devices at the level of our present-day description of quantum experiments. Consequently, all possible explanations of quantum correlations that satisfy the principle of continuity, which states that everything propagates gradually and continuously through space and time, or in other words, all combination of local common causes and direct causes that reproduce quantum correlations, lead to faster than light communication. Accordingly, either there is superluminal

  16. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    KAUST Repository

    Yang, Liang; Gao, Xiqi; Alouini, Mohamed-Slim

    2014-01-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD

  17. Is long distance free space quantum communication with the OAM state of light feasible [Presentation

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2013-06-01

    Full Text Available -space quantum communication with the OAM state of light feasible? A. HAMADOU IBRAHIM1,2, F.S. ROUX1, M. McLAREN1,3 , A. FORBES1,2,3 & T. KONRAD2 1. CSIR National Laser Centre, PO Box 395, Pretoria 0001 2. School of Physics, University of Kwazulu...

  18. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-01

    in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing

  19. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-30

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  20. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  1. The Association of Schools of Journalism and mass communication journalist-in-space project

    Science.gov (United States)

    1986-01-01

    During the summer of 1985, NASA asked the Association of Schools of Journalism and Mass Communication (ASJMC) to select a U. S. journalist who could ride aboard the space shuttle and report the experience to the American public. Eligibility critieria and selection procedures are discussed. The forty semifinalists are listed.

  2. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Science.gov (United States)

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  3. Visible laser and superluminescent diode based free space and underwater communications

    KAUST Repository

    Ooi, Boon S.

    2017-01-01

    We report on our recent progress in high-modulation-efficiency, InGaN-based integrated waveguide modulator-laser diodes (IWM-LDs), high-speed violet and blue emitting superluminescent diodes (SLDs), InGaN-based vertical-cavity surface-emitting lasers (VCSELs), and their applications for gigahertz laser based free-space and underwater wireless optical communications.

  4. Passive Wireless Sensor System for Space and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aviana Molecular (Aviana) and the University of Central Florida (UCF) propose to develop a Passive Wireless Sensor System (PWSS) for Structural Health Monitoring...

  5. An overview of Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET) Project

    Science.gov (United States)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1991-11-01

    A software application to assist end-users of the link evaluation terminal (LET) for satellite communications is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving (220/110 Mbps) capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. The HBR LET can determine the bit error rate (BER) under various atmospheric conditions by comparing the transmitted bit pattern with the received bit pattern. An algorithm for power augmentation will be applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions.

  6. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  7. Differential phase-shift keying and channel equalization in free space optical communication system

    Science.gov (United States)

    Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Wan, Xiongfeng; Xu, Chenlu

    2018-01-01

    We present the performance benefits of differential phase-shift keying (DPSK) modulation in eliminating influence from atmospheric turbulence, especially for coherent free space optical (FSO) communication with a high communication rate. Analytic expression of detected signal is derived, based on which, homodyne detection efficiency is calculated to indicate the performance of wavefront compensation. Considered laser pulses always suffer from atmospheric scattering effect by clouds, intersymbol interference (ISI) in high-speed FSO communication link is analyzed. Correspondingly, the channel equalization method of a binormalized modified constant modulus algorithm based on set-membership filtering (SM-BNMCMA) is proposed to solve the ISI problem. Finally, through the comparison with existing channel equalization methods, its performance benefits of both ISI elimination and convergence speed are verified. The research findings have theoretical significance in a high-speed FSO communication system.

  8. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  9. Transforming communicative spaces: the rhythm of gender in meetings in rural Solomon Islands

    Directory of Open Access Journals (Sweden)

    Michelle Dyer

    2018-03-01

    Full Text Available Women's lack of participation in important decision making is noted as an obstacle to sustainable development in many parts of the world. An initial issue for gender equity in environmental decision making in many developing country contexts is not only women's inclusion but also their substantive participation in decision-making forums. In this article I examine the power structures embedded in the public communicative spaces in a village in the Western Province of Solomon Islands using empirical data in conjunction with ethnographic understanding of gendered meeting styles. The data reveal some reasons why women may be silenced as public political actors. It also raises the potential for development actors to create conceptual space for specific women's ways of meeting and validating women's meeting styles. These findings have implications for encouraging transformative communicative spaces and formats that allow transcendence of socially embedded power structures.

  10. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  11. Sea Ice Monitoring from Space with Synthetic Aperture Radar

    Science.gov (United States)

    Eltoft, T.; Dierking, W.; Doulgeris, A.; Kasapoglu, G.; Kraemer, T.

    2013-03-01

    This paper summarizes the knowledge status in some areas of SAR monitoring of sea ice. It starts with a brief summary of the whitepaper by Breivik et al. from OceanObs’09 [3], and then focuses on segmentation and classification, drift estimation, and assimilation strategies, which are considered as key areas in the development of more mature sea ice products from SAR and polarimetric SAR (PoLSAR) data.

  12. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Technical volume. Executive summary

    Science.gov (United States)

    Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.

    1980-01-01

    The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.

  13. GIS Mapping and Monitoring of Cellular Communication Quality in Terms of Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Zanozin Viktor Valeryevich

    2015-09-01

    Full Text Available At the present day the monitoring of mobile services quality is carried out in the framework of the internal audit of the enterprise communications. The Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor does not yet have high-quality assurance techniques of services and conducts partial spot checks on the basis of existing normative legal acts (NLA. One of cellular communication quality monitoring method is Netmonitoring. Netmonitoring, as one of the possible types of quality control services provided by mobile operators, is described in this article. Netmonitoring is provided in the Astrakhan city on the Kirova street, Savushkina street, Kubanskya street, Magistralnaya street and other large streets of the city. There are more than 150 cellular level measurements. Netmonitoring is based on crowdsourcing and mobile mapping. Mobile mapping is the process of collecting geospatial data using mapping sensors mounted on a mobile platform. The search of base stations was carried out by means of such programs as Netmonitoring, Network Signal Info and Antennas. The resulting data, namely the network code, “cell ID” and local area code, were used for geo-information programs creation. The experience in designing KML and Visual Basic languages programs Netmonitoring and AstraNetMonitoring is described in this paper.

  14. SE83-9 'Chix in Space' student experimenter monitors STS-29 onboard activity

    Science.gov (United States)

    1989-01-01

    Student experimenter John C. Vellinger watches monitor in the JSC Mission Control Center (MCC) Bldg 30 Customer Support Room (CSR) during the STS-29 mission. Crewmembers are working with his Student Experiment (SE) 83-9 Chicken Embryo Development in Space or 'Chix in Space' onboard Discovery, Orbiter Vehicle (OV) 103. The student's sponsor is Kentucky Fried Chicken (KFC).

  15. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  16. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation.

    Science.gov (United States)

    Djordjevic, Ivan B

    2011-07-18

    In order to achieve multi-gigabit transmission (projected for 2020) for the use in interplanetary communications, the usage of large number of time slots in pulse-position modulation (PPM), typically used in deep-space applications, is needed, which imposes stringent requirements on system design and implementation. As an alternative satisfying high-bandwidth demands of future interplanetary communications, while keeping the system cost and power consumption reasonably low, in this paper, we describe the use of orbital angular momentum (OAM) as an additional degree of freedom. The OAM is associated with azimuthal phase of the complex electric field. Because OAM eigenstates are orthogonal the can be used as basis functions for N-dimensional signaling. The OAM modulation and multiplexing can, therefore, be used, in combination with other degrees of freedom, to solve the high-bandwidth requirements of future deep-space and near-Earth optical communications. The main challenge for OAM deep-space communication represents the link between a spacecraft probe and the Earth station because in the presence of atmospheric turbulence the orthogonality between OAM states is no longer preserved. We will show that in combination with LDPC codes, the OAM-based modulation schemes can operate even under strong atmospheric turbulence regime. In addition, the spectral efficiency of proposed scheme is N2/log2N times better than that of PPM.

  17. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  18. Space Weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Honary, Farideh

    2014-05-01

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres at all times. At high latitudes, and especially on polar routing, VHF ground infrastructure does not exist and the aircraft have to rely on HF radio for communications. HF relies on reflections from the ionosphere to achieve long distance communications. Unfortunately the high latitude ionosphere is affected by space weather events. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. This presentation describes a new research programme at the University of Lancaster in collaboration with the University of Leicester, Solar Metrics Ltd and Natural Resources Canada for the development of a nowcasting and forecasting HF communications tool designed for the particular needs of civilian airlines. This project funded by EPSRC will access a wide variety of solar and interplanetary measurements to derive a complete picture of space weather disturbances affecting radio absorption and reflection

  19. Mapping and monitoring renewable resources with space SAR

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, M. C.; Moezzi, S.

    1983-01-01

    The SEASAT-A SAR and SIR-A imagery was examined to evaluate the quality and type of information that can be extracted and used to monitor renewable resources on Earth. Two tasks were carried out: (1) a land cover classification study which utilized two sets of imagery acquired by the SEASAT-A SAR, one set by SIR-A, and one LANDSAT set (4 bands); and (2) a change detection to examine differences between pairs of SEASAT-A SAR images and relates them to hydrologic and/or agronomic variations in the scene.

  20. The Ozone Monitoring Instrument: overview of 14 years in space

    Science.gov (United States)

    Levelt, Pieternel F.; Joiner, Joanna; Tamminen, Johanna; Pepijn Veefkind, J.; Bhartia, Pawan K.; Stein Zweers, Deborah C.; Duncan, Bryan N.; Streets, David G.; Eskes, Henk; van der A, Ronald; McLinden, Chris; Fioletov, Vitali; Carn, Simon; de Laat, Jos; DeLand, Matthew; Marchenko, Sergey; McPeters, Richard; Ziemke, Jerald; Fu, Dejian; Liu, Xiong; Pickering, Kenneth; Apituley, Arnoud; González Abad, Gonzalo; Arola, Antti; Boersma, Folkert; Miller, Christopher Chan; Chance, Kelly; de Graaf, Martin; Hakkarainen, Janne; Hassinen, Seppo; Ialongo, Iolanda; Kleipool, Quintus; Krotkov, Nickolay; Li, Can; Lamsal, Lok; Newman, Paul; Nowlan, Caroline; Suleiman, Raid; Gijsbert Tilstra, Lieuwe; Torres, Omar; Wang, Huiqun; Wargan, Krzysztof

    2018-04-01

    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  1. Assessment of space sensors for ocean pollution monitoring

    Science.gov (United States)

    Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.

    1980-01-01

    Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.

  2. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  3. Enhancing the performance of mine communication, warning and condition monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Myszkowski, M.; Rellecke, R.; Widera, K. (and others) [DMT GmbH, Essen (Germany)

    2008-07-01

    This project investigated improvements in power line communications (PLC), condition monitoring techniques and diagnostic aids, together with improving audible communication systems underground. The work on PLC investigated narrow-band, low data rate technologies and high data bandwidth broadband PLC technologies. It is concluded that broadband PLC technologies cannot currently meet the requirements of providing backbone communications in mining and that fibre-optic methods offer better performance. However, short range broadband applications are feasible and an innovative voice and data transmission system, including remote control features, has been developed for coalface communications, using radiofrequency and digital voice technologies not previously used for this application. This system accommodates all the new digital interfaces: Bluetooth, PLC, twisted pair cables, etc. The condition monitoring research has led to a suite of new specialised ATEX-certified sensors together with the development of new vibration signature tracking and classification devices and methods, which provide an early indication of incipient failure. Particular value of these methods is anticipated with coalface equipment. A further component of the work examined the practicability of implementing noise reduction techniques in mining communications systems and noisy workplaces by means of active noise cancellation (ANC). Whilst ANC-based techniques would not be currently cost-effective, several other practical communication improvements are worth considering further. These include new hearing protector technologies and a simple but effective 'waveshape compressor' to improve speech dynamic range in communication systems. A final component of the project examined the issue of mining alerts and alarms, where significant advances in signal design tools have been made. 60 refs., 138 figs., 8 tabs., 1 app.

  4. Color-Space-Based Visual-MIMO for V2X Communication

    OpenAIRE

    Jai-Eun Kim; Ji-Won Kim; Youngil Park; Ki-Doo Kim

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and w...

  5. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  6. Integrated Monitoring of Mola mola Behaviour in Space and Time.

    Science.gov (United States)

    Sousa, Lara L; López-Castejón, Francisco; Gilabert, Javier; Relvas, Paulo; Couto, Ana; Queiroz, Nuno; Caldas, Renato; Dias, Paulo Sousa; Dias, Hugo; Faria, Margarida; Ferreira, Filipe; Ferreira, António Sérgio; Fortuna, João; Gomes, Ricardo Joel; Loureiro, Bruno; Martins, Ricardo; Madureira, Luis; Neiva, Jorge; Oliveira, Marina; Pereira, João; Pinto, José; Py, Frederic; Queirós, Hugo; Silva, Daniel; Sujit, P B; Zolich, Artur; Johansen, Tor Arne; de Sousa, João Borges; Rajan, Kanna

    2016-01-01

    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, pstructure provide a rationale for a predator's fine-scale behaviour observed over a two weeks in May 2014.

  7. Integrated Monitoring of Mola mola Behaviour in Space and Time

    Science.gov (United States)

    Sousa, Lara L.; López-Castejón, Francisco; Gilabert, Javier; Relvas, Paulo; Couto, Ana; Queiroz, Nuno; Caldas, Renato; Dias, Paulo Sousa; Dias, Hugo; Faria, Margarida; Ferreira, Filipe; Ferreira, António Sérgio; Fortuna, João; Gomes, Ricardo Joel; Loureiro, Bruno; Martins, Ricardo; Madureira, Luis; Neiva, Jorge; Oliveira, Marina; Pereira, João; Pinto, José; Py, Frederic; Queirós, Hugo; Silva, Daniel; Sujit, P. B.; Zolich, Artur; Johansen, Tor Arne; de Sousa, João Borges; Rajan, Kanna

    2016-01-01

    Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, pbehaviour observed over a two weeks in May 2014. PMID:27494028

  8. Remote communications technology redefines integrity verification and monitoring of low pressure isolation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    In 2007, a ship collided with the southeast face of a satellite platform jacket in the North Sea, damaging the 12-inch export riser. Emergency shutdown valves immediately shut-in production from the platform, leaving the pressure in the pipeline at approximately 4 barg. The riser had to be repaired before production could resume. TDW Offshore Services (TDW) was hired to develop a low pressure solution to isolate the damaged section of the pipeline riser from the export pipeline gas inventory. TDW used its range of specialist pipeline pigging, pig tracking and remote communications technology to solve the problem. The solution consisted of a custom-designed TDW pig trap and pigging spread; a high friction pig train furnished with the SmartTrack remote tracking and pressure-monitoring system; a SmartTrack subsea remote tracking and pressure-monitoring system; a SmartTrack topside tracking and monitoring system with radio link to the dive support vessel; and a pipeline isolation ball valve. TDW was able to monitor the downstream pressure of each isolation pig continuously throughout the operation using its innovative technology that sends isolation integrity data by radio link to a dive support vessel through pipe wall communications. The use of remote tracking and pressure monitoring technology enabled TDW to make repairs to the damaged riser while maintaining a continuous flow throughout the duration of the operation. 4 figs.

  9. Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1990-01-01

    Various papers on free-space laser communication technologies are presented. Individual topics addressed include: optical intersatellite link experiment between the earth station and ETS-VI, the Goddard optical communications program, technologies and techniques for lasercom terminal size, weight, and cost reduction, laser beam acquisition and tracking system for ETS-VI laser communication equipment, analog dividers for acquisition and tracking signal normalization, fine pointing mechanism using multilayered piezoelectric actuator for optical ISL system, analysis of SILEX tracking sensor performance, new telescope concept for space communication, telescope considered as a very high gain antenna, design of compact transceiver optical systems for optical intersatellite links, ultralightweight optics for laser communications, highly sensitive measurement method for stray light and retroreflected light, depolarization effects on free space laser transceiver communication systems, in-orbit measurements of microaccelerations of ESA's communication satellite Olympus, high-performance laser diode transmitter for optical free space communication, diode-pumped Nd:host laser transmitter for intersatellite optical communications, single-frequency diode-pumped laser for free-space communication.

  10. Minimal-Intrusion Traffic Monitoring And Analysis In Mission-Critical Communication Networks

    Directory of Open Access Journals (Sweden)

    Alberto Domingo Ajenjo

    2003-10-01

    Full Text Available A good knowledge of expected and actual traffic patterns is an essential tool for network planning, design and operation in deployed, mission-critical applications. This paper describes those needs, and explains the Traffic Monitoring and Analysis Platform (TMAP concept, as developed in support of NATO deployed military headquarters Communications and Information Systems. It shows how a TMAP was deployed to a real NATO exercise, to prove the concept and baseline the traffic needs per application, per user community and per time of day. Then, it analyses the obtained results and derives conclusions on how to integrate traffic monitoring and analysis platforms in future deployments.

  11. Satellite communication system for emergency monitoring within the Chernobyl exclusion zone

    International Nuclear Information System (INIS)

    Franchini, C.; Mensa, M.; Kanevsky, V.A.

    1997-01-01

    A Satellite Emergency Monitoring system of the Chernobyl Exclusive Zone (SEM CEZ) was designed to provide the Ukraine authorities and the neighbouring countries with updated information when an emergency situation occurs in the Exclusion Zone. This is of particular importance when environment contamination has transboundary effect. SEM system consists of mobile and fixed sensors reporting data via a dedicated satellite communications link. Mobile sensors are fitted with Global Positioning System (GPS) receivers that determine current coordinates of the sensor. Sensors data are transmitted to the Emergency Monitoring Centre equipped with PC and a satellite terminal. Both sensors data and the current position are visualized on digital maps

  12. Free-space laser communication technologies III; Proceedings of the Meeting, Los Angeles, CA, Jan. 21, 22, 1991

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1991-01-01

    The present volume on free-space laser communication technologies discusses system analysis, performance, and applications, pointing, acquisition, and tracking in beam control, laboratory demonstration systems, and transmitter and critical component technologies. Attention is given to a space station laser communication transceiver, meeting intersatellite links mission requirements by an adequate optical terminal design, an optical approach to proximity-operations communications for Space Station Freedom, and optical space-to-ground link availability assessment and diversity requirements. Topics addressed include nonmechanical steering of laser beams by multiple aperture antennas, a free-space simulator for laser transmission, heterodyne acquisition and tracking in a free-space diode laser link, and laser terminal attitude determination via autonomous star tracking. Also discussed are stability considerations in relay lens design for optical communications, liquid crystals for lasercom applications, and narrowband optical interference filters.

  13. The Ozone Monitoring Instrument: overview of 14 years in space

    Directory of Open Access Journals (Sweden)

    P. F. Levelt

    2018-04-01

    Full Text Available This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout and near real-time (NRT availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  14. DEVELOPMENT OF A GEOGRAPHIC VISUALIZATION AND COMMUNICATIONS SYSTEMS (GVCS) FOR MONITORING REMOTE VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    COLEMAN, P.; DUNCAN, M.; DURFEE, R.C.; GOELTZ, R; HARRISON, G.; HODGSON, M.E.; KOOK, M.; MCCLAIN, S.

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems capabilities and telecommunication technologies for potential use in geographic network and visualization applications. The specific technical goals of the project were to design, develop, and simulate the components of an audio/visual geographic communications system to aid future real-time monitoring, mapping and managing of transport vehicles. The system components of this feasibility study are collectively referred to as a Geographic Visualization and Communications System (GVCS). State-of-the-art techniques will be used and developed to allow both the vehicle operator and network manager to monitor the location and surrounding environment of a transport vehicle during shipment.

  15. Integrated Monitoring of Mola mola Behaviour in Space and Time.

    Directory of Open Access Journals (Sweden)

    Lara L Sousa

    Full Text Available Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS, which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001. The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's fine-scale behaviour observed over a two weeks in May 2014.

  16. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  17. Monitor Infrastructure and Space 2012. Baseline; Monitor Infrastructuur en Ruimte 2012. Nulmeting

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, R.; Van der Schuit, J. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands)

    2012-09-15

    What about the competitiveness of the Netherlands? Does the accessibility improve? Is the environment safe and sound? This Monitor shows the extent to which the goals of the Vision on Infrastructure and Spatial Planning (SVIR) are reached. The monitor contains indicators for thirteen national interests from the SVIR, the essential components of the Mobility Memorandum (2004) as included in the SVIR, and for some of the 'released' goals of the National Spatial Strategy (2006). This monitor contains the first measurement (baseline) of the indicators. The first follow-up survey is planned in 2014 [Dutch] Hoe staat het met de concurrentiekracht van Nederland? Verbetert de bereikbaarheid? Is de omgeving leefbaar en veilig? De Monitor Infrastructuur en Ruimte laat zien in hoeverre deze doelen uit de Structuurvisie Infrastructuur en Ruimte (SVIR) worden bereikt. De monitor bevat indicatoren voor de dertien nationale belangen uit de SVIR, de essentiele onderdelen van de Nota Mobiliteit (2004) zoals opgenomen in de SVIR, en voor enkele van de 'losgelaten' doelen uit de Nota Ruimte (2006). Deze monitor bevat de eerste meting (nulmeting) van de indicatoren. De eerste vervolgmeting is gepland in 2014.

  18. Mobile free-space optical communications: a feasibility study of various battlefield scenarios

    Science.gov (United States)

    Harris, Alan; Al-Akkoumi, Mouhammad K.; Sluss, James J., Jr.

    2012-06-01

    Free Space Optics (FSO) technology was originally envisioned to be a viable solution for the provision of high bandwidth optical connectivity in the last mile of today's telecommunications infrastructure. Due to atmospheric limitations inherent to FSO technology, FSO is now widely envisioned as a solution for the provision of high bandwidth, temporary mobile communications links. The need for FSO communications links will increase as mobility is introduced to this technology. In this paper, a theoretical solution for adding mobility to FSO communication links is introduced. Three-dimensional power estimation studies are presented to represent mobile FSO transmission under various weather conditions. Three wavelengths, 0.85, 1.55 and 10 um, are tested and compared to illustrate the pros and cons of each source wavelength used for transmission, depending on prevalent weather conditions and atmospheric turbulence conditions. A simulation analysis of the transmission properties of the source wavelengths used in the study is shown.

  19. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  20. Internet Technologies for Space-based Communications: State of the Art and Challenges

    Science.gov (United States)

    Bhasin, K.; DePaula, R.; Edwards, C.

    2000-01-01

    The Internet is rapidly changing the ways we communicate information around the globe today. The desire to provide Internet-based services to anyone, anywhere, anytime has brought satellite communications to the forefront to become an integral part of the Internet. In spite of the distances involved, satellite links are proving to be capable of providing Internet services based on Internet protocol (TCP/IP) stack. This development has led to the question particularly at NASA; can satellites and other space platforms become an Internet-node in space? This will allow the direct transfer of information directly from space to the users on Earth and even be able to control the spacecraft and its instruments. NASA even wants to extend the near earth space Internet to deep space applications where scientists and the public here on Earth may view space exploration in real time via the Internet. NASA's future solar system exploration will involve intensive in situ investigations of planets, moons, asteroids, and comets. While past missions typically involved a single fly-by or orbiting science spacecraft, future missions will begin to use fleets of small, highly intelligent robotic vehicles to carry out collaborative investigations. The resulting multi-spacecraft topologies will effectively create a wide area network spanning the solar system. However, this will require significant development in Internet technologies for space use. This paper provides the status'of the Internet for near earth applications and the potential extension of the Internet for use in deep space planetary exploration. The paper will discuss the overall challenges of implementing the space Internet and how the space Internet will integrate into the complex terrestrial systems those forms the Internet of today in a hybrid set of networks. Internet. We envision extending to the deep space environment such Internet concepts as a well-designed layered architecture. This effort will require an ability to

  1. Space-Based Sensorweb Monitoring of Wildfires in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel

    2011-01-01

    We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.

  2. A space satellite perspective to monitor water quality using ...

    Science.gov (United States)

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  3. High-dimensional free-space optical communications based on orbital angular momentum coding

    Science.gov (United States)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  4. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  5. Available data sources for monitoring non-communicable diseases and their risk factors in South Africa

    Directory of Open Access Journals (Sweden)

    M Wandai

    2017-04-01

    Full Text Available Background. Health information systems for monitoring chronic non-communicable diseases (NCDs in South Africa (SA are relatively less advanced than those for infectious diseases (particularly tuberculosis and HIV and for maternal and child health. NCDs are now the largest cause of premature mortality owing to exposure to risk factors arising from obesity that include physical inactivity and accessible, cheap but unhealthy diets. The National Strategic Plan for the Prevention and Control of Non-Communicable Diseases 2013 - 17 developed by the SA National Department of Health outlines targets and monitoring priorities. Objectives. To assess data sources relevant for monitoring NCDs and their risk factors by identifying the strengths and weaknesses, including usability and availability, of surveys and routine systems focusing at national and certain sub-national levels. Methods. Publicly available survey and routine data sources were assessed for variables collected, their characteristics, frequency of data collection, geographical coverage and data availability. Results. Survey data sources were found to be quite different in the way data variables are collected, their geographical coverage and also availability, while the main weakness of routine data sources was poor quality of data. Conclusions. To provide a sound basis for monitoring progress of NCDs and related risk factors, we recommend harmonising and strengthening available SA data sources in terms of data quality, definitions, categories used, timeliness, disease coverage and biomarker measurement.

  6. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Science.gov (United States)

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  7. Quantifying loss of acoustic communication space for right whales in and around a U.S. National Marine Sanctuary.

    Science.gov (United States)

    Hatch, Leila T; Clark, Christopher W; Van Parijs, Sofie M; Frankel, Adam S; Ponirakis, Dimitri W

    2012-12-01

    The effects of chronic exposure to increasing levels of human-induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human-induced sound on contact-calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km(2) ) and time period (peak feeding time). We used an array of temporary, bottom-mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel-tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal-to-noise ratio and the assumed recognition differential) for contact-calling right whales was negative (-1 dB) under current ambient noise levels and was further reduced (-2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63-67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10-min period. These results highlight the limitations of exposure-threshold (i.e., dose-response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide-ranging noise effects in emerging ocean-planning forums that seek to improve management of cumulative effects

  8. Acousto-optic pointing and tracking systems for free-space laser communications

    Science.gov (United States)

    Nikulin, V.; Khandekar, R.; Sofka, J.; Tartakovsky, G.

    2005-08-01

    Implementation of long-range laser communication systems holds great promise for high-bandwidth applications. They are viewed as a technology that in the nearest future will handle most of the "last mile" communication traffic for the individual subscribers, corporate offices, military, and possibly deep space probes. Indeed, lasers allow for concentration of energy within tightly focused beams and narrow spectral interval, thus offering high throughput, information security, weight and size of components and power requirements that could not be matched by RF systems. However, the advantages of optical communication systems come in the same package with several major challenges. In particular, high data rates should be complemented by high-precision wide-bandwidth position control of a laser beam. In many applications the ability to maintain a link is affected by the complex maneuvers performed by mobile communication platforms, resident vibrations, and atmospheric effects. The search for the most effective and reliable way to shape and steer the laser beam is an on-going effort. This paper is focused on the application of acousto-optic technology as an alternative to electro-mechanical devices. With realization that an acousto-optic Bragg cell is only a component of the entire communication system, which should perform complex tasks of acquisition, pointing, and tracking of the remote terminal, we present an attempt to consider this problem from the "systems" point of view.

  9. Color-Space-Based Visual-MIMO for V2X Communication

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  10. Color-Space-Based Visual-MIMO for V2X Communication

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-04-01

    Full Text Available In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol, and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  11. Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2015-01-07

    Rapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.

  12. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  13. Power monitoring in space nuclear reactors using silicon carbide radiation detectors

    Science.gov (United States)

    Ruddy, Frank H.; Patel, Jagdish U.; Williams, John G.

    2005-01-01

    Space reactor power monitors based on silicon carbide (SiC) semiconductor neutron detectors are proposed. Detection of fast leakage neutrons using SiC detectors in ex-core locations could be used to determine reactor power: Neutron fluxes, gamma-ray dose rates and ambient temperatures have been calculated as a function of distance from the reactor core, and the feasibility of power monitoring with SiC detectors has been evaluated at several ex-core locations. Arrays of SiC diodes can be configured to provide the required count rates to monitor reactor power from startup to full power Due to their resistance to temperature and the effects of neutron and gamma-ray exposure, SiC detectors can be expected to provide power monitoring information for the fill mission of a space reactor.

  14. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  15. Data transmission with twisted light through a free-space to fiber optical communication link

    International Nuclear Information System (INIS)

    Brüning, Robert; Duparré, Michael; Ndagano, Bienvenu; McLaren, Melanie; Forbes, Andrew; Schröter, Siegmund; Kobelke, Jens

    2016-01-01

    Mode division multiplexing (MDM), where information is transmitted in the spatial modes of light, is mooted as a future technology with which to transmit large bits of information. However, one of the key issues in optical communication lies in connecting free-space to optical fiber networks, otherwise known as the ‘last mile’ problem. This is particularly problematic for MDM as the eigenmodes of free-space and fibers are in general not the same. Here we demonstrate a data transmission scheme across a free-space and fiber link using twisted light in the form of Laguerre–Gaussian (LG) azimuthal modes. As a proof-of-principle we design and implement a custom fiber where the supported LG modes can be grouped into five non-degenerate sets, and successfully transmit a gray-scale image across the composite link using one mode from each group, thereby ensuring minimal crosstalk. (letter)

  16. Breathing Room in Monitored Space: The Impact of Passive Monitoring Technology on Privacy in Independent Living.

    Science.gov (United States)

    Berridge, Clara

    2016-10-01

    This study examines articulations of the relationship between privacy and passive monitoring by users and former users of a sensor-based remote monitoring system. A new conceptualization of privacy provides a framework for a constructive analysis of the study's findings with practical implications. Forty-nine in-depth semistructured interviews were conducted with elder residents, family members, and staff of 6 low-income independent living residence apartment buildings where the passive monitoring system had been offered for 6 years. Transcribed interviews were coded into the Dedoose software service and were analyzed using methods of grounded theory. Five diverse articulations of the relationship between privacy and passive monitoring emerged. The system produced new knowledge about residents and enabled staff to decide how much of that knowledge to disclose to residents. They chose not to disclose to residents their reason for following up on system-generated alerts for 2 reasons: concern that feelings of privacy invasion may arise and cause dissatisfaction with the technology, and the knowledge that many resident users did not comprehend the extent of its features and would be alarmed. This research reveals the importance and challenges of obtaining informed consent. It identifies where boundary intrusion can occur in the use of passive monitoring as well as how changes to technology design and practice could create opportunities for residents to manage their own boundaries according to their privacy needs. The diversity of approaches to privacy supports the need for "opportunity for boundary management" to be employed as both a design and practice principle. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. EGNOS Monitoring Prepared in Space Research Centre P.A.S. for SPMS Project

    Science.gov (United States)

    Swiatek, Anna; Jaworski, Leszek; Tomasik, Lukasz

    2017-12-01

    The European Geostationary Overlay Service (EGNOS) augments Global Positioning System (GPS) by providing correction data and integrity information for improving positioning over Europe. EGNOS Service Performance Monitoring Support (SPMS) project has assumed establishment, maintenance and implementation of an EGNOS performance monitoring network. The paper presents preliminary results of analyses prepared in Space Research Centre, Polish Academy of Sciences (Warsaw), as one of partners in SPMS project.

  18. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    Science.gov (United States)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  19. Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers

    Science.gov (United States)

    Shortt, Kevin

    Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.

  20. Monitoring and accountability for the Pacific response to the non-communicable diseases crisis

    Directory of Open Access Journals (Sweden)

    Hilary Tolley

    2016-09-01

    Full Text Available Abstract Background Non-communicable diseases (NCD are the leading cause of premature death and disability in the Pacific. In 2011, Pacific Forum Leaders declared “a human, social and economic crisis” due to the significant and growing burden of NCDs in the region. In 2013, Pacific Health Ministers’ commitment to ‘whole of government’ strategy prompted calls for the development of a robust, sustainable, collaborative NCD monitoring and accountability system to track, review and propose remedial action to ensure progress towards the NCD goals and targets. The purpose of this paper is to describe a regional, collaborative framework for coordination, innovation and application of NCD monitoring activities at scale, and to show how they can strengthen accountability for action on NCDs in the Pacific. A key component is the Dashboard for NCD Action which aims to strengthen mutual accountability by demonstrating national and regional progress towards agreed NCD policies and actions. Discussion The framework for the Pacific Monitoring Alliance for NCD Action (MANA draws together core country-level components of NCD monitoring data (mortality, morbidity, risk factors, health system responses, environments, and policies and identifies key cross-cutting issues for strengthening national and regional monitoring systems. These include: capacity building; a regional knowledge exchange hub; innovations (monitoring childhood obesity and food environments; and a robust regional accountability system. The MANA framework is governed by the Heads of Health and operationalised by a multi-agency technical Coordination Team. Alliance membership is voluntary and non-conditional, and aims to support the 22 Pacific Island countries and territories to improve the quality of NCD monitoring data across the region. In establishing a common vision for NCD monitoring, the framework combines data collected under the WHO Global Framework for NCDs with a set of action

  1. Monitoring and accountability for the Pacific response to the non-communicable diseases crisis.

    Science.gov (United States)

    Tolley, Hilary; Snowdon, Wendy; Wate, Jillian; Durand, A Mark; Vivili, Paula; McCool, Judith; Novotny, Rachel; Dewes, Ofa; Hoy, Damian; Bell, Colin; Richards, Nicola; Swinburn, Boyd

    2016-09-10

    Non-communicable diseases (NCD) are the leading cause of premature death and disability in the Pacific. In 2011, Pacific Forum Leaders declared "a human, social and economic crisis" due to the significant and growing burden of NCDs in the region. In 2013, Pacific Health Ministers' commitment to 'whole of government' strategy prompted calls for the development of a robust, sustainable, collaborative NCD monitoring and accountability system to track, review and propose remedial action to ensure progress towards the NCD goals and targets. The purpose of this paper is to describe a regional, collaborative framework for coordination, innovation and application of NCD monitoring activities at scale, and to show how they can strengthen accountability for action on NCDs in the Pacific. A key component is the Dashboard for NCD Action which aims to strengthen mutual accountability by demonstrating national and regional progress towards agreed NCD policies and actions. The framework for the Pacific Monitoring Alliance for NCD Action (MANA) draws together core country-level components of NCD monitoring data (mortality, morbidity, risk factors, health system responses, environments, and policies) and identifies key cross-cutting issues for strengthening national and regional monitoring systems. These include: capacity building; a regional knowledge exchange hub; innovations (monitoring childhood obesity and food environments); and a robust regional accountability system. The MANA framework is governed by the Heads of Health and operationalised by a multi-agency technical Coordination Team. Alliance membership is voluntary and non-conditional, and aims to support the 22 Pacific Island countries and territories to improve the quality of NCD monitoring data across the region. In establishing a common vision for NCD monitoring, the framework combines data collected under the WHO Global Framework for NCDs with a set of action-orientated indicators captured in a NCD Dashboard for

  2. Drone swarm with free-space optical communication to detect and make deep decisions about physical problems for area surveillance

    Science.gov (United States)

    Mazher, Wamidh Jalil; Ibrahim, Hadeel T.; Ucan, Osman N.; Bayat, Oguz

    2018-03-01

    This paper aims to design a drone swarm network by employing free-space optical (FSO) communication for detecting and deep decision making of topological problems (e.g., oil pipeline leak), where deep decision making requires the highest image resolution. Drones have been widely used for monitoring and detecting problems in industrial applications during which the drone sends images from the on-air camera video stream using radio frequency (RF) signals. To obtain higher-resolution images, higher bandwidth (BW) is required. The current study proposed the use of the FSO communication system to facilitate higher BW for higher image resolution. Moreover, the number of drones required to survey a large physical area exceeded the capabilities of RF technologies. Our configuration of the drones is V-shaped swarm with one leading drone called mother drone (DM). The optical decode-and-forward (DF) technique is used to send the optical payloads of all drones in V-shaped swarm to the single ground station through DM. Furthermore, it is found that the transmitted optical power (Pt) is required for each drone based on the threshold outage probability of FSO link failure among the onboard optical-DF drones. The bit error rate of optical payload is calculated based on optical-DF onboard processing. Finally, the number of drones required for different image resolutions based on the size of the considered topological area is optimized.

  3. Monitoring jonosfere i svemirskog vremena u Bosni i Hercegovini : Monitoring of ionosphere and space weather in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Džana Horozović

    2015-12-01

    Full Text Available Zbog svoje disperzivne prirode, jonosfera uzrokuje kašnjenje koda, odnosno ubrzanje faze signala Globalnih navigacijskih satelitskih sistema - GNSS. Usprkos napretku metoda GNSS pozicioniranja, jonosferska refrakcija je još uvijek jedan od najvećih izvora pogrešaka geodetskog pozicioniranja i navigacije. Različiti fenomeni svemirskog vremena, kao: solarni vjetar, geomagnetna oluja, solarna radijacija, može oštetiti GNSS satelite, dalekovode i elektrodistributivnu mrežu, itd. Zato je važno ustanoviti metode istraživanja i monitoringa svemirskog vremena. Istraživanje jonosfere i svemirskog vremena je predmet ovog rada. Opisan je postupak konstruiranja SID (engl. sudden ionospheric disturbances – iznenadne jonosferske smetnje monitora. Analiza je pokazala da je jonosferska monitoring stanica u Sarajevu SRJV_ION 0436 sposobna otkriti pojačano zračenje. : Due to its dispersive nature, ionosphere causes a group delay or phase acceleration of the signals from Global navigation satellite systems - GNSS. Despite the progress of GNSS positioning methods, the ionospheric refraction is still one of the greatest source of the errors in the geodetic positioning and navigation. Different phenomenons oft he space weather: solar wind, geomagnetic storm, solar radiation, can damage GNSS, and electric power distribution networks but That is why it's important to establish research and monitoring methods of the space weather. The subject of this paper is the investigation of ionosphere and space weather. Procedure of constructing a SID (engl. Sudden ionospheric disturbances monitor station are described. The analysis showed that ionosphere monitoring station in Sarajevo, SRJV_ION 0436, was able to detect increased solar radiation.

  4. Definition of a near real-time microbiological monitor for application in space vehicles

    Science.gov (United States)

    Kilgore, Melvin V., Jr.; Zahorchak, Robert J.; Arendale, William F.; Woodward, Samuel S.; Pierson, Duane L.

    1989-01-01

    The concepts and methodologies for microbiological monitoring in space are examined, focusing on the determination of the requirements of a near real-time microbiological monitor. Results are presented from the technical evaluation of five microbiological monitor concepts, including cultural methods, single cell detection, biomolecular detection, specific product detection, and general molecular composition. Within these concepts, twenty-eight specific methodolgies were assessed and the five candidate methodologies with the highest engineering and feasibility scores were selected for further evaluations. The candidate methodologies are laser light scattering, primary fluorescence, secondary fluorescence, volatile product detection, and electronic particle detection. The advantages and disadvantages of these five candidate methodologies are discussed.

  5. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  6. Creating "communicative spaces": a case of NGO community organizing for HIV/AIDS prevention.

    Science.gov (United States)

    de Souza, Rebecca

    2009-12-01

    This study uses the case study method to investigate the processes used by a local nongovernmental organization called the Society for People's Action for Development to organize sex workers in the slums of Bangalore, India, for HIV/AIDS prevention. The nongovernmental organization-facilitated HIV/AIDS program is based on the new paradigm of community organizing that encourages community participation and capacity building. Grounded in the culture-centered approach, this study documents the processes used to organize the women, while highlighting the role of communication in these processes. The study identifies 4 primary processes used to mobilize the community, namely collectivization, community awareness and sensitization, capacity building, and providing legal education and support. Each of these processes highlights the importance of attending to the economic, social, and political realities that shape the health of women. The common thread linking these processes together is the notion of "voice." More specifically, each process serves as a catalyst to produce discursive practices that enable women to provide support to each other, increase awareness in the community about the problems that they face, build self-reliance through financial skills training and communication training, and defend their legal rights. In addition, the study suggests that the primary role of nongovernmental organizations should be the creation of "communicative spaces," which are discursive and material spaces within marginalized communities and mainstream society where cultural participants can identify problems (oftentimes beyond the realm of health), manage solutions to those problems, and advocate for health and social change.

  7. Parental Monitoring, Parent-Adolescent Communication about Sex, and Sexual Risk among Young Men who Have Sex with Men

    OpenAIRE

    Thoma, Brian C.; Huebner, David M.

    2014-01-01

    Parental monitoring and parent-adolescent communication about sex protect against HIV-related sexual risk behaviors among heterosexual adolescents, but it is unknown if these findings generalize to young men who have sex with men (YMSM). Sexual orientation-specific stressors, including “coming out” to parents, complicate the family context of YMSM. We examined associations between parental monitoring, communication about sex, outness to cohabitating parents, and sexual behaviors. Ethnically d...

  8. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    Science.gov (United States)

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Optical performance monitoring in high-speed optical fiber communication systems

    Science.gov (United States)

    Yu, Changyuan; Yang, Jing; Hu, Junhao; Zhang, Banghong

    2011-11-01

    Optical performance monitoring (OPM) becomes an attractive topic as the rapid growth of data rate in optical communication networks. It provides improved operation of the high capacity optical transmission systems. Among the various impairments, chromatic dispersion (CD) is one of major factors limiting the transmission distance in high-speed communication systems. Polarization-mode dispersion (PMD) also becomes a degrading effect in the system with data rate larger than 40 Gbit/s. In this paper, we summarize several CD and PMD monitoring methods based on RF spectrum analysis and delay-tap sampling. By using a narrow band fiber Bragg grating (FBG) notch filter, centered at 10 GHz away from the optical carrier, 10-GHz RF power can be used as a CD-insensitive PMD monitoring signal. By taking the 10-GHz RF power ratio of non-filtered and filtered signal, PMD-insensitive CD monitoring can be achieved. If the FBG notch filter is placed at optical carrier, the RF clock power ratio between non-filtered and filtered signal is also a PMDinsensitive CD monitoring parameter, which has larger RF power dynamic range and better measurement resolution. Both simulation and experiment results show that the proposed methods are efficient on measuring CD and PMD values in 57-Gbit/s D8PSK systems. Delay-tap sampling is another efficient method of measuring residual CD. Amplitude ratio of asynchronous delay-tap sampling plot decreases with CD monotonously, and the amplitude ratio can be obtained by using low bandwidth balanced receiver. The simulated results show that our method is efficient on residual CD measurement in 50-Gbit/s 50% RZ DQPSK systems with a 12-GHz balanced receiver. Since no modification on the transmitter or receiver is required, the proposed scheme is simple and cost effective.

  10. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  11. SUMMARY OF MONITORING SYSTEMS PROFESSIONAL READINESS OF STUDENTS TO COMMUNICATIVELY-SPEECH DEVELOPMENT IN PRESCHOOLERS BILINGUAL

    Directory of Open Access Journals (Sweden)

    Neonila Vyacheslavovna Ivanova

    2015-12-01

    Full Text Available Purpose. The article describes the main provisions of the monitoring system of professional readiness of the future teachers of pre-school education.Methodology. Presented in the paper position monitoring system of professional readiness of students to develop communicative speech bilingual children in the profil «Preschool education» are analized based on the principles: compliance with the general content of the training and disciplinary purposes of vocational training; Unity of its substantive and procedural right; structural integrity of the contents; orientation of its content for the implementation of the system, the personal, the activity, polysubject (Dialogic, cultural approaches.Results. We studid and summarized some of the theoretical and practical aspects, given the scientific substantiation of organizational methods of monitoring of professional readiness of the future teachers to the communicative and language development of preschool children bilingual.Practical implications. Еducational system of higher education.

  12. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    Science.gov (United States)

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  13. Communication Research in Aviation and Space Operations: Symptoms and Strategies of Crew Coordination

    Science.gov (United States)

    Kanki, Barbara G.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    implicated in accidents and incidents. NASA/Ames Crew Factors researchers have been developing a model of effective crew coordination in order to understand the sources of performance breakdowns, and to develop effective solutions and interventions. Because communication is a primary mechanism by which information is received and transmitted, and because it is observable behavior, we focus on these group processes in order to identify patterns of communication that distinguish effective from less effective crew performance. Since a prime objective is to develop training recommendations for enhancing communication skills, we interpret our findings in the context of relevant task and environmental conditions, role and procedural constraints, and the normal real-time parameters of flight operations. Another research objective is to consider how communication and coordination can be enhanced through design. For example, flight deck and hardware design as well as procedural and software design may greatly influence the efficiency with which crews communicate and coordinate their work. In addition, teams and tasks may be designed, organized, and trained so that team interactions with each other are based upon appropriately shared knowledge, procedures and situation awareness. In short, we are interested in enhancing communication practices through (1) the training of specific communication skills, and (2) the design of equipment, tasks, procedures, and teams that optimize smooth, unambiguous communication processes. Two examples of communication research will be described; one in aviation and one in space operations. The first example is a high-fidelity full mission simulation study which investigates the affect of flightdeck automation on crew coordination and communication (contrasting crew performance in the DC-9 vs. MD88). Additional information is contained in the original extended abstract.

  14. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    Science.gov (United States)

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  15. Effective use of multibeam antenna and space-time multiple access technology in modern mobile communication systems

    OpenAIRE

    Moskalets, N. V.

    2015-01-01

    A possibility for efficient use of radio-frequency spectrum and of corresponding increase in productivity of mobile communication system with space-time multiple access obtained by use of multibeam antenna of base station is considered.

  16. Free-Space Optical Communications Link at 1550-nm using Multiple-Quantum-Well Modulating Retroreflectors in a Marine Environment

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Mahon, R; Burris, H. R; Gilbreath, G. C; Goetz, P. G; Moore, C. I; Stell, M. F; Vilcheck, M. J; Witkowsky, J. L; Swingen, L

    2005-01-01

    A 1550-nm eye-safe, free-space optical communications link is demonstrated at rates up to 5 Mbits/s over a distance of 2 km in the Chesapeake Bay, using quantum-well-based modulating retroreflectors...

  17. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  18. High Precision Ranging and Range-Rate Measurements over Free-Space-Laser Communication Link

    Science.gov (United States)

    Yang, Guangning; Lu, Wei; Krainak, Michael; Sun, Xiaoli

    2016-01-01

    We present a high-precision ranging and range-rate measurement system via an optical-ranging or combined ranging-communication link. A complete bench-top optical communication system was built. It included a ground terminal and a space terminal. Ranging and range rate tests were conducted in two configurations. In the communication configuration with 622 data rate, we achieved a two-way range-rate error of 2 microns/s, or a modified Allan deviation of 9 x 10 (exp -15) with 10 second averaging time. Ranging and range-rate as a function of Bit Error Rate of the communication link is reported. They are not sensitive to the link error rate. In the single-frequency amplitude modulation mode, we report a two-way range rate error of 0.8 microns/s, or a modified Allan deviation of 2.6 x 10 (exp -15) with 10 second averaging time. We identified the major noise sources in the current system as the transmitter modulation injected noise and receiver electronics generated noise. A new improved system will be constructed to further improve the system performance for both operating modes.

  19. Miniature Sensor Probe for O2, CO2, and H2O Monitoring in Space Suits, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  20. Arms applied to the communications system at the Kourou space centre

    International Nuclear Information System (INIS)

    Gerez Martin, L.; Garcia de la Sen, R.

    1993-01-01

    The REMUS (Roseau d'Entreprise MUltiService) has been designed to cover present and future communications needs which are associated with daily operation of the Guyanese Space Centre (GSC). This communications network will facilitate data exchange, contain the data (RSD) and voice network, and paging (RRP), convoy (RCV) and telephony (RSV) systems. The main objectives of the study were: 1. To assess system availability. 2. To dimension spare parts of the renewal equipment and define the logistic delays to be observed in order to achieve an availability target of: - 99.9% for the RRP, RCV and RSV networks. - 99.9% for the RSD network. The RAMSES program developed by Empresarios Agrupados was used in these calculations, to evaluate system behaviour by means of a Monte Carlo simulation. (author)

  1. System and method that suppresses intensity fluctuations for free space high-speed optical communication

    Science.gov (United States)

    Berman, Gennady P [Los Alamos, NM; Bishop, Alan R [Los Alamos, NM; Nguyen, Dinh C [Los Alamos, NM; Chernobrod, Boris M [Santa Fe, NM; Gorshkov, Vacheslav N [Kiev, UA

    2009-10-13

    A high-speed (Gbps), free space optical communication system is based on spectral encoding of radiation from a wide band light source, such as a laser. By using partially coherent laser beams in combination with a relatively slow photosensor, scintillations can be suppressed by orders of magnitude for distances of more than 10 km. To suppress the intensity fluctuations due to atmospheric turbulence, a source with partial transverse coherence in combination with slow response time photodetector is used. Information is encoded in the spectral domain of a wideband optical source by modulation of spectral amplitudes. A non-coherent light source with wide spectrum (an LED, for example) may be used for high-speed communication over short (less than about a mile) distances.

  2. A multi-rate DPSK modem for free-space laser communications

    Science.gov (United States)

    Spellmeyer, N. W.; Browne, C. A.; Caplan, D. O.; Carney, J. J.; Chavez, M. L.; Fletcher, A. S.; Fitzgerald, J. J.; Kaminsky, R. D.; Lund, G.; Hamilton, S. A.; Magliocco, R. J.; Mikulina, O. V.; Murphy, R. J.; Rao, H. G.; Scheinbart, M. S.; Seaver, M. M.; Wang, J. P.

    2014-03-01

    The multi-rate DPSK format, which enables efficient free-space laser communications over a wide range of data rates, is finding applications in NASA's Laser Communications Relay Demonstration. We discuss the design and testing of an efficient and robust multi-rate DPSK modem, including aspects of the electrical, mechanical, thermal, and optical design. The modem includes an optically preamplified receiver, an 0.5-W average power transmitter, a LEON3 rad-hard microcontroller that provides the command and telemetry interface and supervisory control, and a Xilinx Virtex-5 radhard reprogrammable FPGA that both supports the high-speed data flow to and from the modem and controls the modem's analog and digital subsystems. For additional flexibility, the transmitter and receiver can be configured to support operation with multi-rate PPM waveforms.

  3. Vital Signs Monitoring System Using Radio Frequency Communication: A Medical Care Terminal for Beddridden People Support

    Directory of Open Access Journals (Sweden)

    Fábio FERREIRA

    2015-02-01

    Full Text Available In this paper, the data transmission of an acquisition system for biomedical vital signs via Radio Frequency (RF communication is explored. This system can be considered a medical care terminal (MCT. It was developed a platform capable of recording the patient's physiological signals to check if any medical evolution/change occurred. The system allows also acquiring the environment data, as for example the room temperature and luminosity. The main achievement of this paper is the patients’ real-time health condition monitoring by the medical personnel or caregivers that will contribute to prevent health problems, especially for bedridden people with reduced mobility.

  4. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  5. A review on architectures and communications technologies for wearable health-monitoring systems.

    Science.gov (United States)

    Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio

    2012-10-16

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  6. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    Directory of Open Access Journals (Sweden)

    José Ignacio Moreno

    2012-10-01

    Full Text Available Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health and p-health (pervasive health paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  7. Monitor quality and its importance in a picture archiving and communications system display workstation

    International Nuclear Information System (INIS)

    Dawood, R.M.; Todd-Prokropek, A.; Craig, J.O.M.C.; Highman, J.H.; Glass, H.D.

    1988-01-01

    Trials have compared image quality using receiver operating characteristic (ROC) curves for different digitization resolution, particularly on hard copy. Resolution required for such systems is critical. Monitor quality significantly affects results of such studies. Several ''high-quality'' monitors were tested for gray level uniformity, flicker, resolution, stationarity (including distortion), jitter, and stability with time. An ROC study has demonstrated that such errors, on one commercially available system, were large enough to degrade image display at both 1k x 1k and 2k x 2k matrix sizes. Flicker was very disturbing with difficult images. Greater attention to these factors is required in designing (and evaluating) picture archiving and communication system work stations

  8. The investigation of using 5G millimeter-wave communications links for environmental monitoring

    Science.gov (United States)

    Han, Congzheng

    2017-04-01

    There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.

  9. Space communication system for compressed data with a concatenated Reed-Solomon-Viterbi coding channel

    Science.gov (United States)

    Rice, R. F.; Hilbert, E. E. (Inventor)

    1976-01-01

    A space communication system incorporating a concatenated Reed Solomon Viterbi coding channel is discussed for transmitting compressed and uncompressed data from a spacecraft to a data processing center on Earth. Imaging (and other) data are first compressed into source blocks which are then coded by a Reed Solomon coder and interleaver, followed by a convolutional encoder. The received data is first decoded by a Viterbi decoder, followed by a Reed Solomon decoder and deinterleaver. The output of the latter is then decompressed, based on the compression criteria used in compressing the data in the spacecraft. The decompressed data is processed to reconstruct an approximation of the original data-producing condition or images.

  10. On the performance of free-space optical communication systems with multiuser diversity

    KAUST Repository

    Yang, Liang

    2014-09-01

    Free space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over weak atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, and coverage are analyzed.

  11. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    Science.gov (United States)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  12. Evolving Hazard Monitoring and Communication at San Vicente Volcano, El Salvador

    Science.gov (United States)

    Bowman, L. J.; Gierke, J. S.

    2014-12-01

    El Salvador has 20 potentially active volcanoes, four of which have erupted in the last 100 years. Since San Vicente Volcano has had no historic eruptions, monitoring is not a high priority; especially given the current eruptive crisis at San Miguel Volcano. Though probability of eruptive hazards remains low at San Vicente, it is arguably one of the most hazardous volcanoes in the country due to rainfall-induced landslides and debris-flow risk. At least 250 deaths occurred in November 2009 from landslides and debris flows triggered by Hurricane Ida. This disaster caused the Universidad de El Salvador - Facultad Multidisciplinaria Paracentral (UES-FMP, San Vicente, El Salvador) to partner with governmental and nongovernmental organizations (including the U.S. Peace Corps, U.S. Fulbright Program, Korean International Cooperation Agency, Protección Civil and the Centro de Protección para Desastres (CEPRODE)) to focus its faculty and student research toward hazard monitoring and risk studies. Newly established monitoring efforts include: measurement of surface cracks and localized rainfall by Protección Civil and local residents using crude extensometers and rain gauges; installation of six weather stations that operate within the most at-risk municipalities; seismic refraction surveys to better characterize stratigraphy and seasonal water table changes; and most recently, a USAID/NSF-funded initiative partnered with the UES-FMP to monitor seasonal hydrologic conditions related to flooding and groundwater recharge. The information from these initiatives is now used to communicate current conditions and warnings through a network of two-way radios established by CEPRODE and Protección Civil. Representatives from the multi-institutional team also communicate the data to authorities who make better-informed decisions regarding warnings and evacuations, as well as determine suitable areas for population relocation in the event of a crisis. Data will eventually be used

  13. CREAM - a Cosmic Radiation Effects and Activation Monitor for space experiments: Pt. 1

    International Nuclear Information System (INIS)

    Mapper, D.; Stephen, J.H.; Farren, J.; Stimpson, B.P.; Bolus, D.J.; Ellaway, A.M.

    1987-12-01

    A detailed account is given of the design and construction of the experimental CREAM packages, intended for flight in the mid-deck area of the Space Transport System (Shuttle) Mission in 1986. The complete experiment involved; 1) a self-contained and battery powered activation monitor for measuring energy losses of charged particles; 2) CR-39 and Kapton polymer solid state nuclear track detectors for the detection of ionising particles; 3) metal foils of nickel, titanium and gold for neutron monitoring; and 4) thermoluminescent detectors for dosimetry measurements of the radiation background. The circuit design and detailed functioning of the active monitor is fully described, together with a complete discussion of the principles and operation of the passive monitors. (author)

  14. Influence of wind speed on free space optical communication performance for Gaussian beam propagation through non Kolmogorov strong turbulence

    International Nuclear Information System (INIS)

    Deng Peng; Yuan Xiuhua; Zeng Yanan; Zhao Ming; Luo Hanjun

    2011-01-01

    In free-space optical communication links, atmospheric turbulence causes fluctuations in both the intensity and the phase of the received signal, affecting link performance. Most theoretical treatments have been described by Kolmogorov's power spectral density model through weak turbulence with constant wind speed. However, several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric turbulence properly, especially through the strong turbulence with variable wind speed, which is known to contribute significantly to the turbulence in the atmosphere. We present an optical turbulence model that incorporates into variable wind speed instead of constant value, a non-Kolmogorov power spectrum that uses a generalized exponent instead of constant standard exponent value 11/3, and a generalized amplitude factor instead of constant value 0.033. The free space optical communication performance for a Gaussian beam wave of scintillation index, mean signal-to-noise ratio , and mean bit error rate , have been derived by extended Rytov theory in non-Kolmogorov strong turbulence. And then the influence of wind speed variations on free space optical communication performance has been analyzed under different atmospheric turbulence intensities. The results suggest that the effects of wind speed variation through non-Kolmogorov turbulence on communication performance are more severe in many situations and need to be taken into account in free space optical communication. It is anticipated that this work is helpful to the investigations of free space optical communication performance considering wind speed under severe weather condition in the strong atmospheric turbulence.

  15. Space-Proven Medical Monitor: The Total Patient-Care Package

    Science.gov (United States)

    2006-01-01

    The primary objective of the Gemini Program was to develop techniques that would allow for advanced, long-duration space travel, a prerequisite of the ensuing Apollo Program that would put man safely on the Moon before the end of the decade. In order to carry out this objective, NASA worked with a variety of innovative companies to develop propulsion systems, onboard computers, and docking capabilities that were critical to the health of Gemini spacecraft, as well as life-support systems and physiological-monitoring devices that were critical to the health of Gemini astronauts. One of these companies was Spacelabs Medical, Inc., the pioneer of what is commonly known today as medical telemetry. Spacelabs Medical helped NASA better understand man s reaction to space through a series of bioinstrumentation devices that, for the first time ever, were capable of monitoring orbiting astronauts physical conditions in real time, from Earth. The company went on to further expand its knowledge of monitoring and maintaining health in space, and then brought it down to Earth, to dramatically change the course of patient monitoring in the field of health care.

  16. Dember effect photodetectors and the effects of turbulence on free-space optical communication systems

    Science.gov (United States)

    Dikmelik, Yamac

    High-speed free-space optical communication systems have recently utilized components that have been developed for fiber-optic communication systems. The received laser beam in such a system must be coupled into a single-mode fiber at the input of a commercially available receiver module or a wavelength division demultiplexer. However, one effect of propagation through atmospheric turbulence is that the spatial coherence of a laser beam is degraded and the percentage of the available power that can be coupled into the single-mode fiber is limited. This dissertation presents a numerical evaluation of fiber coupling efficiency for laser light distorted by atmospheric turbulence. The results for weak fluctuation conditions provide the level of coupling efficiency that can be expected for a given turbulence strength. In addition, the results show that the link distance must be limited to 400 m under moderate turbulence conditions if the link budget requires a coupling efficiency of 0.1. We also investigate the use of a coherent fiber array as a receiver structure to improve the fiber coupling efficiency of a free-space optical communication system. Our numerical results show that a coherent fiber array that consists of seven subapertures would increase fiber coupling efficiency by a significant amount for representative turbulence conditions and link distances. The use of photo-emf detectors as elements of a wavefront sensor for an adaptive optics system is also considered as an alternative method of reducing the effects of turbulence on a free-space optical communication system. Dember and photo-emf currents are investigated in silicon photoconductive detectors both theoretically and experimentally. Our results show that Dember photocurrents dominate the response of high-purity silicon samples with top surface electrodes to a moving interference pattern. The use of surface electrodes leads to shadowed regions beneath the electrodes and Dember photocurrents appear

  17. Low Cost Environmental Sensors for Spaceflight: NMP Space Environmental Monitor (SEM) Requirements

    Science.gov (United States)

    Garrett, Henry B.; Buehler, Martin G.; Brinza, D.; Patel, J. U.

    2005-01-01

    An outstanding problem in spaceflight is the lack of adequate sensors for monitoring the space environment and its effects on engineering systems. By adequate, we mean low cost in terms of mission impact (e.g., low price, low mass/size, low power, low data rate, and low design impact). The New Millennium Program (NMP) is investigating the development of such a low-cost Space Environmental Monitor (SEM) package for inclusion on its technology validation flights. This effort follows from the need by NMP to characterize the space environment during testing so that potential users can extrapolate the test results to end-use conditions. The immediate objective of this effort is to develop a small diagnostic sensor package that could be obtained from commercial sources. Environments being considered are: contamination, atomic oxygen, ionizing radiation, cosmic radiation, EMI, and temperature. This talk describes the requirements and rational for selecting these environments and reviews a preliminary design that includes a micro-controller data logger with data storage and interfaces to the sensors and spacecraft. If successful, such a sensor package could be the basis of a unique, long term program for monitoring the effects of the space environment on spacecraft systems.

  18. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for

  19. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  20. Analysis of large optical ground stations for deep-space optical communications

    Science.gov (United States)

    Garcia-Talavera, M. Reyes; Rivera, C.; Murga, G.; Montilla, I.; Alonso, A.

    2017-11-01

    Inter-satellite and ground to satellite optical communications have been successfully demonstrated over more than a decade with several experiments, the most recent being NASA's lunar mission Lunar Atmospheric Dust Environment Explorer (LADEE). The technology is in a mature stage that allows to consider optical communications as a high-capacity solution for future deep-space communications [1][2], where there is an increasing demand on downlink data rate to improve science return. To serve these deep-space missions, suitable optical ground stations (OGS) have to be developed providing large collecting areas. The design of such OGSs must face both technical and cost constraints in order to achieve an optimum implementation. To that end, different approaches have already been proposed and analyzed, namely, a large telescope based on a segmented primary mirror, telescope arrays, and even the combination of RF and optical receivers in modified versions of existing Deep-Space Network (DSN) antennas [3][4][5]. Array architectures have been proposed to relax some requirements, acting as one of the key drivers of the present study. The advantages offered by the array approach are attained at the expense of adding subsystems. Critical issues identified for each implementation include their inherent efficiency and losses, as well as its performance under high-background conditions, and the acquisition, pointing, tracking, and synchronization capabilities. It is worth noticing that, due to the photon-counting nature of detection, the system performance is not solely given by the signal-to-noise ratio parameter. To start with the analysis, first the main implications of the deep space scenarios are summarized, since they are the driving requirements to establish the technical specifications for the large OGS. Next, both the main characteristics of the OGS and the potential configuration approaches are presented, getting deeper in key subsystems with strong impact in the

  1. Two-Layer Hierarchy Optimization Model for Communication Protocol in Railway Wireless Monitoring Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Ma

    2018-01-01

    Full Text Available The wireless monitoring system is always destroyed by the insufficient energy of the sensors in railway. Hence, how to optimize the communication protocol and extend the system lifetime is crucial to ensure the stability of system. However, the existing studies focused primarily on cluster-based or multihop protocols individually, which are ineffective in coping with the complex communication scenarios in the railway wireless monitoring system (RWMS. This study proposes a hybrid protocol which combines the cluster-based and multihop protocols (CMCP to minimize and balance the energy consumption in different sections of the RWMS. In the first hierarchy, the total energy consumption is minimized by optimizing the cluster quantities in the cluster-based protocol and the number of hops and the corresponding hop distances in the multihop protocol. In the second hierarchy, the energy consumption is balanced through rotating the cluster head (CH in the subnetworks and further optimizing the hops and the corresponding hop distances in the backbone network. On this basis, the system lifetime is maximized with the minimum and balance energy consumption among the sensors. Furthermore, the hybrid particle swarm optimization and genetic algorithm (PSO-GA are adopted to optimize the energy consumption from the two-layer hierarchy. Finally, the effectiveness of the proposed CMCP is verified in the simulation. The performances of the proposed CMCP in system lifetime, residual energy, and the corresponding variance are all superior to the LEACH protocol widely applied in the previous research. The effective protocol proposed in this study can facilitate the application of the wireless monitoring network in the railway system and enhance safety operation of the railway.

  2. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  3. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    Science.gov (United States)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  4. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  5. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  6. Wireless Communications for Monitoring Nuclear Material Processes part 1.: Context and Technologies

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.C.M.; Versino, C.; Heppleston, M.; Schoeneman, B.; Tolk, K.

    2007-01-01

    Recent advances in radio frequency communication technologies offer the motivation to consider the use of wireless communication in nuclear safeguards applications. From the Nuclear Safeguards Inspectorate' (NSI) point of view, wireless data transmission, which would be supplemental to wired communication is attractive for the ease of installation and the ability to respond to the changing requirements as the inspection approach evolves, resulting in a reduction of costs. However, for wireless technologies to be considered as a viable complement to cables, a number of concerns have to be addressed. First, nuclear operators need to be guaranteed that RF transmission will not interfere with the facilities safety and physical security systems. On their side, the NSI must be satisfied that Containment and Surveillance equipment and data transmission processes will not be affected by the other existing RF equipment. Second, it is desirable, both for the NSI and the operators, that the data being transmitted is not available for analysis by a third party. In addition, the NSI require data to be authenticated as close to the point of acquisition as possible. This paper was prepared as an account of work performed and approved by the ESARDA Working Group on Containment and Surveillance. It is the first of a suite dedicated to bridging RF technologies with safeguards monitoring applications. The paper focuses on technological issues: it introduces basic concepts underlying wireless communication, including methods for transmission, issues on power consumption, frequency, range, and considerations on interference and noise resilience. It overviews state-of-the-art wireless technologies and presents a projection on wireless capabilities that are likely to be reached in the near future

  7. TIROS-N/NOAA A-J space environment monitor subsystem. Technical memo

    International Nuclear Information System (INIS)

    Seale, R.A.; Bushnell, R.H.

    1987-04-01

    The Space Environment Monitor (SEM), which is incorporated as a subsystem in the TIROS-N and NOAA A-J satellites, is described. The SEM consists of a Total Energy Detector (TED), a Medium Energy Proton and Electron Detector (MEPED), a High Energy Proton and Alpha Detector (HEPAD) and a Data Processing Unit (DPU). The detectors are intended to provide near-real-time particle data for use in the Space Environment Service Center of National Oceanic and Atmospheric Administration (NOAA) and to provide a long-term scientific data base. Telemeter codes, data reduction, and test instructions are given

  8. Thermal and orbital analysis of Earth monitoring Sun-synchronous space experiments

    Science.gov (United States)

    Killough, Brian D.

    1990-01-01

    The fundamentals of an Earth monitoring Sun-synchronous orbit are presented. A Sun-synchronous Orbit Analysis Program (SOAP) was developed to calculate orbital parameters for an entire year. The output from this program provides the required input data for the TRASYS thermal radiation computer code, which in turn computes the infrared, solar and Earth albedo heat fluxes incident on a space experiment. Direct incident heat fluxes can be used as input to a generalized thermal analyzer program to size radiators and predict instrument operating temperatures. The SOAP computer code and its application to the thermal analysis methodology presented, should prove useful to the thermal engineer during the design phases of Earth monitoring Sun-synchronous space experiments.

  9. Space Weather Monitors -- Preparing to Distribute Scientific Devices and Classroom Materials Worldwide for the IHY 2007

    Science.gov (United States)

    Scherrer, D. K.; Burress, B.

    2006-05-01

    Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors have been designated for deployment to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany distribution of the monitors worldwide. Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students anywhere in the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a VLF radio receiver to monitor the signal strength from distant VLF transmitters and noting unusual changes as the waves bounce off the ionosphere. High school students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis are handled by a local PC. Stanford is providing a centralized data repository where students and researchers can exchange and discuss data. Chabot Space & Science Center is an innovative teaching and learning center focusing on astronomy and the space sciences. Formed as a Joint Powers Agency with the City of Oakland (California), the Oakland Unified School District, the East Bay Regional Park District, and in collaboration with the Eastbay Astronomical Society, Chabot addresses the critical issue of broad access to the specialized information and facilities needed to improve K-12 science education and public science literacy. Up to 2,000 K-12 teachers annually take part in Chabot's professional

  10. A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope

    Science.gov (United States)

    Eddy, Pat

    1987-01-01

    The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.

  11. Monitoring microstructural evolution in-situ during cyclic deformation by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika Martina; Thiel, Felix; Fischer, Torben

    2017-01-01

    The recently developed synchrotron technique High Resolution Reciprocal Space Mapping (HRRSM) is used to characterize the deformation structures evolving during cyclic deformation of commercially pure, polycrystalline aluminium AA1050. Insight into the structural reorganization within single grains...... is gained by in-situ monitoring of the microstructural evolution during cyclic deformation. By HRRSM, a large number of individual subgrains can be resolved within individual grains in the bulk of polycrystalline specimens and their fate, their individual orientation and elastic stresses, tracked during...

  12. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  13. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  14. Monitoring system of depressurization valves of migrated gas in annular space of flexible risers

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Luiz A.; Santos, Joilson M.; Carvalho, Antonio L.; Loureiro, Patricia [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    PETROBRAS Research and Development Center - CENPES developed an automatic system for monitoring pressure of annular space due to permeation of gas in flexible risers to inspect continuously integrity of such lines. To help maintaining physical integrity of flexible risers, two PSV's are installed to end fittings on top of riser, so that operation of any valve grants the maximum admissible gas pressure within the riser annular space, as overpressure might cause damages to external polymeric layer of flexible riser. Due to the fact that there is no mechanism allowing operation to verify correct PSV performance and frequency of valve's closings and openings, we felt to be necessary the development and implement an automatic instrumented system, integrated to platform's automation and control infrastructure. The objective of this instrumentation is to monitor and register pressure of annular space in flexible riser, as well as XV's depressurization frequency. Having such information registered and monitored, can infer some riser structural conditions, anticipating repairs and preventive maintenance. In this paper we present developed system details including instruments required, application, operation of associated screens that are used in the ECOS, with events, alarms and industrial automation services required (Application development and system integration). (author)

  15. Monitoring Effective Doses Received By Air Crews With A Space Weather Application

    Science.gov (United States)

    Lantos, P.

    To fulfil new requirements of the European Community concerning monitoring of effective doses received by air crews, the French Aviation Authority has developed an operational system called Sievert. The SIEVERT system is analysed as an exam- ple of Space Weather application. One of its characteristics is to calculate the dose received on-board each flight on the basis of the specific and detailled flight given by companies. Operational models will be used. As input to the models, the system needs monitoring of galactic cosmic rays and of solar flare particles. The French neu- tron monitors located in Kerguelen Islands (South Indian Ocean) and Terre Adélie (Antarctica) will be used for this purpose. Particular attention will be devoted to evo- lution of the system in conjunction with new measurements available in the frame of a permanent validation process.

  16. A multiparameter wearable physiologic monitoring system for space and terrestrial applications

    Science.gov (United States)

    Mundt, Carsten W.; Montgomery, Kevin N.; Udoh, Usen E.; Barker, Valerie N.; Thonier, Guillaume C.; Tellier, Arnaud M.; Ricks, Robert D.; Darling, Robert B.; Cagle, Yvonne D.; Cabrol, Nathalie A.; hide

    2005-01-01

    A novel, unobtrusive and wearable, multiparameter ambulatory physiologic monitoring system for space and terrestrial applications, termed LifeGuard, is presented. The core element is a wearable monitor, the crew physiologic observation device (CPOD), that provides the capability to continuously record two standard electrocardiogram leads, respiration rate via impedance plethysmography, heart rate, hemoglobin oxygen saturation, ambient or body temperature, three axes of acceleration, and blood pressure. These parameters can be digitally recorded with high fidelity over a 9-h period with precise time stamps and user-defined event markers. Data can be continuously streamed to a base station using a built-in Bluetooth RF link or stored in 32 MB of on-board flash memory and downloaded to a personal computer using a serial port. The device is powered by two AAA batteries. The design, laboratory, and field testing of the wearable monitors are described.

  17. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    Science.gov (United States)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; hide

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  18. Recent developments in water quality monitoring for Space Station reclaimed wastewaters

    Science.gov (United States)

    Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray

    1987-01-01

    This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.

  19. Wireless power transfer and data communication for neural implants case study : epilepsy monitoring

    CERN Document Server

    Yilmaz, Gürkan

    2017-01-01

    This book presents new circuits and systems for implantable biomedical applications targeting neural recording. The authors describe a system design adapted to conform to the requirements of an epilepsy monitoring system. Throughout the book, these requirements are reflected in terms of implant size, power consumption, and data rate. In addition to theoretical background which explains the relevant technical challenges, the authors provide practical, step-by-step solutions to these problems. Readers will gain understanding of the numerical values in such a system, enabling projections for feasibility of new projects. Provides complete, system-level perspective for implantable batteryless biomedical system; Extends design example to implementation and long term in-vitro validation; Discusses system design concerns regarding wireless power transmission and wireless data communication, particularly for systems in which both are performed on the same channel/frequency; Presents fully-integrated, implantable syste...

  20. An interdisciplinary space of scientific communication in Collective (Public) Health: the journal interface--Communication, Health, Education.

    Science.gov (United States)

    Cyrino, Antonio Pithon; Lima, Elizabeth Araújo; Garcia, Vera Lucia; Teixeira, Ricardo Rodrigues; Foresti, Miriam Celí Pimentel Porto; Schraiber, Lilia Blima

    2015-07-01

    This is a reflection upon 17 years of experience in the production of an interdisciplinary scientific journal, the publication "Interface: Communication, Health, Education," whose scope is in the fields of Collective (Public) Health, Education and Communication. It also examines retrospectively the themes published by the journal, seeking to identify them in different sections of this publication. Finally, the evolution of the journal is analyzed.

  1. Real-time monitoring of genetically modified Chlamydomonas reinhardtii during the Foton M3 space mission

    Science.gov (United States)

    Lambreva, M.; Rea, G.; Antonacci, A.; Serafini, A.; Damasso, M.; Pastorelli, S.; Margonelli, A.; Johanningmeier, U.; Bertalan, I.; Pezzotti, G.; Giardi, M. T.

    2008-09-01

    Long-term space exploration, colonization or habitation requires biological life support systems capable to cope with the deleterious space environment. The use of oxygenic photosynthetic microrganisms is an intriguing possibility mainly for food, O2 and nutraceutical compounds production. The critical points of utilizing plants- or algae-based life support systems are the microgravity and the ionizing radiation, which can influence the performance of these organisms. The aim of the present study was to assess the effects of space environment on the photosynthetic activity of various microrganisms and to select space stresstolerant strains. Photosystem II D1 protein sitedirected and random mutants of the unicellular green alga Chlamydomonas reinhardtii [1] were used as a model system to test and select the amino acid substitutions capable to account for space stress tolerance. We focussed our studies also on the accumulation of the Photosystem II photoprotective carotenoids (the xantophylls violaxanthin, anteraxanthin and zeaxanthin), powerful antioxidants that epidemiological studies demonstrated to be human vision protectors. For this purpose some mutants modified at the level of enzymes involved in the biosynthesis of xanthophylls were included in the study [2]. To identify the consequences of the space environment on the photosynthetic apparatus the changes in the Photosystem II efficiency were monitored in real time during the ESA-Russian Foton- M3 mission in September 2007. For the space flight a high-tech, multicell fluorescence detector, Photo-II, was designed and built by the Centre for Advanced Research in Space Optics in collaboration with Kayser-Italy, Biosensor and DAS. Photo-II is an automatic device developed to measure the chlorophyll fluorescence and to provide a living conditions for several different algae strains (Fig.1). Twelve different C. reinhardti strains were analytically selected and two replications for each strain were brought to space

  2. 13th Workshop on Radiation Monitoring for the International Space Station - Final Program

    International Nuclear Information System (INIS)

    2008-01-01

    The Workshop on Radiation Monitoring for the International Space Station (WRMISS) has been held annually since 1996. The major purpose of WRMISS is to provide a forum for discussion of technical issues concerning radiation dosimetry aboard the International Space Station. This includes discussion of new results, improved instrumentation, detector calibration, and radiation environment and transport models. The goal of WRMISS is to enhance international efforts to provide the best information on the space radiation environment in low-Earth orbit and on the exposure of astronauts and cosmonauts in order to optimize the radiation safety of the ISS crew. During the 13 th Annual WRMISS, held in the Institute of Nuclear Physics (Krakow, Poland) on 8-10 September 2008, participants presented 47 lectures

  3. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    Science.gov (United States)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  4. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Science.gov (United States)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  5. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    Science.gov (United States)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  6. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    KAUST Repository

    Yang, Liang

    2014-04-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over both weak and strong atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, average capacity, diversity order, and coverage are analyzed. Results show that the diversity order for the gamma-gamma fading is N min{α, β}/2, where N is the number of users, and α and β are the channel fading parameters related to the effective atmospheric conditions of the link.

  7. COMMUNICATION ETHICS: MONITORING AS A COMPLEMENT TO SELF-REGULATION IN THE PURSUIT OF TRANSPARENCY IN THE NEWS INDUSTRY

    OpenAIRE

    Feenstra, Ramon A.

    2014-01-01

    This paper reflects on the role of communication ethics in the search for solutions to some of the problems in the journalistic arena today. Specifically, the article first examines the importance of applying the principle of transparency in the news industry. It then analyses the potential complementary role that monitoring processes can play in consolidating this transparency in the mass media business model. The present article attempts to propose a communication ethics model grounded on d...

  8. European communication monitor 2009: trends in communication management and public relations; results of a survey in 34 countries

    NARCIS (Netherlands)

    Zerfass, A.; Moreno, A.; Tench, R.; Verčič, D.; Verhoeven, P.

    2009-01-01

    Throughout the last years, research into communication management, strategic communication and public relations (which are used as synonyms here) has evolved as a broad and strong discipline in Europe. Original theories and concepts have been developed - ranging from overall frameworks based on

  9. Hybrid microtransmitter for free-space optical spacecraft communication: design, manufacturing, and characterization

    Science.gov (United States)

    Lotfi, Sara; Palmer, Kristoffer; Kratz, Henrik; Thornell, Greger

    2009-02-01

    Optical intra-communication links are investigated by several currently operational qualification missions. Compared with RF communication systems, the optical domain obtains a wider bandwidth, enables miniaturized spacecraft and reduced power consumption. In this project, a microtransmitter is designed and manufactured for formation flying spacecraft with transmission rates of 1 Gbit/s. Simulations in Matlab and Simulink show that a BER of 10-9 can be achieved with aperture sizes of 1 cm and a transmitter output peak power of 12 mW for a distance of 10 km. The results show that the performance of the communication link decreases due to mechanical vibrations in the spacecraft together with a narrow laser beam. A dual-axis microactuator designed as a deflectable mirror has been developed for the laser beam steering where the fabrication is based on a double-sided, bulk micromachining process. The mirror actuates by joints consisting of v-grooves filled with SU-8 polymer. The deflection is controlled by integrated resistive heaters in the joints causing the polymer to expand thermally. Results show that the mirror actuates 20-30° in the temperature interval 25-250°C. Flat Fresnel lenses made of Pyrex 7740 are used to collimate the laser beam. These lenses are simulated in the Comsol software and optimized for a 670 nm red VCSEL. The lenses are manufactured using lithography and reactive ion etching. All tests are made in a normal laboratory environment, but the effect of the space environment is discussed.

  10. Analysis of fog effects on terrestrial Free Space optical communication links

    KAUST Repository

    Esmail, Maged Abdullah

    2016-07-26

    In this paper, we consider and examine fog measurement data, coming from several locations in Europe and USA, and attempt to derive a unified model for fog attenuation in free space optics (FSO) communication links. We evaluate and compare the performance of our proposed model to that of many well-known alternative models. We found that our proposed model, achieves an average RMSE that outperforms them by more than 9 dB. Furthermore, we have studied the performance of the FSO system using different performance metrics such as signal-to-noise (SNR) ratio, bit error rate (BER), and channel capacity. Our results show that FSO is a short range technology. Therefore, FSO is expected to find its place in future networks that will have small cell size, i.e., <1 km diameter. Moreover, our investigation shows that under dense fog, it is difficult to maintain a communications link because of the high signal attenuation, which requires switching the communications to RF backup. Our results show that increasing the transmitted power will improve the system performance under light fog. However, under heavy fog, the effect is minor. To enhance the system performance under low visibility range, multi-hop link is used which can enhance the power budget by using short segments links. Using 22 dBm transmitted power, we obtained BER=10-3 over 1 km link length with 600 m visibility range which corresponds to light fog. However, under lower visibility range equals 40 m that corresponds to dense fog, we obtained the same BER but over 200 m link length. © 2016 IEEE.

  11. Radio frequency diagnostics on board of Cubesat as a tool for planetary Space Weather monitoring

    Science.gov (United States)

    Rothkaehl, H.; Morawski, M.; Szewczyk, T.

    2014-04-01

    CubeSat pico-satellite standard was developed recently to allow easy access to space for projects with limited funds. Due to relatively cheap yet professional development process, CubeSats have also great educational impact. This allows the students to learn about all crucial aspects of space engineering and project management. Since all the basic steps for developing CubeSat are similar to those performed on bigger satellites (i.e. designing, testing, operating in space), this gives possibility to develop all the necessary skills and experience for future work at space industries. Space Research Center, together with its collaborators from University of Warmia and Mazury in Olsztyn and others, would like to design and build double unit CubeSat as an opportunity to perform scientific experiments in space together with technological demonstrators of subsystems. In order to monitor the Earth's and planetary space environment and obtain a much more complete picture of magnetosphere and ionosphere coupling and particularly waves-particle interaction in this system than those available hitherto new mission of clustered Cubesat mission can be propose. Moreover to enhance our understanding of the rich plasma physical processes that drive the Solar Terrestrial space environment, we need to increase our ability to perform multi-point measurements by means of different sensors. Therefore, new technologies radio frequency radio analyser RFA instrument will gave the possibility for diagnostics 3D electric field component (spectra and wave forms) with extremely high time resolution. Additional technological challenges regarding size, computational power and energy constraints are imposed by the design of CubeSat.

  12. Parental monitoring, parent-adolescent communication about sex, and sexual risk among young men who have sex with men.

    Science.gov (United States)

    Thoma, Brian C; Huebner, David M

    2014-08-01

    Parental monitoring and parent-adolescent communication about sex protect against HIV-related sexual risk behaviors among heterosexual adolescents, but it is unknown if these findings generalize to young men who have sex with men (YMSM). Sexual orientation-specific stressors, including "coming out" to parents, complicate the family context of YMSM. We examined associations between parental monitoring, communication about sex, outness to cohabitating parents, and sexual behaviors. Ethnically diverse YMSM ages 14-19 provided cross-sectional data (n = 257). Monitoring and outness to parents interacted to predict recent same-sex unprotected anal intercourse (UAI). For YMSM who reported mixed or uncertain outness to parents, higher levels of perceived parental monitoring were associated with greater risk of UAI. Higher levels of communication about sex were associated with greater risk of UAI for YMSM out to parents. Parental monitoring and communication about sex might not protect YMSM against sexual risk in the same way they protect heterosexual youth. Future research should examine whether adapted forms of family factors could protect YMSM, and family-based HIV risk-reduction interventions for YMSM should be attuned to the unique ways family factors function within this group.

  13. A Summary of - An Earth-to-Deep Space Communications System with Adaptive Tilt and Scintillation Correction Using Near-Earth Relay Mirrors

    Science.gov (United States)

    Armstrong, J. W.; Yeh, C.; Wilson, K. E.

    1998-01-01

    Optical telecommunication will be the next technology for wide-band Earth/space communication. Uncompensated propagation through the Earth's atmosphere (e.g., scintillation and wavefront tilt) fundamentally degrade communication to distant spcaecraft.

  14. Web based concept project for information and communication of monitoring policy and techniques

    International Nuclear Information System (INIS)

    Levy, D. S.; Sordi, G. M. A. A.

    2014-08-01

    Information and Communication Technology (ICT) is growing in Brazil and worldwide. The servers processing power added to the technology of relational databases allow to integrate information from different sources, enabling complex queries with reduced response time. We believe that the use of information technology for the radiological protection programs for human activities shall help greatly the radioactive facility that requires such use. Therefore, this project aims the informatization of the monitoring policy and techniques in Portuguese, providing Brazilian radioactive facilities a complete repository for research, consultation and information in a quick, integrated and efficient way. In order to meet national and international standards, the development of this project includes concepts, definitions and theory about monitoring procedures in order to interrelate information, currently scattered in several publications and documents, in a consistent and appropriate manner. The Web platform tools and functionalities were developed according to our target public needs, regarding new possibilities of media, like mobile access, feeds of content and information sharing. Moreover, taking into account this is a pioneer project with the prospect of long-term use, our challenge involves the combination of multiple computer technologies that allows a robust, effective, and flexible system, which can be easily adapted according to future technological innovations. This pioneer project shell help greatly both radioactive facilities and researchers, and it is our target to make it an international reference for Portuguese Spoken countries. (Author)

  15. Web based concept project for information and communication of monitoring policy and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Levy, D. S.; Sordi, G. M. A. A., E-mail: info@uniprorad.com.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    Information and Communication Technology (ICT) is growing in Brazil and worldwide. The servers processing power added to the technology of relational databases allow to integrate information from different sources, enabling complex queries with reduced response time. We believe that the use of information technology for the radiological protection programs for human activities shall help greatly the radioactive facility that requires such use. Therefore, this project aims the informatization of the monitoring policy and techniques in Portuguese, providing Brazilian radioactive facilities a complete repository for research, consultation and information in a quick, integrated and efficient way. In order to meet national and international standards, the development of this project includes concepts, definitions and theory about monitoring procedures in order to interrelate information, currently scattered in several publications and documents, in a consistent and appropriate manner. The Web platform tools and functionalities were developed according to our target public needs, regarding new possibilities of media, like mobile access, feeds of content and information sharing. Moreover, taking into account this is a pioneer project with the prospect of long-term use, our challenge involves the combination of multiple computer technologies that allows a robust, effective, and flexible system, which can be easily adapted according to future technological innovations. This pioneer project shell help greatly both radioactive facilities and researchers, and it is our target to make it an international reference for Portuguese Spoken countries. (Author)

  16. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  17. Compact mobile-reader system for two-way wireless communication, tracking and status monitoring for transport safety and security

    Science.gov (United States)

    Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.; Craig, Brian; Byrne, Kevin; Mittal, Ketan; Scherer, Justin C.

    2016-12-06

    A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.

  18. What is the public's role in 'space' policymaking? Images of the public by practitioners of 'space' communication in the United Kingdom.

    Science.gov (United States)

    Entradas, Marta

    2016-07-01

    Studies on experts' understanding of the public have mainly focused on the views of scientists. We add to the literature on constructions of the public by analyzing the views of decision-makers, professional science communicators and scientists involved in 'space' communication on the public and public participation in policy. Findings show that contextual situations and roles determine the way the public is conceptualised: the public is sophisticated and knowledgeable to participate in space activities/citizen science, but in matters of policy, a gullible image of the public is brought up. Despite the democratic talk on participation, practitioners delimited public involvement in policy in some way or other to protect their own power and decision-making capabilities. This conception of the public competes with the stated aims of scientific and political institutions for public engagement and the substantive value of public participation, leaving a limited role for the public in space policymaking. © The Author(s) 2015.

  19. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  20. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    Science.gov (United States)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  1. The eCOMBAT: Energy consumption monitoring tool for battery powered communication device

    CSIR Research Space (South Africa)

    Olwal, TO

    2013-09-01

    Full Text Available computing, communication and networking applications. One of the best ways to obtain energy-efficient communication and networking is to invest in the renewable energy sources to charge batteries for communication devices and to develop smart energy...

  2. The impact of emotional intelligence, self-esteem, and self-image on romantic communication over MySpace.

    Science.gov (United States)

    Dong, Qingwen; Urista, Mark A; Gundrum, Duane

    2008-10-01

    A study based on a survey of 240 individual MySpace users found that low self-esteem encourages young adults to engage in romantic communication (such as having intimate communication with the opposite sex and looking for romantic partners) while higher emotional intelligence discourages such activity. The results also suggested that those who have higher self-image, such as thinking themselves attractive and happy with their appearance, tend to engage in romantic communication. Limitations of the study and suggestion for future study are discussed.

  3. Space to Space Communication Subsystem Manned Spaceflight and Its Key Technology%载人航天空空通信子系统及其关键技术

    Institute of Scientific and Technical Information of China (English)

    石云墀

    2011-01-01

    The composition of the space to space communication subsystem which would realize the transmit the data between Shenzhou spaceship and Tiangong target spacecraft and the functiofi and main performances of the space to space communicator were introduced in this paper. The DS/SS technology which could provide very good performance in anti-jamming and secret communication was applied in the space to space communication subsystem. And the key technologies of sequence synchronization and carrier synchronization in the demodulation of IF DS/SS signal which was the core in DS/SS were analyzed. Using the digital demodulation scheme would reduce the complexity of debugging and increase the reliability of the system.%介绍了实现神舟运输飞船与天宫目标飞行器间数据通信和传输的空空通信子系统的构成,以及空空通信机的功能及其主要性能指标。空空通信子系统采用抗干扰能力强、保密性优的直接序列扩频通信技术。分析了其中的核心中频解扩解调中的伪码同步和载波同步等关键技术,应用数字解调方案降低了子系统调试难度,提高了可靠性。

  4. Analog Testing of Operations Concepts for Mitigation of Communication Latency During Human Space Exploration

    Science.gov (United States)

    Chappell, Steven P.; Abercromby, Andrew F.; Miller, Matthew J.; Halcon, Christopher; Gernhardt, Michael L.

    2016-01-01

    OBJECTIVES: NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of varying operations concepts and tasks type and complexity on representative communication latencies associated with Mars missions were studied. METHODS: 12 subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science backroom team (SBT) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for SBT to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that

  5. NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration

    Science.gov (United States)

    Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher

    2016-01-01

    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be

  6. Advanced biosensors for monitoring astronauts' health during long-duration space missions.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Guardigli, Massimo; Zangheri, Martina; Caliceti, Cristiana; Calabria, Donato; Simoni, Patrizia

    2018-07-15

    Long-duration space missions pose important health concerns for astronauts, especially regarding the adverse effects of microgravity and exposure to high-energy cosmic rays. The long-term maintenance of crew health and performance mainly relies on prevention, early diagnoses, condition management, and medical interventions in situ. In-flight biosensor diagnostic devices and medical procedures must use few resources and operate in a microgravity environment, which complicates the collection and management of biological samples. Moreover, the biosensors must be certified for in-flight operation according to strict design and safety regulations. Herein, we report on the state of the art and recent advances in biosensing diagnostic instrumentation for monitoring astronauts' health during long-duration space missions, including portable and wearable biosensors. We discuss perspectives on new-format biosensors in autonomous space clinics. We also describe our own work in developing biosensing devices for non-invasively diagnosing space-related diseases, and how they are used in long-duration missions. Finally, we discuss the benefits of space exploration for Earth-based medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Combining Social Media with Innovative Ways of Communicating about the James Webb Space Telescope

    Science.gov (United States)

    Masetti, Margaret

    2012-01-01

    In keeping with the cutting-edge nature of the James Webb Space Telescope, NASA is using a variety of social and interactive media to engage the public. While we do have a regularly updated static website, we are now also using various interactives (like Flash games and a 3D Tour of the spacecraft) to better explain what the Webb telescope is and how it works. To encourage future generations, we are a partner in an educational engineering design challenge which makes use of a virtual Second Life-like world. Additionally, the public can now watch Webb come together before their eyes by accessing our live webcam, which shows telescope hardware being built in our cleanroom. We are working to make Webb as much of a part of pop culture as the Hubble Space Telescope is. We facilitated the filming of a "Late Night with Jimmy Fallon” segment (called "Hubble Gotchu") featuring Webb and Webb scientists at NASA's Goddard Space Flight Center. A visit to the highly rated sitcom "The Big Bang Theory” resulted in Webb lithos, magnets, posters, a scale model, and more being regularly featured on the set of the show. The most important aspect to creating interesting ways to engage the public is having the ability to communicate and form relationships with as many people as possible. To that end, we are using tools like blogs (e.g., NASA Blueshift) and popular social media (Facebook, Twitter, YouTube, and Flickr) to reach out to as many people as we can and to enable them to share and spread the content we provide.

  8. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  9. Environmental monitoring and research at the John F. Kennedy Space Center

    Science.gov (United States)

    Hall, C. R.; Hinkle, C. R.; Knott, W. M.; Summerfield, B. R.

    1992-01-01

    The Biomedical Operations and Research Office at the NASA John F. Kennedy Space Center has been supporting environmental monitoring and research since the mid-1970s. Program elements include monitoring of baseline conditions to document natural variability in the ecosystem, assessments of operations and construction of new facilities, and ecological research focusing on wildlife habitat associations. Information management is centered around development of a computerized geographic information system that incorporates remote sensing and digital image processing technologies along with traditional relational data base management capabilities. The proactive program is one in which the initiative is to anticipate potential environmental concerns before they occur and, by utilizing in-house expertise, develop impact minimization or mitigation strategies to reduce environmental risk.

  10. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    Science.gov (United States)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  11. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  12. Development and Characterization of Tissue Equivalent Proportional Counter for Radiation Monitoring in International Space Station

    Directory of Open Access Journals (Sweden)

    Uk-Won Nam

    2013-06-01

    Full Text Available Tissue equivalent proportional counter (TEPC can measure the Linear Energy Transfer (LET spectrum and calculate the equivalent dose for the complicated radiation field in space. In this paper, we developed and characterized a TEPC for radiation monitoring in International Space Station (ISS. The prototype TEPC which can simulate a 2 μm of the site diameter for micro-dosimetry has been tested with a standard alpha source (241Am, 5.5 MeV. Also, the calibration of the TEPC was performed by the 252Cf neutron standard source in Korea Research Institute of Standards and Science (KRISS. The determined calibration factor was kf = 3.59×10-7 mSv/R.

  13. New mission requirements methodologies for services provided by the Office of Space Communications

    Science.gov (United States)

    Holmes, Dwight P.; Hall, J. R.; Macoughtry, William; Spearing, Robert

    1993-01-01

    The Office of Space Communications, NASA Headquarters, has recently revised its methodology for receiving, accepting and responding to customer requests for use of that office's tracking and communications capabilities. This revision is the result of a process which has become over-burdened by the size of the currently active and proposed missions set, requirements reviews that focus on single missions rather than on mission sets, and negotiations most often not completed early enough to effect needed additions to capacity or capability prior to launch. The requirements-coverage methodology described is more responsive to project/program needs and provides integrated input into the NASA budget process early enough to effect change, and describes the mechanisms and tools in place to insure a value-added process which will benefit both NASA and its customers. Key features of the requirements methodology include the establishment of a mechanism for early identification of and systems trades with new customers, and delegates the review and approval of requirements documents to NASA centers in lieu of Headquarters, thus empowering the system design teams to establish and negotiate the detailed requirements with the user. A Mission Requirements Request (MRR) is introduced to facilitate early customer interaction. The expected result is that the time to achieve an approved set of implementation requirements which meet the customer's needs can be greatly reduced. Finally, by increasing the discipline in requirements management, through the use of base lining procedures, a tighter coupling between customer requirements and the budget is provided. A twice-yearly projection of customer requirements accommodation, designated as the Capacity Projection Plan (CPP), provides customer feedback allowing the entire mission set to be serviced.

  14. Seeing white elephants? The production and communication of information in a locally-based monitoring system in Tanzania

    Directory of Open Access Journals (Sweden)

    Martin Reinhardt Nielsen

    2012-01-01

    Full Text Available The literature on locally-based monitoring in the context of conservation displays a great deal of optimism about the prospects of involving local people in the systematic gathering of information about the condition and use of natural resources and conservation areas to inform management decisions from local to national levels. This study challenges this notion based on a case study of a collaborative forest management and locally-based monitoring project that has been considered a successful showcase example in Tanzania. It does so by comparing information from locally-based monitoring of forest condition and financial transactions, as presented by community management institutions to higher authorities, with forest transect surveys and an audit of financial accounts. The results reveal that the information produced and communicated under the locally-based monitoring system contradicts trends in wildlife densities and human disturbance observed in the forest and under-represents actual financial flows. Interviews and observations further indicate that communication of this information takes place under conditions of ongoing power struggles over access to benefits of collaborative forest management. This study serves to caution that the information produced and communicated under the locally-based monitoring system may be shaped by the incentives and power struggles surrounding the particular context within which the system is based and therefore cannot be taken at face value.

  15. Aspects of scintillation modelling in LEO-ground free-space optical communications

    Science.gov (United States)

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non

  16. COTS low-cost 622-Mb/s free-space laser communications link for short-distance commercial applications

    Science.gov (United States)

    Morrison, Kenneth A.

    2000-05-01

    The results from a low cost 622 Mb/s, free-space laser communication link operating at 850 nm for short distance commercial applications is presented. The test results demonstrate the use of a free-space laser communications transceiver for building to building applications such as LAN, WAN and ATM operations, etc. This illustrates the potential for wide-use commercial computer network applications. The transceiver is constructed of commercial off-the-shelf materials for the development of a low-cost laser communications data link. The test system configuration utilizes standard Personal Computers with network cards and signal conversion cards for the copper to optical medical conversion. These tests precede the development of an increased data rate device operating at 2.5 Gb/s.

  17. Tactile Communications

    Data.gov (United States)

    National Aeronautics and Space Administration — Communication with the crew is vital and must be maintained regardless of environmental conditions and crew activity. Current spacecraft communication systems depend...

  18. Feasibility and usability of a home monitoring concept based on mobile phones and near field communication (NFC) technology.

    Science.gov (United States)

    Morak, Jürgen; Kollmann, Alexander; Schreier, Günter

    2007-01-01

    Utilization of mobile information and communication technologies in home monitoring applications is becoming more and more common. The mobile phone, acting as a patient terminal for patients suffering from chronic diseases, provides an active link to the caregiver to transmit health status information and receive feedback. In such a concept the usability is still limited by the necessity of entering the values via the mobile phone's small keypad. The near field communication technology (NFC), a touch-based wireless interface that became available recently, may improve the usability level of such applications significantly. The focus of this paper is to describe the development of a prototype application based on this technology embedded in a home monitoring system. The feasibility and usability of this approach are evaluated and compared with concepts used in previous approaches. The high quantifier with respect to overall usability indicates that NFC may be the technology of choice for some tasks in home monitoring applications.

  19. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B,; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    There are a variety of both portable and fixed gas monitors onboard the International Space Station (ISS). Devices range from rack-mounted mass spectrometers to hand-held electrochemical sensors. An optical Multi-Gas Monitor has been developed as an ISS Technology Demonstration to evaluate long-term continuous measurement of 4 gases. Based on tunable diode laser spectroscopy, this technology offers unprecedented selectivity, concentration range, precision, and calibration stability. The monitor utilizes the combination of high performance laser absorption spectroscopy with a rugged optical path length enhancement cell that is nearly impossible to misalign. The enhancement cell serves simultaneously as the measurement sampling cell for multiple laser channels operating within a common measurement volume. Four laser diode based detection channels allow quantitative determination of ISS cabin concentrations of water vapor (humidity), carbon dioxide, ammonia and oxygen. Each channel utilizes a separate vertical cavity surface emitting laser (VCSEL) at a different wavelength. In addition to measuring major air constituents in their relevant ranges, the multiple gas monitor provides real time quantitative gaseous ammonia measurements between 5 and 20,000 parts-per-million (ppm). A small ventilation fan draws air with no pumps or valves into the enclosure in which analysis occurs. Power draw is only about 3 W from USB sources when installed in Nanoracks or when connected to 28V source from any EXPRESS rack interface. Internal battery power can run the sensor for over 20 hours during portable operation. The sensor is controlled digitally with an FPGA/microcontroller architecture that stores data internally while displaying running average measurements on an LCD screen and interfacing with the rack or laptop via USB. Design, construction and certification of the Multi-Gas Monitor were a joint effort between Vista Photonics, Nanoracks and NASA-Johnson Space Center (JSC

  20. Conceptualizing and communicating organizational risk dynamics in the thoroughness-efficiency space

    International Nuclear Information System (INIS)

    Marais, K.B.; Saleh, J.H.

    2008-01-01

    Organizations that design and/or operate complex systems have to make trade-offs between multiple, interacting, and sometimes conflicting goals at both the individual and organizational levels. Identifying, communicating, and resolving the conflict or tension between multiple organizational goals is challenging. Furthermore, maintaining an appropriate level of safety in such complex environments is difficult for a number of reasons discussed in this paper. The objective of this paper is to propose a set of related concepts that can help conceptualize organizational risk and help managers to understand the implications of various performance and resource pressures and make appropriate trade-offs between efficiency and thoroughness that maintain system safety. The concepts here introduced include (1) the thoroughness-efficiency space for classifying organizational behavior, and the various resource/performance and regulatory pressures that can displace organizations from one quadrant to another within this space, (2) the thoroughness-efficiency barrier and safety threshold, and (3) the efficiency penalty that organizations should accept, and not trade against organizational thoroughness, in order to maintain safety. Unfortunately, many accidents share a conceptual sameness in the way they occur. That sameness can be related to the dynamics conceptualized in this paper and the violation of the safety threshold. This sameness is the sad story of the Bhopal accident, the Piper Alpha accident, and score of others. Finally, we highlight the importance of a positive safety culture as an essential complement to regulatory pressure in maintaining safety. We illustrate the 'slippery slope of thoroughness' along which organizational behavior slides under the influence of performance pressure, and suggest that a positive safety culture can be conceived of as 'pulling this slippery slope' up and preventing the violation of the safety threshold

  1. Examination of Communication Delays on Team Performance: Utilizing the International Space Station (ISS) as a Test Bed for Analog Research

    Science.gov (United States)

    Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.

    2011-01-01

    Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.

  2. An assessment of the status and trends in satellite communications 1986-2000: An information document prepared for the Communications Subcommittee of the Space Applications Advisory Committee

    Science.gov (United States)

    Poley, W. A.; Stevens, G. H.; Stevenson, S. M.; Lekan, J.; Arth, C. H.; Hollansworth, J. E.; Miller, E. F.

    1986-01-01

    This is a response to a Space Applications Advisory Committee (SAAC) request for information about the status and trends in satellite communications, to be used to support efforts to conceive and recommend long range goals for NASA communications activities. Included in this document are assessments of: (1) the outlook for satellite communications, including current applications, potential future applications, and impact of the changing environment such as optical fiber networks, the Integrated Services Digital Network (ISDN) standard, and the rapidly growing market for Very Small Aperture Terminals (VSAT); (2) the restrictions imposed by our limited spectrum resource; and (3) technology needs indicated by future trends. Potential future systems discussed include: large powerful satellites for providing personal communications; VSAT compatible satellites with onboard switching and having voice capability; large satellites which offer a pervasive T1 network service (primarily for video-phone); and large geostationary communications facilities which support common use by several carriers. Also, discussion is included of NASA particular needs and possible future systems. Based on the mentioned system concepts, specific technology recommendations are provided for the time frames of now - 1993, 1994 - 2000, and 2000 - 2010.

  3. Free-space laser communication technologies IV; Proceedings of the 4th Conference, Los Angeles, CA, Jan. 23, 24, 1992

    Science.gov (United States)

    Begley, David L. (Editor); Seery, Bernard D. (Editor)

    1992-01-01

    Papers included in this volume are grouped under topics of receivers; laser transmitters; components; system analysis, performance, and applications; and beam control (pointing, acquisition, and tracking). Papers are presented on an experimental determination of power penalty contributions in an optical Costas-type phase-locked loop receiver, a resonant laser receiver for free-space laser communications, a simple low-loss technique for frequency-locking lasers, direct phase modulation of laser diodes, and a silex beacon. Particular attention is given to experimental results on an optical array antenna for nonmechanical beam steering, a potassium Faraday anomalous dispersion optical filter, a 100-Mbps resonant cavity phase modulator for coherent optical communications, a numerical simulation of a 325-Mbit/s QPPM optical communication system, design options for an optical multiple-access data relay terminal, CCD-based optical tracking loop design trades, and an analysis of a spatial-tracking subsystem for optical communications.

  4. Control, communication and monitoring of intravaginal drug delivery in dairy cows.

    Science.gov (United States)

    Cross, Peter S; Künnemeyer, Rainer; Bunt, Craig R; Carnegie, Dale A; Rathbone, Michael J

    2004-09-10

    We present the design of an electronically controlled drug delivery system. The intravaginally located device is a low-invasive platform that can measure and react inside the cow vagina while providing external control and monitoring ability. The electronics manufactured from off the shelf components occupies 16 mL of a Theratron syringe. A microcontroller reads and logs sensor data and controls a gascell. The generated gas pressure propels the syringe piston and releases the formulation. A two way radio link allows communication between other devices or a base station. Proof of principle experiments confirm variable-rate, arbitrary profile drug delivery qualified by internal sensors. A total volume of 30 mL was dispensed over a 7-day-period with a volume error of +/- 1 mL or +/- 7% for larger volumes. Delivery was controlled or overridden via the wireless link, and proximity to other devices was detected and recorded. The results suggest that temperature and activity sensing or social grouping determined via proximity can be used to detect oestrus and trigger appropriate responses.

  5. Ultra sensitive sea water radioactivity monitoring system. Autonomous low power consumption equipped with wireless data communication

    International Nuclear Information System (INIS)

    Bonet, H.; Debauche, A.; Lellis, C. de; Adam, V.; Lacroix, J.P.; Put, P. van

    2003-01-01

    Following the recognition of their usefulness by the States and the scientific community, the automatic water monitoring networks were developed again to be able to measure sea water. For that purpose they had to be fully autonomous, have low power consumption (solar panels power supply), use wireless communicating (satellite, GSM, Radio) and be very sensitive (few Bq/m 3 ). It is important to note that radioactivity detection in sea has many constraints: The detection system sensitivity must be very high because of the dilution factor of the ocean. The analysis method has to be adapted: the detection of very low levels of artificial contamination is made difficult due to the natural radioactivity in seawater (i.e., more than 10 kBq of 40 K/m 3 ). The system has to be completely autonomous, 'wireless'. Additional conventional measuring probes must be connected to the system to increase its interest (pH, t deg, salinity, position, meteorology). The system maintenance must be very limited (1/year). Wind and corrosion resistance must be high. The probe must be installed on a buoy. Moreover, some improvements are needed to allow: Amplification Gain drifts due to NaI sensitivity to t deg to be compensated. Net peak area computation in a specific energy range. Interference correction to prevent false alarms due to natural radiation. Very long counting time. (author)

  6. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.

    Science.gov (United States)

    Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang

    2018-01-18

    The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0  = 10, f G  = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB  = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

  7. A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    Science.gov (United States)

    Zander, Carol S.

    1988-01-01

    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.

  8. Problems of linguistic discrimination in the communicative space of Tajikistan: legal, sociolinguistic and educational aspects

    Directory of Open Access Journals (Sweden)

    Diloro Iskandarova

    2017-11-01

    Full Text Available Although it is disregarded and banned, a person can be discriminated in the society according to various attributes – due to the person's language, religion, nationality, social background. The problem touches upon not only individuals but minorities as well. Almost all states have one or several groups – minorities – that differ from the main population in ethnic, linguistic or religious lines. Most international treaties on human rights contain anti-discriminatory provisions. In addition to the main rights of the freedom of conscience, thought and associations, the principal legal guarantees for each representative of minorities consist in being treated equally by the law and courts and in equal protection of laws. The paper studies the problems of legal, sociolinguistic and educational basis of linguistic discrimination in the communicative space of Tajikistan. Linguistic discrimination and political correctness are closely connected with the language policy of the state. With exoglossic linguistic situation being characteristic for Tajikistan arises a need to study the questions related to linguistic discrimination. This will allow making certain adjustments to language building and harmonizing the ethnic and interethnic interests on the basis of a balanced and scientifically justified language policy.

  9. Performances of Free-Space Optical Communication System Over Strong Turbulence

    Directory of Open Access Journals (Sweden)

    Ucuk Darusalam

    2014-08-01

    Full Text Available We report an experimental of free-space optical communication (FSOC system that use tube propagation simulator (TPS as the turbulence medium. The FSOC system usewavelength of 1550 nm at the rate transmission of 1000 Mbps and amplified with EDFA at the output of +23 dBm. Index structure of 10-15–10-13 as the representation of atmosphere index turbulences are used for simulation of intensity distribution model or scintillation. The simulation use gammagamma and K model as well. The beam wave propagation models used in simulation are plane wave, spherical wave and Gaussian wave. Spherical wave achieves highest performance via gamma-gamma in strong turbulence. While Gaussian wave achieves highest performance also via K model. We also found, characteristical FSOC system performance is calculated more accurately with gamma-gamma method for strong turbulence than K model. The performances from gamma-gamma for strong turbulenceare at 22.55 dB, at 5.33×10-4, and at 9.41 ×10-6. 

  10. Research and Application of Remote Sensing Monitoring Method for Desertification Land Under Time and Space Constraints

    Science.gov (United States)

    Zhang, Nannnan; Wang, Rongbao; Zhang, Feng

    2018-04-01

    Serious land desertification and sandified threaten the urban ecological security and the sustainable economic and social development. In recent years, a large number of mobile sand dunes in Horqin sandy land flow into the northwest of Liaoning Province under the monsoon, make local agriculture suffer serious harm. According to the characteristics of desertification land in northwestern Liaoning, based on the First National Geographical Survey data, the Second National Land Survey data and the 1984-2014 Landsat satellite long time sequence data and other multi-source data, we constructed a remote sensing monitoring index system of desertification land in Northwest Liaoning. Through the analysis of space-time-spectral characteristics of desertification land, a method for multi-spectral remote sensing image recognition of desertification land under time-space constraints is proposed. This method was used to identify and extract the distribution and classification of desertification land of Chaoyang City (a typical citie of desertification in northwestern Liaoning) in 2008 and 2014, and monitored the changes and transfers of desertification land from 2008 to 2014. Sandification information was added to the analysis of traditional landscape changes, improved the analysis model of desertification land landscape index, and the characteristics and laws of landscape dynamics and landscape pattern change of desertification land from 2008 to 2014 were analyzed and revealed.

  11. Rethinking communication in innovation processes: creating space for change in complex systems

    NARCIS (Netherlands)

    Leeuwis, C.; Aarts, N.

    2011-01-01

    This paper systematically rethinks the role of communication in innovation processes, starting from largely separate theoretical developments in communication science and innovation studies. Literature review forms the basis of the arguments presented. The paper concludes that innovation is a

  12. Rethinking Communication in Innovation Processes: Creating Space for Change in Complex Systems

    NARCIS (Netherlands)

    Leeuwis, C.; Aarts, N.

    2011-01-01

    This paper systematically rethinks the role of communication in innovation processes, starting from largely separate theoretical developments in communication science and innovation studies. Literature review forms the basis of the arguments presented. The paper concludes that innovation is a

  13. Space-Derived Phenology, Retrieval and Use for Drought and Food Security Monitoring

    Science.gov (United States)

    Meroni, M.; Kayitakire, F.; Rembold, F.; Urbano, F.; Schucknecht, A.; LEO, O.

    2014-12-01

    Monitoring vegetation conditions is a critical activity for assessing food security in Africa. Rural populations relying on rain-fed agriculture and livestock grazing are highly exposed to large seasonal and inter-annual fluctuations in water availability. Monitoring the state, evolution, and productivity of vegetation, crops and pastures in particular, is important to conduct food emergency responses and plan for a long-term, resilient, development strategy in this area. The timing of onset, the duration, and the intensity of vegetation growth can be retrieved from space observations and used for food security monitoring to assess seasonal vegetation development and forecast the likely seasonal outcome when the season is ongoing. In this contribution we present a set of phenology-based remote sensing studies in support to food security analysis. Key phenological indicators are retrieved using a model-fit approach applied to SOPT-VEGETATION FAPAR time series. Remote-sensing phenology is first used to estimate i) the impact of the drought in the Horn of Africa, ii) crop yield in Tunisia and, iii) rangeland biomass production in Niger. Then the impact of the start and length of vegetation growing period on the total biomass production is assessed over the Sahel. Finally, a probabilistic approach using phenological information to forecast the occurrence of an end-of-season biomass production deficit is applied over the Sahel to map hot-spots of drought-related risk.

  14. Biosensors for Real-Time Monitoring of Radiation-Induced Biologic Effects in Space

    Science.gov (United States)

    Baker, James R.; Balogh, Lajos; Majoros, Istvan; Keszler, Balazs; Myc, Andrzej; Kukowska-Latallo, Jolanta; Norris, Theodore; delaiglesia, Felix; Beeson, Nicholas W. (Compiler)

    2002-01-01

    This work seeks to develop cellular biosensors based on dendritic polymers. Nanoscale polymer structures less than 20 nm in diameter will be used as the basis of the biosensors. The structures will be designed to target into specific cells of an astronaut and be able to monitor health issues such as exposure to radiation. Multiple components can be assembled on the polymers including target directors, analytical devices (such as molecular probes), and reporting agents. The reporting will be accomplished through fluorescence signal monitoring, with the use of multispectral analysis for signal interpretation. These nanosensors could facilitate the success and increase the safety of extended space flight. The design and assembly of these devices has been pioneered at the Center for Biologic Nanotechnology in the University of Michigan. This period, synthesis of the test-bed biosensors continued. Studies were performed on the candidate fluorescent dyes to determine which might be suitable for the biosensor under development. Development continued on producing an artificial capillary bed as a tool for the use in the production of the fluorescence signal monitor. Work was also done on the in vitro multispectral analysis system, which uses the robotic microscope.

  15. Time Analyzer for Time Synchronization and Monitor of the Deep Space Network

    Science.gov (United States)

    Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert

    2003-01-01

    A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for

  16. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  17. The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station

    Science.gov (United States)

    Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.

    2010-01-01

    An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.

  18. Carrington-L5: The UK/US Operational Space Weather Monitoring Mission

    Science.gov (United States)

    Trichas, Markos; Gibbs, Mark; Harrison, Richard; Green, Lucie; Eastwood, Jonathan; Bentley, Bob; Bisi, Mario; Bogdanova, Yulia; Davies, Jackie; D'Arrigo, Paolo; Eyles, Chris; Fazakerley, Andrew; Hapgood, Mike; Jackson, David; Kataria, Dhiren; Monchieri, Emanuele; Windred, Phil

    2015-06-01

    Airbus Defence and Space (UK) has carried out a study to investigate the possibilities for an operational space weather mission, in collaboration with the Met Office, RAL, MSSL and Imperial College London. The study looked at the user requirements for an operational mission, a model instrument payload, and a mission/spacecraft concept. A particular focus is cost effectiveness and timelineness of the data, suitable for 24/7 operational forecasting needs. We have focussed on a mission at L5 assuming that a mission to L1 will already occur, on the basis that L5 (Earth trailing) offers the greatest benefit for the earliest possible warning on hazardous SWE events and the most accurate SWE predictions. The baseline payload has been selected to cover all UK Met Office/NOAA's users priorities for L5 using instruments with extensive UK/US heritage, consisting of: heliospheric imager, coronograph, magnetograph, magnetometer, solar wind analyser and radiation monitor. The platform and subsystems are based on extensive re-use from past Airbus Defence and Space spacecraft to minimize the development cost and a Falcon-9 launcher has been selected on the same basis. A schedule analysis shows that the earliest launch could be achieved by 2020, assuming Phase A kick-off in 2015-2016. The study team have selected the name "Carrington" for the mission, reflecting the UK's proud history in this domain.

  19. Validity of a heart rate monitor during work in the laboratory and on the Space Shuttle

    Science.gov (United States)

    Moore, A. D. Jr; Lee, S. M.; Greenisen, M. C.; Bishop, P.

    1997-01-01

    Accurate heart rate measurement during work is required for many industrial hygiene and ergonomics situations. The purpose of this investigation was to determine the validity of heart rate measurements obtained by a simple, lightweight, commercially available wrist-worn heart rate monitor (HRM) during work (cycle exercise) sessions conducted in the laboratory and also during the particularly challenging work environment of space flight. Three different comparisons were made. The first compared HRM data to simultaneous electrocardiogram (ECG) recordings of varying heart rates that were generated by an ECG simulator. The second compared HRM data to ECG recordings collected during work sessions of 14 subjects in the laboratory. Finally, ECG downlink and HRM data were compared in four astronauts who performed cycle exercise during space flight. The data were analyzed using regression techniques. The results were that the HRM recorded virtually identical heart rates compared with ECG recordings for the data set generated by an ECG simulator. The regression equation for the relationship between ECG versus HRM heart rate data during work in the laboratory was: ECG HR = 0.99 x (HRM) + 0.82 (r2 = 0.99). Finally, the agreement between ECG downlink data and HRM data during space flight was also very high, with the regression equation being: Downlink ECG HR = 1.05 x (HRM) -5.71 (r2 = 0.99). The results of this study indicate that the HRM provides accurate data and may be used to reliably obtain valid data regarding heart rate responses during work.

  20. The role of space communication in promoting national development with specific reference to experiments conducted in India

    Science.gov (United States)

    Chitnis, E. V.

    The paper describes the role of space communication in promoting national development with special reference to experiments conducted in India, namely SITE (1975-1976), STEP (1977-1979) and APPLE (1981 onwards). The impact of these experiments in economic, cultural and educational terms are discussed, pointing out social implications involved in using advance space communication technology for instruction and information in the areas of education, national integration and development. The paper covers special requirements which arise when a communication system covers backward and remote rural areas in a developing country. The impact on the population measured by conducting social surveys has been discussed - especially the gains of predominently illiterate new media - participants have been highlighted. Possibilities of improving skills of teachers, the quality of the primary and higher education have been covered. The preparation required both on ground as well as space to derive benefits of space technology are considered. A profile of INSAT which marks the culmination of the experimental phase and the beginning of operational domestic satellite system is sketched.

  1. Prediction of rain effects on earth-space communication links operating in the 10 to 35 GHz frequency range

    Science.gov (United States)

    Stutzman, Warren L.

    1989-01-01

    This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.

  2. Development of Operational Free-Space-Optical (FSO) Laser Communication Systems Final Report CRADA No. TC02093.0

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orgren, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This project was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and LGS Innovations, LLC (formerly Lucent Technologies, Inc.), to develop long-range and mobile operational free-space optical (FSO) laser communication systems for specialized government applications. LLNL and LGS Innovations formerly Lucent Bell Laboratories Government Communications Systems performed this work for a United States Government (USG) Intelligence Work for Others (I-WFO) customer, also referred to as "Government Customer", or "Customer" and "Government Sponsor." The CRADA was a critical and required part of the LLNL technology transfer plan for the customer.

  3. Collaboration pathway(s) using new tools for optimizing `operational' climate monitoring from space

    Science.gov (United States)

    Helmuth, Douglas B.; Selva, Daniel; Dwyer, Morgan M.

    2015-09-01

    Consistently collecting the earth's climate signatures remains a priority for world governments and international scientific organizations. Architecting a long term solution requires transforming scientific missions into an optimized robust `operational' constellation that addresses the collective needs of policy makers, scientific communities and global academic users for trusted data. The application of new tools offers pathways for global architecture collaboration. Recent rule-based expert system (RBES) optimization modeling of the intended NPOESS architecture becomes a surrogate for global operational climate monitoring architecture(s). These rulebased systems tools provide valuable insight for global climate architectures, by comparison/evaluation of alternatives and the sheer range of trade space explored. Optimization of climate monitoring architecture(s) for a partial list of ECV (essential climate variables) is explored and described in detail with dialogue on appropriate rule-based valuations. These optimization tool(s) suggest global collaboration advantages and elicit responses from the audience and climate science community. This paper will focus on recent research exploring joint requirement implications of the high profile NPOESS architecture and extends the research and tools to optimization for a climate centric case study. This reflects work from SPIE RS Conferences 2013 and 2014, abridged for simplification30, 32. First, the heavily securitized NPOESS architecture; inspired the recent research question - was Complexity (as a cost/risk factor) overlooked when considering the benefits of aggregating different missions into a single platform. Now years later a complete reversal; should agencies considering Disaggregation as the answer. We'll discuss what some academic research suggests. Second, using the GCOS requirements of earth climate observations via ECV (essential climate variables) many collected from space-based sensors; and accepting their

  4. Space weather effects on airline communications in the high latitude regions

    Science.gov (United States)

    Stocker, Alan; Siddle, Dave; Warrington, Mike; Honary, Farideh; Zaalov, Nikolay; Homam, Mariyam; Boteler, David; Danskin, Donald; de Franceschi, Georgiana; Ascaneus, Svend

    2013-04-01

    In the polar regions, ground-based VHF facilities for air-traffic control are lacking (and non-existent on the Russian side of the pole) and satellite communication systems either not available or expensive to retrofit to current aircraft and hence there remains a need for HF communication systems. Unfortunately, at these latitudes space weather can significantly affect the propagation of HF radio signals and the forecasting techniques currently employed by the airline industry are somewhat crude. In this paper, a new project that aims to provide forecasting of HF propagation characteristics for use by civilian airlines operating over polar routes will be described and preliminary results presented. Previous work in this area [e.g. Stocker et al., 2007] has focussed on taking HF signal measurements (e.g. SNR, delay and Doppler spread, and direction of arrival) on a limited number of propagation paths and developing an ionospheric model that incorporates high latitude features (e.g. polar patches and arcs) which, when combined with raytracing, allows the broad characteristics of the observations to be reproduced [Warrington et al., 2012]. The new project will greatly extend this work and consists of a number of stages. Firstly, HF measurements from an extensive network of purpose built transmitters and receivers spanning the Arctic regions will be collected and analysed. In order to test a wide variety of scenarios, the propagation paths will have different characteristics, e.g. different lengths and covering different parts of the northern ionosphere (i.e. polar cap paths where both terminals are in the polar cap, trans-auroral paths, and sub-auroral paths) and observations will be taken at a range of HF frequencies for a period covering the current (so far weak) solar maximum and part of the declining phase. Simultaneously, high latitude absorption measurements utilising the Global Riometer Array (GLORIA) will be collected and analysed. Next, the observations of

  5. Novel System for Bite-Force Sensing and Monitoring Based on Magnetic Near Field Communication

    Directory of Open Access Journals (Sweden)

    Jesús Sanz Maudes

    2012-08-01

    Full Text Available Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID technology (NFC. The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient’s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system’s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.

  6. Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor

    Science.gov (United States)

    Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.

    2017-12-01

    NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite

  7. Communication constraints, indexical countermeasures, and crew configuration effects in simulated space-dwelling groups

    Science.gov (United States)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Banner, Michele J.; Gasior, Eric D.; Spence, Kevin R.

    2007-02-01

    Previous research with groups of individually isolated crews communicating and problem-solving in a distributed interactive simulation environment has shown that the functional interchangeability of available communication channels can serve as an effective countermeasure to communication constraints. The present report extends these findings by investigating crew performance effects and psychosocial adaptation following: (1) the loss of all communication channels, and (2) changes in crew configuration. Three-person crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crews developed and employed discrete navigation system operations that served as functionally effective communication signals (i.e., “indexical” or “deictic” cues) in generating appropriate crewmember responses and maintaining performance effectiveness in the absence of normal communication channels. Additionally, changes in crew configuration impacted both performance effectiveness and psychosocial adaptation.

  8. [Space-time water monitoring system at the Iriklinsk hydroelectric power station].

    Science.gov (United States)

    Deriabin, D G; Poliakov, E G; Priakhina, A A; Karimov, I F

    2002-01-01

    The Microbiosensor B 17677 F test system was applied to make a space-time monitoring of the biotoxicity of water used for production and everyday purposes at the Iriklinsk hydroelectric power station (IHEPS) and to identify the leading causes determining the biotoxicity of tested samples. There were seasonal variations in the biotoxicity with the maximum in spring and with minimum in winter and spring and a relationship of the spring rise in the biotoxicity to water pH changes. There was also an association of the certain values of the biotoxicity of industrial water with the concentration of petroleum products that are major pollutants at the IHEPS. The datum points that characterize the maximum level of technogenic exposure were identified.

  9. The Analysis and suggested marketing communication for CleanMySpace start-up company

    OpenAIRE

    Tolstykh, Anastasiia

    2016-01-01

    This bachelor thesis is focused on the proposal of marketing communication for new start-up company CleanMyPlace, the winner of VŠE Exports 2015, aimed at increase of its brand awareness and improvement of existing marketing strategies and tactics. The theoretical part is devoted to marketing tools, most improtantly to marketing online communication, as soon as this brand provides its services via internet. In the practical part are defined and analysed the current marketing communication. Th...

  10. Satellite and Ground Communication Systems: Space and Electronic Warfare Threats to the United States Army

    Science.gov (United States)

    2017-02-01

    as if SATCOM is guaranteed. This complacency is accompanied by the procurement of high-data communication and mission command systems that deny...threat. To overcome these significant vulnerabilities, the US Army must procure communications systems that maintain the information high ground, but...precious gift of our freedom.”1 A key element of remaining strong on the ground is maintaining the capability to effectively communicate on the ground. If

  11. Low-Power and Reliable Communications for UWB-Based Wireless Monitoring Sensor Networks in Underground Mine Tunnels

    OpenAIRE

    Abou El-Nasr, Mohamad; Shaban, Heba

    2015-01-01

    This paper investigates the bit-error-rate (BER) and maximum allowable data throughput (MADTh) performance of a novel low-power mismatched Rake receiver structure for ultra wideband (UWB) wireless monitoring sensor networks in underground mine tunnels. This receive node structure provides a promising solution for low-power and reliable communications in underground mine tunnels with more than 90% reduction in power consumption. The BER and MADTh of the proposed receive nodes are investigated ...

  12. Adaptive Space-Time, Processing for High Performance, Robust Military Wireless Communications

    National Research Council Canada - National Science Library

    Haimovich, Alexander

    2000-01-01

    ...: (I) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference particularly the case when the number of interference sources exceeds...

  13. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  14. Supply Warehouse#3, SWMU 088 Operations, Maintenance, and Monitoring Report Kennedy Space Center, Florida

    Science.gov (United States)

    Murphy, Alex

    2016-01-01

    This document presents the findings, observations, and results associated with Operations, Maintenance, and Monitoring (OM&M) activities of Corrective Measures Implementation (CMI) activities conducted at Supply Warehouse #3 (SW3) located at John F. Kennedy Space Center (KSC), Florida from October 8, 2015, to September 12, 2016, and performance monitoring results for semi-annual sampling events conducted in March and September 2016. The primary objective of SW3 CMI is to actively decrease concentrations of trichloroethene (TCE) and vinyl chloride (VC) to less than Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentrations (NADCs), and the secondary objective is to reduce TCE, cis-1,2-dichloroethene (cDCE), trans-1,2-dichloroethene (tDCE), 1,1-dichloroethene (11DCE), and VC concentrations to less than FDEP Groundwater Cleanup Target Levels (GCTLs). The SW3 facility has been designated Solid Waste Management Unit (SWMU) 088 under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action Program. Based on the results to date, the SW3 air sparging (AS) system is operating at or below the performance criteria as presented in the 2008 SW3 Corrective Measures Implementation (CMI) Work Plan and 2009 and 2012 CMI Work Plan Addenda. Since the start of AS system operations on December 19, 2012, through the September 2016 groundwater sampling event, TCE concentrations have decreased to less than the GCTL in all wells within the Active Remediation Zone (ARZ), and VC results remain less than NADC but greater than GCTL. Based on these results, team consensus was reached at the October 2016 KSC Remediation Team (KSCRT) meeting to continue AS system operations and semi-annual performance monitoring of volatile organic compounds in March 2017 at ten monitoring wells at select locations, and in September 2017 at four monitoring wells at select locations to reduce VC concentrations to below GCTL. Additionally, surface water samples

  15. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  16. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    Science.gov (United States)

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  17. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    Science.gov (United States)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  18. Development of a Flexible Lead-Free Piezoelectric Transducer for Health Monitoring in the Space Environment

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2015-11-01

    Full Text Available In this work we report on the fabrication process for the development of a flexible piezopolymeric transducer for health monitoring applications, based on lead-free, piezoelectric zinc oxide (ZnO thin films. All the selected materials are compatible with the space environment and were deposited by the RF magnetron sputtering technique at room temperature, in view of preserving the total flexibility of the structures, which is an important requirement to guarantee coupling with cylindrical fuel tanks whose integrity we want to monitor. The overall transducer architecture was made of a c-axis-oriented ZnO thin film coupled to a pair of flexible Polyimide foils coated with gold (Au electrodes. The fabrication process started with the deposition of the bottom electrode on Polyimide foils. The ZnO thin film and the top electrode were then deposited onto the Au/Polyimide substrates. Both the electrodes and ZnO layer were properly patterned by wet-chemical etching and optical lithography. The assembly of the final structure was then obtained by gluing the upper and lower Polyimide foils with an epoxy resin capable of guaranteeing low outgassing levels, as well as adequate thermal and electrical insulation of the transducers. The piezoelectric behavior of the prototypes was confirmed and evaluated by measuring the mechanical displacement induced from the application of an external voltage.

  19. Geographic information technology monitoring and mapping of coal fires in Ukraine, according to the space survey

    Energy Technology Data Exchange (ETDEWEB)

    Pivnyak, G.; Busygin, B.; Garkusha, I. [National Mining Univ., Dnipropetrovsk (Ukraine)

    2010-07-01

    Coal fires are a significant problem around the world, particularly in China, India, and the United States. Coal fires burn thousands of tons of coal reserves and lead to serious problems for the environment, degradation and destruction of landscape, and harm public health. Technology, such as spectrology analysis of signatures with high temperature activity can be used to calculate vegetation algorithms and soil indexes, and multispectral survey data in the thermal channels of scanners. This paper presented the perspectives of technology development in coal fires and the approach to the detection, monitoring, and quantitative estimation of coal fires by the instruments using geographic information systems. Specifically, the paper considered the use of coal fire fragment monitoring technology from data of a diachronous survey obtained by Landsat satellites, to classify dangerous coal waste banks of the Donbass Mine located in Ukraine. The paper provided a description of the study area and discussed the detection technology of temperature-active waste banks. It was concluded that geoinformation technology provides an opportunity to effectively mark mining dumps, in particular, waste banks in multispectrum space images made by Landsat satellites. 7 refs., 6 figs.

  20. Stress of Rescue Team Members Working in Confined Spaces During a Disaster : Effectiveness of Individual Wireless Communication Devices

    OpenAIRE

    Kitabayashi, Tsukasa; Kudo, Seiko; Kitajima, Maiko; Takamaki, Shizuka; Chiba, Tomohiro; Tachioka, Nobuaki; Kudo, Shungetsu; Kudo, Hiromi

    2016-01-01

    This study evaluated stress experienced by rescue team members during a simulated search and rescue operation in a confined space and determine if wireless communication reduces stress. A total of 57 rescue team members of X prefecture participated. The stress visualization indices were ptyalin (i.e., salivary amylase), salivary cortisol, autonomic nervous system response, visual analog scale, and a short version of the profile of mood states. The subjects were randomized to perform a simulat...

  1. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    Science.gov (United States)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  2. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-01-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770

  3. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    Science.gov (United States)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  4. Remote sensing optical instrumentation for enhanced space weather monitoring from the L1 and L5 Lagrange points

    Science.gov (United States)

    Kraft, S.; Puschmann, K. G.; Luntama, J. P.

    2017-09-01

    As part of the Space Situational Awareness Programme (SSA), ESA has initiated the assessment of two missions currently foreseen to be implemented to enable enhanced space weather monitoring. These missions utilize the positioning of satellites at the Lagrangian L1 and L5 points. These Phase 0 or Pre-Phase A mission studies are about to be completed and will thereby have soon passed the Mission Definition Review. Phase A studies are planned to start in 2017. The space weather monitoring system currently considers four remote sensing optical instruments and several in-situ instruments to analyse the Sun and the solar wind conditions, in order to provide early warnings of increased solar activity and to identify and mitigate potential threats to society and ground, airborne and space based infrastructure. The suggested optical instruments take heritage from ESA and NASA science missions like SOHO, STEREO and Solar Orbiter, but the instruments are foreseen to be optimized for operational space weather monitoring purposes with high reliability and robustness demands. The instruments are required to provide high quality measurements particularly during severe space weather events. The program intends to utilize the results of the on-going ESA instrument prototyping and technology development activities, and to initiate pre-developments of the operational space weather instruments to ensure the required maturity before the mission implementation.

  5. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    Science.gov (United States)

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  6. Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications.

    Science.gov (United States)

    Yura, Harold T; Fields, Renny A

    2011-06-20

    Level crossing statistics is applied to the complex problem of atmospheric turbulence-induced beam wander for laser propagation from ground to space. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop, for the first time to our knowledge, analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. These results are based on an extension and generalization of a previous seminal analysis of the beam wander variance by Klyatskin and Kon. In the geometrical optics limit, we obtain an expression for the beam wander variance that is valid for both an arbitrarily shaped initial beam profile and transmitting aperture. It is shown that beam wander can disrupt bidirectional ground-to-space laser communication systems whose small apertures do not require adaptive optics to deliver uniform beams at their intended target receivers in space. The magnitude and rate of beam wander is estimated for turbulence profiles enveloping some practical laser communication deployment options and suggesting what level of beam wander effects must be mitigated to demonstrate effective bidirectional laser communication systems.

  7. European communication monitor 2015: excellence in strategic communication: creating communication value through listening, messaging and measurement: results of a survey in 41 countries

    NARCIS (Netherlands)

    Zerfass, A.; Verčič, D.; Verhoeven, P.; Moreno, A.; Tench, R.

    2015-01-01

    The ECM 2015 survey is based on responses from 2,253 communication professionals in 41 countries. Detailed analyses are available for 20 countries and different types of organisations (companies, non-profits, governmental, agencies). The study was organised by the European Public Relations Education

  8. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    Science.gov (United States)

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  9. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  10. MF-CRA: Multi-Function Cognitive Radio Architecture for Space Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — EpiSys Science, Inc. and University of Arizona propose to develop, implement, and demonstrate Multi-Function Cognitive Radio Architecture (MF-CRA) for Space...

  11. Entanglement-assisted Communication System for NASA's Deep-Space Missions: Feasibility Test and Conceptual Design

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is involved with transferring information through the vast distances of space. The challenge is that it is difficult to get many photons from a...

  12. The application and analyze of the publish-subscribe communication system for radiation and environmental monitoring system

    International Nuclear Information System (INIS)

    Ismet Isnaini; I Putu Susila; Istofa

    2016-01-01

    As part of the RAMONA (Radiation and Meteorological Monitoring Analysis System), a publish and subscribe communication system has been designed and implemented, to enable the Ultrasonic Device of Maretron WS0100 which is connected to the client computer to communicate with the server and/or other client. The Maretron is connected to other devices through an interface which use an NMEA2000 protocol, a communication protocol standard set by the National Maritime Electrical Association (NMEA), which usually used in the communication between sensors in the ships and its display. The Maretron device has several sensors embedded such as humidity, wind direction and speed, temperature as well as speed. The communication between Maretron is utilizing a MQTT (Message Queueing Telemetry Transport) system, a publish/subscribe protocol, in which a client publish its data to a data bus with a certain topic, while the server or other client who subscribe to that topic through a broker will then grab and process the data. The data format sent by the Maretron is in JSON (Java Scrip Object Notation) format, which will be parsed by the subscriber and later will be saved on a database or displayed in a website as per requirement. (author)

  13. Study of Lateral Misalignment Tolerance of a Symmetric Free-Space Optical Link for Intra International Space Station Communication

    Science.gov (United States)

    Tedder, Sarah; Schoenholz, Bryan; Suddath, Shannon

    2016-01-01

    This paper describes the study of lateral misalignment tolerance of a symmetric high-rate free-space optical link (FSOL) for use between International Space Station (ISS) payload sites and the main cabin. The link will enable gigabit per second (Gbps) transmission of data, which is up to three orders of magnitude greater than the current capabilities. This application includes 10-20 meter links and requires minimum size, weight, and power (SWaP). The optical power must not present an eye hazard and must be easily integrated into the existing ISS infrastructure. On the ISS, rapid thermal changes and astronaut movement will cause flexure of the structure which will potentially misalign the free space transmit and receive optics 9 cm laterally and 0.2 degrees angularly. If this misalignment is not accounted for, a loss of the link or degradation of link performance will occur. Power measurements were collected to better understand the effect of various system design parameters on lateral misalignment. Parameters that were varied include: the type of small form pluggable (SFP) transceivers, type of fiber, and transmitted power level. A potential solution was identified that can reach the lateral misalignment tolerance (decenter span) required to create an FSOL on the ISS by using 105 m core fibers, a duplex SFP, two channels of light, and two fiber amplifiers.

  14. RAINLINK: Retrieval algorithm for rainfall monitoring employing microwave links from a cellular communication network

    Science.gov (United States)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2017-12-01

    The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a

  15. Monitoring the ongoing deformation and seasonal behaviour affecting Mosul Dam through space-borne SAR data

    Science.gov (United States)

    Tessari, G.; Riccardi, P.; Pasquali, P.

    2017-12-01

    Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation

  16. Monitoring Fires from Space: a case study in transitioning from research to applications

    Science.gov (United States)

    Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.

    2012-12-01

    This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research

  17. Research on the method of measuring space information network capacity in communication service

    Directory of Open Access Journals (Sweden)

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  18. ERATOSTHENES: excellence research Centre for Earth surveillance and space-based monitoring of the environment, the EXCELSIOR Horizon 2020 teaming project

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Kontoes, Haris; Schreier, Gunter; Ansmann, Albert; Komodromos, George; Themistocleous, Kyriacos; Mamouri, Rodanthi; Michaelides, Silas; Nisantzi, Argyro; Papoutsa, Christiana; Neocleous, Kyriacos; Mettas, Christodoulos; Tzouvaras, Marios; Evagorou, Evagoras; Christofe, Andreas; Melillos, George; Papoutsis, Ioannis

    2017-10-01

    The aim of this paper is to present the strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment, which will provide the highest quality of related services on the National, European and International levels. EXCELSIOR is a Horizon 2020 Teaming project which addresses a specific challenge defined by the work program, namely, the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The proposed CoE envisions the upgrading of the existing ERC into an inspiring environment for conducting basic and applied research and innovation in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment. Environment has been recognized by the Smart Specialization Strategy of Cyprus as the first horizontal priority for future growth of the island. The foreseen upgrade will regard the expansion of this vision to systematic monitoring of the environment using Earth Observation, space and ground based integrated technologies. Such an approach will lead to the systematic monitoring of all three domains of the Environment (Air, Land, Water). Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the

  19. A Secure and Efficient Communications Architecture for Global Information Grid Users Via Cooperating Space Assets

    National Research Council Canada - National Science Library

    Hubenko, Jr, Victor P

    2008-01-01

    With the Information Age in full and rapid development, users expect to have global, seamless, ubiquitous, secure, and efficient communications capable of providing access to real-time applications and collaboration...

  20. Democracy in the Digital Communication Environment: A Typology Proposal of Political Monitoring Processes

    OpenAIRE

    Feenstra, Ramón A.; Casero Ripollés, Andreu

    2014-01-01

    The digital environment creates new opportunities for citizen political participation. Among these, the monitoring of political and economic power centers stands out. This includes public scrutiny of the management of public funds and the activities of the public and economic systems, thus denouncing dysfunctional features. This article aims to describe, differentiate, and classify the various forms that monitoring can take in current democracies. The results indicate that three major monitor...

  1. Algebraic Approaches to Space-Time Code Construction for Multiple-Antenna Communication

    OpenAIRE

    Raviteja, U; Sharanappa, I; Vanamali, B; Kumar, Vijay P

    2011-01-01

    A major challenge in wireless communications is overcoming the deleterious effects of fading, a phenomenon largely responsible for the seemingly inevitable dropped call. Multiple-antennas communication systems, commonly referred to as MIMO systems, employ multiple antennas at both transmitter and receiver, thereby creating a multitude of signalling pathways between transmitter and receiver. These multiple pathways give the signal a diversity advantage with which to combat fading. Apart fro...

  2. Multi-Aperture Digital Coherent Combining for Free-Space Optical Communication Receivers

    Science.gov (United States)

    2016-04-21

    emulated by a cascade of fiber beam splitters . Fig. 4(a) depicts the transmitter, which consisted of two cascaded Mach- Zehnder modulators (MZMs) that...Sons, Inc., Hoboken, New Jersey, 2006). 5. D. O. Caplan, "Laser communication transmitter and receiver design ," J. Opt. Fiber. Commun. 4(4-5), 225...and A. E. Willner, eds. (Elsevier, 2013). 7. S. B. Alexander, Optical Communication Receiver Design (SPIE, 1997). 8. D. M. Boroson, "A survey of

  3. Asynchronous Free-Space Optical CDMA Communications System for Last-mile Access Network

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Raddo, Thiago R.; Sanches, Anderson L.

    2016-01-01

    We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed.......We propose a new hybrid asynchronous OCDMA-FSO communications system for access network solutions. New ABER expressions are derived under gamma-gamma scintillation channels, where all users can surprisingly achieve error-free transmissions when FEC is employed....

  4. Smart rocks and wireless communication system for real-time monitoring and mitigation of bridge scour : a proof-of-concept study.

    Science.gov (United States)

    2013-12-01

    This study aims to integrate commercial measurement and communication components into a scour : monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its : performance in laboratory and field conditions for t...

  5. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    Science.gov (United States)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; hide

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  6. COMMUNICATIONS

    CERN Multimedia

    L. Taylor and D. Barney

    2010-01-01

    CMS Centres, Outreach and the 7 TeV Media Event The new CMS Communications group is now established and is addressing three areas that are critical to CMS as it enters the physics operations phase: - Communications Infrastructure, including almost 50 CMS Centres Worldwide, videoconferencing systems, and CERN meeting rooms - Information systems, including the internal and external Web sites as well as the document preparation and management systems - Outreach and Education activities, including working with print, radio and TV media, visits to CMS, and exhibitions. The group has been active in many areas, with the highest priority being accorded to needs of CMS operations and preparations for the major media event planned for 7 TeV collisions. Unfortunately the CMS Centre@CERN suffered a major setback when, on 21st December, a cooling water pipe froze and burst on the floor above the CMS Centre main room. Water poured through the ceiling, flooding the floor and soaking some of the consoles, before e...

  7. COMMUNICATIONS

    CERN Multimedia

    A. Petrilli

    2013-01-01

    The organisation of the Open Days at the end of September was the single biggest effort of the CMS Communications Group this year. We would like to thank all volunteers for their hard work to show our Point 5 facilities and explain science and technology to the general public. During two days more than 5,000 people visited the CMS detector underground and profited from the surface activities, which included an exhibition on CMS, a workshop on superconductivity, and an activity for our younger visitors involving wooden Kapla blocks. The Communications Group took advantage of the preparations to produce new CMS posters that can be reused at other venues. Event display images have been produced not just for this occasion but also for other exhibits, education purposes, publications etc. During the Open Days, Gilles Jobin, 2012 winner of CERN Collide@CERN prize, performed his Quantum show in Point 5, with the light installation of German artist Julius von Bismarck. Image 3: CERN Open Days at CMS wel...

  8. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    Science.gov (United States)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  9. Monitoring of social networks and their links with the external communication plan of Cofrentes NPP

    International Nuclear Information System (INIS)

    Gomez Garcia, C.; Tejedor Garcia, E.

    2015-01-01

    Currently, new communication models are being established in the society. Companies, as part of society and as socially responsible entities should be part of these changes and, therefore, adapt themselves to these new models of communication. In one approach and study of this new model, some experiences obtained by Cofrentes Nuclear Power Plant are studied, a SWOT analysis of the situation is made and are raised the three main objectives Cofrentes NPP should pursue if it enters in the social networks field. (Author)

  10. Impact of communication delays to and from the International Space Station on self-reported individual and team behavior and performance: A mixed-methods study

    Science.gov (United States)

    Kintz, Natalie M.; Chou, Chih-Ping; Vessey, William B.; Leveton, Lauren B.; Palinkas, Lawrence A.

    2016-12-01

    Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts.

  11. INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support): summary and future directions.

    Science.gov (United States)

    Kumanyika, S

    2013-10-01

    This supplement presents the foundational elements for INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support). As explained in the overview article by Swinburn and colleagues, INFORMAS has a compelling rationale and has set forth clear objectives, outcomes, principles and frameworks for monitoring and benchmarking key aspects of food environments and the policies and actions that influence the healthiness of food environments. This summary highlights the proposed monitoring approaches for the 10 interrelated INFORMAS modules: public and private sector policies and actions; key aspects of food environments (food composition, labelling, promotion, provision, retail, prices, and trade and investment) and population outcomes (diet quality). This ambitious effort should be feasible when approached in a step-wise manner, taking into account existing monitoring efforts, data sources, country contexts and capacity, and when adequately resourced. After protocol development and pilot testing of the modules, INFORMAS aims to be a sustainable, low-cost monitoring framework. Future directions relate to institutionalization, implementation and, ultimately, to leveraging INFORMAS data in ways that will bring key drivers of food environments into alignment with public health goals. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  12. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    Science.gov (United States)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  13. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  14. Monitoring of Space and Earth electromagnetic environment by MAGDAS project: Collaboration with IKIR - Introduction to ICSWSE/MAGDAS project

    Directory of Open Access Journals (Sweden)

    Yoshikawa Akimasa

    2017-01-01

    Full Text Available For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE, Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers – so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet, Pc5 index (for monitoring solar-wind velocity and high energy electron flux, Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system, and Pc3 index (for monitoring of plasma density variation at low latitudes. In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.

  15. Monitoring of Space and Earth electromagnetic environment by MAGDAS project: Collaboration with IKIR - Introduction to ICSWSE/MAGDAS project

    Science.gov (United States)

    Yoshikawa, Akimasa; Fujimoto, Akiko; Ikeda, Akihiro; Uozumi, Teiji; Abe, Shuji

    2017-10-01

    For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers - so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.

  16. Space-Time Equalization for High-Speed Wireless Digital Communications Based on Multipath-Incorporating Matched Filtering, Zero Forcing Equalization, and MMSE

    National Research Council Canada - National Science Library

    Zoltowski, Michael D

    2003-01-01

    The project has successfully demonstrated reduced-rank, space-time equalization for high-speed wireless digital communications capable of reliably transmitting multimedia data in support of military...

  17. Aperture Averaging of Scintillation for Space-to-Ground Optical Communication Applications.

    Science.gov (United States)

    1983-08-15

    SCINTILLATION FOR SPACE-TO-GROUND OPTICAL COMUNICATION APPLICATIONS ........................ 5 REFERENCES...theoretical investigations necessary for the evaluation and applica- tion of scientific advances to now military space systems. Versatility and flexibility...systems. Expertise in the latest scientific developments is vital to the accomplishment of tasks related to these problems. The laboratories that con

  18. Communicative competences in Experimental Sciences degrees within the framework of the new European Space for Higher Education

    Directory of Open Access Journals (Sweden)

    Joseba Ezeiza Ramos

    2009-10-01

    Full Text Available The scenario for developing communicative competences in the Experimental Sciences degrees and within the new European Space for Higher Education is highly complex. This is confirmed by research reported in the White Papers on the new degrees in this subject area. Therefore, to smoothly integrate communicative and linguistic competences into future syllabi, I should first make a careful analysis of the main factors at work in the new situation. This paper seeks to provide a preliminary approach to the problem. First, I describe the academic and professional tasks that constitute the objectives of future European science degrees. This is followed by an analysis of the communicative and linguistic parameters considered essential for satisfactory attainment of these objectives. Finally, the specific skills that students must master in order to meet the demands imposed by the new framework are outlined. The results of this analysis will enable us to see how much the new situation differs from traditional university teaching. Under this new model, the development of communicative and linguistic competences will no longer be a mere adjunct to a science curriculum, but instead will become of prime importance to the academic and professional training of future scientists.

  19. Evaluation of the Air Quality Monitor's Performance on the International Space Station

    Science.gov (United States)

    Limero, Thomas; Reese, Eric; Ballard, Ken; Durham, Tamara

    2010-01-01

    The Air Quality Monitor (AQM) was flown to the International Space Station (ISS) as an experiment to evaluate its potential to replace the aging Volatile Organic Analyzer (VOA), which ceased operations in August 2009. The AQM (Figure 1) is a small gas chromatography/differential mobility spectrometer (GC/DMS) manufactured by Sionex. Data was presented at last year s ISIMS conference that detailed the preparation of the AQM for flight, including instrument calibration. Furthermore, initial AQM data was compared to VOA results from simultaneous runs of the two instruments. Although comparison with VOA data provided a measure of confidence in the AQM performance, it is the comparison with results from simultaneously acquired air samples (grab sample containers-GSCs) that will define the success (or failure) of the AQM performance. This paper will update the progress in the AQM investigation by comparing AQM data to results from the analyses of GSC samples, returned from ISS. Additionally, a couple of example will illustrate the AQM s ability to detect disruptions in the spacecraft s air quality. Discussion will also focus upon a few unexpected issues that have arisen and how these will be a addressed in the final operational unit now being built.

  20. The performance of orthogonal frequency division multiplexing in the weak turbulence regime of free space optics communication systems

    International Nuclear Information System (INIS)

    Selvi, M; Murugesan, K

    2012-01-01

    Radio on free space optics—RoFSO—has gained momentum in research because of its cost effectiveness and efficiency in transferring data at a high rate that is comparable to that for optical fiber media. While the transmission data rate is limited in fiber due to dispersion and nonlinearity, such effects do not prevail in FSO communication links. The data rate depends mainly on the switching speed of the optoelectronic devices. With the characteristics of free space being random in nature, the performance of RoFSO is primarily governed by atmospheric conditions. In this paper, we evaluate the performance of the orthogonal frequency division multiplexing (OFDM) signal in free space and compare against its counterpart radio frequency (RF) wireless communication systems. Simulations have been done on the atmospheric conditions by means of modeling the scintillation effect using log-normal distribution. The performance of the proposed system under two different base-band modulations, namely OFDM–PSK (phase shift keying) and QAM (quadrature amplitude modulation) in weak turbulence conditions is studied. It is found that PSK performs better than QAM. Also the M-ary performance analysis shows that 3–5 dB improvement in the signal to noise ratio is obtained for OFDM based FSO transmission compared to RF based wireless transmission. (paper)