WorldWideScience

Sample records for space life support

  1. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  2. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  3. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  4. Technical assessment of Mir-1 life support hardware for the international space station

    Science.gov (United States)

    Mitchell, K. L.; Bagdigian, R. M.; Carrasquillo, R. L.; Carter, D. L.; Franks, G. D.; Holder, D. W., Jr.; Hutchens, C. F.; Ogle, K. Y.; Perry, J. L.; Ray, C. D.

    1994-01-01

    NASA has been progressively learning the design and performance of the Russian life support systems utilized in their Mir space station. In 1992, a plan was implemented to assess the benefits of the Mir-1 life support systems to the Freedom program. Three primary tasks focused on: evaluating the operational Mir-1 support technologies and understanding if specific Russian systems could be directly utilized on the American space station and if Russian technology design information could prove useful in improving the current design of the planned American life support equipment; evaluating the ongoing Russian life support technology development activities to determine areas of potential long-term application to the U.S. space station; and utilizing the expertise of their space station life support systems to evaluate the benefits to the current U.S. space station program which included the integration of the Russian Mir-1 designs with the U.S. designs to support a crew of six.

  5. Axiomatic Design of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  6. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  7. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  8. Need for Cost Optimization of Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.; Anderson, Grant

    2017-01-01

    As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.

  9. On the use of Space Station Freedom in support of the SEI - Life science research

    Science.gov (United States)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  10. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  11. Architecture and life support systems for a rotating space habitat

    Science.gov (United States)

    Misra, Gaurav

    Life Support Systems are critical to sustain human habitation of space over long time periods. As orbiting space habitats become operational in the future, support systems such as atmo-sphere, food, water etc. will play a very pivotal role in sustaining life. To design a long-duration space habitat, it's important to consider the full gamut of human experience of the environment. Long-term viability depends on much more than just the structural or life support efficiency. A space habitat isn't just a machine; it's a life experience. To be viable, it needs to keep the inhabitants satisfied with their condition. This paper provides conceptual research on several key factors that influence the growth and sustainability of humans in a space habitat. Apart from the main life support system parameters, the architecture (both interior and exterior) of the habitat will play a crucial role in influencing the liveability in the space habitat. In order to ensure the best possible liveability for the inhabitants, a truncated (half cut) torus is proposed as the shape of the habitat. This structure rotating at an optimum rpm will en-sure 1g pseudo gravity to the inhabitants. The truncated torus design has several advantages over other proposed shapes such as a cylinder or a sphere. The design provides minimal grav-ity variation (delta g) in the living area, since its flat outer pole ensures a constant gravity. The design is superior in economy of structural and atmospheric mass. Interior architecture of the habitat addresses the total built environment, drawing from diverse disciplines includ-ing physiology, psychology, and sociology. Furthermore, factors such as line of sight, natural sunlight and overhead clearance have been discussed in the interior architecture. Substantial radiation shielding is also required in order to prevent harmful cosmic radiations and solar flares from causing damage to inhabitants. Regolith shielding of 10 tons per meter square is proposed for the

  12. Advanced Life Support Project: Crop Experiments at Kennedy Space Center

    Science.gov (United States)

    Sager, John C.; Stutte, Gary W.; Wheeler, Raymond M.; Yorio, Neil

    2004-01-01

    Crop production systems provide bioregenerative technologies to complement human crew life support requirements on long duration space missions. Kennedy Space Center has lead NASA's research on crop production systems that produce high value fresh foods, provide atmospheric regeneration, and perform water processing. As the emphasis on early missions to Mars has developed, our research focused on modular, scalable systems for transit missions, which can be developed into larger autonomous, bioregenerative systems for subsequent surface missions. Components of these scalable systems will include development of efficient light generating or collecting technologies, low mass plant growth chambers, and capability to operate in the high energy background radiation and reduced atmospheric pressures of space. These systems will be integrated with air, water, and thermal subsystems in an operational system. Extensive crop testing has been done for both staple and salad crops, but limited data is available on specific cultivar selection and breadboard testing to meet nominal Mars mission profiles of a 500-600 day surface mission. The recent research emphasis at Kennedy Space Center has shifted from staple crops, such as wheat, soybean and rice, toward short cycle salad crops such as lettuce, onion, radish, tomato, pepper, and strawberry. This paper will review the results of crop experiments to support the Exploration Initiative and the ongoing development of supporting technologies, and give an overview of capabilities of the newly opened Space Life Science (SLS) Lab at Kennedy Space Center. The 9662 square m (104,000 square ft) SLS Lab was built by the State of Florida and supports all NASA research that had been performed in Hanger-L. In addition to NASA research, the SLS Lab houses the Florida Space Research Institute (FSRI), responsible for co-managing the facility, and the University of Florida (UF) has established the Space Agriculture and Biotechnology Research and

  13. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  14. Space station environmental control and life support systems test bed program - an overview

    Science.gov (United States)

    Behrend, Albert F.

    As the National Aeronautics and Space Administration (NASA) begins to intensify activities for development of the Space Station, decisions must be made concerning the technical state of the art that will be baselined for the initial Space Station system. These decisions are important because significant potential exists for enhancing system performance and for reducing life-cycle costs. However, intelligent decisions cannot be made without an adequate assessment of new and ready technologies, i.e., technologies which are sufficiently mature to allow predevelopment demonstrations to prove their application feasibility and to quantify the risk associated with their development. Therefore, the NASA has implemented a technology development program which includes the establishment of generic test bed capabilities in which these new technologies and approaches can be tested at the prototype level. One major Space Station subsystem discipline in which this program has been implemented is the environmental control and life support system (ECLSS). Previous manned space programs such as Gemini, Apollo, and Space Shuttle have relied heavily on consumables to provide environmental control and life support services. However, with the advent of a long-duration Space Station, consumables must be reduced within technological limits to minimize Space Station resupply penalties and operational costs. The use of advanced environmental control and life support approaches involving regenerative processes offers the best solution for significant consumables reduction while also providing system evolutionary growth capability. Consequently, the demonstration of these "new technologies" as viable options for inclusion in the baseline that will be available to support a Space Station initial operational capability in the early 1990's becomes of paramount importance. The mechanism by which the maturity of these new regenerative life support technologies will be demonstrated is the Space

  15. Ultra Reliable Closed Loop Life Support for Long Space Missions

    Science.gov (United States)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  16. International Space Station Environmental Control and Life Support System Status: 2010 - 2011

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.

  17. International Space Station Environmental Control and Life Support System Status: 2014-2015

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  18. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  19. International Space Station Environmental Control and Life Support System Status: 2011-2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2011-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1

  20. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    A biosphere stands for a set of biomes (regional biological communities) interacting in a materially closed (though energetically open) ecological system (CES). Earth's biosphere, the thin layer of life on the planet's surface, can be seen as a natural CES- where life "consumables" are regenerated/restored via biological, geological and chemical processes. In Life Sciences, artificial CESs- local ecosystems extracts with varying scales and degrees of closure, are considered convenient/representatives objects of study. For outer space, these concepts have been applied to the issue of life support- a significant consideration as long as distance from Earth increases. In the nineties, growing on the Russian expertise on biological life support, backed by a multidisciplinary science team, the famous Biosphere 2 appeared. That private project innovated, by assembling a set of Earth biomes samples- plus an organic ag one, inside a closed Mars base-like structure, next to 1.5 ha under glass, in Arizona, US. The crew of 8 inside completed their two years contract, though facing setbacks- the system failed, e.g., to produce enough food/air supplies. But their "failures"- if this word can be fairly applied to science endeavors, were as meaningful as their achievements for the future of life support systems (LSS) research. By this period, the Russians had accumulated experience in extended orbital stays, achieving biological outcomes inside their stations- e.g. complete wheat cycles. After reaching the Moon, the US administration decided to change national priorities, putting the space program as part of a "détente" policy, to relieve international tensions. Alongside the US space shuttle program, the Russians were invited to join the new International Space Station (ISS), bringing to that pragmatic project, also their physical/chemical LSS- top air/water regenerative technology at the time. Present US policy keeps the ISS operational, extending its service past its planned

  1. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  2. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  3. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  4. [Habitability and life support systems].

    Science.gov (United States)

    Nefedov, Iu G; Adamovich, B A

    1988-01-01

    This paper discusses various aspects of space vehicle habitability and life support systems. It describes variations in the chemical and microbial composition of an enclosed atmosphere during prolonged real and simulated flights. The paper gives a detailed description of life support systems and environmental investigations onboard the Mir station. It also outlines the development of space vehicle habitability and life support systems as related to future flights.

  5. Environmental control and life support testing at the Marshall Space Flight Center

    Science.gov (United States)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  6. International Space Station Environmental Control and Life Support System Status: 2009 - 2010

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.

  7. Preliminary study of the space adaptation of the MELiSSA life support system

    Science.gov (United States)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  8. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  9. Space life sciences: A status report

    Science.gov (United States)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  10. Life Support Filtration System Trade Study for Deep Space Missions

    Science.gov (United States)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  11. Introduction to Life Support Systems

    Science.gov (United States)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  12. Space life sciences strategic plan

    Science.gov (United States)

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  13. Life support for aquatic species - past; present; future

    Science.gov (United States)

    Slenzka, K.

    Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.

  14. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  15. A home away from home. [life support system design for Space Station

    Science.gov (United States)

    Powell, L. E.; Hager, R. W.; Mccown, J. W.

    1985-01-01

    The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.

  16. International Space Station Environmental Control and Life Support System Previous Year Status for 2013 - 2014

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  17. Automated subsystems control development. [for life support systems of space station

    Science.gov (United States)

    Block, R. F.; Heppner, D. B.; Samonski, F. H., Jr.; Lance, N., Jr.

    1985-01-01

    NASA has the objective to launch a Space Station in the 1990s. It has been found that the success of the Space Station engineering development, the achievement of initial operational capability (IOC), and the operation of a productive Space Station will depend heavily on the implementation of an effective automation and control approach. For the development of technology needed to implement the required automation and control function, a contract entitled 'Automated Subsystems Control for Life Support Systems' (ASCLSS) was awarded to two American companies. The present paper provides a description of the ASCLSS program. Attention is given to an automation and control architecture study, a generic automation and control approach for hardware demonstration, a standard software approach, application of Air Revitalization Group (ARG) process simulators, and a generic man-machine interface.

  18. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    Science.gov (United States)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  19. Life support and internal thermal control system design for the Space Station Freedom

    Science.gov (United States)

    Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.

    1991-01-01

    A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.

  20. Environmental control and life support technologies for advanced manned space missions

    Science.gov (United States)

    Powell, F. T.; Wynveen, R. A.; Lin, C.

    1986-01-01

    Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.

  1. Human life support for advanced space exploration

    Science.gov (United States)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near

  2. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2011 - 2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J

    2013-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.

  3. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  4. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    Science.gov (United States)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  5. Power system for production, construction, life support and operations in space

    International Nuclear Information System (INIS)

    Sovie, R.J.

    1988-01-01

    As one looks to man's future in space it becomes obvious that unprecedented amounts of power are required for the exploration, colonization, and exploitation of space. Activities envisioned include interplanetary travel and LEO to GEO transport using electric propulsion, Earth and lunar observatories, advance space stations, free-flying manufacturing platforms, communications platforms, and eventually evolutionary lunar and Mars bases. These latter bases would start as camps with modest power requirements (kWes) and evolve to large bases as manufacturing, food production, and life support materials are developed from lunar raw materials. These latter activities require very robust power supplies (MWes). The advanced power system technologies being pursued by NASA to fulfill these future needs are described. Technologies discussed will include nuclear, photovoltaic, and solar dynamic space power systems, including energy storage, power conditioning, power transmission, and thermal management. The state-of-the-art and gains to be made by technology advancements will be discussed. Mission requirements for a variety of applications (LEO, GEO, lunar, and Martian) will be treated, and data for power systems ranging from a few kilowatts to megawatt power systems will be represented. In addition the space power technologies being initiated under NASA's new Civilian Space Technology Initiative (CSTI) and Space Leadership Planning Group Activities will be discussed

  6. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2010-2011

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2012-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.

  7. A simulation based optimization approach to model and design life support systems for manned space missions

    Science.gov (United States)

    Aydogan, Selen

    This dissertation considers the problem of process synthesis and design of life-support systems for manned space missions. A life-support system is a set of technologies to support human life for short and long-term spaceflights, via providing the basic life-support elements, such as oxygen, potable water, and food. The design of the system needs to meet the crewmember demand for the basic life-support elements (products of the system) and it must process the loads generated by the crewmembers. The system is subject to a myriad of uncertainties because most of the technologies involved are still under development. The result is high levels of uncertainties in the estimates of the model parameters, such as recovery rates or process efficiencies. Moreover, due to the high recycle rates within the system, the uncertainties are amplified and propagated within the system, resulting in a complex problem. In this dissertation, two algorithms have been successfully developed to help making design decisions for life-support systems. The algorithms utilize a simulation-based optimization approach that combines a stochastic discrete-event simulation and a deterministic mathematical programming approach to generate multiple, unique realizations of the controlled evolution of the system. The timelines are analyzed using time series data mining techniques and statistical tools to determine the necessary technologies, their deployment schedules and capacities, and the necessary basic life-support element amounts to support crew life and activities for the mission duration.

  8. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  9. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  10. Developing Sustainable Life Support System Concepts

    Science.gov (United States)

    Thomas, Evan A.

    2010-01-01

    Sustainable spacecraft life support concepts may allow the development of more reliable technologies for long duration space missions. Currently, life support technologies at different levels of development are not well evaluated against each other, and evaluation methods do not account for long term reliability and sustainability of the hardware. This paper presents point-of-departure sustainability evaluation criteria for life support systems, that may allow more robust technology development, testing and comparison. An example sustainable water recovery system concept is presented.

  11. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  12. Reliability Growth in Space Life Support Systems

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    A hardware system's failure rate often increases over time due to wear and aging, but not always. Some systems instead show reliability growth, a decreasing failure rate with time, due to effective failure analysis and remedial hardware upgrades. Reliability grows when failure causes are removed by improved design. A mathematical reliability growth model allows the reliability growth rate to be computed from the failure data. The space shuttle was extensively maintained, refurbished, and upgraded after each flight and it experienced significant reliability growth during its operational life. In contrast, the International Space Station (ISS) is much more difficult to maintain and upgrade and its failure rate has been constant over time. The ISS Carbon Dioxide Removal Assembly (CDRA) reliability has slightly decreased. Failures on ISS and with the ISS CDRA continue to be a challenge.

  13. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  14. NextSTEP Hybrid Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — NextSTEP Phase I Hybrid Life Support Systems (HLSS) effort assessed options, performance, and reliability for various mission scenarios using contractor-developed...

  15. Life Support Systems: Environmental Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Environmental Monitoring (EM) systems task objectives are to develop and demonstrate onboard...

  16. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  17. Exploring the living universe: A strategy for space life sciences

    Science.gov (United States)

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  18. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  19. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  20. [Habitability and biological life support systems for man].

    Science.gov (United States)

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  1. USSR Space Life Sciences Digest, issue 28

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  2. Hybrid Life Support System Technology Demonstrations

    Science.gov (United States)

    Morrow, R. C.; Wetzel, J. P.; Richter, R. C.

    2018-02-01

    Demonstration of plant-based hybrid life support technologies in deep space will validate the function of these technologies for long duration missions, such as Mars transit, while providing dietary variety to improve habitability.

  3. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  4. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  5. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  6. BIOREGENERATIVE LIFE SUPPORT SYSTEMS IN THE SPACE (BLSS: THE EFFECTS OF RADIATION ON PLANTS

    Directory of Open Access Journals (Sweden)

    Carmen Arena

    2012-06-01

    Full Text Available The growth of plants in Space is a fundamental issue for Space exploration. Plants play an important role in the Bioregenerative Life Support Systems (BLSS to sustain human permanence in extraterrestrial environments. Under this perspective, plants are basic elements for oxygen and fresh food production as well as air regeneration and psychological support to the crew. The potentiality of plant survival and reproduction in space is limited by the same factors that act on the earth (e.g. light, temperature and relative humidity and by additional factors such as altered gravity and ionizing radiation. This paper analyzes plant responses to space radiation which is recognized as a powerful mutagen for photosynthetic organisms thus being responsible for morpho-structural, physiological and genetic alterations. Until now, many studies have evidenced how the response to ionizing radiation is influenced by several factors associated both to plant characteristics (e.g. cultivar, species, developmental stage, tissue structure and/or radiation features (e.g. dose, quality and exposure time. The photosynthetic machinery is particularly sensitive to ionizing radiation. The severity of the damages induced by ionizing radiation on plant cell and tissues may depend on the capability of plants to adopt protection mechanisms and/or repair strategies. In this paper a selection of results from studies on the effect of ionizing radiations on plants at anatomical and eco-physiological level is reported and some aspects related to radioresistance are explored.

  7. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  8. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  9. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  10. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  11. Canadian advanced life support capacities and future directions

    Science.gov (United States)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity

  12. USSR Space Life Sciences Digest, issue 9

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  13. USSR Space Life Sciences Digest, issue 2

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  14. USSR Space Life Sciences Digest, issue 3

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  15. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  16. USSR Space Life Sciences Digest, issue 25

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  17. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  18. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  19. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  20. Maintenance, reliability and policies for orbital space station life support systems

    International Nuclear Information System (INIS)

    Russell, James F.; Klaus, David M.

    2007-01-01

    The performance of productive work on space missions is critical to sustaining a human presence on orbital space stations (OSS), the Moon, or Mars. Available time for productive work has potentially been impacted on past OSS missions by underestimating the crew time needed to maintain systems, such as the Environmental Control and Life Support System (ECLSS). To determine the cause of this apparent disconnect between the design and operation of an OSS, documented crew time for maintenance was collected from the three Skylab missions and Increments 4-8 on the International Space Station (ISS), and the data was contrasted to terrestrial facility maintenance norms. The results of the ISS analysis showed that for four operational and seven functional categories, the largest deviation of 60.4% over the design time was caused by three of the four operational categories not being quantitatively included in the design documents. In a cross category analysis, 35.3% of the crew time was found to have been used to repair air and waste handling systems. The air system required additional crew time for maintenance due to a greater than expected failure rate and resultant increased time needed for repairs. Therefore, it appears that the disconnect between the design time and actual operations for ECLSS maintenance on ISS was caused by excluding non-repair activities from the estimates and experiencing greater than expected technology maintenance requirements. Based on these ISS and Skylab analyses, future OSS designs (and possibly lunar and Martian missions as well) should consider 3.0-3.3 h/day for crews of 2 to 3 as a baseline of crew time needed for ECLSS maintenance

  1. USSR Space Life Sciences Digest, issue 7

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  2. USSR Space Life Sciences Digest, issue 11

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  3. The Life Cycle Cost (LCC) of Life Support Recycling and Resupply

    Science.gov (United States)

    Jones, Harry W.

    2015-01-01

    Brief human space missions supply all the crew's water and oxygen from Earth. The multiyear International Space Station (ISS) program instead uses physicochemical life support systems to recycle water and oxygen. This paper compares the Life Cycle Cost (LCC) of recycling to the LCC of resupply for potential future long duration human space missions. Recycling systems have high initial development costs but relatively low durationdependent support costs. This means that recycling is more cost effective for longer missions. Resupplying all the water and oxygen requires little initial development cost but has a much higher launch mass and launch cost. The cost of resupply increases as the mission duration increases. Resupply is therefore more cost effective than recycling for shorter missions. A recycling system pays for itself when the resupply LCC grows greater over time than the recycling LCC. The time when this occurs is called the recycling breakeven date. Recycling will cost very much less than resupply for long duration missions within the Earth-Moon system, such as a future space station or Moon base. But recycling would cost about the same as resupply for long duration deep space missions, such as a Mars trip. Because it is not possible to provide emergency supplies or quick return options on the way to Mars, more expensive redundant recycling systems will be needed.

  4. Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Science.gov (United States)

    Sargusingh, Miriam J.; Perry, Jay L.

    2017-01-01

    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed.

  5. USSR Space Life Sciences Digest, issue 19

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  6. Life Support Systems: Trace Contaminant and Particulate Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Trace Contaminant and Particulate Control task: Work in the area of trace contamination and...

  7. Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    Science.gov (United States)

    Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.

  8. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to utilize ionic liquids with the Bosch process to achieve closed-loop life support. Specific tasks are to: 1) Advance the technology readiness of...

  9. USSR Space Life Sciences Digest, issue 6

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  10. USSR Space Life Sciences Digest, issue 16

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  11. USSR Space Life Sciences Digest, Issue 18

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  12. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    Science.gov (United States)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  13. USSR Space Life Sciences Digest, Issue 10

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  14. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Atmosphere Control and Supply Subsystem

    Science.gov (United States)

    Williams, David E.

    2009-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.

  15. USSR Space Life Sciences Digest, issue 8

    Science.gov (United States)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  16. NASA's Interests in Bioregenerative Life Support

    Science.gov (United States)

    Wheeler, Raymond M.

    2018-01-01

    NASA and other space agencies and around the world have had long-standing interest in using plants and biological approaches for regenerative life support. In particular, NASA's Kennedy Space Center, has conducted research in this area for over 30 years. One unique aspect to this testing was NASA's Biomass Production Chamber, which had four vertically stacked growing shelves inside a large, 113 cubic meter chamber. This was perhaps one of the first working examples of a vertical agriculture system in the world. A review of some of this research along with some of the more salient findings will be presented.

  17. USSR Space Life Sciences Digest, issue 21

    Science.gov (United States)

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  18. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Science.gov (United States)

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  19. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  20. Life Support Goals Including High Closure and Low Mass Should Be Reconsidered Using Systems Analysis

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    Recycling space life support systems have been built and tested since the 1960s and have operated on the International Space Station (ISS) since the mid 2000s. The development of space life support has been guided by a general consensus focused on two important related goals, increasing system closure and reducing launch mass. High closure is achieved by recycling crew waste products such as carbon dioxide and condensed humidity. Recycling directly reduces the mass of oxygen and water for the crew that must be launched from Earth. The launch mass of life support can be further reduced by developing recycling systems with lower hardware mass and reduced power. The life support consensus has also favored using biological systems. The goal of increasing closure using biological systems suggests that food should be grown in space and that biological processors be used for air, water, and waste recycling. The goal of reducing launch mass led to use of Equivalent System Mass (ESM) in life support advocacy and technology selection. The recent consensus assumes that the recycling systems architecture developed in the 1960s and implemented on ISS will be used on all future long missions. NASA and other project organizations use the standard systems engineering process to guide hardware development. The systems process was used to develop ISS life support, but it has been less emphasized in planning future systems for the moon and Mars. Since such missions are far in the future, there has been less immediate need for systems engineering analysis to consider trade-offs, reliability, and Life Cycle Cost (LCC). Preliminary systems analysis suggests that the life support consensus concepts should be revised to reflect systems engineering requirements.

  1. The Temporal Association Between Executive Function and Life-Space Mobility in Old Age.

    Science.gov (United States)

    Poranen-Clark, Taina; von Bonsdorff, Mikaela B; Rantakokko, Merja; Portegijs, Erja; Eronen, Johanna; Pynnönen, Katja; Eriksson, Johan G; Viljanen, Anne; Rantanen, Taina

    2018-05-09

    Life-space mobility, an indicator of community mobility, describes person's movements in terms of the distance from home, the frequency of movement, and the need of assistance for movement. Executive function (EF) is a higher-order cognitive function that supervises motor control and plays a key role in a person's ability to function independently. Cognitive impairment often co-occurs with restricted life-space mobility; however, the direction of the longitudinal associations between EF and life-space mobility is unclear. The aim of this study was to investigate the temporal associations between EF and life-space mobility among community-dwelling older people. One hundred eight community-dwelling persons aged 76 to 91 years participated in the 2 year follow-up study. EF was measured with the Trail Making Test. The Life-Space Assessment (range 0-120, higher scores indicate more mobility) was used to assess life-space mobility. Cross-lagged model design was used to examine longitudinal relationship between EF and life-space mobility. The model was adjusted for age and gender. Average age of participants at baseline was 82.2 (SD 4.1) years and 59% were women. Better EF at baseline predicted higher life-space mobility at follow-up (path coefficient = 3.81, 95% confidential interval; 0.84, 6.78, p = .012), whereas baseline life-space mobility did not predict EF at follow-up. EF was a determinant of life-space mobility. Supporting EF may enhance maintaining independence and active participation in old age.

  2. Water Walls: Highly Reliable and Massively Redundant Life Support Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — WATER WALLS (WW) takes an approach to providing a life support system, Forward Osmosis (FO), that is biologically and chemically passive, using mechanical systems...

  3. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  4. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  5. Crop candidates for the bioregenerative life support systems in China

    Science.gov (United States)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  6. [Factors related to the life space of daycare center users].

    Science.gov (United States)

    Kawamura, Koki; Kato, Chikako; Kondo, Izumi

    2018-01-01

    We examined the factors related to life space and changes in the care level after one year in daycare center users. The participants were 83 older adults (age, > 65 years; mean age, 79.5±6.8 years) with MMSE scores of ≥20, who could walk independently, who needed support (1-2) or care (1), and who underwent rehabilitation at a daycare center. The life space was evaluated by the Life Space Assessment (LSA). The subjects' basic information (i.e., age, medical history.) was collected, and their physical function (i.e., grip strength, timed up and go test [TUG]), mental function (i.e., vitality, fear of falls), and social function (i.e., friends, hobbies, public transportation) were assessed to investigate the factors associated with their LSA scores. In addition, a follow-up survey was conducted on the care level at approximately one year later. A multiple regression analysis indicated that TUG scores (β=-0.33), hobbies (β=0.30), friends (β=0.29), public transportation (β=0.26), and grip strength (β=0.24) were related to the life space. Next, the participants were divided into LSA-high and LSA-low groups, and changes in the care level (improvement, maintenance, deterioration) at approximately one year after the initial assessment were examined using a chi-squared test. A significant difference was observed in the distribution of the groups (p=0.03). Multiple factors were related to the life space. Moreover, it is possible that improvements in the level of care may be achieved by improving the life space.

  7. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    Science.gov (United States)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  8. Roots: The Life Space Pioneers

    Science.gov (United States)

    James, Adrienne Brant

    2008-01-01

    Traditional approaches to education and youth work were transformed by two psychologists who came to the United States as Hitler rose to power. Practical theorist Kurt Lewin challenged mechanistic ideas of behavior by studying children in their natural "life space." Theory practitioner Fritz Redl applied life space concepts to work with…

  9. Life space and mental health: a study of older community-dwelling persons in Australia.

    Science.gov (United States)

    Byles, Julie E; Leigh, Lucy; Vo, Kha; Forder, Peta; Curryer, Cassie

    2015-01-01

    The ability of older people to mobilise within and outside their community is dependent on a number of factors. This study explored the relationship between spatial mobility and psychological health among older adults living in Australia. The survey sample consisted of 260 community-dwelling men and women aged 75-80 years, who returned a postal survey measuring spatial mobility (using the Life Space Questionnaire) and psychological health (using the SF36 Health Related Quality of Life Profile). From the Life Space Questionnaire, participants were given a life-space score and multinomial regression was used to explore the potential effect of mental health on life-space score. The study found a significant association between mental health and life space. However, gender, physical functioning, and ability to drive were most strongly associated with the extent of life space and spatial mobility. Compared to men, older women are more likely to experience less spatial mobility and restricted life space, and hence are more vulnerable to social isolation. Mental health and life space were associated for the older people in this study. These findings have important implications for health policy and highlight the need to support older persons to maintain independence and social networks, and to successfully age in place within their community. This study also highlights the utility of the Life Space Questionnaire in terms of identifying older persons at risk of poorer mental health.

  10. Next Generation Life Support Project: Development of Advanced Technologies for Human Exploration Missions

    Science.gov (United States)

    Barta, Daniel J.

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by the National Aeronautics and Space Administration s Game Changing Development Program. NGLS is developing life support technologies (including water recovery, and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processing. The selected technologies within each of these areas are focused on increasing affordability, reliability, and vehicle self sufficiency while decreasing mass and enabling long duration exploration. The RCA and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Exploration Extravehicular Mobility Unit (EMU), with focus on prototyping and integrated testing. The focus of the Rapid Cycle Amine (RCA) swing-bed ventilation task is to provide integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The Variable Oxygen Regulator technology will significantly increase the number of pressure settings available to the space suit. Current spacesuit pressure regulators are limited to only two settings while the adjustability of the advanced regulator will be nearly continuous. The Alternative Water Processor efforts will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water, based on natural biological processes and membrane-based post treatment. The technologies will support a capability-driven architecture for extending human presence beyond low Earth orbit to potential destinations such as the Moon, near Earth asteroids and Mars.

  11. Developing Ultra Reliable Life Support for the Moon and Mars

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  12. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Science.gov (United States)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  13. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    Science.gov (United States)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  14. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  15. Bioregenerative life-support systems

    Science.gov (United States)

    Mitchell, C. A.

    1994-01-01

    Long-duration future habitation of space involving great distances from Earth and/or large crew sizes (eg, lunar outpost, Mars base) will require a controlled ecological life-support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate human food (for a vegetarian diet). Photosynthetic higher plants and algae will provide the essential functions of biomass productivity in a CELSS, and a combination of physicochemical and bioregenerative processes will be used to regenerate renewable resources from waste materials. Crop selection criteria for a CELSS include nutritional use characteristics as well as horticultural characteristics. Cereals, legumes, and oilseed crops are used to provide the major macronutrients for the CELSS diet. A National Aeronautics and Space Administration (NASA) Specialized Center of Research and Training (NSCORT) was established at Purdue University to establish proof of the concept of the sustainability of a CELSS. The Biosphere 2 project in Arizona is providing a model for predicted and unpredicted situations that arise as a result of closure in a complex natural ecosystem.

  16. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    Science.gov (United States)

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  17. Starship Life Support

    Science.gov (United States)

    Jones, Harry W.

    2009-01-01

    The design and mass cost of a starship and its life support system are investigated. The mission plan for a multi generational interstellar voyage to colonize a new planet is used to describe the starship design, including the crew habitat, accommodations, and life support. Only current technology is assumed. Highly reliable life support systems can be provided with reasonably small additional mass, suggesting that they can support long duration missions. Bioregenerative life support, growing crop plants that provide food, water, and oxygen, has been thought to need less mass than providing stored food for long duration missions. The large initial mass of hydroponics systems is paid for over time by saving the mass of stored food. However, the yearly logistics mass required to support a bioregenerative system exceeds the mass of food solids it produces, so that supplying stored dehydrated food always requires less mass than bioregenerative food production. A mixed system that grows about half the food and supplies the other half dehydrated has advantages that allow it to breakeven with stored dehydrated food in about 66 years. However, moderate increases in the hydroponics system mass to achieve high reliability, such as adding spares that double the system mass and replacing the initial system every 100 years, increase the mass cost of bioregenerative life support. In this case, the high reliability half food growing, half food supplying system does not breakeven for 389 years. An even higher reliability half and half system, with three times original system mass and replacing the system every 50 years, never breaks even. Growing food for starship life support requires more mass than providing dehydrated food, even for multigeneration voyages of hundreds of years. The benefits of growing some food may justify the added mass cost. Much more efficient recycling food production is wanted but may not be possible. A single multigenerational interstellar voyage to

  18. Devices development and techniques research for space life sciences

    Science.gov (United States)

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  19. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  20. Assessing Smart Phones for Generating Life-space Indicators.

    Science.gov (United States)

    Wan, Neng; Qu, Wenyu; Whittington, Jackie; Witbrodt, Bradley C; Henderson, Mary Pearl; Goulding, Evan H; Schenk, A Katrin; Bonasera, Stephen J; Lin, Ge

    2013-04-01

    Life-space is a promising method for estimating older adults' functional status. However, traditional life-space measures are costly and time consuming because they often rely on active subject participation. This study assesses the feasibility of using the global positioning system (GPS) function of smart phones to generate life-space indicators. We first evaluated the location accuracy of smart phone collected GPS points versus those acquired by a commercial GPS unit. We then assessed the specificity of the smart phone processed life-space information against the traditional diary method. Our results suggested comparable location accuracy between the smart phone and the standard GPS unit in most outdoor situations. In addition, the smart phone method revealed more comprehensive life-space information than the diary method, which leads to higher and more consistent life-space scores. We conclude that the smart phone method is more reliable than traditional methods for measuring life-space. Further improvements will be required to develop a robust application of this method that is suitable for health-related practices.

  1. Advanced Life Support Research and Technology Transfer at the University of Guelph

    Directory of Open Access Journals (Sweden)

    Dixon M.

    2017-02-01

    Full Text Available Research and technology developments surrounding Advanced Life-Support (ALS began at the University of Guelph in 1992 as the Space and Advanced Life Support Agriculture (SALSA program, which now represents Canada’s primary contribution to ALS research. The early focus was on recycling hydroponic nutrient solutions, atmospheric gas analysis and carbon balance, sensor research and development, inner/intra-canopy lighting and biological filtration of air in closed systems. With funding from federal, provincial and industry partners, a new generation of technology emerged to address the challenges of deploying biological systems as fundamental components of life-support infrastructure for long-duration human space exploration. Accompanying these advances were a wide range of technology transfer opportunities in the agri-food and health sectors, including air and water remediation, plant and environment sensors, disinfection technologies, recyclable growth substrates and advanced light emitting diode (LED lighting systems. This report traces the evolution of the SALSA program and catalogues the benefits of ALS research for terrestrial and non-terrestrial applications.

  2. Tips for a Healthy Long-Life Learned from Space Medicine

    Science.gov (United States)

    Ohshima, Hiroshi; Yamada, Shin; Matsuo, Tomoaki; Yamamoto, Masafumi; Mukai, Chiaki

    2013-02-01

    The field of space medicine is responsible for maintaining astronauts’ health and optimizing their performance. A prolonged stay in space with little gravity results in weakening of the bones and muscles that otherwise support body weight, which is precisely the problem faced by elderly people on Earth. Space medicine provides the means of alleviating such problems. Bone loss, muscle atrophy, and disturbed circadian rhythms are common issues for both astronauts and the elderly alike and can be prevented, if the risks are addressed correctly. To have a healthy long-life, it is important to practice effective health improvement techniques and take preventive measures. The space medicine technologies a for astronauts will provide helpful information to people living in a super aging society. and Japanese medical societies for health promotion. With the aids of the Japanese Society of Physical Fitness and Sports Medicine, the Japanese Orthopaedic Association, and the Japanese Association of Rehabilitation Medicine, JAXA has made a leaflet titled for general citizen to show the tips for a healthy long-life learned from space medicine from the viewpoints of their respective expertise.

  3. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  4. USSR Space Life Sciences Digest

    Science.gov (United States)

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  5. Life science research objectives and representative experiments for the space station

    Science.gov (United States)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  6. Rapid Deterioration of Basic Life Support Skills in Dentists With Basic Life Support Healthcare Provider.

    Science.gov (United States)

    Nogami, Kentaro; Taniguchi, Shogo; Ichiyama, Tomoko

    2016-01-01

    The aim of this study was to investigate the correlation between basic life support skills in dentists who had completed the American Heart Association's Basic Life Support (BLS) Healthcare Provider qualification and time since course completion. Thirty-six dentists who had completed the 2005 BLS Healthcare Provider course participated in the study. We asked participants to perform 2 cycles of cardiopulmonary resuscitation on a mannequin and evaluated basic life support skills. Dentists who had previously completed the BLS Healthcare Provider course displayed both prolonged reaction times, and the quality of their basic life support skills deteriorated rapidly. There were no correlations between basic life support skills and time since course completion. Our results suggest that basic life support skills deteriorate rapidly for dentists who have completed the BLS Healthcare Provider. Newer guidelines stressing chest compressions over ventilation may help improve performance over time, allowing better cardiopulmonary resuscitation in dental office emergencies. Moreover, it may be effective to provide a more specialized version of the life support course to train the dentists, stressing issues that may be more likely to occur in the dental office.

  7. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  8. National Institute of Occupational Safety and Health (NIOSH) Partnered Development of Cryogenic Life Support Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic life support technology, used by NASA to protect crews working around hazardous gases soon could be called on for a number of life-saving applications as...

  9. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    Science.gov (United States)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  10. Green space as a buffer between stressful life events and health.

    Science.gov (United States)

    van den Berg, Agnes E; Maas, Jolanda; Verheij, Robert A; Groenewegen, Peter P

    2010-04-01

    This study investigates whether the presence of green space can attenuate negative health impacts of stressful life events. Individual-level data on health and socio-demographic characteristics were drawn from a representative two-stage sample of 4529 Dutch respondents to the second Dutch National Survey of General Practice (DNSGP-2), conducted in 2000-2002. Health measures included: (1) the number of health complaints in the last 14 days; (2) perceived mental health (measured by the GHQ-12); and (3) a single item measure of perceived general health ranging from 'excellent' to 'poor'. Percentages of green space in a 1-km and 3-km radius around the home were derived from the 2001 National Land cover Classification database (LGN4). Data were analysed using multilevel regression analysis, with GP practices as the group-level units. All analyses were controlled for age, gender, income, education level, and level of urbanity. The results show that the relationships of stressful life events with number of health complaints and perceived general health were significantly moderated by amount of green space in a 3-km radius. Respondents with a high amount of green space in a 3-km radius were less affected by experiencing a stressful life event than respondents with a low amount of green space in this radius. The same pattern was observed for perceived mental health, although it was marginally significant. The moderating effects of green space were found only for green space within 3 km, and not for green space within 1 km of residents' homes, presumably because the 3-km indicator is more affected by the presence of larger areas of green space, that are supposed to sustain deeper forms of restoration. These results support the notion that green space can provide a buffer against the negative health impact of stressful life events. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Developing Reliable Life Support for Mars

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and

  12. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    Science.gov (United States)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  13. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post

  14. Introduction: Life Space and Burial Space in the Post-Apartheid City ...

    African Journals Online (AJOL)

    Landscapes of the dead are always, simultaneously, landscapes of the living. It is this coterminousness of life and death that gives the burial site its salience and emotional power. Different societies, at different times, renegotiate the relationship between what anthropologists call 'life space\\' and 'burial space\\', depending on ...

  15. Project Orion, Environmental Control and Life Support System Integrated Studies

    Science.gov (United States)

    Russell, James F.; Lewis, John F.

    2008-01-01

    Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.

  16. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    Science.gov (United States)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  17. Reagentless chemiluminescence-based fiber optic sensors for regenerative life support in space

    Science.gov (United States)

    Atwater, James E.; Akse, James R.; DeHart, Jeffrey; Wheeler, Richard R., Jr.

    1995-04-01

    The initial feasibility demonstration of a reagentless chemiluminescence based fiber optic sensor technology for use in advanced regenerative life support applications in space and planetary outposts is described. The primary constraints for extraterrestrial deployment of any technology are compatibility with microgravity and hypogravity environments; minimal size, weight, and power consumption; and minimal use of expendables due to the great expense and difficulty inherent to resupply logistics. In the current research, we report the integration of solid state flow through modules for the production of aqueous phase reagents into an integrated system for the detection of important analytes by chemiluminescence, with fiber optic light transmission. By minimizing the need for resupply expendables, the use of solid phase modules makes complex chemical detection schemes practical. For the proof of concept, hydrogen peroxide and glucose were chosen as analytes. The reaction is catalyzed by glucose oxidase, an immobilized enzyme. The aqueous phase chemistry required for sensor operation is implemented using solid phase modules which adjust the pH of the influent stream, catalyze the oxidation of analyte, and provide the controlled addition of the luminophore to the flowing aqueous stream. Precise control of the pH has proven essential for the long-term sustained release of the luminophore. Electrocatalysis is achieved using a controlled potential across gold mesh and gold foil electrodes which undergo periodic polarity reversals. The development and initial characterization of performance of the reagentless fiber optic chemiluminescence sensors are presented in this paper.

  18. Bioregenerative Life Support System Research as part of the DLR EDEN Initiative

    Science.gov (United States)

    Bamsey, Matthew; Schubert, Daniel; Zabel, Paul; Poulet, Lucie; Zeidler, Conrad

    In 2011, the DLR Institute of Space Systems launched a research initiative called EDEN - Evolution and Design of Environmentally-closed Nutrition-Sources. The research initiative focuses on bioregenerative life support systems, especially greenhouse modules, and technologies for future crewed vehicles. The EDEN initiative comprises several projects with respect to space research, ground testing and spin-offs. In 2014, EDEN’s new laboratory officially opened. This new biological cleanroom laboratory comprises several plant growth chambers incorporating a number of novel controlled environment agriculture technologies. This laboratory will be the nucleus for a variety of plant cultivation experiments within closed environments. The utilized technologies are being advanced using the pull of space technology and include such items as stacked growth systems, PAR-specific LEDs, intracanopy lighting, aeroponic nutrient delivery systems and ion-selective nutrient sensors. The driver of maximizing biomass output per unit volume and energy has much application in future bioregenerative life support systems but can also provide benefit terrestrially. The EDEN laboratory also includes several specially constructed chambers for advancing models addressing the interaction between bioregenerative and physical-chemical life support systems. The EDEN team is presently developing designs for containerized greenhouse modules. One module is planned for deployment to the German Antarctic Station, Neumayer III. The shipping container based system will provide supplementation to the overwintering crew’s diet, provide psychological benefit while at the same time advancing the technology and operational readiness of harsh environment plant production systems. In addition to hardware development, the EDEN team has participated in several early phase designs such as for the ESA Greenhouse Module for Space System and for large-scale vertical farming. These studies often utilize the

  19. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  20. Space life sciences strategic plan, 1991

    Science.gov (United States)

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  1. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  2. Automated Subsystem Control for Life Support System (ASCLSS)

    Science.gov (United States)

    Block, Roger F.

    1987-01-01

    The Automated Subsystem Control for Life Support Systems (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of space station subsystems. The automation system features a hierarchical and distributed real-time control architecture which places maximum controls authority at the lowest or process control level which enhances system autonomy. The ASCLSS demonstration system pioneered many automation and control concepts currently being considered in the space station data management system (DMS). Heavy emphasis is placed on controls hardware and software commonality implemented in accepted standards. The approach demonstrates successfully the application of real-time process and accountability with the subsystem or process developer. The ASCLSS system completely automates a space station subsystem (air revitalization group of the ASCLSS) which moves the crew/operator into a role of supervisory control authority. The ASCLSS program developed over 50 lessons learned which will aide future space station developers in the area of automation and controls..

  3. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    Science.gov (United States)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  4. Exergy Based Analysis for the Environmental Control and Life Support Systems of the International Space Station

    Science.gov (United States)

    Clem, Kirk A.; Nelson, George J.; Mesmer, Bryan L.; Watson, Michael D.; Perry, Jay L.

    2016-01-01

    When optimizing the performance of complex systems, a logical area for concern is improving the efficiency of useful energy. The energy available for a system to perform work is defined as a system's energy content. Interactions between a system's subsystems and the surrounding environment can be accounted for by understanding various subsystem energy efficiencies. Energy balance of reactants and products, and enthalpies and entropies, can be used to represent a chemical process. Heat transfer energy represents heat loads, and flow energy represents system flows and filters. These elements allow for a system level energy balance. The energy balance equations are developed for the subsystems of the Environmental Control and Life Support (ECLS) system aboard the International Space Station (ISS). The use of these equations with system information would allow for the calculation of the energy efficiency of the system, enabling comparisons of the ISS ECLS system to other systems as well as allows for an integrated systems analysis for system optimization.

  5. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  6. Psychiatry: life events and social support in late life depression

    Directory of Open Access Journals (Sweden)

    Clóvis Alexandrino-Silva

    2011-01-01

    Full Text Available OBJECTIVES: To examine the association of life events and social support in the broadly defined category of depression in late life. INTRODUCTION: Negative life events and lack of social support are associated with depression in the elderly. Currently, there are limited studies examining the association between life events, social support and late-life depression in Brazil. METHODS: We estimated the frequency of late-life depression within a household community sample of 367 subjects aged 60 years or greater with associated factors. ''Old age symptomatic depression'' was defined using the Composite International Diagnostic Interview 1.1 tool. This diagnostic category included only late-life symptoms and consisted of the diagnoses of depression and dysthymia as well as a subsyndromal definition of depression, termed ''late subthreshold depression''. Social support and life events were assessed using the Comprehensive Assessment and Referral Evaluation (SHORT-CARE inventory. RESULTS: ''Old age symptomatic depression'' occurred in 18.8% of the patients in the tested sample. In univariate analyses, this condition was associated with female gender, lifetime anxiety disorder and living alone. In multivariate models, ''old age symptomatic depression'' was associated with a perceived lack of social support in men and life events in women. DISCUSSION: Social support and life events were determined to be associated with late-life depression, but it is important to keep in mind the differences between genders. Also, further exploration of the role of lifetime anxiety disorder in late-life depression may be of future importance. CONCLUSIONS: We believe that this study helps to provide insight into the role of psychosocial factors in late-life depression.

  7. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  8. Model implementation for dynamic computation of system cost for advanced life support

    Science.gov (United States)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. MELiSSA celebrates 25 years of research into life support

    International Nuclear Information System (INIS)

    2015-01-01

    MELiSSA (Micro-Ecological Life Support System Alternative) is a collaborative project with the European Space Agency ESA and various other scientific partners. The objective of MELiSSA is to develop a system that is able to provide manned space missions with food, drinking water and oxygen autonomously in space. Drinkable water and oxygen are currently being made in the international space station ISS by filtering waste water and by electrolysing water. However, such physiochemical technologies do not offer a solution for food. The MELiSSA project intends to reuse waste products, which include CO2, water, stools and urine from the astronauts, and even the perspiration moisture in the cabin and to transfer these into food through the use of micro-organisms.

  10. Investigation of bio-regenerative life support and Trash-to-gas experiment on a 4 month mars simulation mission

    OpenAIRE

    Caraccio, A.; Poulet, Lucie; Hintze, P.; Miles, J.D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on ...

  11. Design and Parametric Sizing of Deep Space Habitats Supporting NASA'S Human Space Flight Architecture Team

    Science.gov (United States)

    Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary

    2012-01-01

    NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.

  12. Methodological Challenges in Studies Comparing Prehospital Advanced Life Support with Basic Life Support.

    Science.gov (United States)

    Li, Timmy; Jones, Courtney M C; Shah, Manish N; Cushman, Jeremy T; Jusko, Todd A

    2017-08-01

    Determining the most appropriate level of care for patients in the prehospital setting during medical emergencies is essential. A large body of literature suggests that, compared with Basic Life Support (BLS) care, Advanced Life Support (ALS) care is not associated with increased patient survival or decreased mortality. The purpose of this special report is to synthesize the literature to identify common study design and analytic challenges in research studies that examine the effect of ALS, compared to BLS, on patient outcomes. The challenges discussed in this report include: (1) choice of outcome measure; (2) logistic regression modeling of common outcomes; (3) baseline differences between study groups (confounding); (4) inappropriate statistical adjustment; and (5) inclusion of patients who are no longer at risk for the outcome. These challenges may affect the results of studies, and thus, conclusions of studies regarding the effect of level of prehospital care on patient outcomes should require cautious interpretation. Specific alternatives for avoiding these challenges are presented. Li T , Jones CMC , Shah MN , Cushman JT , Jusko TA . Methodological challenges in studies comparing prehospital Advanced Life Support with Basic Life Support. Prehosp Disaster Med. 2017;32(4):444-450.

  13. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    Science.gov (United States)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  14. Design Rules for Life Support Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  15. A urine-fuelled soil-based bioregenerative life support system for long-term and long-distance manned space missions

    Science.gov (United States)

    Maggi, Federico; Tang, Fiona H. M.; Pallud, Céline; Gu, Chuanhui

    2018-05-01

    A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.

  16. Space Suit Portable Life Support System (PLSS) 2.0 Unmanned Vacuum Environment Testing

    Science.gov (United States)

    Watts, Carly; Vogel, Matthew

    2016-01-01

    For the first time in more than 30 years, an advanced space suit Portable Life Support System (PLSS) design was operated inside a vacuum chamber representative of the flight operating environment. The test article, PLSS 2.0, was the second system-level integrated prototype of the advanced PLSS design, following the PLSS 1.0 Breadboard that was developed and tested throughout 2011. Whereas PLSS 1.0 included five technology development components with the balance the system simulated using commercial-off-the-shelf items, PLSS 2.0 featured first generation or later prototypes for all components less instrumentation, tubing and fittings. Developed throughout 2012, PLSS 2.0 was the first attempt to package the system into a flight-like representative volume. PLSS 2.0 testing included an extensive functional evaluation known as Pre-Installation Acceptance (PIA) testing, Human-in-the-Loop testing in which the PLSS 2.0 prototype was integrated via umbilicals to a manned prototype space suit for 19 two-hour simulated EVAs, and unmanned vacuum environment testing. Unmanned vacuum environment testing took place from 1/9/15-7/9/15 with PLSS 2.0 located inside a vacuum chamber. Test sequences included performance mapping of several components, carbon dioxide removal evaluations at simulated intravehicular activity (IVA) conditions, a regulator pressure schedule assessment, and culminated with 25 simulated extravehicular activities (EVAs). During the unmanned vacuum environment test series, PLSS 2.0 accumulated 378 hours of integrated testing including 291 hours of operation in a vacuum environment and 199 hours of simulated EVA time. The PLSS prototype performed nominally throughout the test series, with two notable exceptions including a pump failure and a Spacesuit Water Membrane Evaporator (SWME) leak, for which post-test failure investigations were performed. In addition to generating an extensive database of PLSS 2.0 performance data, achievements included requirements and

  17. Creating Life in an Urban Space

    OpenAIRE

    Fredrickson, Kirsten I.

    1999-01-01

    Creating Life in an Urban Space Kirsten Fredrickson Abstract Towns contain spaces defined by human interaction with their surroundings. In any town, certain places seem inviting while others seem cold and unfriendly. This is the result of subtle design decisions that directly effect the character of a place. This investigation focuses on the interaction of architecture in our daily lives and how it affects us in ways that we often overlook. The life of a town is in its rela...

  18. Managing 'difficult emotions' and family life: exploring insights and social support within online self-management training.

    Science.gov (United States)

    Sanders, C; Rogers, A; Gardner, C; Kennedy, A

    2011-06-01

    Previous research has demonstrated how the Internet can foster emotional support and provide a 'private' space for discussing sensitive issues. Whilst the family has been located as a primary source of support, empirical research on the dynamics of close personal relationships in chronic illness experience remains a challenge. To explore the role of family relationships in supporting self-care and the nature of social support exchanged within an online self-management training course. Qualitative thematic and narrative analysis of online discussion boards. Postings for 218 participants, divided between 11 groups were included for a course section that focused on 'difficult emotions'. Participants exchanged a high degree of emotional support and revealed much about their 'real life' relationships. The latter highlighted the complexities of managing illness within family contexts alongside additional pressures of daily life such as caring commitments and work roles. The private interactive space created within the course allowed insights into the dynamics of family life associated with illness management that are challenging to research. Simultaneously, collective support was developed amongst this group of predominantly working women. The article points to the implications for such interventions and associated evaluative research beyond this selective group.

  19. Concurrent validity of the Swedish version of the life-space assessment questionnaire

    Directory of Open Access Journals (Sweden)

    Sofi Fristedt

    2016-11-01

    Full Text Available Abstract Background The Life-Space Assessment (LSA, developed in the USA, is an instrument focusing on mobility with respect to reaching different areas defined as life-spaces, extending from the room where the person sleeps to mobility outside one’s hometown. A newly translated Swedish version of the LSA (LSA-S has been tested for test-retest reliability, but the validity remains to be tested. The purpose of the present study was to examine the concurrent validity of the LSA-S, by comparing and correlating the LSA scores to other measures of mobility. Method The LSA was included in a population-based study of health, functioning and mobility among older persons in Sweden, and the present analysis comprised 312 community-dwelling participants. To test the concurrent validity, the LSA scores were compared to a number of other mobility-related variables, including the Short Physical Performance Battery (SPPB as well as “stair climbing”, “transfers”, “transportation”, “food shopping”, “travel for pleasure” and “community activities”. The LSA total mean scores for different levels of the other mobility-related variables, and measures of correlation were calculated. Results Higher LSA total mean scores were observed with higher levels of all the other mobility related variables. Most of the correlations between the LSA and the other mobility variables were large (r = 0.5–1.0 and significant at the 0.01 level. The LSA total score, as well as independent life-space and assistive life-space correlated with transportation (0.63, 0.66, 0.64 and food shopping (0.55, 0.58, 0.55. Assistive life-space also correlated with SPPB (0.47. With respect to maximal life-space, the correlations with the mobility-related variables were generally lower (below 0.5, probably since this aspect of life-space mobility is highly influenced by social support and is not so dependent on the individual’s own physical function. Conclusion LSA was

  20. Mental life in the space of reasons

    DEFF Research Database (Denmark)

    Brinkmann, Svend

    2006-01-01

    This paper argues the Wittgensteinian point that we can undo the psychologizing of psychology by conceiving of mental life as lived in the space of reasons. It is argued that mental life - human action, feeling and thinking - is constituted by normative connections and necessities rather than...... that it violates our conception of mental illness as something mental, yet outside the space of reasons...

  1. SPACE: Enhancing Life on Earth. Proceedings Report

    Science.gov (United States)

    Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)

    1996-01-01

    The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.

  2. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  3. Overview of Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the late 1980's, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in the design of a closed loop life support system.

  4. The International Space Life Sciences Strategic Planning Working Group

    Science.gov (United States)

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  5. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Capability Roadmap Development for Exploration

    Science.gov (United States)

    Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie

    2012-01-01

    NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap

  6. Integration of lessons from recent research for "Earth to Mars" life support systems

    Science.gov (United States)

    Nelson, M.; Allen, J. P.; Alling, A.; Dempster, W. F.; Silverstone, S.; van Thillo, M.

    Development of reliable and robust strategies for long-term life support for mbox planetary exploration needs to be built on real-time experimentation to verify and improve system components Also critical is the incorporation of a range of viable options to handle potential short-term life system imbalances This paper revisits some of the conceptual framework for a Mars base prototype previously advanced Mars on Earth in the light of three years of experimentation by the authors in the Laboratory Biosphere further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls For example crops of sweet potatoes exceeded original Mars base prototype projections by 83 ultradwarf Apogee wheat by 27 pinto bean by 240 and cowpeas slightly exceeded anticipated dry bean yield These production levels although they may be increased with further optimization of lighting regimes environmental parameters crop density etc offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research Soil also offers several distinct advantages the capability to be created using in-situ space resources reducing reliance on consumables and imported resources and more easily recycling and

  7. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  8. Accommodating life sciences on the Space Station

    Science.gov (United States)

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  9. Community gardens as sites of solace and end-of-life support: a literature review.

    Science.gov (United States)

    Marsh, Pauline; Spinaze, Anna

    2016-05-01

    In a pilot project, members of a community garden explored how they might provide better end-of-life support for their regional community. As part of the project, a literature review was undertaken to investigate the nexus between community gardens and end-of-life experiences (including grief and bereavement) in academic research. This article documents the findings of that review. The authors discovered there is little academic material that focuses specifically on community gardens and end-of-life experiences, but nonetheless the two subjects were seen to intersect. The authors found three points of commonality: both share a need and capacity for a) social/informal support, b) therapeutic space, and c) opportunities for solace.

  10. Prospective technologies and equipment for sanitary hygienic measures for life support systems

    Science.gov (United States)

    Shumilina, I. V.

    Creation of optimal sanitary hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82 95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary hygienic technologies, equipment, and methods.

  11. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  12. Life Course Stage and Social Support Mobilization for End-of-Life Caregivers.

    Science.gov (United States)

    LaValley, Susan A; Gage-Bouchard, Elizabeth A

    2018-04-01

    Caregivers of terminally ill patients are at risk for anxiety, depression, and social isolation. Social support from friends, family members, neighbors, and health care professionals can potentially prevent or mitigate caregiver strain. While previous research documents the importance of social support in helping end-of-life caregivers cope with caregiving demands, little is known about differences in social support experiences among caregivers at different life course stages. Using life course theory, this study analyzes data from in-depth interviews with 50 caregivers of patients enrolled in hospice services to compare barriers to mobilizing social support among caregivers at two life course stages: midlife caregivers caring for parents and older adult caregivers caring for spouses/partners. Older adult caregivers reported different barriers to mobilizing social support compared with midlife caregivers. Findings enhance the understanding of how caregivers' life course stage affects their barriers to mobilization of social support resources.

  13. Mathematical Modeling Of Life-Support Systems

    Science.gov (United States)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  14. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  15. Regenerable Sorbent for Combined CO2, Water, and Trace-Contaminant Capture in the Primary Life Support System (PLSS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA objective of expanding the human experience into the far reaches of space requires the development of regenerable life support systems. This proposal...

  16. Life-space mobility in Parkinson's disease: Associations with motor and non-motor symptoms.

    Science.gov (United States)

    Rantakokko, Merja; Iwarsson, Susanne; Slaug, Björn; Nilsson, Maria H

    2018-04-10

    To describe life-space mobility and explore associations of motor and non-motor symptoms with life-space mobility in people with Parkinson's disease (PD). 164 community-dwelling persons with PD (mean age 71.6 years, 64.6% men) received a postal survey and a subsequent home visit. Motor assessments included perceived walking difficulties (Walk-12G), mobility (Timed Up and Go test), motor symptoms (UPDRS-III) and freezing of gait (item 3, FOG-Qsa). Non-motor symptoms included depressive symptoms (GDS-15), pain, fatigue (NHP-EN) and global cognition (MoCA). Life-space mobility was assessed with the life-space assessment (LSA). Calculations included composite score (range 0-120; higher indicating better life-space mobility), independent life-space (range 0-5), assisted life-space (range 0-5), and maximal life-space (range 0-5). Associations were analyzed with linear regression models, adjusted for age, sex, and PD severity (Hoehn and Yahr). Mean life-space mobility score was 72.3 (SD 28.8). Almost all participants (90 %) reached the highest life-space level (beyond town). Half of these reached this level independently, while one-third were unable to move outside their bedroom without assistive devices or personal help. When adjusted for confounders, depressive symptoms, pain, and perceived walking difficulties was negatively associated with life-space mobility. In the multivariable model, only perceived walking difficulties was associated with life-space mobility. Our findings indicate that perceived walking difficulties should be targeted to maintain or improve life-space mobility in people with PD. Depressive symptoms and pain may also merit consideration. More research is needed to elucidate the role of environmental and personal factors for life-space mobility in PD.

  17. [Knowledge about basic life support in European students].

    Science.gov (United States)

    Marton, József; Pandúr, Attila; Pék, Emese; Deutsch, Krisztina; Bánfai, Bálint; Radnai, Balázs; Betlehem, József

    2014-05-25

    Better knowledge and skills of basic life support can save millions of lives each year in Europe. The aim of this study was to measure the knowledge about basic life support in European students. From 13 European countries 1527 volunteer participated in the survey. The questionnaire consisted of socio-demographic questions and knowledge regarding basic life support. The maximum possible score was 18. Those participants who had basic life support training earned 11.91 points, while those who had not participated in lifesaving education had 9.6 points (pbasic life support between students from different European countries. Western European youth, and those who were trained had better performance.

  18. Closed ecological life-support systems and their applications

    Science.gov (United States)

    Gitelson, Josef I.

    The advent of man-made closed ecosystems (CES) is a solution of the fundamental problem-egress of humans beyond the Earth's biosphere, providing biological basis for exploitation of Space and celestial bodies. Yet, before proceeding to these ambitious project elements of closed life-support biotechnologies, there can be found diverse applications on Earth in human settlements providing for high quality of life under extreme environment conditions: high latitudes, deserts, mountains and industrially polluted areas. This presentation considers these variations of terrestrial applications of CELSS technologies. The version of CES under development is based on making direct use of the light energy in plant photosynthesis. In this case life support of one man on the Earth orbit requires solar light collected from 5-10m2. Among terrestrial applications of prime importance is the development of an ecohome designed to provide people with a high quality of life in Arctic and Antarctic territories. The developed technology of cascade employment of energy makes possible (expending 10-15 kw of installed power per a house-3-5 member family) to provide for: permanent supply of fresh vitamin-full vegetables, absorption and processing oaf excreta, purification of water and air in the living quarters, habitual colour and light conditions in the premises in winter making up to sensorial deprivation and, finally, psychological comfort of close contact with the plants during the long polar night. Ecohabitat based on the technology described in realistic today and depends only on the energy available and the resolution and readiness (sagacity) of the decision-makers to be committed with ecohome assigning. The ecological and economical significance of construction of ecohabitats for the northern territories of Canada, Alaska and Russia is apparent. This principle can be used (with considerable economy of energy and construction costs) to maintain normal partial pressure of oxygen inside

  19. NASA Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  20. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  1. Life-Space Predicts Health Care Utilization in Community-Dwelling Older Adults.

    Science.gov (United States)

    Kennedy, Richard E; Williams, Courtney P; Sawyer, Patricia; Lo, Alexander X; Connelly, Kay; Nassel, Ariann; Brown, Cynthia J

    2017-09-01

    To determine whether decline in life-space mobility predicts increased health care utilization among community-dwelling older adults. Health care utilization (number of emergency department [ED] visits and hospitalizations) was self-reported during monthly interviews among 419 community-dwelling African American and non-Hispanic White adults aged 75 years and older in The University of Alabama at Birmingham (UAB) Study of Aging II. Life-space was measured using the UAB Life-Space Assessment. Generalized estimating equations were used to examine associations of life-space at the beginning of each interval with health care utilization over the 1-month interval. Overall, 400 participants were followed for 36 months. A 10-point decrease in life-space was associated with 14% increased odds of an ED visit and/or hospitalization over the next month, adjusting for demographics, transportation difficulty, comorbidity, and having a doctor visit in the last month. Life-space is a practical alternative in predicting future health care utilization to performance-based measures, which can be difficult to incorporate into clinical or public health practice.

  2. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    Science.gov (United States)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  3. Environmental control and life support - Partially closed system will save big money

    Science.gov (United States)

    Guy, W. W.

    1983-01-01

    Although the NASA space station has not yet been completely defined, realistic estimates may be made of the environmental control and life support system requirements entailed by a crew of eight, a resupply interval of 90 days, an initial launch which includes expendables for the first resupply interval, 7.86 lb/day of water per person, etc. An appraisal of these requirements is presented which strongly suggests the utility of a partially closed life support system. Such a scheme would give the crew high quality water to drink, and recycle nonpotable water from hand washing, bathing, clothes and dish washing, and urinal flushing. The excess recovery process water is electrolyzed to provide metabolic and leakage oxygen. The crew would drink electrolysis water and atmospheric humidity control moisture-derived water.

  4. Operations and support cost modeling of conceptual space vehicles

    Science.gov (United States)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  5. Ultra Long-Life Spacecraft for Long Duration Space Exploration Missions

    Science.gov (United States)

    Chau, Savio

    2002-01-01

    After decades of Solar System exploration, NASA has almost completed the initial reconnaissance, and has been planning for landing and sample return missions on many planets, satellites, comets, and asteroids. The next logical step of space exploration is to expand the frontier into other missions within and outside the solar system. These missions can easily last for more than 30 to 50 years. Most of the current technologies and spacecraft design techniques are not adequate to support such long life missions. Many breakthrough technologies and non-conventional system architecture have to develop in order to sustain such long life missions.Some of these technologies are being developed by the NASA Exploration Team (neXt). Based on the projected requirements for ultra long life missions, the costs and benefits of the required technologies can be quantified. The ultra long-life space system should have four attributes: long-term survivability, administration of consumable resources, evolvability and adaptability, and low-cost long-term operations of the spacecraft. The discussion of survivability is the focus of this paper. Conventional fault tolerant system design has to tolerate only random failures, which can be handled effectively by dual or triple redundancy for a relatively short time. In contrast, the predominant failure mode in an ultra long-life system is the wear-out of components. All active components in the system are destined to fail before the end of the mission. Therefore, an ultra long-life system would require a large number of redundant components. This would be impractical in conventional fault tolerant systems because their fault tolerance techniques are very inefficient. For instance, a conventional dual-string avionics system duplicates the all the components including the processor, memory, and I/O controllers on a spacecraft. However, when the same component in both strings fail (e.g., the processor), the system will fail although all other

  6. Advanced Technologies to Improve Closure of Life Support Systems

    Science.gov (United States)

    Barta, Daniel J.

    2016-01-01

    As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Candidate technologies will potentially improve the recovery of oxygen from about 50% (for the CRA) to as much as 100% for technologies who's end product is solid carbon. Improving the efficiency of water recycling and recovery can be achieved by the addition of advanced technologies to recover water from brines and solid wastes. Bioregenerative technologies may be utilized for water reclaimation and also for the production of food. Use of higher plants will simultaneously benefit atmosphere revitalization and water recovery through photosynthesis and transpiration. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.

  7. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    Science.gov (United States)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  8. Pythium invasion of plant-based life support systems: biological control and sources

    Science.gov (United States)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  9. Integration of lessons from recent research for “Earth to Mars” life support systems

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced ("Mars on Earth ®") in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally

  10. Study of basic-life-support training for college students.

    Science.gov (United States)

    Srivilaithon, Winchana; Amnaumpatanapon, Kumpon; Limjindaporn, Chitlada; Imsuwan, Intanon; Daorattanachai, Kiattichai

    2015-03-01

    To study about attitude and knowledge regarding basic-life-support among college students outside medical system. The cross-sectional study in the emergency department of Thammasat Hospital. The authors included college students at least aged 18 years old and volunteers to be study subjects. The authors collected data about attitudes and knowledge in performing basic-life-support by using set of questionnaires. 250 college students participated in the two hours trainingprogram. Most ofparticipants (42.4%) were second-year college students, of which 50 of 250 participants (20%) had trained in basic-life-support program. Twenty-seven of 250 participants (10.8%) had experience in basic-life-support outside the hospital. Most of participants had good attitude for doing basic-life-support. Participants had a significant improved score following training (mean score 8.66 and 12.34, respectively, pbasic-life-support to cardiac arrest patient. The training program in basic-life-support has significant impact on knowledge after training.

  11. Life Support Baseline Values and Assumptions Document

    Science.gov (United States)

    Anderson, Molly S.; Ewert, Michael K.; Keener, John F.

    2018-01-01

    The Baseline Values and Assumptions Document (BVAD) provides analysts, modelers, and other life support researchers with a common set of values and assumptions which can be used as a baseline in their studies. This baseline, in turn, provides a common point of origin from which many studies in the community may depart, making research results easier to compare and providing researchers with reasonable values to assume for areas outside their experience. This document identifies many specific physical quantities that define life support systems, serving as a general reference for spacecraft life support system technology developers.

  12. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    Science.gov (United States)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  13. Hospital Costs Of Extracorporeal Life Support Therapy

    NARCIS (Netherlands)

    Oude Lansink-Hartgring, Annemieke; van den Hengel, Berber; van der Bij, Wim; Erasmus, Michiel E.; Mariani, Massimo A.; Rienstra, Michiel; Cernak, Vladimir; Vermeulen, Karin M.; van den Bergh, Walter M.

    Objectives: To conduct an exploration of the hospital costs of extracorporeal life support therapy. Extracorporeal life support seems an efficient therapy for acute, potentially reversible cardiac or respiratory failure, when conventional therapy has been inadequate, or as bridge to transplant, but

  14. TUTORIAL SUPPORT IN THE INFORMATION SPACE OF SCHOOLS

    Directory of Open Access Journals (Sweden)

    Вита Иммануиловна Глизбург

    2017-12-01

    Full Text Available The article deals with teachers and professional competence tyutorskoy, tutor support schools in the information space. The main requirements to the tutor support in the information space of schools, conditions of readiness of the teacher to tutor support schools in the information space. A theoretical analysis of the concept of information competence, tyutorskoy competence. It is noted that in thestructure of information competence must exist an element associated with the motivation, need and interest in the acquisition of knowledge and skills in the field of technical, software and information. Formulated key performance indicators definition of information competence of the tutor. The authors noted that information and work with it is in the modern educational and information space school mandatory components of pedagogical activity as a system.Analyzed and presented on the basis of the author’s experience of the possibility of using information and educational Moodle shell with tutor support positions in the information space of schools, sets out the basic elements and resources Moodle shell with a description of the implementation. In particular, the disclosed educational resources information and educational shell Moodle for remote support learning. The article describes a model developed by the author’s tutor support schools in the information space.

  15. The embodiment design of the heat rejection system for the portable life support system

    Science.gov (United States)

    Stuckwisch, Sue; Francois, Jason; Laughlin, Julia; Phillips, Lee; Carrion, Carlos A.

    1994-01-01

    The Portable Life Support System (PLSS) provides a suitable environment for the astronaut in the Extravehicular Mobility Unit (EMU), and the heat rejection system controls the thermal conditions in the space suit. The current PLSS sublimates water to the space environment; therefore, the system loses mass. Since additional supplies of fluid must be available on the Space Shuttle, NASA desires a closed heat rejecting system. This document presents the embodiment design for a radiative plate heat rejection system without mass transfer to the space environment. This project will transform the concept variant into a design complete with material selection, dimensions of the system, layouts of the heat rejection system, suggestions for manufacturing, and financial viability.

  16. Inspiring the Next Generation in Space Life Sciences

    Science.gov (United States)

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  17. Evolution of the Pediatric Advanced Life Support course: enhanced learning with a new debriefing tool and Web-based module for Pediatric Advanced Life Support instructors.

    Science.gov (United States)

    Cheng, Adam; Rodgers, David L; van der Jagt, Élise; Eppich, Walter; O'Donnell, John

    2012-09-01

    To describe the history of the Pediatric Advanced Life Support course and outline the new developments in instructor training that will impact the way debriefing is conducted during Pediatric Advanced Life Support courses. The Pediatric Advanced Life Support course, first released by the American Heart Association in 1988, has seen substantial growth and change over the past few decades. Over that time, Pediatric Advanced Life Support has become the standard for resuscitation training for pediatric healthcare providers in North America. The incorporation of high-fidelity simulation-based learning into the most recent version of Pediatric Advanced Life Support has helped to enhance the realism of scenarios and cases, but has also placed more emphasis on the importance of post scenario debriefing. We developed two new resources: an online debriefing module designed to introduce a new model of debriefing and a debriefing tool for real-time use during Pediatric Advanced Life Support courses, to enhance and standardize the quality of debriefing by Pediatric Advanced Life Support instructors. In this article, we review the history of Pediatric Advanced Life Support and Pediatric Advanced Life Support instructor training and discuss the development and implementation of the new debriefing module and debriefing tool for Pediatric Advanced Life Support instructors. The incorporation of the debriefing module and debriefing tool into the 2011 Pediatric Advanced Life Support instructor materials will help both new and existing Pediatric Advanced Life Support instructors develop and enhance their debriefing skills with the intention of improving the acquisition of knowledge and skills for Pediatric Advanced Life Support students.

  18. Life through time and space

    CERN Document Server

    Arthur, Wallace

    2017-01-01

    All humans share three origins: the beginning of our individual lives, the appearance of life on Earth, and the formation of our planetary home. Life through Time and Space brings together the latest discoveries in both biology and astronomy to examine our deepest questions about where we came from, where we are going, and whether we are alone in the cosmos. A distinctive voice in the growing field of astrobiology, Wallace Arthur combines embryological, evolutionary, and cosmological perspectives to tell the story of life on Earth and its potential to exist elsewhere in the universe. He guides us on a journey through the myriad events that started with the big bang and led to the universe we inhabit today. Along the way, readers learn about the evolution of life from a primordial soup of organic molecules to complex plants and animals, about Earth's geological transformation from barren rock to diverse ecosystems, and about human development from embryo to infant to adult. Arthur looks closely at the history...

  19. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    Science.gov (United States)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  20. Pediatric advanced life support and sedation of pediatric dental patients

    OpenAIRE

    Kim, Jongbin

    2016-01-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency ...

  1. Study of urban space / urban life in the suburb

    DEFF Research Database (Denmark)

    Melgaard, Bente

    This abstract outlines a section of the methods, which I use in my PhD study, to investigate urban space and urban life in suburban areas in Denmark. I will touch upon the overall methodological considerations in the project, and then go deeper into a specific section: the architectural analysis...... of a public suburban space. I use anthropological fieldwork to explore the space and place of everyday suburban life in a Danish suburb. I combine two disciplines – architecture and anthropology, to find layers that have commonality, and in this abstract, I focus on the projects architectural analysis......, in form of a pilot case study. The pilot case study involves to elements, an architectural analysis and an urban life registration of a suburban urban space in ‘Søndermarken’ in Vejle. The object is to study the physical frames and look at how these frames shape the use and patterns of movement...

  2. Assured Mission Support Space Architecture (AMSSA) study

    Science.gov (United States)

    Hamon, Rob

    1993-01-01

    The assured mission support space architecture (AMSSA) study was conducted with the overall goal of developing a long-term requirements-driven integrated space architecture to provide responsive and sustained space support to the combatant commands. Although derivation of an architecture was the focus of the study, there are three significant products from the effort. The first is a philosophy that defines the necessary attributes for the development and operation of space systems to ensure an integrated, interoperable architecture that, by design, provides a high degree of combat utility. The second is the architecture itself; based on an interoperable system-of-systems strategy, it reflects a long-range goal for space that will evolve as user requirements adapt to a changing world environment. The third product is the framework of a process that, when fully developed, will provide essential information to key decision makers for space systems acquisition in order to achieve the AMSSA goal. It is a categorical imperative that military space planners develop space systems that will act as true force multipliers. AMSSA provides the philosophy, process, and architecture that, when integrated with the DOD requirements and acquisition procedures, can yield an assured mission support capability from space to the combatant commanders. An important feature of the AMSSA initiative is the participation by every organization that has a role or interest in space systems development and operation. With continued community involvement, the concept of the AMSSA will become a reality. In summary, AMSSA offers a better way to think about space (philosophy) that can lead to the effective utilization of limited resources (process) with an infrastructure designed to meet the future space needs (architecture) of our combat forces.

  3. Application of Different Statistical Techniques in Integrated Logistics Support of the International Space Station Alpha

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process to predict the values of the maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle cost spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability, and maintenance support costs. It is the objective of this report to identify the magnitude of the expected enhancement in the accuracy of the results for the International Space Station reliability and maintainability data packages by providing examples. These examples partially portray the necessary information hy evaluating the impact of the said enhancements on the life cycle cost and the availability of the International Space Station.

  4. Life-space mobility and dimensions of depressive symptoms among community-dwelling older adults.

    Science.gov (United States)

    Polku, Hannele; Mikkola, Tuija M; Portegijs, Erja; Rantakokko, Merja; Kokko, Katja; Kauppinen, Markku; Rantanen, Taina; Viljanen, Anne

    2015-01-01

    To examine the association between life-space mobility and different dimensions of depressive symptoms among older community-dwelling people. Cross-sectional analyses of baseline data of the 'Life-Space Mobility in Old Age' cohort study were carried out. The participants were community-dwelling women and men aged 75-90 years (N = 848). Data were gathered via structured interviews in participants' home. Life-space mobility (the University of Alabama at Birmingham (UAB) Life-Space Assessment - questionnaire) and depressive symptoms (Centre for Epidemiological Studies Depression Scale, CES-D) were assessed. Other factors examined included sociodemographic factors, difficulties walking 500 m, number of chronic diseases and the sense of autonomy in participation outdoors (subscale of Impact on Participation and Autonomy questionnaire). Poorer life-space mobility was associated with higher prevalence of different dimensions of depressive symptoms. The associations were partially mediated through walking difficulties, health and the sense of autonomy in participation outdoor activities. Poorer life-space mobility interrelates with higher probability for depressive symptoms, thus compromising older adults' mental wellbeing. A focus on older adults' life-space mobility may assist early identification of persons, who have elevated risk for depressive symptoms. The association between life-space mobility and depressive symptoms should be studied further utilizing longitudinal study designs to examine temporality and potential causality.

  5. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  6. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Science.gov (United States)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  7. Compactly supported frames for decomposition spaces

    DEFF Research Database (Denmark)

    Nielsen, Morten; Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we study a construction of compactly supported frame expansions for decomposition spaces of Triebel-Lizorkin type and for the associated modulation spaces. This is done by showing that finite linear combinations of shifts and dilates of a single function with sufficient decay in b...

  8. Life Support with Failures and Variable Supply

    Science.gov (United States)

    Jones, Harry

    2010-01-01

    The life support system for long duration missions will recycle oxygen and water to reduce the material resupply mass from Earth. The impact of life support failures was investigated by dynamic simulation of a lunar outpost habitat life support model. The model was modified to simulate resupply delays, power failures, recycling system failures, and storage failures. Many failures impact the lunar outpost water supply directly or indirectly, depending on the water balance and water storage. Failure effects on the water supply are reduced if Extra Vehicular Activity (EVA) water use is low and the water supply is ample. Additional oxygen can be supplied by scavenging unused propellant or by production from regolith, but the amounts obtained can vary significantly. The requirements for oxygen and water can also vary significantly, especially for EVA. Providing storage buffers can improve efficiency and reliability, and minimize the chance of supply failing to meet demand. Life support failures and supply variations can be survivable if effective solutions are provided by the system design

  9. Advanced Cardiac Life Support.

    Science.gov (United States)

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document contains materials for an advanced college course in cardiac life support developed for the State of Iowa. The course syllabus lists the course title, hours, number, description, prerequisites, learning activities, instructional units, required text, six references, evaluation criteria, course objectives by units, course…

  10. Functional Interface Considerations within an Exploration Life Support System Architecture

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    As notional life support system (LSS) architectures are developed and evaluated, myriad options must be considered pertaining to process technologies, components, and equipment assemblies. Each option must be evaluated relative to its impact on key functional interfaces within the LSS architecture. A leading notional architecture has been developed to guide the path toward realizing future crewed space exploration goals. This architecture includes atmosphere revitalization, water recovery and management, and environmental monitoring subsystems. Guiding requirements for developing this architecture are summarized and important interfaces within the architecture are discussed. The role of environmental monitoring within the architecture is described.

  11. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  12. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-05-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  13. Limitation and life in space

    Science.gov (United States)

    Israel, Marvin; Smith, T. Scott

    1986-08-01

    ``The Earth is the very quintescence of the human condition...,'' says Hannah Arendt. Georg Simmel writes: ``The stranger is by nature no `owner of soil'—soil not only in the physical, but also in the figurative sense of a life-substance which is fixed, if not in a point in space, at least in an ideal point of social environment.'' How will no longer being Earthbound affect persons' experience of themselves and of others? Space colonization offers an opportunity for new self-definition by the alteration of existing limits. Thus ``limitation'' is a useful concept for exploring the physical, social and psychological significance of the colonization of space. Will people seek the security of routine, of convention, of hierarchy as in the military model governing our present-day astronauts? or will they seek to maximize the freedom inherent in extraordinary living conditions—as bohemians, deviants, travelers?

  14. Mental life in the space of reasons

    DEFF Research Database (Denmark)

    Brinkmann, Svend

    2006-01-01

    causal ones. The consequence is that mental life is irreducibly moral, and if the sciences of mental life are to become adequate to deal with their subject matter, they should construe themselves as what was once referred to as moral sciences. It is argued that the source of the normativity of mental...... life is found in historically evolved social practices,although not all normativity is conventional or historically contingent. Finally, some objections to the idea that mental life is normative are discussed; first, that this idea represents an intellectualist or rationalist fallacy, and second...... that it violates our conception of mental illness as something mental, yet outside the space of reasons...

  15. Artificial intelligence and the space station software support environment

    Science.gov (United States)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  16. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  17. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    Science.gov (United States)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  18. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  19. Cyrogenic Life Support Technology Development Project

    Science.gov (United States)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  20. A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

    Science.gov (United States)

    Savage, Paul D.; Connolly, J. P.; Navarro, B. J.

    1999-01-01

    Ames Research Center's Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.

  1. Sensorial Organization as an Ethics of Space: Digital Media in Everyday Life

    Directory of Open Access Journals (Sweden)

    Stina Bengtsson

    2018-05-01

    Full Text Available This article outlines an analysis of the ethical organization of digital media and social and individual space in everyday life. This is made from a perspective of an ‘ethics of the ordinary’, highlighting the mundane negotiations and practices conducted to maintain a ‘good life’ with the media. The analysis shows a sensorial organization of space is conducted in relation to social space, as well as individually. The interviewees use facilities provided by media technologies in order to organize space, as well as organize their media devices spatially in order to construct space for specific purposes, and maintain a good life. These results call for a deepened analysis of the sensorial dimensions of everyday space, in order to understand the ethical struggles of a life with digital media. It is important to include the full spectrum of sensorial experiences in our approach to everyday life and to take the sensorial experiences of ordinary media users into account in our analysis of space as part of an everyday ethics.

  2. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    Science.gov (United States)

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  3. Deep Space Habitat ECLSS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  4. Deep Space Habitat ECLS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank

    2011-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  5. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    Science.gov (United States)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv

  6. Creating Spaces to Support Transgender Youth

    Science.gov (United States)

    McGuire, Jenifer K.; Conover-Williams, Meredith

    2010-01-01

    This article explores the opportunity to create spaces within the family, school, and community that specifically promote the well-being of transgender adolescents and young adults. When social contexts are supportive, transgender youth report significantly less risk. Supportive home and school environments have been linked to better outcomes…

  7. NASA Johnson Space Center Life Sciences Data System

    Science.gov (United States)

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  8. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    Science.gov (United States)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  9. Space Transportation Infrastructure Supported By Propellant Depots

    Science.gov (United States)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  10. Don't Trust a Management Metric, Especially in Life Support

    Science.gov (United States)

    Jones, Harry W.

    2014-01-01

    Goodhart's law states that metrics do not work. Metrics become distorted when used and they deflect effort away from more important goals. These well-known and unavoidable problems occurred when the closure and system mass metrics were used to manage life support research. The intent of life support research should be to develop flyable, operable, reliable systems, not merely to increase life support system closure or to reduce its total mass. It would be better to design life support systems to meet the anticipated mission requirements and user needs. Substituting the metrics of closure and total mass for these goals seems to have led life support research to solve the wrong problems.

  11. Coworking Spaces: A Source of Social Support for Independent Professionals.

    Science.gov (United States)

    Gerdenitsch, Cornelia; Scheel, Tabea E; Andorfer, Julia; Korunka, Christian

    2016-01-01

    Coworking spaces are shared office environments for independent professionals. Such spaces have been increasing rapidly throughout the world, and provide, in addition to basic business infrastructure, the opportunity for social interaction. This article explores social interaction in coworking spaces and reports the results of two studies. Study 1 (N = 69 coworkers) finds that social interaction in coworking spaces can take the form of social support. Study 2 further investigates social support among coworkers (N = 154 coworkers) and contrasts these results with those of social support among colleagues in traditional work organizations (N = 609). A moderated mediation model using time pressure and self-efficacy, based on the conservation of resources theory, is tested. Social support from both sources was positively related to performance satisfaction. Self-efficacy mediated this relationship in the employee sample, while in the coworking sample, self-efficacy only mediated the relationship between social support and performance satisfaction if time pressure was high. Thus, a mobilization of social support seems necessary in coworking spaces. We conclude that coworking spaces, as modern social work environments, should align flexible work infrastructure with well-constructed opportunities for social support.

  12. Coworking Spaces: A Source of Social Support for Independent Professionals

    Directory of Open Access Journals (Sweden)

    Cornelia eGerdenitsch

    2016-04-01

    Full Text Available Coworking spaces are shared office environments for independent professionals. Such spaces have been increasing rapidly throughout the world, and provide, in addition to basic business infrastructure, the opportunity for social interaction. This article explores social interaction in coworking spaces and reports the results of two studies. Study 1 (N = 69 coworkers finds that social interaction in coworking spaces can take the form of social support. Study 2 further investigates social support among coworkers (N = 154 coworkers and contrasts these results with those of social support among colleagues in traditional work organizations (N = 609. A moderated mediation model using time pressure and self-efficacy, based on the conservation of resources theory, is tested. Social support from both sources was positively related to performance satisfaction. Self-efficacy mediated this relationship in the employee sample, while in the coworking sample, self-efficacy only mediated the relationship between social support and performance satisfaction if time pressure was high. Thus, a mobilization of social support seems necessary in coworking spaces. We conclude that coworking spaces, as modern social work environments, should align flexible work infrastructure with well-constructed opportunities for social support.

  13. Social support moderates caregiver life satisfaction following traumatic brain injury.

    Science.gov (United States)

    Ergh, Tanya C; Hanks, Robin A; Rapport, Lisa J; Coleman, Renee D

    2003-12-01

    Social support is an important determinant of adjustment following traumatic brain injury (TBI) sustained by a family member. The present study examined the extent to which social support moderates the influence of characteristics of the person with injury on caregiver subjective well-being. Sixty pairs of individuals who had sustained a moderate to severe TBI and their caregivers (N=120) participated. Years postinjury ranged from 0.3 to 9.9 ( M=4.8, SD=2.6). Cognitive, functional, and neurobehavioral functioning of participants with TBI were assessed using neuropsychological tests and rating scales. Caregiver life satisfaction and perceived social support were assessed using self-report questionnaires. Results indicated that time since injury was unrelated to life satisfaction. Neurobehavioral disturbances showed an inverse relation with life satisfaction. Social support emerged as an important moderator of life satisfaction. Only among caregivers with low social support was cognitive dysfunction adversely related to life satisfaction. Similarly, a trend suggested that patient unawareness of deficit was associated with caregiver life dissatisfaction only among caregivers with low social support. In contrast, these characteristics were unrelated to life satisfaction among caregivers with adequate social support.

  14. USSR Space Life Sciences Digest, issue 4

    Science.gov (United States)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  15. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  16. Characterization of commercial off-the shelf regenerable sorbent to scrub carbon dioxide in a portable life support system

    Science.gov (United States)

    Arai, Tatsuya; Fricker, John

    2018-06-01

    A resin bead Mitsubishi DIAION™ CR20 was identified and characterized as a first commercial off-the shelf regenerable carbon dioxide (CO2) sorbent candidate for space life support system applications at room temperature. The CO2 adsorption rates and capacities of CR20 at varying CO2 partial pressures were obtained. The data were used to numerically simulate CO2 adsorption by a swingbed, a pair of two sorbent beds that alternately adsorb and desorb CO2 in a space suit portable life support system (PLSS). The result demonstrated that a reasonable volume of CR20 would be able to continuously adsorb CO2 with bed-swing interval of 4 min at 300-W metabolic rate, and that commercial off-the shelf CR20 would have similar performance of CO2 adsorption to the proprietary swingbed sorbent SA9T for PLSS applications.

  17. System Engineering and Integration of Controls for Advanced Life Support

    Science.gov (United States)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  18. Microbiological characterization of a regenerative life support system

    Science.gov (United States)

    Koenig, D. W.; Bruce, R. J.; Mishra, S. K.; Barta, D. J.; Pierson, D. L.

    1994-01-01

    A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 10(exp 11) Colony Forming Units (CFU)/g, 10(exp 5) CFU/ml, 10(exp 5)CFU/ml, and 600 CFU/m sq, repectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 10(exp 5) CFU/g in the rhizosphere, 4-200 CFU/ml in the spent nutient medium, 110 CFU/ml in the heat exchanger condensate, and 3 CFU/cu m in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.

  19. Life Course, Green Space and Health: Incorporating Place into Life Course Epidemiology

    Directory of Open Access Journals (Sweden)

    Jamie Pearce

    2016-03-01

    Full Text Available Researchers interested in the relationships between place and health have been slow to incorporate a life course perspective, probably due to the lack of readily available historical environmental data. This hinders the identification of causal relationships. It also restricts our understanding as to whether there are accumulative effects over the life course and if there are critical periods in people’s lives when places are particularly pertinent. This study considers the feasibility of constructing longitudinal data on the availability of urban green space. The suitability of various historical and contemporary data sources is considered, including paper maps, aerial photographs and tabular land use data. Measures of urban green space are created for all neighbourhoods across the Edinburgh region of Scotland at various points during the past 100 years. We demonstrate that it is feasible to develop such measures, but there are complex issues involved in doing so. We also test the utility of the measures via an analysis of how accessibility to green space might alter over the life course of both people, and their residential neighbourhoods. The findings emphasise the potential for utilising historical data to significantly enhance understanding of the relationships between nature and health, and between health and place more generally. We encourage researchers to use data from other locations to consider including a longitudinal perspective to examine relationships between people’s health and their environment.

  20. Perceived social support and life satisfaction in persons with somatization disorder

    Directory of Open Access Journals (Sweden)

    Arif Ali

    2010-01-01

    Full Text Available Background: Life satisfaction and perceived social support been shown to improve the well-being of a person and also affect the outcome of treatment in somatization disorder. The phenomenon of somatization was explored in relation to the perceived social support and life satisfaction. Aim: This study aimed at investigating perceived social support and life satisfaction in people with somatization disorder. Materials and Methods: The study was conducted on persons having somatization disorder attending the outpatient unit of LGB Regional Institute of Mental Health, Tezpur, Assam. Satisfaction with life scale and multidimensional scale of perceived social support were used to assess life satisfaction and perceived social support respectively. Results: Women reported more somatic symptoms than men. Family perceived social support was high in the patient in comparison to significant others′ perceived social support and friends′ perceived social support. Perceived social support showed that a significant positive correlation was found with life satisfaction. Conclusion: Poor social support and low life satisfaction might be a stress response with regard to increased distress severity and psychosocial stressors rather than a cultural response to express psychological problems in somatic terms.

  1. Pediatric advanced life support and sedation of pediatric dental patients.

    Science.gov (United States)

    Kim, Jongbin

    2016-03-01

    Programs provided by the Korea Association of Cardiopulmonary Resuscitation include Basic Life Support (BLS), Advanced Cardiac Life Support (ACLS), Pediatric Advanced Life Support (PALS), and Korean Advanced Life Support (KALS). However, programs pertinent to dental care are lacking. Since 2015, related organizations have been attempting to develop a Dental Advanced Life Support (DALS) program, which can meet the needs of the dental environment. Generally, for initial management of emergency situations, basic life support is most important. However, emergencies in young children mostly involve breathing. Therefore, physicians who treat pediatric dental patients should learn PALS. It is necessary for the physician to regularly renew training every two years to be able to immediately implement professional skills in emergency situations. In order to manage emergency situations in the pediatric dental clinic, respiratory support is most important. Therefore, mastering professional PALS, which includes respiratory care and core cases, particularly upper airway obstruction and respiratory depression caused by a respiratory control problem, would be highly desirable for a physician who treats pediatric dental patients. Regular training and renewal training every two years is absolutely necessary to be able to immediately implement professional skills in emergency situations.

  2. Improving basic life support training for medical students

    OpenAIRE

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Mariam Lami, Pooja Nair, Karishma GadhviFaculty of Medicine, Imperial College, London, London, UKAbstract: Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.Keywords: medical education, basic life support

  3. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    Science.gov (United States)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  4. Space life sciences perspectives for Space Station Freedom

    Science.gov (United States)

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  5. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deep Space Detectives: Searching for Planets Suitable for Life

    Science.gov (United States)

    Pallant, Amy; Damelin, Daniel; Pryputniewicz, Sarah

    2013-01-01

    This article describes the High-Adventure Science curriculum unit "Is There Life in Space?" This free online investigation, developed by The Concord Consortium, helps students see how scientists use modern tools to locate planets around distant stars and explore the probability of finding extraterrestrial life. This innovative curriculum…

  7. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  8. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  9. Reproducible analyses of microbial food for advanced life support systems

    Science.gov (United States)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  10. Individuals' quality of life linked to major life events, perceived social support, and personality traits.

    Science.gov (United States)

    Pocnet, Cornelia; Antonietti, Jean-Philippe; Strippoli, Marie-Pierre F; Glaus, Jennifer; Preisig, Martin; Rossier, Jérôme

    2016-11-01

    The aim of this study was to investigate the relationship between major recent life events that occurred during the last 5 years, social and personal resources, and subjective quality of life (QoL). A total of 1801 participants from the general population (CoLaus/PsyCoLaus study) completed the Life Events Questionnaire, the Social Support Questionnaire, the NEO Five-Factor Inventory Revised, and the Manchester Short Assessment of Quality of Life. Major life events were modestly associated with the QoL (about 5 % of the explained variance). However, QoL was significantly related to perceived social support and personality traits (about 37 % of the explained variance). Particularly, perceived social support, extraversion and conscientiousness personality dimensions were positively linked to life satisfaction, whereas a high level of neuroticism was negatively associated with QoL. This study highlights the negative but temporary association between critical events and QoL. However, a combination of high conscientiousness and extraversion, and positive social support may explain better variances for a high-perceived QoL.

  11. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  12. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  13. Cross support overview and operations concept for future space missions

    Science.gov (United States)

    Stallings, William; Kaufeler, Jean-Francois

    1994-01-01

    Ground networks must respond to the requirements of future missions, which include smaller sizes, tighter budgets, increased numbers, and shorter development schedules. The Consultative Committee for Space Data Systems (CCSDS) is meeting these challenges by developing a general cross support concept, reference model, and service specifications for Space Link Extension services for space missions involving cross support among Space Agencies. This paper identifies and bounds the problem, describes the need to extend Space Link services, gives an overview of the operations concept, and introduces complimentary CCSDS work on standardizing Space Link Extension services.

  14. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  15. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  16. Evaluation of Aquaponics Techniques for Enhancing Productivity and Degree of Closure of Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Nelson, Mark; Dempster, William; Highfield, Eric

    A number of researchers in space bioregenerative life support systems (BLSS) have advocated the inclusion of fish-rearing. Fish have relatively high feed to production ratios and can utilize some waste products from other system components. In recent years, there has been much advance in an approach to combining fish-culture with hydroponically-grown crops called “aquaponics”. Aquaponics systems vary but generally include: fish-rearing unit, settling basin, biofilter, hydroponic plant unit and sump where water is pumped back and the cycle continues. Aquaponics research and application has grown since these systems have the potential to increase overall productivity of both crops and fish. Since the fish waste is used as the growth medium of the food plants, there are environmental benefits in reduced discharge of nutrient-rich wastewater which has been one of the drawbacks of conventional aquaculture. In addition, since water use is reduced 95+% over field agriculture, since water from the hydroponic tanks is fed back to the fish tanks and water is recycled apart from evapotranspiration losses, conservation of water resources and applications in water-limited arid regions are other benefits fueling the spread of aquaponics around the world. These considerations also make utilization of aquaponic approaches desirable in BLSS for space application. This paper will examine some recent research results with aquaponics and explore how it might be utilized for food production and reduction of consumables in space life support. In addition, a review and comparison with other fish-culture options previously advanced will evaluate whether aquaponics can improve production efficiency, reduce inputs and better recycle critical resources. Finally, we will explore whether for the space environment, even more advanced aquaponics systems are possible where consumables such as fish-food can be partially or completely supplied from other subsystems of the BLSS and ET water

  17. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  18. Breastfeeding Support in the Workplace: The Relationships Among Breastfeeding Support, Work-Life Balance, and Job Satisfaction.

    Science.gov (United States)

    Jantzer, Amanda M; Anderson, Jenn; Kuehl, Rebecca A

    2018-05-01

    Women are increasingly faced with decisions about how to combine breastfeeding with work, but few researchers have directly measured how breastfeeding relates to the work-life interface. Research aim: The authors examined how perceptions of work enhancement of personal life and work interference with personal life were influenced by workplace breastfeeding support, including organizational, manager, and coworker support, as well as adequate time to express human milk. Then, we examined how workplace breastfeeding support predicted work-life variables and job satisfaction. Using a self-report, survey design, the authors analyzed online surveys from 87 women in a rural, community sample who indicated that they had pumped at work or anticipated needing to pump in the future. According to regression results, provision of workplace breastfeeding support, particularly providing adequate time for human milk expression, predicted work enhancement of personal life. Conversely, we found that as workplace support diminished, employees perceived greater work interference with personal life. Results of path analysis further suggested that providing time for expressing milk improved job satisfaction via a partially mediated relationship where work enhancement of personal life acted as a mediator. These results suggest that employers can enhance the lives of their breastfeeding employees both at work and at home by providing workplace breastfeeding support, especially through providing time for expressing human milk in the workplace.

  19. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  20. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  1. Adaptability and Life Satisfaction: The Moderating Role of Social Support.

    Science.gov (United States)

    Zhou, Mi; Lin, Weipeng

    2016-01-01

    The purpose of this study was to investigate the moderating role of social support in the relationship between adaptability and life satisfaction. Data were collected from 99 undergraduate freshmen in a Chinese university using a lagged design with a 1-month interval. Results demonstrated that social support moderated the relation between adaptability and life satisfaction, such that the positive relation between adaptability and life satisfaction was stronger for individuals with higher levels of social support than for individuals with lower levels of social support. The theoretical and practical implications of this result are discussed.

  2. Development of the electrochemically regenerable carbon dioxide absorber for portable life support system application

    Science.gov (United States)

    Woods, R. R.; Heppner, D. B.; Marshall, R. D.; Quattrone, P. D.

    1979-01-01

    As the length of manned space missions increase, more ambitious extravehicular activities (EVAs) are required. For the projected longer mission the use of expendables in the portable life support system (PLSS) will become prohibited due to high launch weight and volume requirements. Therefore, the development of a regenerable CO2 absorber for the PLSS application is highly desirable. The paper discusses the concept, regeneration mechanism, performance, system design, and absorption/regeneration cycle testing of a most promising concept known as ERCA (Electrochemically Regenerable CO2 Absorber). This concept is based on absorbing CO2 into an alkaline absorbent similar to LiOH. The absorbent is an aqueous solution supported in a porous matrix which can be electrochemically regenerated on board the primary space vehicle. With the metabolic CO2 recovery the ERCA concept results in a totally regenerable CO2 scrubber. The ERCA test hardware has passed 200 absorption/regeneration cycles without performance degradation.

  3. Analysis of edible oil processing options for the BIO-Plex advanced life support system

    Science.gov (United States)

    Greenwalt, C. J.; Hunter, J.

    2000-01-01

    Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.

  4. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  5. Hydroponics Database and Handbook for the Advanced Life Support Test Bed

    Science.gov (United States)

    Nash, Allen J.

    1999-01-01

    During the summer 1998, I did student assistance to Dr. Daniel J. Barta, chief plant growth expert at Johnson Space Center - NASA. We established the preliminary stages of a hydroponic crop growth database for the Advanced Life Support Systems Integration Test Bed, otherwise referred to as BIO-Plex (Biological Planetary Life Support Systems Test Complex). The database summarizes information from published technical papers by plant growth experts, and it includes bibliographical, environmental and harvest information based on plant growth under varying environmental conditions. I collected 84 lettuce entries, 14 soybean, 49 sweet potato, 16 wheat, 237 white potato, and 26 mix crop entries. The list will grow with the publication of new research. This database will be integrated with a search and systems analysis computer program that will cross-reference multiple parameters to determine optimum edible yield under varying parameters. Also, we have made preliminary effort to put together a crop handbook for BIO-Plex plant growth management. It will be a collection of information obtained from experts who provided recommendations on a particular crop's growing conditions. It includes bibliographic, environmental, nutrient solution, potential yield, harvest nutritional, and propagation procedure information. This handbook will stand as the baseline growth conditions for the first set of experiments in the BIO-Plex facility.

  6. Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

    Science.gov (United States)

    Levri, Julie A.; Fisher, John W.; Alazraki, Michael P.; Hogan, John A.

    2002-01-01

    Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.

  7. Mass balances for a biological life support system simulation model

    Science.gov (United States)

    Volk, Tyler; Rummel, John D.

    1987-01-01

    Design decisions to aid the development of future space based biological life support systems (BLSS) can be made with simulation models. The biochemistry stoichiometry was developed for: (1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; (2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and (3) operation of the waste processor. Flux values for all components are derived for a steady state system with wheat as the sole food source. The large scale dynamics of a materially closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multifood systems and more complex biochemical dynamics while maintaining whole system closure as a focus.

  8. Generic Modeling of a Life Support System for Process Technology Comparison

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  9. Digest of Russian Space Life Sciences, issue 33

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  10. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    Science.gov (United States)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in

  11. Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquan; Huang, Yibing; Liu, Chongchu

    2012-02-01

    Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805-0.0831 L kg-1 h-1 and the level of CO2 emission was 0.0705-0.0736 L kg-1 h-1; O2 consumption by the two trial volunteers was 19.71 L h-1 and the volume of respiration-released CO2 was 18.90 L h-1. Under 7000-8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.

  12. Life-sustaining support: ethical, cultural, and spiritual conflicts part I: Family support--a neonatal case study.

    Science.gov (United States)

    Stutts, Amy; Schloemann, Johanna

    2002-04-01

    As medical knowledge and technology continue to increase, so will types of life-sustaining support as well as the public's expectations for use of this support with positive outcomes. Health care professionals will continue to be challenged by the issues surrounding the appropriate use of life-sustaining support and the issues it raises. This is especially apparent in the NICU. When parents' belief systems challenge the health care team's ethical commitment to beneficence and nonmaleficence, a shared decision-making model based on mutual understanding of and respect for different viewpoints can redirect the focus onto the baby's best interest. This article addresses three questions: 1. How do nonmaleficence, beneficence, and concern about quality of life guide the use of life-sustaining support? 2. To what extent should parental autonomy and spirituality influence treatment decisions? 3. What efforts can the health care team make to support the family?

  13. Adaptability and Life Satisfaction: The Moderating Role of Social Support

    Science.gov (United States)

    Zhou, Mi; Lin, Weipeng

    2016-01-01

    The purpose of this study was to investigate the moderating role of social support in the relationship between adaptability and life satisfaction. Data were collected from 99 undergraduate freshmen in a Chinese university using a lagged design with a 1-month interval. Results demonstrated that social support moderated the relation between adaptability and life satisfaction, such that the positive relation between adaptability and life satisfaction was stronger for individuals with higher levels of social support than for individuals with lower levels of social support. The theoretical and practical implications of this result are discussed. PMID:27516753

  14. Impact of Driving Cessation on Trajectories of Life-Space Scores Among Community-Dwelling Older Adults.

    Science.gov (United States)

    Huisingh, Carrie; Levitan, Emily B; Sawyer, Patricia; Kennedy, Richard; Brown, Cynthia J; McGwin, Gerald

    2017-12-01

    The purpose of this study was to examine the trajectories of life-space before and after the transition to driving cessation among a diverse sample of community-dwelling older adults. Life-space scores and self-reported driving cessation were assessed at annual visits from baseline through Year 6 among participants in the University of Alabama at Birmingham Study of Aging. Approximately 58% of older adults reported having stopped driving during the 6 years of follow-up. After adjusting for potential confounders, results from a random intercept model indicate that mean life-space scores decreased about 1 to 2 points every year ( p = .0011) and approximately 28 points at the time of driving cessation ( p space decline post driving cessation was not significantly different from the rate of decline prior to driving cessation. Driving cessation was associated with a precipitous decline in life-space score; however, the driving cessation event did not accelerate the rate of life-space decline.

  15. Radon transformation on reductive symmetric spaces: support theorems

    NARCIS (Netherlands)

    Kuit, J.J.|info:eu-repo/dai/nl/313872589

    2011-01-01

    In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.

  16. Creation of closed life support systems

    Science.gov (United States)

    Gitelson, I.

    The 40-year-long experience in devising ecological systems with a significantly closed material cycling (CES), which are intended for human life support outside the Earth's biosphere, allows us to state that this problem has been largely solved technically. To test the terrestrial prototypes of these systems: Bios in Krasnoyarsk, the Terrestrial Ecological System (TES) in Moscow, and Bioplex in Houston, crews of humans stayed inside them over long periods of time. In Bios-3 humans could be fully (100%) provided with regenerated air and water and with a vegetable part (80%) of their diet. One human requires 4.5 kW of light energy, which is equal to the light energy incident on an 8-m2 surface perpendicular to solar rays in the Earth's orbit. The regeneration of air and water can be alternatively performed by a 17-L2 microalgal cultivator with a light-receiving surface of 8 m at 2 kW of light energy or by a conveyer culture of agricultural plants. To regenerate the vegetable part of2 the diet to the full, the area must increase to 31.5 m per person. Similar values have been obtained in the TES and in Bioplex. It can be concluded that the system is ready to be implemented in the engineering-technical designs of specific versions: for orbital flights, for missions to Mars and other planets, and for stations on the Moon and Mars. To improve the CES further, a number of new key problems should be resolved. The first of them are: to robotize the technological processes and to establish an optimized system of the internal control of the CES by the crew working in it; to develop a hybrid physicochemical-biological technology for returning the dead-end products of biosynthesis into the system's cycling; to solve the fundamental problem of regenerating the human ration completely inside the CES by the autotrophic chemo - and photosynthesis. Once this problem is solved, the energy requirements for life support in space will be significantly reduced. This will also considerably

  17. Environmental control and life support system requirements and technology needs for advanced manned space missions

    Science.gov (United States)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  18. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  19. Temperature affects long-term productivity and quality attributes of day-neutral strawberry for a space life-support system

    Science.gov (United States)

    Massa, Gioia D.; Chase, Elaine; Santini, Judith B.; Mitchell, Cary A.

    2015-04-01

    Strawberry (Fragaria x ananassa L.) is a promising candidate crop for space life-support systems with desirable sensory quality and health attributes. Day-neutral cultivars such as 'Seascape' are adaptable to a range of photoperiods, including short days that would save considerable energy for crop lighting without reductions in productivity or yield. Since photoperiod and temperature interact to affect strawberry growth and development, several diurnal temperature regimes were tested under a short photoperiod of 10 h per day for effects on yield and quality attributes of 'Seascape' strawberry during production cycles longer than 270 days. The coolest day/night temperature regime, 16°/8 °C, tended to produce smaller numbers of larger fruit than did the intermediate temperature range of 18°/10 °C or the warmest regime, 20°/12 °C, both of which produced similar larger numbers of smaller fruit. The intermediate temperature regime produced the highest total fresh mass of berries over an entire production cycle. Independent experiments examined either organoleptic or physicochemical quality attributes. Organoleptic evaluation indicated that fruit grown under the coolest temperature regime tended to score the highest for both hedonic preference and descriptive evaluation of sensory attributes related to sweetness, texture, aftertaste, and overall approval. The physicochemical quality attributes Brix, pH, and sugar/acid ratio were highest for fruits harvested from the coolest temperature regime and lower for those from the warmer temperature regimes. The cool-regime fruits also were lowest in titratable acidity. The yield parameters fruit number and size oscillated over the course of a production cycle, with a gradual decline in fruit size under all three temperature regimes. Brix and titratable acidity both decreased over time for all three temperature treatments, but sugar/acid ratio remained highest for the cool temperature regime over the entire production

  20. IT for advanced Life Support in English

    DEFF Research Database (Denmark)

    Sejerø Pedersen, Birgitte; Jeberg, Kirsten Ann; Koerner, Christian

    2009-01-01

    In this study we analyzed how IT support can be established for the treatment and documentation of advanced life support (ALS) in a hospital. In close collaboration with clinical researchers, a running prototype of an IT solution to support the clinical decisions in ALS was developed and tried out...... in a full scale simulation environment. We have named this IT solution the CardioData Prototype....

  1. What influences parents' decisions to limit or withdraw life support?

    Science.gov (United States)

    Sharman, Mahesh; Meert, Kathleen L; Sarnaik, Ashok P

    2005-09-01

    Decisions to forgo life support from critically ill children are commonly faced by parents and physicians. Previous research regarding parents' perspectives on the decision-making process has been limited by retrospective methods and the use of closed-ended questionnaires. We prospectively identified and described parents' self-reported influences on decisions to forgo life support from their children. Deeper understanding of parents' views will allow physicians to focus end-of-life discussions on factors important to parents and help resolve conflicts. Prospective, qualitative pilot study. Pediatric intensive care unit of a university-affiliated children's hospital. A total of 14 parents of ten children whose pediatric intensive care unit physician had made a recommendation to limit or withdraw life support. : In-depth, semistructured interviews were conducted with parents during their decision-making process. Factors influencing the parents in this study in their decision to forgo life support included their previous experience with death and end-of-life decision making for others, their personal observations of their child's suffering, their perceptions of their child's will to survive, their need to protect and advocate for their child, and the family's financial resources and concerns regarding life-long care. Parents in this study expressed the desire to do what is best for their child but struggled with feelings of selfishness, guilt, and the need to avoid agony and sorrow. Physician recommendations, review of options, and joint formulation of a plan helped parents gain a sense of control over their situation. Parents of eight children agreed to forgo life support and parents of two did not. Prospective interviews with open-ended questions identified factors influencing parents' decision making not previously described in the critical care literature such as parents' past experiences with end-of-life decisions and their anticipated emotional adjustments and

  2. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  3. Integrated Logistics Support Analysis of the International Space Station Alpha: An Overview of the Maintenance Time Dependent Parameter Prediction Methods Enhancement

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The objective of this publication is to introduce the enhancement methods for the overall reliability and maintainability methods of assessment on the International Space Station. It is essential that the process to predict the values of the maintenance time dependent variable parameters such as mean time between failure (MTBF) over time do not in themselves generate uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. Furthermore, the very acute problems of micrometeorite, Cosmic rays, flares, atomic oxygen, ionization effects, orbital plumes and all the other factors that differentiate maintainable space operations from non-maintainable space operations and/or ground operations must be accounted for. Therefore, these parameters need be subjected to a special and complex process. Since reliability and maintainability strongly depend on the operating conditions that are encountered during the entire life of the International Space Station, it is important that such conditions are accurately identified at the beginning of the logistics support requirements process. Environmental conditions which exert a strong influence on International Space Station will be discussed in this report. Concurrent (combined) space environments may be more detrimental to the reliability and maintainability of the International Space Station than the effects of a single environment. In characterizing the logistics support requirements process, the developed design/test criteria must consider both the single and/or combined environments in anticipation of providing hardware capability to withstand the hazards of the International Space Station profile. The effects of the combined environments (typical) in a matrix relationship on the International Space Station will be shown. The combinations of the environments where the total effect is more damaging than the cumulative effects of the environments acting singly, may include a

  4. Monitoring and life-support devices

    International Nuclear Information System (INIS)

    Noback, C.R.; Murphy, C.H.

    1987-01-01

    The radiographic and physical principles involved in interpreting films, and some of the altered anatomy and pathology that may be seen on such films, are discussed. This chapter considers the radiographic appearances of monitoring and life-support devices. Appropriate positioning and function are shown, as are some of the complications associated with their placement and/or function

  5. Lessons Learned from the Crew Health Care System (CHeCS) Rack 1 Environmental Control and Life Support (ECLS) Design

    Science.gov (United States)

    Williams, David E.

    2006-01-01

    This paper will provide an overview of the International Space Station (ISS) Environmental Control and Life Support (ECLS) design of the Crew Health Care System (CHeCS) Rack 1 and it will document some of the lessons that have been learned to date for the ECLS equipment in this rack.

  6. Configuration Management (CM) Support for KM Processes at NASA/Johnson Space Center (JSC)

    Science.gov (United States)

    Cioletti, Louis

    2010-01-01

    Collection and processing of information are critical aspects of every business activity from raw data to information to an executable decision. Configuration Management (CM) supports KM practices through its automated business practices and its integrated operations within the organization. This presentation delivers an overview of JSC/Space Life Sciences Directorate (SLSD) and its methods to encourage innovation through collaboration and participation. Specifically, this presentation will illustrate how SLSD CM creates an embedded KM activity with an established IT platform to control and update baselines, requirements, documents, schedules, budgets, while tracking changes essentially managing critical knowledge elements.

  7. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  8. First-Generation Undergraduate Students' Social Support, Depression, and Life Satisfaction

    Science.gov (United States)

    Jenkins, Sharon Rae; Belanger, Aimee; Connally, Melissa Londono; Boals, Adriel; Duron, Kelly M.

    2013-01-01

    First-generation undergraduate students face challenging cross-socioeconomic cultural transitions into college life. The authors compared first- and non-first-generation undergraduate students' social support, posttraumatic stress, depression symptoms, and life satisfaction. First-generation participants reported less social support from family…

  9. Looking at the stability of life-support microorganisms in space : the MELGEN activity highlights the cyanobacterium Arthrospira sp. PCC8005

    Science.gov (United States)

    Morin, Nicolas

    The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of

  10. Grappling with Gravity How Will Life Adapt to Living in Space?

    CERN Document Server

    Phillips, Robert W

    2012-01-01

    Grappling with Gravity explores the physiological changes that will occur in humans and the plants and animals that accompany humans as we move to new worlds, whether it be to a colony in the emptiness of space or settlements on the moon, Mars, or other moons or planets. This book focuses on the biomedical aspects, while not ignoring other life-changing influences of space living. For example, what happens to people physiologically in the microgravity of space, where weight and the direction "up" are meaningless? Adapting to microgravity represents the greatest physical challenge that human life will have encountered since our ancestors moved from the seas to solid Earth. It will be the next great adventure!

  11. The Effect of Providing Life Support on Nurses' Decision Making Regarding Life Support for Themselves and Family Members in Japan.

    Science.gov (United States)

    Shaku, Fumio; Tsutsumi, Madoka

    2016-12-01

    Decision making in terminal illness has recently received increased attention. In Japan, patients and their families typically make decisions without understanding either the severity of illness or the efficacy of life-supporting treatments at the end of life. Japanese culture traditionally directs the family to make decisions for the patient. This descriptive study examined the influence of the experiences of 391 Japanese nurses caring for dying patients and family members and how that experience changed their decision making for themselves and their family members. The results were mixed but generally supported the idea that the more experience nurses have in caring for the dying, the less likely they would choose to institute lifesupport measures for themselves and family members. The results have implications for discussions on end-of-life care. © The Author(s) 2016.

  12. [The development of a portable life support device for transporting pre-hospital critically ill patients].

    Science.gov (United States)

    Song, Zhen-xing; Wu, Tai-hu; Meng, Xing-ju; Lu, Heng-zhi; Zheng, Jie-wen; Wang, Hai-tao

    2012-06-01

    To describe a portable life support device for transportation of pre-hospital patients with critical illness. The characteristics and requirements for urgent management during transportation of critically ill patients to a hospital were analyzed. With adoption of the original equipment, with the aid of staple of the art soft ware, the overall structure, its installation, fixation, freedom from interference, operational function were studied, and the whole system of life support and resuscitation was designed. The system was composed by different modules, including mechanical ventilation, transfusion, aspiration, critical care, oxygen supply and power supply parts. The system could be fastened quickly to a stretcher to form portable intensive care unit (ICU), and it could be carried by different size vehicles to provide nonstop treatment by using power supply of the vehicle, thus raising the efficiency of urgent care. With characteristics of its small size, lightweight and portable, the device is particularly suitable for narrow space and extreme environment.

  13. FileNet's BPM life-cycle support

    NARCIS (Netherlands)

    Netjes, M.; Reijers, H.A.; Aalst, van der W.M.P.

    2006-01-01

    Business Process Management (BPM) systems provide a broad range of facilities to enact and manage operational business processes. Ideally, these systems should provide support for the complete BPM life-cycle: (re)design, configuration, execution, control, and diagnosis of processes. In the research

  14. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  15. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  16. STUDENT ACADEMIC SUPPORT AS A PREDICTOR OF LIFE SATISFACTION IN UNIVERSITY STUDENTS

    OpenAIRE

    Ahmet Akýn; Serhat Arslan; Eyüp Çelik; Çýnar Kaya; Nihan Arslan

    2015-01-01

    The purpose of this study is to examine the relationship between Academic Support and Life Satisfaction. Participants were 458 university students who voluntarily filled out a package of self-report instruments. Student Academic Support Scale and Satisfaction with Life Scale were used as measures. The relationships between student academic support and life satisfaction were examined using correlation analysis and stepwise regression analysis. Life satisfaction was predicted positively by info...

  17. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Science.gov (United States)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  18. Biomedical support of man in space

    Science.gov (United States)

    Pendergast, D. R.; Olszowka, A. J.; Rokitka, M. A.; Farhi, L. E.

    In its broadest sense, biomedical support of man in space must not be limited to assisting spacecraft crew during the mission; such support should also ensure that flight personnel be able to perform properly during landing and after leaving the craft. Man has developed mechanisms that allow him to cope with specific stresses in his normal habitat; there is indisputable evidence that, in some cases, the space environment, by relieving these stresses, has also allowed the adaptive mechanisms to lapse, causing serious problems after re-entry. Inflight biomedical support must therefore include means to simulate some of the normal stresses of the Earth environment. In the area of cardiovascular performance, we have come to rely heavily on complex feedback mechanisms to cope with two stresses, often combined: postural changes, which alter the body axis along which gravitational acceleration acts, and physical exercise, which increases the total load on the system. Unless the appropriate responses are reinforced continuously during flight, crew members may be incapacitated upon return. The first step in the support process must be a study of the way in which changes in g, even of short duration, affect these responses. In particular we should learn more about effects of g on the "on" and "off" dynamics, using a variety of approaches: increased acceleration on one hand at recumbency, immersion, lower body positive pressure, and other means of simulating some of the effects of low g, on the other. Once we understand this, we will have to determine the minimal exposure dose required to maintain the response mechanisms. Finally, we shall have to design stresses that simulate Earth environment and can be imposed in the space vehicle. Some of the information is already at hand; we know that several aspects of the response to exercise are affected by posture. Results from a current series of studies on the kinetics of tilt and on the dynamics of readjustment to exercise in

  19. Study on O2-supplying characteristics of Azolla in Controlled Ecological Life Support System

    Science.gov (United States)

    Chen, Min; Deng, Sufang; Yang, Youquang; Huang, Yibing; Liu, Zhongzhu

    Azolla has high growth and propagation rate, strong photosynthetic O2-releasing ability and rich nutrient value. It is able to be used as salad-type vegetable, and can also be cultured on wet bed in multi-layer condition. Hence, it possesses a potential functioning as providing O2, fresh vegetable and absorbing CO2 for Controlled Ecological Life Support System in space. In this study, we try to make clear the O2-providing characteristics of Azolla in controlled close chamber under manned condition in order to lay a foundation for Azolla as a biological component in the next ground simulated experiment and space application. A closed test cham-ber of Controlled Ecological Life Support System and Azolla wet-culturing devices were built to measure the changes of atmospheric O2-CO2 concentration inside chamber under "Azolla-fish -men" coexisting condition. The results showed that, the amount of O2 consumption is 80.49 83.07 ml/h per kilogram fish, the amount of CO2 emissions is 70.49 73.56 ml/(kg • h); O2 consumption of trial volunteers is 19.71 L/h, the volume of respiration release CO2 18.90 L/h .Artificial light intensity of Azolla wet culture under 70009000 Lx, people respiration and Azolla photosynthesis complemented each other, the atmospheric O2-CO2 concentration inside chamber maintained equilibration. Elevated atmospheric CO2 concentrations in close chamber have obvious effects on enhancing Azolla net photosynthesis efficiency. This shows that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2-CO2 concentration inside chamber in favor of human survival, and then verifies the prospect of Azolla in space application.

  20. Termination of life support after major trauma.

    Science.gov (United States)

    Sullivan, D J; Hansen-Flaschen, J

    2000-06-01

    As the population continues to age, greater numbers and more severely injured elderly patients require care in ICUs. With the attendant increase in the medical complexity of such patients, investigators anticipate that trauma and critical care resources will become increasingly stretched. Because of economic and societal forces, it will become increasingly important for trauma surgeons to appropriately counsel patients and their families regarding the outcome from their injuries and to become comfortable approaching families about withdrawal of support when medical futility is recognized. The authors propose the following guidelines for discussing limitation or termination of life support with patients and their families. Physicians should (1) discuss the patient's wishes regarding life support on admission or early in the hospital course; (2) at the initial discussion, establish who the decision maker will be if the patient is or becomes incapacitated; (3) maintain regular communication and continuity of care; and (4) inevitably, when conflict occurs, involve consultants and a hospital ethics committee for assistance in its resolution.

  1. Space-Based Space Surveillance Logistics Case Study: A Qualitative Product Support Element Analysis

    Science.gov (United States)

    2017-12-01

    REPORT TYPE AND DATES COVERED Joint applied project 4. TITLE AND SUBTITLE SPACE-BASED SPACE SURVEILLANCE LOGISTICS CASE STUDY: A QUALITATIVE ...INTENTIONALLY LEFT BLANK v ABSTRACT This research provides a qualitative analysis of the logistics impacts, effects, and sustainment challenges...provides a qualitative product support element-by-element review for both research questions. Chapters IV and V present the findings, results

  2. Development of a Mars Environmental Control and Life Support System (ECLSS).

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    ECLS systems for very long-duration human missions to Mars will be designed to operate reliably for many years and will never be returned to Earth. The need for high reliability is driven by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. Simply put, the goal of an ECLSS is to duplicate the functions the Earth provides in terms of human living and working on our home planet but without the benefit of the Earth's large buffers - the atmospheres, the oceans and land masses. With small buffers a space-based ECLSS must operate as a true dynamic system rather than independent processors taking things from tanks, processing them, and then returning them to product tanks. Key is a development process that allows for a logical sequence of validating successful development (maturation) in a stepwise manner with key performance parameters (KPPs) at each step; especially KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This paper will explore the implications of such an approach to ECLSS development and the roles of ground and space-based testing necessary to develop a highly reliable life support system for long duration human exploration missions. Historical development and testing of ECLS systems from Mercury to the International Space Station (ISS) will be reviewed. Current work as well as recommendations for future work will be described.

  3. Perceived psychosocial needs, social support and quality of life in ...

    African Journals Online (AJOL)

    Subjects with late-stage HIV infection reported a lower social adjustment to the disease, a lower quality of life and more severe lifestyle changes. Satisfaction with social support correlated significantly with quality of life and social adjustment. It is therefore concluded that the higher the level of satisfaction with social support, ...

  4. Quality of life and depression following childbirth: impact of social support.

    Science.gov (United States)

    Webster, Joan; Nicholas, Catherine; Velacott, Catherine; Cridland, Noelle; Fawcett, Lisa

    2011-10-01

    to evaluate the impact of social support on postnatal depression and health-related quality of life. prospective cohort study. Data were collected at baseline and at six weeks post discharge using a postal survey. between August and December 2008, 320 women from a large tertiary hospital were recruited following the birth of their infant. Edinburgh Postnatal Depression Scale (EPDS), Maternity Social Support Scale and World Health Organization Quality of Life assessment questionnaire. of the 320 women recruited, 222 (69.4%) returned their six-week questionnaire. Women with low social support had significantly higher scores on the EPDS than women who reported adequate support (p = 0.007). There was also a significant effect of social support on health-related quality of life. Women with low family or partner support scored lower in all domains, with the greatest mean difference in the social health domain (p = 0.000). Of those scoring >10 on the EPDS, 75.5% had sought professional help. women with low social support are more likely to report postnatal depression and lower quality of life than well-supported women. Careful assessment of a woman's level of support following the birth, particularly from her partner and family, may provide useful information for possible interventions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Science.gov (United States)

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  6. NASA Aerosciences Activities to Support Human Space Flight

    Science.gov (United States)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  7. Spaces of life: Revolt, expulsion and a conceptual rebirth of the educative subject

    DEFF Research Database (Denmark)

    Arndt, Sonja; Bengtsen, Søren Smedegaard; Nørgård, Rikke Toft

    Beyond knowledge, critical thinking, new ideas, rigorous science and scholarly development, the university is a space of life. It is a place for academic, moral and cultural citizenship, ethically entangled with ways of being, encountering and evolving thought and relationships with the self......), it can be said to be teetering, like Levinasian (2001) spectors or ghosts, somewhere ‘between being and nothingness’. As a space of life, even a virtuous place for critical citizenship (Nixon, 2008), the university then has a role in maintaining the ‘life and the mind of the species’ (Kristeva, 2000...

  8. Wheeled-mobility correlates of life-space and social participation in adult manual wheelchair users aged 50 and older.

    Science.gov (United States)

    Sakakibara, Brodie M; Routhier, François; Miller, William C

    2017-08-01

    To characterize the life-space mobility and social participation of manual wheelchair users using objective measures of wheeled mobility. Individuals (n = 49) were included in this cross-sectional study if they were aged 50 or older, community-dwelling and used their wheelchair on a daily basis for the past 6 months. Life-space mobility and social participation were measured using the life-space assessment and late-life disability instrument. The wheeled mobility variables (distance travelled, occupancy time, number of bouts) were captured using a custom-built data logger. After controlling for age and sex, multivariate regression analyses revealed that the wheeled mobility variables accounted for 24% of the life-space variance. The number of bouts variable, however, did not account for any appreciable variance above and beyond the occupancy time and distance travelled. Occupancy time and number of bouts were significant predictors of social participation and accounted for 23% of the variance after controlling for age and sex. Occupancy time and distance travelled are statistically significant predictors of life-space mobility. Lower occupancy time may be an indicative of travel to more distant life-spaces, whereas the distance travelled is likely a better reflection of mobility within each life-space. Occupancy time and number of bouts are significant predictors of participation frequency. Implications for rehabilitation Component measures of wheelchair mobility, such as distance travelled, occupancy time and number of bouts, are important predictors of life-space mobility and social participation in adult manual wheelchair users. Lower occupancy time is an indication of travel to more distant life-spaces, whereas distance travelled is likely a better reflection of mobility within each life-space. That lower occupancy time and greater number of bouts are associated with more frequent participation raises accessibility and safety issues for manual wheelchair

  9. Supporting co-creation with software, the idSpace platform

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Boon, Jo; Bitter-Rijpkema, Marlies; Sie, Rory; Sloep, Peter

    2014-01-01

    Innovation, in general, requires teamwork among specialist of different disciplines. The idSpace project developed ideas on how teams of collaborating innovators could best be supported. These ideas were embodied in a platform that the project developed. This idSpace platform allows its users to

  10. Aquatic food production modules in bioregenerative life support systems based on higher plants

    Science.gov (United States)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  11. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    Science.gov (United States)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc

  12. DECISION SUPPORT TOOL FOR RETAIL SHELF SPACE OPTIMIZATION

    OpenAIRE

    B. RAMASESHAN; N. R. ACHUTHAN; R. COLLINSON

    2008-01-01

    Efficient allocation of shelf space and product assortment can significantly improve a retailer's profitability. This paper addresses the problem from the perspective of an independent franchise retailer. A Category Management Decision Support Tool (CMDST) is proposed that efficiently generates optimal shelf space allocations and product assortments by using the existing scarce resources, resulting in increased profitability. CMDST utilizes two practical integrated category management models ...

  13. Collaboration support system for "Phobos-Soil" space mission.

    Science.gov (United States)

    Nazarov, V.; Nazirov, R.; Zakharov, A.

    2009-04-01

    Rapid development of communication facilities leads growth of interactions done via electronic means. However we can see some paradox in this segment in last times: Extending of communication facilities increases collaboration chaos. And it is very sensitive for space missions in general and scientific space mission particularly because effective decision of this task provides successful realization of the missions and promises increasing the ratio of functional characteristic and cost of mission at all. Resolving of this problem may be found by using respective modern technologies and methods which widely used in different branches and not in the space researches only. Such approaches as Social Networking, Web 2.0 and Enterprise 2.0 look most prospective in this context. The primary goal of the "Phobos-Soil" mission is an investigation of the Phobos which is the Martian moon and particularly its regolith, internal structure, peculiarities of the orbital and proper motion, as well as a number of different scientific measurements and experiments for investigation of the Martian environment. A lot of investigators involved in the mission. Effective collaboration system is key facility for information support of the mission therefore. Further to main goal: communication between users of the system, modern approaches allows using such capabilities as self-organizing community, user generated content, centralized and federative control of the system. Also it may have one unique possibility - knowledge management which is very important for space mission realization. Therefore collaboration support system for "Phobos-Soil" mission designed on the base of multilayer model which includes such levels as Communications, Announcement and Information, Data sharing and Knowledge management. The collaboration support system for "Phobos-Soil" mission will be used as prototype for prospective Russian scientific space missions and the presentation describes its architecture

  14. Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study

    Science.gov (United States)

    Rohatgi, Naresh K.; Ferrall, Joseph F.; Seshan, P. K.

    1991-01-01

    Results of trading processing technologies in a closed-loop configuration, in terms of power and weight for the Mars Expedition Mission, are presented. The technologies were traded and compared to a baseline set for functional elements that include CO2 removal, H2O electrolysis, potable H2O cleanup, and hygiene H2O cleanup. These technologies were selected from those being considered for Space Station Freedom and represent only chemical/physical technologies. Attention is given to the technology trade calculation scheme, technology data and selection, the generic modular flow schematic, and life support system specifications.

  15. Disclosure strategies, social support, and quality of life in infertile women.

    Science.gov (United States)

    Steuber, Keli R; High, Andrew

    2015-07-01

    Do the strategies women use to disclose information about their infertility to social network members impact the quality of the support they receive and their quality of life? The data showed that women who disclosed infertility-related information in direct ways, rather than in indirect ways (e.g. by incremental disclosures or through third parties), to social network members perceived higher quality support and reported greater quality of life related to their infertility experience. Social support has been shown to buffer stress associated with various health issues including infertility. The way people disclose information about stressors has been associated with the quality of the support they receive. Disclosing information in a way that most effectively elicits support is beneficial because women with infertility who have lower levels of stress are more likely to seek and remain in treatment. This cross-sectional study of 301 infertile women was conducted in the USA. To determine the variation in length of infertility and treatment decisions, we conducted an online survey of 301 American women coping with infertility. We investigated the strategies women used to disclose infertility-related information with social network members, their perceptions of support from friends and family, and their quality of life both in general (overall quality of life) and related to the experience of infertility (fertility quality of life). Direct disclosure of experiences related to infertility was positively and significantly associated with the perceived quality of social support received (P women's fertility quality of life (95% CI: 0.18, 1.05) and overall quality of life (95% CI: 0.10, 0.30). This effect is particularly noteworthy for the model predicting fertility quality of life, which exhibited a non-significant main effect with direct disclosures. The non-significant main effect combined with the significant indirect effect suggests that perceived support quality

  16. Human factor observations of the Biosphere 2, 1991-1993, closed life support human experiment and its application to a long-term manned mission to Mars.

    Science.gov (United States)

    Alling, Abigail; Nelson, Mark; Silverstone, Sally; Van Thillo, Mark

    2002-01-01

    Human factors are a key component to the success of long-term space missions such as those necessitated by the human exploration of Mars and the development of bioregenerative and eventually self-sufficient life support systems for permanent space outposts. Observations by participants living inside the 1991-1993 Biosphere 2 closed system experiment provide the following insights. (1) Crew members should be involved in the design and construction of their life support systems to gain maximum knowledge about the systems. (2) Individuals living in closed life support systems should expect a process of physiological and psychological adaptation to their new environment. (3) Far from simply being a workplace, the participants in such extended missions will discover the importance of creating a cohesive and satisfying life style. (4) The crew will be dependent on the use of varied crops to create satisfying cuisine, a social life with sufficient outlets of expression such as art and music, and to have down-time from purely task-driven work. (5) The success of the Biosphere 2 first 2-year mission suggests that crews with high cultural diversity, high commitment to task, and work democracy principles for individual responsibility may increase the probability of both mission success and personal satisfaction. (6) Remaining challenges are many, including the need for far more comprehensive real-time modeling and information systems (a "cybersphere") operating to provide real-time data necessary for decision-making in a complex life support system. (7) And, the aim will be to create a noosphere, or sphere of intelligence, where the people and their living systems are in sustainable balance.

  17. Choosing crops for cultivation in space

    NARCIS (Netherlands)

    Dueck, T.A.; Kempkes, F.L.K.; Meinen, E.; Stanghellini, C.

    2016-01-01

    Future space missions require bio-regenerative life-support systems. Eating fresh food is not only a fundamental requirement for survival but also influences the psychological wellbeing of astronauts operating on long duration space missions. Therefore the selection of plants to be grown in space is

  18. Phase Change Permeation Technology for Environmental Control & Life Support Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is evaluating Dutyion™, a phase change permeation membrane technology developed by Design Technology and Irrigation (DTI), for use in future advanced life...

  19. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    Science.gov (United States)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  20. The relationship between family social support and quality of life in diabetic female patients

    Directory of Open Access Journals (Sweden)

    Ali Mousavi

    2017-06-01

    Full Text Available Life quality of diabetic patients is always affected by psychosocial problems, physical disorders, and life style changes. It seems that the perceived social support could intervene in improving the life quality of these patients. The present study was carried out aiming to examine the relation between family social support and life quality of female patients with diabetes. This was a cross-sectional study. The statistical population included 173 diabetic females who were randomly selected from patients referred to Kermanshah diabetes research center. Data were collected using life quality questionnaire (Short Form-36 as well as perceived social support scale. The data analysis indicated that there is a significant correlation between family support and life quality of patients. Furthermore, concerning the components of life quality, there is a significant correlation between family social support and physical performance, physical limitation, tiredness, emotional health, social performance, pain, and general health of patients. However, no significant relation was found between family support and limitation of patients. Results showed that there is a direct relation between family support and the life quality in females with diabetes. Hence, it can be concluded that giving the family support to the female diabetic patients can increase their quality of life.

  1. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    Science.gov (United States)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  2. Altair Lander Life Support: Design Analysis Cycles 4 and 5

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan

    2011-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.

  3. Life at the Common Denominator: Mechanistic and Quantitative Biology for the Earth and Space Sciences

    Science.gov (United States)

    Hoehler, Tori M.

    2010-01-01

    The remarkable challenges and possibilities of the coming few decades will compel the biogeochemical and astrobiological sciences to characterize the interactions between biology and its environment in a fundamental, mechanistic, and quantitative fashion. The clear need for integrative and scalable biology-environment models is exemplified in the Earth sciences by the challenge of effectively addressing anthropogenic global change, and in the space sciences by the challenge of mounting a well-constrained yet sufficiently adaptive and inclusive search for life beyond Earth. Our understanding of the life-planet interaction is still, however, largely empirical. A variety of approaches seek to move from empirical to mechanistic descriptions. One approach focuses on the relationship between biology and energy, which is at once universal (all life requires energy), unique (life manages energy flow in a fashion not seen in abiotic systems), and amenable to characterization and quantification in thermodynamic terms. Simultaneously, a focus on energy flow addresses a critical point of interface between life and its geological, chemical, and physical environment. Characterizing and quantifying this relationship for life on Earth will support the development of integrative and predictive models for biology-environment dynamics. Understanding this relationship at its most fundamental level holds potential for developing concepts of habitability and biosignatures that can optimize astrobiological exploration strategies and are extensible to all life.

  4. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    Science.gov (United States)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and

  5. A review of algal research in space

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  6. Influences on Employee Perceptions of Organizational Work-Life Support: Signals and Resources

    Science.gov (United States)

    Valcour, Monique; Ollier-Malaterre, Ariane; Matz-Costa, Christina; Pitt-Catsouphes, Marcie; Brown, Melissa

    2011-01-01

    This study examined predictors of employee perceptions of organizational work-life support. Using organizational support theory and conservation of resources theory, we reasoned that workplace demands and resources shape employees' perceptions of work-life support through two mechanisms: signaling that the organization cares about their work-life…

  7. Effective work-life balance support for various household structures

    NARCIS (Netherlands)

    Brummelhuis, L.L. ten; Lippe, T. van der

    2010-01-01

    Today’s workforce encompasses a wide variety of employees with specifi c needs and resources when it comes to balancing work and life roles. Our study explores whether various types of work-life balance support measures improve employee helping behavior and performance among single employees,

  8. Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin

    2016-01-01

    The infrared gas transducer used during extravehicular activity (EVA) in the extravehicular mobility unit (EMU) measures and reports the concentration of carbon dioxide (CO2) in the ventilation loop. It is nearing its end of life and there are a limited number remaining. Meanwhile, the next generation advanced portable life support system (PLSS) now being developed requires CO2 sensing technology with performance beyond that presently in use. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed to address both applications by Vista Photonics, Inc. Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. Version 1.0 devices were delivered to NASA Johnson Space Center (JSC) in 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Version 2.0 devices with improved electronics and significantly reduced wetted volumes were delivered to JSC in 2012. A version 2.5 upgrade recently implemented wavelength stabilized operation, better humidity measurement, and much faster data analysis/reporting. A wholly reconfigured version 3.0 will maintain the demonstrated performance of earlier versions while being backwards compatible with the EMU and offering a radiation tolerant architecture.

  9. Nanostructured Humidity Sensor for Spacecraft Life Support Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Humidity is a critical variable for monitoring and control on extended duration missions because it can affect the operation and efficiency of closed loop life...

  10. Gender Differences in Perceived Social Support and Stressful Life Events in Depressed Patients.

    Science.gov (United States)

    Soman, S; Bhat, S M; Latha, K S; Praharaj, S K

    2016-03-01

    To study the gender differences in perceived social support and life events in patients with depression. A total of 118 patients aged 18 to 60 years, with depressive disorder according to the DSM-IV-TR, were evaluated using the Multidimensional Scale of Perceived Social Support and Presumptive Stressful Life Events Scale. The perceived social support score was significantly higher in males than females (p friends than females (p life events as well as specific type of life events in males that became apparent after controlling for education (p life event in both males and females. Work-related problems were more commonly reported by males, whereas family and marital conflict were more frequently reported by females. Perceived social support and stressful life events were higher in males with depression than females.

  11. Quality of life and social support in patients with multiple sclerosis.

    Science.gov (United States)

    Rosiak, Katarzyna; Zagożdżon, Paweł

    2017-10-29

    Quality of life and needforsocial support in persons diagnosed with multiple sclerosis (MS) are to a large extent determined by the degree of their disability. The aim of the study was to analyze an association between specific forms of MS, subjectively perceived quality of life and social support. The study included subjects with established diagnosis of MS, treated at rehabilitation centers, hospitals and in a home setting, as well as the members of patient organizations. After being informed about objectives of the study, type of included tasks and way to complete them, each participant was handed out a set of questionnaires: Berlin Social Support Scales (Łuszczyńska, Kowalska, Schwarzer, Schulz), Quality of Life Questionnaire (WHOQOLBREF), as well as a survey developed specifically for the purposes of this project. The results were subjected to statistical analysis with STATA 12 package. The study included a total of 110 persons (67 women and 43 men). Quality of life overall, as well in physical, psychological, social relationships and environmental health domains, turned out to be particularly important in patients with primary-progressive MS. Irrespective of MS type, social support overall did not play a significant role on univariate analysis. However, subgroup analysis according to sex demonstrated that men with MS received social support four times less often than women. Quality of life in individuals with primary-progressive MS is significantly lower than in patients presenting with other types of this disease. Men with MS are more likely to present with worse scores for social support overall. They are less likely both to acknowledge the need for support and to realize the availability of support they actually need.

  12. Is advanced life support better than basic life support in prehospital care? A systematic review

    Directory of Open Access Journals (Sweden)

    Ryynänen Olli-Pekka

    2010-11-01

    Full Text Available Abstract Background - Prehospital care is classified into ALS- (advanced life support and BLS- (basic life support levels according to the methods used. ALS-level prehospital care uses invasive methods, such as intravenous fluids, medications and intubation. However, the effectiveness of ALS care compared to BLS has been questionable. Aim - The aim of this systematic review is to compare the effectiveness of ALS- and BLS-level prehospital care. Material and methods - In a systematic review, articles where ALS-level prehospital care was compared to BLS-level or any other treatment were included. The outcome variables were mortality or patient's health-related quality of life or patient's capacity to perform daily activities. Results - We identified 46 articles, mostly retrospective observational studies. The results on the effectiveness of ALS in unselected patient cohorts are contradictory. In cardiac arrest, early cardiopulmonary resuscitation and defibrillation are essential for survival, but prehospital ALS interventions have not improved survival. Prehospital thrombolytic treatment reduces mortality in patients having a myocardial infarction. The majority of research into trauma favours BLS in the case of penetrating trauma and also in cases of short distance to a hospital. In patients with severe head injuries, ALS provided by paramedics and intubation without anaesthesia can even be harmful. If the prehospital care is provided by an experienced physician and by a HEMS organisation (Helicopter Emergency Medical Service, ALS interventions may be beneficial for patients with multiple injuries and severe brain injuries. However, the results are contradictory. Conclusions - ALS seems to improve survival in patients with myocardial infarction and BLS seems to be the proper level of care for patients with penetrating injuries. Some studies indicate a beneficial effect of ALS among patients with blunt head injuries or multiple injuries. There is

  13. Space Synthetic Biology (SSB)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  14. Effect of chest compressions only during experimental basic life support on alveolar collapse and recruitment.

    Science.gov (United States)

    Markstaller, Klaus; Rudolph, Annette; Karmrodt, Jens; Gervais, Hendrik W; Goetz, Rolf; Becher, Anja; David, Matthias; Kempski, Oliver S; Kauczor, Hans-Ulrich; Dick, Wolfgang F; Eberle, Balthasar

    2008-10-01

    The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a pbasic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.

  15. DOD Space Systems: Additional Knowledge Would Better Support Decisions about Disaggregating Large Satellites

    Science.gov (United States)

    2014-10-01

    considering new approaches. According to Air Force Space Command, U.S. space systems face intentional and unintentional threats , which have increased...life cycle costs • Demand for more satellites may stimulate new entrants and competition to lower acquisition costs. • Smaller, less complex...Fiscal constraints and growing threats to space systems have led DOD to consider alternatives for acquiring space-based capabilities, including

  16. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    Science.gov (United States)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further

  17. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  18. Closed bioregenerative life support systems: Applicability to hot deserts

    Science.gov (United States)

    Polyakov, Yuriy S.; Musaev, Ibrahim; Polyakov, Sergey V.

    2010-09-01

    Water scarcity in hot deserts, which cover about one-fifth of the Earth's land area, along with rapid expansion of hot deserts into arable lands is one of the key global environmental problems. As hot deserts are extreme habitats characterized by the availability of solar energy with a nearly complete absence of organic life and water, space technology achievements in designing closed ecological systems may be applicable to the design of sustainable settlements in the deserts. This review discusses the key space technology findings for closed biogenerative life support systems (CBLSS), which can simultaneously produce food, water, nutrients, fertilizers, process wastes, and revitalize air, that can be applied to hot deserts. Among them are the closed cycle of water and the acceleration of the cycling times of carbon, biogenic compounds, and nutrients by adjusting the levels of light intensity, temperature, carbon dioxide, and air velocity over plant canopies. Enhanced growth of algae and duckweed at higher levels of carbon dioxide and light intensity can be important to provide complete water recycling and augment biomass production. The production of fertilizers and nutrients can be enhanced by applying the subsurface flow wetland technology and hyper-thermophilic aerobic bacteria for treating liquid and solid wastes. The mathematical models, optimization techniques, and non-invasive measuring techniques developed for CBLSS make it possible to monitor and optimize the performance of such closed ecological systems. The results of long-duration experiments performed in BIOS-3, Biosphere 2, Laboratory Biosphere, and other ground-based closed test facilities suggest that closed water cycle can be achieved in hot-desert bioregenerative systems using the pathways of evapotranspiration, condensation, and biological wastewater treatment technologies. We suggest that the state of the art in the CBLSS design along with the possibility of using direct sunlight for

  19. Work-Life Issues and Participation in Education and Training: Support Document

    Science.gov (United States)

    Skinner, Natalie

    2009-01-01

    This document serves as a support paper to the "Work-Life Issues and Participation in Education and Training" report. This support document contains tables that show: (1) participation in education and training; (2) participation in education and training and work-life interaction; (3) future participation in education or training; (4) perceptions…

  20. Subjective Quality of Life and Perceived Adequacy of Social Support ...

    African Journals Online (AJOL)

    One such major concern pertains to the very general experiences of life of the elderly and associated factors. The purpose of this study was then to specifically assess the subjective quality of life and perceived adequacy of social support and the possible socio-demographic factors making differences in quality of life.

  1. A Satellite Mortality Study to Support Space Systems Lifetime Prediction

    Science.gov (United States)

    Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory

    2013-01-01

    Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.

  2. Performance Support Tools for Space Medical Operations

    Science.gov (United States)

    Byrne, Vicky E.; Schmidt, Josef; Barshi, Immanuel

    2009-01-01

    The early Constellation space missions are expected to have medical capabilities very similar to those currently on the Space Shuttle and International Space Station (ISS). For Crew Exploration Vehicle (CEV) missions to ISS, medical equipment will be located on ISS, and carried into CEV in the event of an emergency. Flight Surgeons (FS) on the ground in Mission Control will be expected to direct the Crew Medical Officer (CMO) during medical situations. If there is a loss of signal and the crew is unable to communicate with the ground, a CMO would be expected to carry out medical procedures without the aid of a FS. In these situations, performance support tools can be used to reduce errors and time to perform emergency medical tasks. Human factors personnel at Johnson Space Center have recently investigated medical performance support tools for CMOs on-orbit, and FSs on the ground. This area of research involved the feasibility of Just-in-time (JIT) training techniques and concepts for real-time medical procedures. In Phase 1, preliminary feasibility data was gathered for two types of prototype display technologies: a hand-held PDA, and a Head Mounted Display (HMD). The PDA and HMD were compared while performing a simulated medical procedure using ISS flight-like medical equipment. Based on the outcome of Phase 1, including data on user preferences, further testing was completed using the PDA only. Phase 2 explored a wrist-mounted PDA, and compared it to a paper cue card. For each phase, time to complete procedures, errors, and user satisfaction were captured. Information needed by the FS during ISS mission support, especially for an emergency situation (e.g. fire onboard ISS), may be located in many different places around the FS s console. A performance support tool prototype is being developed to address this issue by bringing all of the relevant information together in one place. The tool is designed to include procedures and other information needed by a FS

  3. Arab Youth in Canada: Acculturation, Enculturation, Social Support, and Life Satisfaction

    Science.gov (United States)

    Paterson, Ashley D.; Hakim-Larson, Julie

    2012-01-01

    Results from 98 Arab youth in Canada showed that having a positive Arab culture orientation was related to greater family life satisfaction with family social support as a mediator. A positive European Canadian orientation was related to greater school life satisfaction, but this relation was not mediated by friend social support. Implications for…

  4. MIT-NASA/KSC space life science experiments - A telescience testbed

    Science.gov (United States)

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  5. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  6. TOURISM AS A WAY TO EXPAND THE HUMAN LIFE SPACE

    Directory of Open Access Journals (Sweden)

    L. V. Martseniuk

    2017-06-01

    Full Text Available Purpose of the work is to substantiate the development of railway tourism in the context of human needs in accordance with the theory of individual life space. Methodology. Theoretical and methodological basis of the study is the provisions of the economic theory, management theory, corporate governance. The rational activity of travel agencies is based on the principles of economic equilibrium; Ukrainian population demand for railway tourism was determined with the help of market research and anonymous survey; to explore the real balance between the demand for tourist rail transport and the potential of the required volume of services the paper suggests the balance method. Since any travel company is an open system and is completely dependent on environmental factors, we proposed a method for estimating the factors of internal and external environment. Originality. The element of originality is compilation of existing concepts to the definition of the individual as a subject of life property, for the understanding of human relationships and its external environment. The paper developed the issue of the ability to influence the value of human life space with the help of tourist services. Conclusions. Market research conducted by the author has shown that in Ukraine there is a certain demand for tourist transport by rail, because it is more reliable, safer and more comfortable than the road transport. It is proved that the development of a new innovative project is very timely, as it will allow: to develop tourist infrastructure of Ukraine and bring it to the domestic and foreign tourists; replenish the state and local budgets by tourists; create new jobs for the population and improve their living level; partially reduce the loss-making passenger sector by increasing the volume of rail transport; expand life space for the people of Ukraine that will allow raising the intellectual level of the individual.

  7. Social support mediates the association between benefit finding and quality of life in caregivers.

    Science.gov (United States)

    Brand, Charles; Barry, Lorna; Gallagher, Stephen

    2016-06-01

    The psychosocial pathways underlying associations between benefit finding and quality of life are poorly understood. Here, we examined associations between benefit finding, social support, optimism and quality of life in a sample of 84 caregivers. Results revealed that quality of life was predicted by benefit finding, optimism and social support. Moreover, the association between benefit finding and quality of life was explained by social support, but not optimism; caregivers who reported greater benefit finding perceived their social support be higher and this, in turn, had a positive effect on their overall quality of life. These results underscore the importance of harnessing benefit finding to enhance caregiver quality of life. © The Author(s) 2014.

  8. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  9. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  10. Students' satisfaction to hybrid problem-based learning format for basic life support/advanced cardiac life support teaching.

    Science.gov (United States)

    Chilkoti, Geetanjali; Mohta, Medha; Wadhwa, Rachna; Saxena, Ashok Kumar; Sharma, Chhavi Sarabpreet; Shankar, Neelima

    2016-11-01

    Students are exposed to basic life support (BLS) and advanced cardiac life support (ACLS) training in the first semester in some medical colleges. The aim of this study was to compare students' satisfaction between lecture-based traditional method and hybrid problem-based learning (PBL) in BLS/ACLS teaching to undergraduate medical students. We conducted a questionnaire-based, cross-sectional survey among 118 1 st -year medical students from a university medical college in the city of New Delhi, India. We aimed to assess the students' satisfaction between lecture-based and hybrid-PBL method in BLS/ACLS teaching. Likert 5-point scale was used to assess students' satisfaction levels between the two teaching methods. Data were collected and scores regarding the students' satisfaction levels between these two teaching methods were analysed using a two-sided paired t -test. Most students preferred hybrid-PBL format over traditional lecture-based method in the following four aspects; learning and understanding, interest and motivation, training of personal abilities and being confident and satisfied with the teaching method ( P < 0.05). Implementation of hybrid-PBL format along with the lecture-based method in BLS/ACLS teaching provided high satisfaction among undergraduate medical students.

  11. NASA Environmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview

    Science.gov (United States)

    Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad

    2016-01-01

    Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.

  12. Life Sciences Accomplishments 1994

    Science.gov (United States)

    Burnell, Mary Lou (Editor)

    1993-01-01

    The NASA Life and Biomedical Sciences and Applications Division (LBSAD) serves the Nation's life sciences community by managing all aspects of U.S. space-related life sciences research and technology development. The activities of the Division are integral components of the Nation's overall biological sciences and biomedical research efforts. However, NASA's life sciences activities are unique, in that space flight affords the opportunity to study and characterize basic biological mechanisms in ways not possible on Earth. By utilizing access to space as a research tool, NASA advances fundamental knowledge of the way in which weightlessness, radiation, and other aspects of the space-flight environment interact with biological processes. This knowledge is applied to procedures and technologies that enable humans to live and work in and explore space and contributes to the health and well-being of people on Earth. The activities of the Division are guided by the following three goals: Goal 1) Use microgravity and other unique aspects of the space environment to enhance our understanding of fundamental biological processes. Goal 2) Develop the scientific and technological foundations for supporting exploration by enabling productive human presence in space for extended periods. Goal 3) Apply our unique mission personnel, facilities, and technology to improve education, the quality of life on Earth, and U.S. competitiveness. The Division pursues these goals with integrated ground and flight programs involving the participation of NASA field centers, industry, and universities, as well as interactions with other national agencies and NASA's international partners. The published work of Division-sponsored researchers is a record of completed research in pursuit of these goals. During 1993, the LBSAD instituted significant changes in its experiment solicitation and peer review processes. For the first time, a NASA Research Announcement (NRA) was released requesting

  13. Investigation of Bio-Regenerative Life Support and Trash-to-Gas Experiment on a 4-Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.

  14. Investigation of Bio-Regenerative Life Support and Trash-To-Gas Experiment on a 4 Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.

  15. Public evaluation of open space in Illinois: citizen support for natural area acquisition.

    Science.gov (United States)

    Backlund, Erik A; Stewart, William P; McDonald, Cary; Miller, Craig

    2004-11-01

    Numerous studies have indicated a broad-based support for open space preservation and protection. Research also has characterized the public values and rationale that underlie the widespread support for open space. In recognition of the widespread public support for open space, various levels of government have implemented programs to provide public access to open space. There are many different types of open space, ranging from golf courses, ball parks, wildlife areas, and prairies, to name a few. This paper addresses questions related to the types of open space that should be prioritized by planners and natural resource managers. The results of this study are based on a stratified random sample of 5000 households in Illinois that were sent a questionnaire related to their support for various types of open space. Through a comparatively simple action grid analysis, the open space types that should be prioritized for public access include forest areas, stream corridors, wildlife habitat, and lakes/ponds. These were the open space types rated of the highest importance, yet were also the open space types rated the lowest in respondent satisfaction. This kind of analysis does not require the technical expertise of other options for land-use prioritizations (e.g., conjoint analysis, contingent valuation), yet provides important policy directives for planners. Although open space funds often allow for purchase of developed sites such as golf courses, ball parks, and community parks, this study indicates that undeveloped (or nature-based) open space lands are most needed in Illinois.

  16. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  17. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    Science.gov (United States)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  18. International Space Station Aeromedical Support in Star City, Russia

    Science.gov (United States)

    Cole, Richard; Chamberlin, Blake; Dowell, Gene; Castleberry, Tarah; Savage, Scott

    2010-01-01

    The Space Medicine Division at Johnson Space Center works with the International Space Station s international partners (IP) to accomplish assigned health care tasks. Each IP may assign a flight surgeon to support their assigned crewmembers during all phases of training, in-flight operations, and postflight activities. Because of the extensive amount of astronaut training conducted in Star City; NASA, in collaboration with its IPs, has elected to keep a flight surgeon assigned to NASA s Star City office to provide support to the U.S., Canadian, Japanese, and European astronauts during hazardous training activities and provide support for any contingency landings of Soyuz spacecraft in Kazakhstan. The physician also provides support as necessary to the Mission Control Center in Moscow for non-Russian crew-related activities. In addition, the physician in Star City provides ambulatory medical care to the non-Russian-assigned personnel in Star City and visiting dependents. Additional work involves all medical supplies, administration, and inventory. The Star City physician assists in medical evacuation and/or in obtaining support from western clinics in Moscow when required care exceeds local resources. Overall, the Russians are responsible for operations and the medical care of the entire crew when training in Star City and during launch/landing operations. However, they allow international partner flight surgeons to care for their crewmembers as agreed to in the ISS Medical Operations Requirements Document. Medical support focuses on pressurized, monitored, and other hazardous training activities. One of the most important jobs is to act as a medical advocate for the astronauts and to reduce the threat that these hazardous activities pose. Although the Russians have a robust medical system, evacuation may be needed to facilitate ongoing medical care. There are several international medical evacuation companies that provide this care.

  19. Emergency Neurological Life Support: Intracerebral Hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Pineda, Jose A; Hemphill, J Claude

    2015-12-01

    Intracerebral hemorrhage (ICH) is a subset of stroke due to bleeding within the parenchyma of the brain. It is potentially lethal, and survival depends on ensuring an adequate airway, reversal of coagulopathy, and proper diagnosis. ICH was chosen as an Emergency Neurological Life Support protocol because intervention within the first critical hour may improve outcome, and it is critical to have site-specific protocols to drive care quickly and efficiently.

  20. Improving basic life support training for medical students.

    Science.gov (United States)

    Lami, Mariam; Nair, Pooja; Gadhvi, Karishma

    2016-01-01

    Questions have been raised about basic life support (BLS) training in medical education. This article addresses the research evidence behind why BLS training is inadequate and suggests recommendations for improving BLS training for medical students.

  1. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    Science.gov (United States)

    Callini, Gianluca

    2016-01-01

    With a brand new fire set ablaze by a serendipitous convergence of events ranging from a science fiction novel and movie ("The Martian"), to ground-breaking recent discoveries of flowing water on its surface, the drive for the journey to Mars seems to be in a higher gear than ever before. We are developing new spacecraft and support systems to take humans to the Red Planet, while scientists on Earth continue using the International Space Station as a laboratory to evaluate the effects of long duration space flight on the human body. Written from the perspective of a facility test director rather than a researcher, and using past and current life support systems tests as examples, this paper seeks to provide an overview on how facility teams approach testing, the kind of information they need to ensure efficient collaborations and successful tests, and how, together with researchers and principal investigators, we can collectively apply what we learn to execute future tests.

  2. Grandmothers Raising Grandchildren with Disabilities: Sources of Support and Family Quality of Life

    Science.gov (United States)

    Kresak, Karen E.; Gallagher, Peggy A.; Kelley, Susan J.

    2014-01-01

    Sources of support and quality of life of 50 grandmother-headed families raising grandchildren with and without disabilities were examined. Comparative analyses revealed significant differences between grandmothers raising grandchildren with and without disabilities in regard to sources of support and family quality of life. Informal support was…

  3. Can basic life support personnel safely determine that advanced life support is not needed?

    Science.gov (United States)

    Cone, D C; Wydro, G C

    2001-01-01

    To determine whether firefighter/emergency medical technicians-basic (FF/EMT-Bs) staffing basic life support (BLS) ambulances in a two-tiered emergency medical services (EMS) system can safely determine when advanced life support (ALS) is not needed. This was a prospective, observational study conducted in two academic emergency departments (EDs) receiving patients from a large urban fire-based EMS system. Runs were studied to which ALS and BLS ambulances were simultaneously dispatched, with the patient transported by the BLS unit. Prospectively established criteria for potential need for ALS were used to determine whether the FF/EMT-B's decision to cancel the ALS unit was safe, and simple outcomes (admission rate, length of stay, mortality) were examined. In the system studied, BLS crews may cancel responding ALS units at their discretion; there are no protocols or medical criteria for cancellation. A convenience sample of 69 cases was collected. In 52 cases (75%), the BLS providers indicated that they cancelled the responding ALS unit because they did not feel ALS was needed. Of these, 40 (77%) met study criteria for ALS: 39 had potentially serious chief complaints, nine had abnormal vital signs, and ten had physical exam findings that warranted ALS. Forty-five (87%) received an intervention immediately upon ED arrival that could have been provided in the field by an ALS unit, and 16 (31%) were admitted, with a median length of stay of 3.3 days (range 1.1-73.4 days). One patient died. Firefighter/EMT-Bs, working without protocols or medical criteria, cannot always safely determine which patients may require ALS intervention.

  4. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    Science.gov (United States)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  5. Space Transportation System Availability Relationships to Life Cycle Cost

    Science.gov (United States)

    Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.

    2009-01-01

    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that

  6. Plasma-Assisted Life and Ecological Operating System (PALEOS)

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical implementation of long-duration, human space missions will require robust, reliable, advanced life support systems. Such systems have been the subject of...

  7. Status of Perceived Social Support and Quality of Life among Hearing-Impaired Adolescents

    Directory of Open Access Journals (Sweden)

    Tayebeh Reyhani

    2016-02-01

    Full Text Available Background Annual four to five thousand babies are born with hearing loss in the Iran. Hearing impairment is a disability that affects the quality of life of people with this problem. These individuals need to support from family and friends because of their specific conditions that this received support has impact on their quality of life. This study was conducted to assess the status of perceived social support and quality of life of hearing-impaired adolescent. Material and Methods A cross-correlation study was performed with cluster and multi stage random sampling method on 83 students with hearing impairment who met the inclusion criteria of the study in Mashhad. The data collection tools included Pediatric quality of life inventory (adolescent form and perceived social support inventory (from family and friends.The data obtained from the questionnaires were analyzed through SPSS software version 16. Results The results showed that the majority of the most of adolescents with hearing impairment were reported moderate total quality of life (%51.8. But the majority of them reported perceived social support from family was moderate (%61.5 and from friends was week (%45.8. Also there was a significant relationship between category of total quality of life of adolescent viewpoint with perceived social support from family (P=0.056. Conclusion Based on the obtained results, the majority of the most of adolescents with hearing impairment were reported moderate total quality of life. Disability and condition of these persons affects quality of life of them, so need for adequate support from family, friends and society. Nurses play an important role in identifying and introduce these needs and condition and how to deal with them.

  8. Long life technology work at Rockwell International Space Division

    Science.gov (United States)

    Huzel, D. K.

    1974-01-01

    This paper presents highlights of long-life technology oriented work performed at the Space Division of Rockwell International Corporation under contract to NASA. This effort included evaluation of Saturn V launch vehicle mechanical and electromechanical components for potential extended life capabilities, endurance tests, and accelerated aging experiments. A major aspect was evaluation of the components at the subassembly level (i.e., at the interface between moving surfaces) through in-depth wear analyses and assessments. Although some of this work is still in progress, preliminary conclusions are drawn and presented, together with the rationale for each. The paper concludes with a summary of the effort still remaining.

  9. Advanced Gas Sensing Technology for Space Suits, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced space suits require lightweight, low-power, durable sensors for monitoring critical life support materials. No current compact sensors have the tolerance...

  10. STARS - Supportability Trend Analysis and Reporting System for the National Space Transportation System

    Science.gov (United States)

    Graham, Leroy J.; Doempke, Gerald T.

    1990-01-01

    The concept, implementation, and long-range goals of a Supportability Trend Analysis and Reporting System (STARS) for the National Space Transportation System (NSTS) are discussed. The requirement was established as a direct result of the recommendations of the Rogers Commission investigation of the circumstances of the Space Shuttle Challenger accident. STARS outlines the requirements for the supportability-trend data collection, analysis, and reporting requirements that each of the project offices supporting the Space Shuttle are required to provide to the NSTS program office. STARS data give the historic and predictive logistics information necessary for all levels of NSTS management to make safe and cost-effective decisions concerning the smooth flow of Space Shuttle turnaround.

  11. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  12. Relationships among the perceived health status, family support and life satisfaction of older Korean adults.

    Science.gov (United States)

    Kim, Sook-Young; Sok, Sohyune R

    2012-08-01

    The objective of this study was to examine the perceived health status, family support and life satisfaction of older Korean adults and the relationships among them. This study was designed to be a descriptive correlation study using questionnaire. Subjects were 246 older people who were over 65 years of age in Seoul and Daegu metropolitan city, Korea. Measures were the Cornell Medical Index-Simple Korean Form to measure the perceived health status, the Family Support Instrument to measure the family support and the Standard Life Satisfaction Instrument for Korean people to measure the life satisfaction. Perceived health state was worse as average 3.3, family support was good as average 3.4 and life satisfaction was low as average 3.1. There were statistically significant positive correlations among perceived health state, family support and life satisfaction and between family support and life satisfaction. The predictors of life satisfaction in elderly were family support, age, monthly allowance and perceived health state. These factors explained 37.5% of the total variance. The major influencing factor was family support. This cross-sectional study provides preliminary evidence that to develop nursing strategy to increase family support of older Korean adults is needed. © 2012 Blackwell Publishing Asia Pty Ltd.

  13. FACTORS AFFECTING QUALITY OF LIFE AND LEVEL OF SOCIAL SUPPORT IN CANCER PATIENTS

    Directory of Open Access Journals (Sweden)

    Ayse Berivan Bakan

    2017-04-01

    Full Text Available Background: When people face health problems, their life satisfaction levels and social relations could be ruined. When it comes to an eerie, deadly and chronic disease like cancer, the individual is much more likely to be affected by it. Objective: This descriptive study aims to identify quality of life and level of social support and the affecting factors in cancer patients. Methods: The sample included 170 patients who applied to Internal Diseases, Radiation Oncology, Thorax diseases clinics and Chemotherapy polyclinic in a university hospital in Turkey between March and August, 2005, who met the research criteria, and who volunteered to participate in the study. The sample represented 20 % of the target population. Data were collected through SF-36 Quality of Life Scale and Multidimensional Scale of Perceived Social Support. Results: The patients’ Global Quality of Life mean score was found 38.67 ± 13.64, and mean score for the Perceived Social Support was found 59.19 ± 17.5. Global Quality of Life score was higher in those who underwent an operation and who received ambulatory health care. Although Global Quality of Life was not influenced by the gender variable, male patients’ level of well-being was found to be higher. Perceived Social Support total score was found to be higher in those who knew about their disease. Family support was found to be higher in those who were married and who lived in town; it was found to be low in those who had low socio-economic level and who received inpatient treatment. Friend support was found to be high in those who knew about their disease. Conclusion: There was a linear relationship between Perceived Social Support and Quality of Life. It is recommended that more studies with wider groups of participants would shed more light to the issue of identifying quality of life, social support level and the relationships between them in cancer patients.

  14. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    Science.gov (United States)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  15. Student Academic Support as a Predictor of Life Satisfaction in University Students

    Science.gov (United States)

    Akin, Ahmet; Arslan, Serhat; Çelik, Eyüp; Kaya, Çinar; Arslan, Nihan

    2015-01-01

    The purpose of this study is to examine the relationship between Academic Support and Life Satisfaction. Participants were 458 university students who voluntarily filled out a package of self-report instruments. Student Academic Support Scale and Satisfaction with Life Scale were used as measures. The relationships between student academic support…

  16. Social Support and Optimism as Predictors of Life Satisfaction of College Students

    Science.gov (United States)

    Yalcin, Ilhan

    2011-01-01

    The purpose of this study was to investigate the predictive value of optimism, perceived support from family and perceived support from faculty in determining life satisfaction of college students in Turkey. One hundred and thirty three students completed the Satisfaction with Life Scale (Diener et al., Journal of Personality Assessment…

  17. Robotics in a controlled, ecological life support system

    Science.gov (United States)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  18. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  19. Multipurpose Cooling Garment for Improved Space Suit Environmental Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned space exploration missions will require space suits with capabilities beyond the current state of the art. Portable Life Support Systems for these...

  20. Clips supporting and spacing flanged sheets of reflective insulation

    International Nuclear Information System (INIS)

    Carr, R.W.

    1980-01-01

    This invention relates to clips, spacing and supporting flanged sheets of reflective insulation used to encase the main body and associated piping of nuclear reactors to minimize heat and radiation losses. (UK)

  1. Application of statistical distribution theory to launch-on-time for space construction logistic support

    Science.gov (United States)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  2. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  3. Community mobility among older adults with reduced kidney function: a study of life-space.

    Science.gov (United States)

    Bowling, C Barrett; Muntner, Paul; Sawyer, Patricia; Sanders, Paul W; Kutner, Nancy; Kennedy, Richard; Allman, Richard M

    2014-03-01

    Life-Space Assessment captures community mobility and social participation and quantifies the distance, frequency, and independence obtained as an older adult moves through his or her environment. Reduced estimated glomerular filtration rate (eGFR) is associated with decline in activities of daily living among older adults, but less is known about the association of eGFR with restrictions in mobility. Prospective observational cohort study. Community-dwelling Medicare beneficiaries from the University of Alabama at Birmingham Study of Aging who had serum creatinine measured during a baseline in-home study visit and completed at least one telephone follow-up (N = 390). eGFR ≥ 60, 45-59, and space mobility trajectory. Life-space mobility was evaluated by telephone every 6 months for up to 4.5 years using the previously validated Life-Space Assessment. Scores using this tool range from 0-120 (higher scores indicate greater mobility). Mean age of the 390 participants was 77.6 ± 5.8 (SD) years, 41% were African American, 50.5% were women; 30.0% had eGFR of 45-59 mL/min/1.73 m(2), and 20.2% had eGFR space mobility scores were 64.8(95% CI, 62.0-67.6), 63.8 (95% CI, 60.3-67.4), and 58.3 (95% CI, 53.8-62.7) among those with eGFR categories ≥ 60, 45-59, and space mobility was found among those with eGFRs space mobility among community-dwelling older adults. Findings should be confirmed in a larger population. Published by Elsevier Inc.

  4. Public demand for preserving local open space.

    Science.gov (United States)

    Jeffrey D. Kline

    2006-01-01

    Increased development results in the loss of forest, farm, range, and other open space lands that contribute to the quality of life of U.S. residents. I describe an economic rationale for growing public support for preserving local open space, based the growing scarcity of open space lands. I test the rationale empirically by correlating the prevalence of open space...

  5. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  6. Educational tool for modeling and simulation of a closed regenerative life support system

    Science.gov (United States)

    Arai, Tatsuya; Fanchiang, Christine; Aoki, Hirofumi; Newman, Dava J.

    For long term missions on the moon and Mars, regenerative life support systems emerge as a promising key technology for sustaining successful explorations with reduced re-supply logistics and cost. The purpose of this study was to create a simple model of a regenerative life support system which allows preliminary investigation of system responses. A simplified regenerative life support system was made with MATLAB Simulink ™. Mass flows in the system were simplified to carbon, water, oxygen and carbon dioxide. The subsystems included crew members, animals, a plant module, and a waste processor, which exchanged mass into and out of mass reservoirs. Preliminary numerical simulations were carried out to observe system responses. The simplified life support system model allowed preliminary investigation of the system response to perturbations such as increased or decreased number of crew members. The model is simple and flexible enough to add new components, and also possible to numerically predict non-linear subsystem functions and responses. Future work includes practical issues such as energy efficiency, air leakage, nutrition, and plant growth modeling. The model functions as an effective teaching tool about how a regenerative advanced life support system works.

  7. Method for Controlling Space Transportation System Life Cycle Costs

    Science.gov (United States)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  8. Design of an Instructional Module on Basic Life Support for Homeschooled Children

    Science.gov (United States)

    Awang, Sakinah; Ahmad, Shamsuria; Alias, Norlidah; DeWitt, Dorothy

    2016-01-01

    Basic Life Support (BLS) can increase a victim's chances of survival when administered promptly and correctly. Cardiac and respiratory arrests occur more frequently when the victim is at home far from clinical support. Hence, prompt action by family members trained in BLS can save the victim's life. In this study, the requirements for the design…

  9. Learning Spaces and Collaborative Work: Barriers or Supports?

    Science.gov (United States)

    King, Hayley

    2016-01-01

    Drawing on 18 months of fieldwork, this article discusses the use of physical, virtual and social space to support collaborative work in translator education programs. The study adopted a contrastive ethnography approach that incorporated single- and multiple-case design rationales for site selection. Extended observation, informal chats and…

  10. Canadians' support for radical life extension resulting from advances in regenerative medicine.

    Science.gov (United States)

    Dragojlovic, Nick

    2013-04-01

    This paper explores Canadian public perceptions of a hypothetical scenario in which a radical increase in life expectancy results from advances in regenerative medicine. A national sample of 1231 adults completed an online questionnaire on stem cell research and regenerative medicine, including three items relating to the possibility of Canadians' average life expectancy increasing to 120 years by 2050. Overall, Canadians are strongly supportive of the prospect of extended lifespans, with 59% of the sample indicating a desire to live to 120 if scientific advances made it possible, and 47% of respondents agreeing that such increases in life expectancy are possible by 2050. The strongest predictors of support for radical life extension are individuals' general orientation towards science and technology and their evaluation of its plausibility. These results contrast with previous research, which has suggested public ambivalence for biomedical life extension, and point to the need for more research in this area. They suggest, moreover, that efforts to increase public awareness about anti-aging research are likely to increase support for the life-extending consequences of that research program. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. IT logistics support life cycle of products in air engine

    Directory of Open Access Journals (Sweden)

    М.С. Кулик

    2009-02-01

    Full Text Available  Questions of increase of efficiency of a supply with information of creation and support in operation of modern aviation engines are considered. The revealed most perspective directions of development of complex systems of support of life cycle aviation technics.

  12. Withholding and withdrawing of life support from patients with severe head injury.

    Science.gov (United States)

    O'Callahan, J G; Fink, C; Pitts, L H; Luce, J M

    1995-09-01

    To characterize the withholding or withdrawing of life support from patients with severe head injury. San Francisco General Hospital, a city and county hospital with a Level I trauma center. A standardized questionnaire was used to collect data on demographics and functional outcome of severely head-injured (Glasgow Coma Score of family members. Forty-seven patients who were admitted to a medical-surgical intensive care unit over a 1-yr period. Twenty-four patients had life support withheld or withdrawn, and 23 patients did not. Physician and family separately assessed patient's probable functional outcome, degree of communication between them, reasons important in recommending or deciding on discontinuation of life support, and the result of action taken. Six months later, the families reviewed the process of their decision, how well physician(s) had communicated, and what might have improved communication. Of 24 patients with life support discontinued, 22 died; two were discharged from the hospital. Twenty-three of the 24 patients had a poor prognosis on admission. Of the 23 patients who were continued on life support for the duration of their hospitalization, ten had a poor (p Family's assessment of prognosis agreed with physician's assessment in 22 of the 24 patients from whom life support was discontinued (p families' assessments. Physicians' considerations in recommending limitation of care and families' considerations in making decisions were the same, primarily an inevitably poor prognosis. Neither physician nor families cited cost or availability of care as a deciding factor. Two families disagreed with the recommendation to limit care after initial agreement because the patients' prognosis improved from "likely death" to "vegetative." Care was therefore continued, and both patients remained vegetative 6 months after admission to the hospital and discharge to chronic care facilities. Life support is commonly withheld or withdrawn from patients with severe

  13. Gardening for Therapeutic People-Plant Interactions during Long-Duration Space Missions

    Directory of Open Access Journals (Sweden)

    Odeh Raymond

    2017-02-01

    Full Text Available Plants provide people with vital resources necessary to sustain life. Nutrition, vitamins, calories, oxygen, fuel, and medicinal phytochemicals are just a few of the life-supporting plant products, but does our relationship with plants transcend these physical and biochemical products? This review synthesizes some of the extant literature on people-plant interactions, and relates key findings relevant to space exploration and the psychosocial and neurocognitive benefits of plants and nature in daily life. Here, a case is made in support of utilizing plant-mediated therapeutic benefits to mitigate potential psychosocial and neurocognitive decrements associated with long-duration space missions, especially for missions that seek to explore increasingly distant places where ground-based support is limited.

  14. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space

    Science.gov (United States)

    Szekely, Pablo; Korem, Yael; Moran, Uri; Mayo, Avi; Alon, Uri

    2015-01-01

    When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes—phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass. PMID:26465336

  15. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space.

    Science.gov (United States)

    Szekely, Pablo; Korem, Yael; Moran, Uri; Mayo, Avi; Alon, Uri

    2015-10-01

    When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes--phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.

  16. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  17. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    Science.gov (United States)

    Abney, Morgan B.; Karr, Laurel; Paley, Mark S.; Donovan, David N.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  18. Basic life support and children with profound and multiple learning disabilities.

    Science.gov (United States)

    Cash, Stefan; Shinnick-Page, Andrea

    2008-10-01

    Nurses and other carers of people with learning disabilities must be able to manage choking events and perform basic life support effectively. UK guidelines for assessment of airway obstruction and for resuscitation do not take account of the specific needs of people with profound multiple learning disability. For example, they fail to account for inhibited gag and coughing reflexes, limited body movements or chest deformity. There are no national guidelines to assist in clinical decisions and training for nurses and carers. Basic life support training for students of learning disability nursing at Birmingham City University is supplemented to address these issues. The authors ask whether such training should be provided for all nurses including those caring for children and young people. They also invite comment and discussion on questions related to chest compression and training in basic life support for a person in a seated position.

  19. ISS Regenerative Life Support: Challenges and Success in the Quest for Long-Term Habitability in Space

    Science.gov (United States)

    Bazley, Jesse A.

    2011-01-01

    This presentation will discuss the International Space Station s (ISS) Regenerative Environmental Control and Life Support System (ECLSS) operations with discussion of the on-orbit lessons learned, specifically regarding the challenges that have been faced as the system has expanded with a growing ISS crew. Over the 10 year history of the ISS, there have been numerous challenges, failures, and triumphs in the quest to keep the crew alive and comfortable. Successful operation of the ECLSS not only requires maintenance of the hardware, but also management of the station resources in case of hardware failure or missed re-supply. This involves effective communication between the primary International Partners (NASA and Roskosmos) and the secondary partners (JAXA and ESA) in order to keep a reserve of the contingency consumables and allow for re-supply of failed hardware. The ISS ECLSS utilizes consumables storage for contingency usage as well as longer-term regenerative systems, which allow for conservation of the expensive resources brought up by re-supply vehicles. This long-term hardware, and the interactions with software, was a challenge for Systems Engineers when they were designed and require multiple operational workarounds in order to function continuously. On a day-to-day basis, the ECLSS provides big challenges to the on console controllers. Main challenges involve the utilization of the resources that have been brought up by the visiting vehicles prior to undocking, balance of contributions between the International Partners for both systems and resources, and maintaining balance between the many interdependent systems, which includes providing the resources they need when they need it. The current biggest challenge for ECLSS is the Regenerative ECLSS system, which continuously recycles urine and condensate water into drinking water and oxygen. These systems were brought to full functionality on STS-126 (ULF-2) mission. Through system failures and recovery

  20. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    Science.gov (United States)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  1. Development of Pediatric Neurologic Emergency Life Support Course: A Preliminary Report.

    Science.gov (United States)

    Haque, Anwarul; Arif, Fehmina; Abass, Qalab; Ahmed, Khalid

    2017-11-01

    Acute neurological emergencies (ANEs) in children are common life-threatening illnesses and are associated with high mortality and severe neurological disability in survivors, if not recognized early and treated appropriately. We describe our experience of teaching a short, novel course "Pediatric Neurologic Emergency Life Support" to pediatricians and trainees in a resource-limited country. This course was conducted at 5 academic hospitals from November 2013 to December 2014. It is a hybrid of pediatric advance life support and emergency neurologic life support. This course is designed to increase knowledge and impart practical training on early recognition and timely appropriate treatment in the first hour of children with ANEs. Neuroresuscitation and neuroprotective strategies are key components of this course to prevent and treat secondary injuries. Four cases of ANEs (status epilepticus, nontraumatic coma, raised intracranial pressure, and severe traumatic brain injury) were taught as a case simulation in a stepped-care, protocolized approach based on best clinical practices with emphasis on key points of managements in the first hour. Eleven courses were conducted during the study period. One hundred ninety-six physicians including 19 consultants and 171 residents participated in these courses. The mean (SD) score was 65.15 (13.87%). Seventy percent (132) of participants were passed (passing score > 60%). The overall satisfaction rate was 85%. Pediatric Neurologic Emergency Life Support was the first-time delivered educational tool to improve outcome of children with ANEs with good achievement and high satisfaction rate of participants. Large number courses are required for future validation.

  2. Use of Human Modeling Simulation Software in the Task Analysis of the Environmental Control and Life Support System Component Installation Procedures

    Science.gov (United States)

    Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Virtual reality and simulation applications are becoming widespread in human task analysis. These programs have many benefits for the Human Factors Engineering field. Not only do creating and using virtual environments for human engineering analyses save money and time, this approach also promotes user experimentation and provides increased quality of analyses. This paper explains the human engineering task analysis performed on the Environmental Control and Life Support System (ECLSS) space station rack and its Distillation Assembly (DA) subsystem using EAI's human modeling simulation software, Jack. When installed on the International Space Station (ISS), ECLSS will provide the life and environment support needed to adequately sustain crew life. The DA is an Orbital Replaceable Unit (ORU) that provides means of wastewater (primarily urine from flight crew and experimental animals) reclamation. Jack was used to create a model of the weightless environment of the ISS Node 3, where the ECLSS is housed. Computer aided drawings of the ECLSS rack and DA system were also brought into the environment. Anthropometric models of a 95th percentile male and 5th percentile female were used to examine the human interfaces encountered during various ECLSS and DA tasks. The results of the task analyses were used in suggesting modifications to hardware and crew task procedures to improve accessibility, conserve crew time, and add convenience for the crew. This paper will address some of those suggested modifications and the method of presenting final analyses for requirements verification.

  3. Socio-Demographic Factors, Social Support, Quality of Life, and HIV/AIDS in Ghana.

    Science.gov (United States)

    Abrefa-Gyan, Tina; Cornelius, Llewellyn J; Okundaye, Joshua

    2016-01-01

    The increase in the access to biomedical interventions for people living with HIV/AIDS in the developing world has not been adequately matched with the requisite psychosocial treatments to help improve the effectiveness of biomedical interventions. Therefore, in this study the author seeks to determine whether socio-demographic characteristics and social support are associated with quality of life in individuals diagnosed with HIV/AIDS in Ghana. A convenience sample of 300 HIV/AIDS support group members was obtained via cross-sectional design survey. The Medical Outcome Studies (MOS) HIV Health Survey, the MOS Social Support Survey (MOS-SSS), and demographic questionnaire instruments were used to assess quality of life, social support, and demographic information respectively. Multiple regression analysis showed that there was a positive association between overall social support and overall quality of life (r = .51). It also showed that being younger, male, attending support group meetings for over a year, and having ≥ 13 years of schooling related to higher quality of life. Implications of the findings for practice, policy, and research in Ghana and the rest of the developing world are discussed.

  4. European top managers’ support for work-life arrangements

    NARCIS (Netherlands)

    Been, Wike M.; van der Lippe, Tanja; den Dulk, Laura; Das Dores Horta Guerreiro, Maria; Kanjuo Mrčela, Aleksandra; Niemistö, Charlotta

    2017-01-01

    Top managers—defined as CEOs, CFOs and members of boards of directors—decide to what degree their organization offers employees work-life arrangements. This study focuses on the conditions under which they support such arrangements. A factorial survey of 202 top managers in five European countries

  5. Life Support and Habitation and Planetary Protection Workshop

    Science.gov (United States)

    Hogan, John A. (Editor); Race, Margaret S. (Editor); Fisher, John W. (Editor); Joshi, Jitendra A. (Editor); Rummel, John D. (Editor)

    2006-01-01

    A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.

  6. Systemic effects of chronic obstructive pulmonary disease in young-old adults’ life-space mobility

    Directory of Open Access Journals (Sweden)

    Garcia IFF

    2017-09-01

    Full Text Available Isabel Fialho Fontenele Garcia,1 Carina Tiemi Tiuganji,1 Maria do Socorro Morais Pereira Simões,2 Ilka Lopes Santoro,3 Adriana Claudia Lunardi1,2 1Master’s and Doctoral Programs in Physical Therapy, Universidade Cidade de São Paulo, 2Department of Physical Therapy, School of Medicine, University of Sao Paulo, 3Respiratory Division, Pulmonary Rehabilitation Center, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil Purpose: The objective was to assess whether dyspnea, peripheral muscle strength and the level of physical activity are correlated with life-space mobility of older adults with COPD.Patients and methods: Sixty patients over 60 years of age (40 in the COPD group and 20 in the control group were included. All patients were evaluated for lung function (spirometry, life-space mobility (University of Alabama at Birmingham Study of Aging Life-Space Assessment, dyspnea severity (Modified Dyspnea Index, peripheral muscle strength (handgrip dynamometer, level of physical activity and number of daily steps (accelerometry. Groups were compared using unpaired t-test. Pearson’s correlation was used to test the association between variables.Results: Life-space mobility (60.41±16.93 vs 71.07±16.28 points, dyspnea (8 [7–9] vs 11 [10–11] points, peripheral muscle strength (75.16±14.89 vs 75.50±15.13 mmHg, number of daily steps (4,865.4±2,193.3 vs 6,146.8±2,376.4 steps, and time spent in moderate to vigorous activity (197.27±146.47 vs 280.05±168.95 minutes were lower among COPD group compared to control group (p<0.05. The difference was associated with the lower mobility of COPD group in the neighborhood.Conclusion: Life-space mobility is decreased in young-old adults with COPD, especially at the neighborhood level. This impairment is associated to higher dyspnea, peripheral muscle weakness and the reduced level of physical activity. Keywords: COPD, elderly, mobility limitation, dyspnea, muscular

  7. Insight into the radiotolerance of the life support bacterium Rhodospirillum rubrum S1H by means of phenotypic and transcriptomic methods

    Science.gov (United States)

    Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie

    The MELiSSA life support system from the European Space Agency is targeting the produc-tion of oxygen, water and food by recycling organic waste. Among different types of pro-cesses, MELiSSA uses several interconnected bioreactors inhabited by microorganisms and higher plants (Hendrickx et al., 2006; Mergeay et al., 1988). Because this loop is foreseen to be functional in space where it will be exposed to higher doses and different spectra of ionizing radiation, it was decided to screen the radiotolerance of the organisms used. In this study, the radiotolerance (i.e. tolerance to ionizing radiation) of the photosynthetic bacterium Rho-dospirillum rubrum S1H was investigated. In this test, first the effect of low energy Cobalt-60 gamma rays, were tested. To assess the radiotolerance of bacterium S1H, the survival rate after increasing exposure was determined. R. rubrum S1H appeared relatively radiosensitive, as the radiation dose at which 90% of the population was killed (D10 value) was 4 times lower than the model bacterium Escherichia coli. It was demonstrate that the culture medium has an impact on radiation tolerance. This survival curve also permitted to select a number of sub-lethal ionizing radiation doses (¡ D10 ), that were used to analyze the gene expression response of R. rubrum S1H after gamma irradiation. The microarray transcriptome analysis results ob-tained from different doses and different culture medium showed a significant response of the bacterium to sublethal doses. Potential marker genes for ionizing radiation stress in R. rubrum S1H were identified. By quantitative PCR, it was shown that the expression of these marker genes increased with the recovery time after exposure to ionizing radiation. In other words, the radiation tolerance and the response of R. rubrum S1H to low energy Cobalt-60 gamma ionizing radiation was characterized. Therefore to ensure MELiSSA process robustness during extended space exploration mission, it is advised that

  8. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, Amanda; Paul, Heather L.

    2011-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA minimizes the amount of consumables to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. This paper presents the latest results from these sorbent and system development efforts.

  9. The role of interpersonal sensitivity, social support, and quality of life in rural older adults.

    Science.gov (United States)

    Wedgeworth, Monika; LaRocca, Michael A; Chaplin, William F; Scogin, Forrest

    The mental health of elderly individuals in rural areas is increasingly relevant as populations age and social structures change. While social support satisfaction is a well-established predictor of quality of life, interpersonal sensitivity symptoms may diminish this relation. The current study extends the findings of Scogin et al by investigating the relationship among interpersonal sensitivity, social support satisfaction, and quality of life among rural older adults and exploring the mediating role of social support in the relation between interpersonal sensitivity and quality of life (N = 128). Hierarchical regression revealed that interpersonal sensitivity and social support satisfaction predicted quality of life. In addition, bootstrapping resampling supported the role of social support satisfaction as a mediator between interpersonal sensitivity symptoms and quality of life. These results underscore the importance of nurses and allied health providers in assessing and attending to negative self-perceptions of clients, as well as the perceived quality of their social networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  11. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    Science.gov (United States)

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  12. Green space as a buffer between stressful life events and health

    NARCIS (Netherlands)

    Berg, van den A.E.; Maas, J.; Verheij, R.A.; Groenewegen, P.P.

    2010-01-01

    This study investigates whether the presence of green space can attenuate negative health impacts of stressful life events. Individual-level data on health and socio-demographic characteristics were drawn from a representative two-stage sample of 4529 Dutch respondents to the second Dutch National

  13. Green space as a buffer between stressful life events and health

    NARCIS (Netherlands)

    van den Berg, Agnes E.; Maas, Jolanda; Verheij, Robert A.; Groenewegen, Peter P.

    This study investigates whether the presence of green space can attenuate negative health impacts of stressful life events. Individual-level data on health and socio-demographic characteristics were drawn from a representative two-stage sample of 4529 Dutch respondents to the second Dutch National

  14. Green space as a buffer between stressful life events and health.

    NARCIS (Netherlands)

    Maas, J.; Berg, A. van den; Verheij, R.A.; Groenewegen, P.P.

    2010-01-01

    This study investigates whether the presence of green space can attenuate negative health impacts of stressful life events. Individual-level data on health and socio-demographic characteristics were drawn from a representative two-stage sample of 4529 Dutch respondents to the second Dutch National

  15. Comparison of Online and Traditional Basic Life Support Renewal Training Methods for Registered Professional Nurses.

    Science.gov (United States)

    Serwetnyk, Tara M; Filmore, Kristi; VonBacho, Stephanie; Cole, Robert; Miterko, Cindy; Smith, Caitlin; Smith, Charlene M

    2015-01-01

    Basic Life Support certification for nursing staff is achieved through various training methods. This study compared three American Heart Association training methods for nurses seeking Basic Life Support renewal: a traditional classroom approach and two online options. Findings indicate that online methods for Basic Life Support renewal deliver cost and time savings, while maintaining positive learning outcomes, satisfaction, and confidence level of participants.

  16. Advanced Hazmat Life Support (AHLS): A Feasibility Assessment

    International Nuclear Information System (INIS)

    Borron, S. W.; Walter, F. G.

    2007-01-01

    A prospective, descriptive, feasibility study aimed to determine whether an interdisciplinary group of health care experts could design and successfully deliver an international, life support, continuing education program that teaches the medical management of hazardous materials (hazmat) patients. The American Academy of Clinical Toxicology and the University of Arizona College of Medicine, Arizona Emergency Medicine Research Center partnered on July 1, 1998 to develop a two-day Advanced Hazmat Life Support (AHLS) Provider Course. Interdisciplinary expert clinicians designed and then delivered the first AHLS Provider Course in 1999. Prior to this, other courses focused on the management of hazmat incidents and almost exclusively on the prehospital care of hazmat victims by firefighters, hazardous materials technicians, and emergency medical technicians (EMTs), not on the medical management of patients from these incidents. Therefore, AHLS was developed for a broader interdisciplinary group of health care professionals, including both prehospital health care professionals and hospital-based, poison center-based, clinic-based, public health care-based, and other health care professionals. From 1999 through 2006, the AHLS Provider Course has trained 7,142 health care professionals from 48 countries. Of the 7,142 health care professionals worldwide, 43% are paramedics, 24% are physicians, 21% are nurses, 2% are pharmacists, 1% are physician assistants, and 9% are other professionals. Of the professionals trained, 88% are from the United States, 5% from Hong Kong, 2% from Canada, 2% from Australia, 1% from Mexico, and the remainder come from 43 other countries. The Advanced Hazmat Life Support Program is feasible and meets the continuing education needs of health care professionals around the world.(author)

  17. Process and Tool Support for Ontology-Aware Life Support System Development and Integration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in ontology development support a rich description of entities that are modeled within a domain and how these entities relate to each other. However,...

  18. Perceived health status and life satisfaction in old age, and the moderating role of social support.

    Science.gov (United States)

    Dumitrache, Cristina G; Rubio, Laura; Rubio-Herrera, Ramona

    2017-07-01

    The aim of this study was on one hand to examine the associations between health impairment and life satisfaction, as well as social support and life satisfaction, and on the other, to analyze the moderating effect of social support with regard to health impairment and life satisfaction in a sample of community-dwelling older adults from urban areas of Granada, southern Spain. This was a cross-sectional survey in which a sample of 406 older adults with ages between 65 and 99 years old (M age = 74.88, SD = 6.75) was selected. Multiple stepwise regression analysis was used to assess the impact of health impairment and perceived social support on life satisfaction. Moderation analysis was performed using the bias-corrected and accelerated bootstrapping approach. Significant differences in life satisfaction scores were found by number and type of disease, restrictions in daily life activities and subjective health. Perceived health and perceived social support predicted life satisfaction. Besides global social support, emotional and affectionate support moderated the link between perceived health and life satisfaction. Older people who do not rate their health status positively and indicate low levels of social support have a higher risk of being dissatisfied with their lives and due to this they should receive special attention from gerontologists.

  19. Effective work-life balance support for various household structures

    OpenAIRE

    Brummelhuis, L.L. ten; Lippe, T. van der

    2010-01-01

    Today’s workforce encompasses a wide variety of employees with specifi c needs and resources when it comes to balancing work and life roles. Our study explores whether various types of work-life balance support measures improve employee helping behavior and performance among single employees, employees with a partner, and employees with a partner and children. Using a sample of 482 employees at 24 organizations, the results showed that the organization’s work-family culture improved work perf...

  20. The Mass-Longevity Triangle: Pareto Optimality and the Geometry of Life-History Trait Space.

    Directory of Open Access Journals (Sweden)

    Pablo Szekely

    2015-10-01

    Full Text Available When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes--phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.

  1. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  2. Space of solitude in culture

    Directory of Open Access Journals (Sweden)

    Agnieszka Małgorzata Kulig

    2014-04-01

    Full Text Available In my article I suggest looking at the phenomenon of solitude in culture not only as an opportunity to study an intimate and individual experience, to which numerous descriptions refer. I would rather consider whether possessing knowledge about this experience we acquire competencies regarding the culture in which this solitude has occurred. The discourse of melancholy, for which the space of solitude and confrontation with the ultimate has been the natural environment, supports me in describing the space of solitude in culture. For the purposes of reflection, I initiate my own definition of solitude as a space between life and death. That space allows the individual to feel the energy of life and the presence of death, even in such moments of human life (youth when the individual is not fully aware of their role in society, and is in the process of crystallizing their identity. In this case, solitude as a space between would be a state of suspension, which, however, prepares for active, independent life in the community. In this article, I refer to the postulate of the German culture researcher Thomas Macho in order to treat the experience of solitude as a context, an opportunity to practise techniques of culture, as well as to heterotopic space as defined by Michel Foucault.

  3. Life sciences research in space: The requirement for animal models

    Science.gov (United States)

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  4. Space assets, technology and services in support of energy policy

    Science.gov (United States)

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  5. Intergenerational support, satisfaction with parent-child relationship and elderly parents' life satisfaction in Hong Kong.

    Science.gov (United States)

    Peng, Chenhong; Kwok, Chi Leung; Law, Yik Wa; Yip, Paul S F; Cheng, Qijin

    2018-01-22

    This study examines in what exchange patterns that three types of intergenerational support are associated with elderly parents' life satisfaction, and whether elderly parents' evaluation on parent-child relationship plays a mediation role on those associations. Data were drawn from Hong Kong Panel Survey for Poverty Alleviation. Respondents aged 65 and over were included ( N=504). Three types of support, namely, daily-living, financial, and emotional support were examined in four patterns-the over-benefited , under-benefited , reciprocal and no flow of exchange. A multivariable linear regression was applied to investigate the association between pattern of intergenerational exchange and life satisfaction, and mediation analysis was employed to examine the mediating role of satisfaction with parent-child relationship on their associations. Elderly parents were less satisfied with their lives when they had no flow of exchange in daily-living support, and more satisfied when they were under-benefited in financial support, and over-benefited or reciprocal in emotional support. Elderly parents' satisfaction with parent-child relationship mediated the association between exchange of emotional support and life satisfaction; but not the association between daily-living or financial support and life satisfaction. Different types of intergenerational support are associated with elderly parents' life satisfaction in different patterns.

  6. A Review: Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2013-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.

  7. Spousal recovery support, recovery experiences, and life satisfaction crossover among dual-earner couples.

    Science.gov (United States)

    Park, YoungAh; Fritz, Charlotte

    2015-03-01

    Research has indicated the importance of recovery from work stress for employee well-being and work engagement. However, very little is known about the specific factors that may support or hinder recovery in the context of dual-earner couples. This study proposes spousal recovery support as a potential resource that dual-earner couples can draw on to enhance their recovery experiences and well-being. It was hypothesized that spousal recovery support would be related to the recipient spouse's life satisfaction via his or her own recovery experiences (i.e., psychological detachment, relaxation, and mastery experiences). The study further investigated the crossover of life satisfaction between working spouses as a potential outcome of recovery processes. Data from 318 full-time employed married couples in South Korea were analyzed using structural equation modeling. Results showed that spousal recovery support was positively related to all 3 recovery experiences of the recipient spouse. Moreover, this recovery support was related to the recipient spouse's life satisfaction via relaxation and mastery experiences. Unexpectedly, psychological detachment was negatively related to life satisfaction, possibly indicating a suppression effect. Life satisfaction crossed over between working spouses. No gender differences were found in the hypothesized paths. Based on these findings, theoretical and practical implications are discussed, and future research directions are presented. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  8. Living Arrangement and Life Satisfaction in Older Malaysians: The Mediating Role of Social Support Function

    Science.gov (United States)

    Kooshiar, Hadi; Yahaya, Nurizan; Hamid, Tengku Aizan; Abu Samah, Asnarulkhadi; Sedaghat Jou, Vajiheh

    2012-01-01

    Background This cross-sectional and correlational survey examines the association between different types of living arrangements and life satisfaction in older Malaysians, while taking into account the mediating effects of social support function. Methodology and Findings A total of 1880 of older adults were selected by multistage stratified sampling. Life satisfaction and social support were measured with the Philadelphia Geriatric Center Morale Scale and Medical Outcomes Study Social Support Survey. The result shows living with children as the commonest type of living arrangement for older adults in peninsular Malaysia. Compared to living alone, living only with a spouse especially and then co-residency with children were both associated with better life satisfaction (psocial support function (psocial support function enhanced the relation between living arrangements and life satisfaction. Conclusion This study revealed that types of living arrangement directly, and indirectly through social support function, play an important role in predicting life satisfaction for older adults in Malaysia. This study makes remarkable contributions to the Convoy model in older Malaysians. PMID:22912806

  9. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  10. Social support, self-care, and quality of life in cancer patients receiving radiotherapy in Thailand

    International Nuclear Information System (INIS)

    Hanucharurnkul, S.

    1988-01-01

    The purpose of the study was two-fold: (1) to examine the relationships among self-care, social support, and quality of life in adult cancer patients receiving radiotherapy while the selected basic conditioning factors of age, marital and socio-economic status, living arrangement, stage and site of cancer were statistically controlled; and (2) to test a theoretical model which postulated that (a) quality of life was predicted jointly by the selected basic conditioning factors, social support and self-care, and (b) self-care was predicted jointly by the selected basic conditioning factors and social support. A convenience sample of 112 adult cervical and head/neck cancer patients receiving radiotherapy was obtained from radiotherapy outpatient clinic in three hospitals located in Bangkok, Thailand. Results of the study indicated positive relationships among self-care, social support, and quality of life. Socio-economic status, site of cancer, and self-care were significant predictors for reported quality of life. Social support appeared to be a significant predictor of quality of life indirectly through self-care. Socio-economic status and social support were also significant predictors of self-care, whereas, stage and site of cancer seemed to predict self-care indirectly through social support

  11. International Space Station Bacteria Filter Element Service Life Evaluation

    Science.gov (United States)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  12. Effects of the Extraterrestrial Environment on Plants: Recommendations for Future Space Experiments for the MELiSSA Higher Plant Compartment

    Directory of Open Access Journals (Sweden)

    Silje A. Wolff

    2014-05-01

    Full Text Available Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA has developed the Micro-Ecological Life Support System Alternative (MELiSSA program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.

  13. Life-sustaining support: ethical, cultural, and spiritual conflicts. Part II: Staff support--a neonatal case study.

    Science.gov (United States)

    Stutts, Amy; Schloemann, Johanna

    2002-06-01

    As medical knowledge and technology continue to increase, so will the ability to provide life-sustaining support to patients who otherwise would not survive. Along with these advances comes the responsibility of not only meeting the clinical needs of our patients, but also of understanding how the family's culture and spirituality will affect their perception of the situation and their decision-making process. As the U.S. continues to become a more culturally diverse society, health care professionals will need to make changes in their practice to meet the psychosocial needs of their patients and respect their treatment decisions. Part I of this series (April 2002) discussed how the cultural and spiritual belief systems of Baby S's family affected their decision-making processes and also their ability to cope with the impending death of their infant. The development of a culturally competent health care team can help bridge the gap between culturally diverse individuals. This article addresses the following questions: 1. What legal alternatives are available to the staff to protect the patient from suffering associated with the continuation of futile life-sustaining support? 2. What conflicts might the staff experience as a result of the continuation of futile life-sustaining support? 3. What efforts can be made to support members of the staff? 4. What can be done to prepare others in the health care professions to deal more effectively with ethical/cultural issues?

  14. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    Science.gov (United States)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  15. The Inter-Life Project: Inter-Cultural Spaces for Young People to Use Creative Practices and Research to Assist with Life Changes and Transition

    Science.gov (United States)

    Lally, Vic; Sclater, Madeleine

    2012-01-01

    The aim of the Inter-Life Project was to investigate the use of virtual worlds and creative practices to support the acquisition of transition skills for young people to enhance their management of important life events. In particular, the authors have been investigating the role of the Inter-Life virtual worlds in supporting the development of…

  16. Life sciences recruitment objectives

    Science.gov (United States)

    Keefe, J. Richard

    1992-01-01

    The goals of the Life Sciences Division of the Office of Space Sciences and Application are to ensure the health, well being and productivity of humans in space and to acquire fundamental scientific knowledge in space life sciences. With these goals in mind Space Station Freedom represents substantial opportunities and significant challenges to the Life Sciences Division. For the first time it will be possible to replicate experimental data from a variety of simultaneously exposed species with appropriate controls and real-time analytical capabilities over extended periods of time. At the same time, a system for monitoring and ameliorating the physiological adaptations that occur in humans subjected to extended space flight must be evolved to provide the continuing operational support to the SSF crew. To meet its goals, and take advantage of the opportunities and overcome the challenges presented by Space Station Freedom, the Life Sciences Division is developing a suite of discipline-focused sequence. The research phase of the Life Sciences Space Station Freedom Program will commence with the utilization flights following the deployment of the U.S. laboratory module and achievement of Man Tended Capability. Investigators that want the Life Sciences Division to sponsor their experiment on SSF can do so in one of three ways: submitting a proposal in response to a NASA Research Announcement (NRA), submitting a proposal in response to an Announcement of Opportunity (AO), or submitting an unsolicited proposal. The scientific merit of all proposals will be evaluated by peer review panels. Proposals will also be evaluated based on relevance to NASA's missions and on the results of an Engineering and Cost Analyses. The Life Sciences Division expects that the majority of its funding opportunities will be announced through NRA's. It is anticipated that the first NRA will be released approximately three years before first element launch (currently scheduled for late 1995

  17. Elephants in space the past, present and future of life and the universe

    CERN Document Server

    Moore, Ben

    2014-01-01

    This book is about the history and future of life and the universe, written at a level that any educated lay-person can understand and enjoy. It describes our place in time and space, how we got here and where we are going. It will take you on a journey from the beginning of time to the end of the universe to uncover our origins and reveal our destiny. It will explain how mankind acquired this knowledge starting from the beginning of civilization when the ancient Greeks first began to ask questions about the nature of the world around them. Ben Moore takes us on a path of discovery that connects astrophysics with subjects as varied as biology, neuroscience and evolution; from the origin of atoms to how stars shine and die, from ants and elephants to space travel and extra-terrestrial life. But as our universe grows older and its stars fade away and stop shining, can life continue for eternity or is all life destined for complete extinction? And what is the purpose of all of this anyway?! On the German edition...

  18. Drivers\\' Life Quality, Marital Satisfaction, and Social Support in Cargo Terminal of Yazd City

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Morovati Sharifabadi

    2017-02-01

    Full Text Available Abstract Introduction: This is important to consider the health, social support, and marital satisfaction of drivers since they own one of the essential and stressful jobs in society. The purpose of this research was to investigate quality of life, marital satisfaction, and social support of the drivers referring to the cargo terminal of Yazd City. Methods: In order to collect data, 134 drivers in Yazd cargo terminal were selected. The ENRICH questionnaire of marital satisfaction, SF-36 questionnaire, and social support questionnaire (SSQ have been used as data collection tools. The collected data were then analyzed by Independent T test, Analysis of Variance (ANOVA, and Pearson correlation. Results: According to the results, the drivers' average age was 40.2±9.17 years old. The mean scores of marital satisfaction, quality of life, and social support were equal to 120.04±20.14 out of 175, 99.69±18.14 out of 149, and 15±4.76 out of 23, respectively. About 60.4 % of drivers were not satisfied with their jobs. There were significant relationships between weight and marital satisfaction (P=0.02, as well as between job satisfaction (P=0.003 (P=0.015 and income (P=0.047 (P=0.020, to social support and quality of life. Also, a strong significant positive relationship was observed in correlation coefficient between social support and two variables of quality of life and marital satisfaction (P=0.000. Conclusion: This can be argued that marital satisfaction, quality of life, and social support of the drivers are lower than the expected levels. Therefore, it can be concluded that physical and mental health of drivers can be effective on safety of roads; thereby it is necessary to improve their conditions in marital satisfaction, quality of life, and social support

  19. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    Science.gov (United States)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  20. Use of antarctic analogs to support the space exploration initiative

    Science.gov (United States)

    Wharton, Robert; Roberts, Barney; Chiang, Erick; Lynch, John; Roberts, Carol; Buoni, Corinne; Andersen, Dale

    1990-01-01

    This report has discussed the Space Exploration Initiative (SEI) and the U.S. Antarctic Program (USAP) in the context of assessing the potential rationale and strategy for conducting a cooperative NASA/NSF (National Science Foundation) effort. Specifically, such an effort would address shared research and data on living and conducting scientific research in isolated, confined, hostile, and remote environments. A review of the respective goals and requirements of NASA and the NSF indicates that numerous opportunities exist to mutually benefit from sharing relevant technologies, data, and systems. Two major conclusions can be drawn: (1) The technologies, experience, and capabilities existing and developing in the aerospace community would enhance scientific research capabilities and the efficiency and effectiveness of operations in Antarctica. The transfer and application of critical technologies (e.g., power, waste management, life support) and collaboration on crew research needs (e.g., human behavior and medical support needs) would streamline the USAP operations and provide the scientific community with advancements in facilities and tools for Antarctic research. (2) Antarctica is the most appropriate earth analog for the environments of the the Moon and Mars. Using Antarctica in this way would contribute substantially to near- and long-term needs and plans for the SEI. Antarctica is one of the few ground-based analogs that would permit comprehensive and integrated studies of three areas deemed critical to productive and safe operations on the Moon and Mars: human health and productivity; innovative scientific research techniques; and reliable, efficient technologies and facilities.

  1. Planetarium Inversum -- a space vision for Earth education.

    Science.gov (United States)

    Lotsch, B

    2003-01-01

    In a planetarium, the visitor is sitting on Earth and looking into an imaginary space. The Planetarium Inversum is the opposite: visitors are sitting in a space station, looking down on Mother Earth. It is a scientifically-based information show with visitors involvement, its elements being partially virtual (Earth in space has to be projected with highest possible resolution) but also containing real structures, such as the visitors' Earth observatory with adjacent biological systems (plant cultures and other ecological life support components). Its main message concerns the limits and the vulnerability of our home planet, its uniqueness, beauty and above all, its irreplaceableness: Earth does not have an emergency exit. The Earth observatory is part of a ring shaped, rotating space station of the type designed by Wernher von Braun decades ago. Visitors are told that gravity is being substituted by centrifugal force. Both types of life support systems are being demonstrated--self regenerative life based ones and technical ones as a backup (solar electric splitting of water and chemical absorption of respiratory CO2). c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  2. The Effect of Instructional Method on Cardiopulmonary Resuscitation Skill Performance: A Comparison Between Instructor-Led Basic Life Support and Computer-Based Basic Life Support With Voice-Activated Manikin.

    Science.gov (United States)

    Wilson-Sands, Cathy; Brahn, Pamela; Graves, Kristal

    2015-01-01

    Validating participants' ability to correctly perform cardiopulmonary resuscitation (CPR) skills during basic life support courses can be a challenge for nursing professional development specialists. This study compares two methods of basic life support training, instructor-led and computer-based learning with voice-activated manikins, to identify if one method is more effective for performance of CPR skills. The findings suggest that a computer-based learning course with voice-activated manikins is a more effective method of training for improved CPR performance.

  3. Health of women: associations among life events, social support, and personality for selected patient groups.

    Science.gov (United States)

    Norlander, T; Dahlin, A; Archer, T

    2000-02-01

    This study examined the effects of life events, social support, personality traits, and siblings' birth-order on the health of women. 199 middle-class participants were included. 95 women, randomly assigned from four different patient groups, were compared with a control group of 96 randomly selected women without any special health problems. They completed a questionnaire which included questions regarding family background, health, different life events, social support, and signs of disease and a projective test, the Sivik Psychosomatism Test. Analysis indicated that report of negative life events was associated with more physical symptoms than positive life events and that the patient groups reported more negative life events and less social support than the control group.

  4. A study of measurement properties of the Life-Space Assessment questionnaire in older adults with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Garcia, Isabel Fialho Fontenele; Tiuganji, Carina Tiemi; Simões, Maria do Socorro Morais Pereira; Lunardi, Adriana Claudia

    2018-06-01

    To test the measurement properties (reliability, interpretability, and validity) of the Life-Space Assessment questionnaire for older adults with chronic obstructive pulmonary disease. Clinimetric study. Pneumology service, ambulatory care, São Paulo, SP, Brazil. Consecutive sample of older adults ( n = 62; 38 (61%) men, 24 (39%) women) with chronic obstructive pulmonary disease. Not applicable. Life-Space Assessment questionnaire assesses five space levels visited by the older adult in four weeks prior to the assessment. We tested the following measurement properties of this questionnaire: reliability (reproducibility assessed by a type-2,1 intraclass correlation coefficient (ICC 2,1 ); internal consistency assessed by the Cronbach's alpha; measurement error by determining the standard error of measurement (SEM)), interpretability (minimum detectable change with 90% confidence (MDC 90 ); ceiling and floor effects by calculating the proportion of participants who achieved the minimum and maximum scores), and validity by Pearson's correlation test between the Life-Space Assessment questionnaire scores and number of daily steps assessed by accelerometry. Reproducibility (ICC 2,1 ) was 0.90 (95% confidence interval (CI): 0.84-0.94), and internal consistency (Cronbach's α) was 0.80 (range = 0.76-0.80 for each item deleted). SEM was 3.65 points (3%), the MDC 90 was 0.20 points, and we observed no ceiling (2%) or floor (6%) effects. We observed an association between the score of the Life-Space Assessment questionnaire and daily steps ( r = 0.43; P = 0.01). Life-Space Assessment questionnaire shows adequate measurement properties for the assessment of life-space mobility in older adults with chronic obstructive pulmonary disease.

  5. Design of a surface-based factory for the production of life support and technology support products. Phase 2: Integrated water system for a space colony

    Science.gov (United States)

    1989-01-01

    Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.

  6. Perspectives of different type biological life support systems (BLSS) usage in space missions

    Science.gov (United States)

    Bartsev, S. I.; Gitelson, J. I.; Lisovsky, G. M.; Mezhevikin, V. V.; Okhonin, V. A.

    1996-10-01

    In the paper an attempt is made to combine three important criteria of LSS comparison: minimum mass, maximum safety and maximum quality of life. Well-known types of BLSS were considered: with higher plant, higher plants and mushrooms, microalgae, and hydrogen-oxidizing bacteria. These BLSSs were compared in terms of "integrated" mass for the case of a vegetarian diet and a "normal" one (with animal proteins and fats). It was shown that the BLSS with higher plants and incineration of wastes becomes the best when the exploitation period is more than 1 yr. The dependence of higher plants' LSS structure on operation time was found. Comparison of BLSSs in terms of integral reliability (this criterion includes mass and quality of life criteria) for a lunar base scenario showed that BLSSs with higher plants are advantageous in reliability and comfort. This comparison was made for achieved level of technology of closing and for perspective one.

  7. Explaining public support for space exploration funding in America: A multivariate analysis

    Science.gov (United States)

    Nadeau, François

    2013-05-01

    Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.

  8. Life sciences payload definition and integration study. Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    The objectives of a study program to determine the life sciences payloads required for conducting biomedical experiments during space missions are presented. The objectives are defined as: (1) to identify the research functions which must be performed aboard life sciences spacecraft laboratories and the equipment needed to support these functions and (2) to develop layouts and preliminary conceptual designs of several potential baseline payloads for the accomplishment of life research in space. Payload configurations and subsystems are described and illustrated. Tables of data are included to identify the material requirements for the space missions.

  9. "Life history space": a multivariate analysis of life history variation in extant and extinct Malagasy lemurs.

    Science.gov (United States)

    Catlett, Kierstin K; Schwartz, Gary T; Godfrey, Laurie R; Jungers, William L

    2010-07-01

    Studies of primate life history variation are constrained by the fact that all large-bodied extant primates are haplorhines. However, large-bodied strepsirrhines recently existed. If we can extract life history information from their skeletons, these species can contribute to our understanding of primate life history variation. This is particularly important in light of new critiques of the classic "fast-slow continuum" as a descriptor of variation in life history profiles across mammals in general. We use established dental histological methods to estimate gestation length and age at weaning for five extinct lemur species. On the basis of these estimates, we reconstruct minimum interbirth intervals and maximum reproductive rates. We utilize principal components analysis to create a multivariate "life history space" that captures the relationships among reproductive parameters and brain and body size in extinct and extant lemurs. Our data show that, whereas large-bodied extinct lemurs can be described as "slow" in some fashion, they also varied greatly in their life history profiles. Those with relatively large brains also weaned their offspring late and had long interbirth intervals. These were not the largest of extinct lemurs. Thus, we distinguish size-related life history variation from variation that linked more strongly to ecological factors. Because all lemur species larger than 10 kg, regardless of life history profile, succumbed to extinction after humans arrived in Madagascar, we argue that large body size increased the probability of extinction independently of reproductive rate. We also provide some evidence that, among lemurs, brain size predicts reproductive rate better than body size. (c) 2010 Wiley-Liss, Inc.

  10. Life science payloads planning study. [for space shuttle orbiters and spacelab

    Science.gov (United States)

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  11. International Space Station End-of-Life Probabilistic Risk Assessment

    Science.gov (United States)

    Duncan, Gary W.

    2014-01-01

    The International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020, although there are ongoing efforts to extend ISS life cycle through 2028. The EOL for the ISS will require deorbiting the ISS. This will be the largest manmade object ever to be de-orbited therefore safely deorbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  12. Life Support and Environmental Monitoring International System Maturation Team Considerations

    Science.gov (United States)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies

  13. The "Digital Friend": A knowledge-based decision support system for space crews

    Science.gov (United States)

    Hoermann, Hans-Juergen; Johannes, Bernd; Petrovich Salnitski, Vyacheslav

    Space travel of far distances presents exceptional strain on the medical and psychological well-being of the astronauts who undertake such missions. An intelligent knowledge management system has been developed, to assist space crews on long-duration missions as an autonomous decision support system, called the "Digital Friend". This system will become available upon request for the purpose of coaching group processes and individual performance levels as well as aiding in tactical decision processes by taking crew condition parameters into account. In its initial stage, the "Digital Friend" utilizes interconnected layers of knowledge, which encompass relevant models of operational, situational, individual psycho-physiological as well as group processes. An example is the human life science model that contains historic, diagnostic, and prognostic knowledge about the habitual, actual, and anticipated patterns of physiological, cognitive, and group psychology parameters of the crew members. Depending on the available data derived from pre-mission screening, regular check-ups, or non-intrusive onboard monitoring, the "Digital Friend" can generate a situational analysis and diagnose potential problems. When coping with the effects of foreseeable and unforeseen stressors encountered during the mission, the system can provide feedback and support the crew with a recommended course of actions. The first prototype of the "Digital Friend" employs the Neurolab/Healthlab platform developed in a cooperation of DLR and IBMP. The prototype contains psycho-physiological sensors with multiple Heally Satellites that relay data to the intelligent Heally Masters and a telemetric Host station. The analysis of data from a long-term simulation study illustrates how the system can be used to estimate the operators' current level of skill reliability based on Salnitski's model [V. Salnitski, A. Bobrov, A. Dudukin, B. Johannes, Reanalysis of operators reliability in professional skills

  14. ADULT BASIC LIFE SUPPORT ON NEAR DROWNING AT THE SCENE

    Directory of Open Access Journals (Sweden)

    Gd. Harry Kurnia Prawedana

    2013-04-01

    Full Text Available Indonesia is a popular tourist destination which has potential for drowning cases. Therefore, required knowledge of adult basic life support to be able to deal with such cases in the field. Basic life support in an act to maintain airway and assist breathing and circulation without the use of tools other than simple breathing aids. The most important factor that determines the outcome of drowning event is the duration and severity of hypoxia induced. The management of near drowning at the scene include the rescue of victim from the water, rescue breathing, chest compression, cleaning the vomit substances which allowing blockage of the airway, prevent loss of body heat, and transport the victim to nearest emergency department for evaluation and monitoring.

  15. Cassava For Space Diet

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Njemanze, Philip; Nweke, Felix; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    Space agriculture is an advanced life support enginnering concept based on biological and ecological system ot drive the materials recycle loop and create pleasant life environment on distant planetary bodies. Choice of space diet is one of primary decision required ot be made at designing space agriculture. We propose cassava, Manihot esculenta and, for one major composition of space food materials, and evaluate its value and feasibility of farming and processing it for space diet. Criteria to select space crop species could be stated as follows. 1) Fill th enutritional requirements. There is no perfect food material to meet this requirements without making a combination with others. A set of food materials which are adopted inthe space recipe shall fit to the nutritional requirement. 2) Space food is not just for maintaining physiological activities of human, but an element of human culture. We shall consider joy of dining in space life. In this context, space foos or recipe should be accepted by future astronauts. Food culture is diverse in the world, and has close relatioship to each cultural background. Cassava root tuber is a material to supply mainly energy in the form of carbohydrate, same as cereals and other tuber crops. Cassava leaf is rich in protein high as 5.1 percents about ten times higher content than its tuber. In the food culture in Africa, cassava is a major component. Cassava root tuber in most of its strain contains cyanide, it should be removed during preparation for cooking. However certain strain are less in this cyanogenic compound, and genetically modified cassava can also aboid this problem safely.

  16. Is reciprocity always beneficial? Age differences in the association between support balance and life satisfaction.

    Science.gov (United States)

    Li, Tianyuan; Fok, Hung Kit; Fung, Helene H

    2011-07-01

    Reciprocity in support exchanges is believed to be beneficial to psychological well-being. This study examined perceived emotional and instrumental support balance from either family or friends, and the relationship between each support balance and life satisfaction among young and older adults. The sample included 107 older adults and 96 young adults. They rated their life satisfaction, as well as the emotional and instrumental support they provided to and received from family members and friends. Consistent with the socioemotional selectivity theory, age differences were found in perceived emotional support balance with friends. Older adults reported more emotionally reciprocal friendships than did young adults. Moreover, contrary to the equity rule, emotionally over-benefited friendships were associated with higher life satisfaction for older adults than were reciprocal friendships. Age, type of support, and source of support should be considered when studying the relationships between support balance and psychological well-being.

  17. Perceived Discrimination, Social Support, and Quality of Life in Gender Dysphoria.

    Science.gov (United States)

    Başar, Koray; Öz, Gökhan; Karakaya, Jale

    2016-07-01

    Transgender individuals experience discrimination in all domains of their personal and social life. Discrimination is believed to be associated with worse quality of life (QoL). To investigate the relation between QoL and perceived levels of discrimination and social support in individuals with gender dysphoria (GD). Individuals with GD who attended a psychiatry clinic from January 2012 through December 2014 were recruited. Demographic, social, and medical transition features were collected with standardized forms. Self-report measurements of QoL (Turkish version of the World Health Organization's Quality of Life-BREF) that included physical, psychological, social, and environmental domains, perceived discrimination with personal and group subscales (Perceived Discrimination Scale [PDS]), and social support (Multidimensional Scale of Perceived Social Support) were completed. Ninety-four participants (76.6% trans men) adequately completed the study measurements. Regression models with each QoL domain score as a dependent variable indicated a significant predictor value of personal PDS in social and environmental QoL. Social support from family was associated with better QoL in psychological QoL, whereas perceived support from friends significantly predicted all other domains of QoL. There was a tendency for group PDS to be rated higher than personal PDS, suggesting personal vs group discrimination discrepancy. However, group PDS was not found to be a predictor of QoL in the multivariate model. Perceived personal discrimination and social support from different sources predicted domains of QoL with a non-uniform pattern in individuals with GD. Social support and discrimination were found to have opposing contributions to QoL in GD. The present findings emphasize the necessity of addressing discrimination and social support in clinical work with GD. Moreover, strategies to improve and strengthen friend and family support for individuals with GD should be explored by

  18. Life support systems analysis and technical trades for a lunar outpost

    Science.gov (United States)

    Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.

    1994-01-01

    The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.

  19. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    Science.gov (United States)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  20. [Teaching basic life support to the general population. Alumni intervention analysis].

    Science.gov (United States)

    Díaz-Castellanos, M A; Fernández-Carmona, A; Díaz-Redondo, A; Cárdenas-Cruz, A; García-del Moral, R; Martín-Lopez, J; Díaz-Redondo, T

    2014-12-01

    The aim of this study was to investigate the rate at which the alumni of basic life support courses witnessed and intervened in out-of-hospital emergency situations, and to identify the variables characterizing those alumni associated with a greater number of witnessing events and interventions. An analysis of the efficiency of the courses was also carried out. A descriptive, cross-sectional study was made. A district in the province of Almería (Spain). Alumni of a mass basic life support training program targeted to the general population «Plan Salvavidas» conducted between 2003-2009. In 2010 the alumni were administered a telephone survey asking whether they had witnessed an emergency situation since attending the program, with the collection of information related to this emergency situation. Rate of out-of-hospital emergencies witnessed by the alumni. Rate of intervention of the alumni in emergency situations. Variables characterizing alumni with a greater likelihood of witnessing an emergency situation. A total of 3,864 trained alumni were contacted by telephone. Of 1,098 respondents, 63.9% were women, and the mean age was 26.61±10.6 years. Of these alumni, 11.75% had witnessed emergency situations, an average of three years after completing the course. Of these emergencies, 23.3% were identified as cardiac arrest. The alumni intervened in 98% of the possible cases. In 63% of the cases, there was no connection between the alumni and the victim. The majority of the emergency situations occurred in the street and in public spaces. A greater likelihood of witnessing an emergency situation was associated with being a healthcare worker and with being over 18 years of age. The rate of out-of-hospital emergencies witnessed by these alumni after the course was 11.75%. The level of intervention among the alumni was high. The most efficient target population consisted of healthcare workers. Copyright © 2013 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  1. Perceived social support and life satisfaction in drug addicts: Self-esteem and loneliness as mediators.

    Science.gov (United States)

    Cao, Qilong; Liang, Ying

    2017-11-01

    This study was designed to investigate the mediation effects of both self-esteem and loneliness on the relationship between social support and subjective well-being in drug addicts. In all, 110 participants, all drug addicts from Guangdong Fangcun Brain Hospital, completed the questionnaire. Pearson's correlation analysis showed that perceived social support was positively related to self-esteem and life satisfaction and was negatively correlated with loneliness in drug addicts. Structural equation modeling estimated by the Bootstrap method indicated that loneliness and self-esteem partially mediated the association between perceived social support and life satisfaction. These findings provided insights into the association between perceived social support and life satisfaction in drug addicts.

  2. Carbon Dioxide Control System for a Mars Space Suit Life Support System

    Science.gov (United States)

    Alptekin, Gokhan; Jayaraman, Ambalavanan; Copeland, Robert; Parker, amanda; Paul, Heather L.

    2010-01-01

    Carbon dioxide (CO2) control during Extravehicular Activities (EVAs) on Mars will be challenging. Lithium hydroxide (LiOH) canisters have impractical logistics penalties, and regenerable metal oxide (MetOx) canisters weigh too much. Cycling bed systems and permeable membranes that are regenerable in space vacuum cannot vent on Mars due to the high partial pressure of CO2 in the atmosphere. Although sweep gas regeneration is under investigation, the feasibility, logistics penalties, and failure modes associated with this technique have not been fully determined. TDA Research, Inc. is developing a durable, high-capacity regenerable adsorbent that can remove CO2 from the space suit ventilation loop. The system design allows sorbent regeneration at or above 6 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the ventilation loop. Regeneration during EVA eliminates the consumable requirement related to the use of LiOH canisters and the mission duration limitations imposed by MetOx system. The concept minimizes the amount of consumable to be brought from Earth and makes the mission more affordable, while providing great operational flexibility during EVA. The feasibility of the concept has been demonstrated in a series of bench-scale experiments and a preliminary system analysis. Results indicate that sorbent regeneration can be accomplished by applying a 14 C temperature swing, while regenerating at 13 torr (well above the Martian atmospheric pressure), withstanding over 1,000 adsorption/regeneration cycles. This paper presents the latest results from these sorbent and system development efforts.

  3. The Apollo Number: space suits, self-support, and the walk-run transition.

    Directory of Open Access Journals (Sweden)

    Christopher E Carr

    Full Text Available BACKGROUND: How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g, running, unlike on Earth, uses less energy per distance than walking. METHODOLOGY/PRINCIPAL FINDINGS: The walk-run transition (denoted * correlates with the Froude Number (Fr = v(2/gL, velocity v, gravitational acceleration g, leg length L. Human unsuited Fr* is relatively constant (approximately 0.5 with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g or completely (lunar-g support their own weight. We define the Apollo Number (Ap = Fr/M as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run and calculate Ap. We estimated the binary transition between walk/lope (0 and run (1, yielding Fr* (0.36+/-0.11, mean+/-95% CI and Ap* (0.68+/-0.20. CONCLUSIONS/SIGNIFICANCE: The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  4. Parental autonomy-support, intrinsic life goals, and well-being among adolescents in China and North America.

    Science.gov (United States)

    Lekes, Natasha; Gingras, Isabelle; Philippe, Frederick L; Koestner, Richard; Fang, Jianqun

    2010-08-01

    Self-determination theory proposes that prioritizing intrinsic life goals, such as community involvement, is related to well-being, whereas focusing on extrinsic life goals, such as financial success, is associated with lower well-being and that parenting influences the type of life goals that youth adopt. In a sample of 515 Chinese (56% female, mean age = 15.50) and 567 North American (52% male, mean age = 14.17) adolescents, a model of the relationships between parenting, life goals, and well-being was investigated and confirmed for intrinsic life goals. Across societies, autonomy-supportive parenting was associated with the endorsement of intrinsic life goals, which in turn was associated with well-being. Intrinsic life goals partially mediated the relationship between parental autonomy-support and well-being. These findings suggest that, cross-culturally, prioritizing intrinsic life goals is related to increased well-being among adolescents and that parents could encourage intrinsic life goals by being supportive of their children's autonomy.

  5. Perceived Social Support And Life Satisfaction Of Residents In A Nursing Home In Turkey

    OpenAIRE

    Çimen, Mesut; Akbolat, Mahmut

    2016-01-01

    Abstract: This study was conducted to identify the factors that affect the perception of social support and life satisfaction of selected nursing home residents in Turkey, using the Multidimensional Scale of Perceived Social Support (MSPSS) and the Satisfaction with Life Scale (SWLS). 80 residents participated in the study. Results of univariate analyses indicated that family-based perceived social support of nursing home residents is significantly higher in married residents and in residents...

  6. Religiousness and Spiritual Support Among Advanced Cancer Patients and Associations With End-of-Life Treatment Preferences and Quality of Life

    Science.gov (United States)

    Balboni, Tracy A.; Vanderwerker, Lauren C.; Block, Susan D.; Paulk, M. Elizabeth; Lathan, Christopher S.; Peteet, John R.; Prigerson, Holly G.

    2008-01-01

    Purpose Religion and spirituality play a role in coping with illness for many cancer patients. This study examined religiousness and spiritual support in advanced cancer patients of diverse racial/ethnic backgrounds and associations with quality of life (QOL), treatment preferences, and advance care planning. Methods The Coping With Cancer study is a federally funded, multi-institutional investigation examining factors associated with advanced cancer patient and caregiver well-being. Patients with an advanced cancer diagnosis and failure of first-line chemotherapy were interviewed at baseline regarding religiousness, spiritual support, QOL, treatment preferences, and advance care planning. Results Most (88%) of the study population (N = 230) considered religion to be at least somewhat important. Nearly half (47%) reported that their spiritual needs were minimally or not at all supported by a religious community, and 72% reported that their spiritual needs were supported minimally or not at all by the medical system. Spiritual support by religious communities or the medical system was significantly associated with patient QOL (P = .0003). Religiousness was significantly associated with wanting all measures to extend life (odds ratio, 1.96; 95% CI, 1.08 to 3.57). Conclusion Many advanced cancer patients' spiritual needs are not supported by religious communities or the medical system, and spiritual support is associated with better QOL. Religious individuals more frequently want aggressive measures to extend life. PMID:17290065

  7. Life-space foam: A medium for motivational and cognitive dynamics

    Science.gov (United States)

    Ivancevic, Vladimir; Aidman, Eugene

    2007-08-01

    General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.

  8. Controlled Ecological Life Support System Breadboard Project - 1988

    Science.gov (United States)

    Knott, W. M.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.

  9. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    Science.gov (United States)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  10. Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions

    Science.gov (United States)

    Caruso, Pamela W.

    2009-01-01

    This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.

  11. Relationship between family support and quality of life of type-2 ...

    African Journals Online (AJOL)

    Materials and Methods: A cross-sectional study of 250 adult patients with type 2 diabetes mellitus was carried out over twenty (20) weeks. Respondents' family support was measured using Perceived Social Support – Family Scale {PSS- Fa}, while their quality of life was measured using the short version of the World Health ...

  12. Operational considerations for the Space Station Life Science Glovebox

    Science.gov (United States)

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  13. EPIC: Helping School Life and Family Support Each Other.

    Science.gov (United States)

    Montgomery, David

    1992-01-01

    Born out of a 1981 murder, Buffalo (New York) Public Schools' EPIC (Effective Parenting Information for Children) program successfully combines parenting, effective teaching, and community programs to help family and school life support each other. Under EPIC, teachers are advised to help students acquire 23 skills involving self-esteem, rules,…

  14. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-01-01

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m 3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m 3 , with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Resilience As A Mediator Between Affect, Coping Styles, Support and Life Satisfaction

    Directory of Open Access Journals (Sweden)

    Ozlem Kelle

    2018-06-01

    Full Text Available As humans, we are always targets of many positive and negative life events in which we would show differences in dealing with those events. In this study, the aim was to investigate how individuals react to stressful situations through the concept of resilience. Therefore it was aimed to test the role of individual characteristics of affect and coping styles in addition to receiving support from family and social environment on resilience. The role of resilience in life satisfaction was also investigated. A survey was used including demographic questions, ego resilience scale, positive and negative affect scale, stress coping styles inventory, and satisfaction with life scale. Target of the study was individuals who were over 18 years of age and 403 participants were reached through snowball sampling. Seventy six percent of the participants were female (n=310 and 24% of them were male (n=93. Hypothesized model was tested by using path analysis. Study results showed that positive affect, optimistic coping style and confident coping style were significant predictors of resilience as individual characteristics in addition to receiving social support. Resilience was found as a significant predictor of life satisfaction. Moreover, resilience was also found as a significant mediator of the relationships between positive affect, optimistic coping, confident coping styles, receiving social support and life satisfaction. Importance of the study in the field of psychology and suggestions for future research were also discussed with relevant literature.

  16. Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.

    Science.gov (United States)

    Sun, Shiliang; Xie, Xijiong

    2016-09-01

    Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.

  17. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Science.gov (United States)

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  18. Laser-Supported Detonation Concept as a Space Thruster

    International Nuclear Information System (INIS)

    Fujiwara, Toshi; Miyasaka, Takeshi

    2004-01-01

    Similar to the concept of pulse detonation engine (PDE), a detonation generated in the 'combustion chamber' due to incoming laser absorption can produce the thrust basically much higher than the one that a laser-supported deflagration wave can provide. Such a laser-supported detonation wave concept has been theoretically studied by the first author for about 20 years in view of its application to space propulsion. The entire work is reviewed in the present paper. The initial condition for laser absorption can be provided by increasing the electron density using electric discharge. Thereafter, once a standing/running detonation wave is formed, the laser absorption can continuously be performed by the classical absorption mechanism called Inverse Bremsstrahlung behind a strong shock wave

  19. Effect of ionizing radiation on advanced life support medications

    International Nuclear Information System (INIS)

    Sullivan, D.J.; Hubbard, L.B.; Broadbent, M.V.; Stewart, P.; Jaeger, M.

    1987-01-01

    Advanced life support medications stored in emergency department stretcher areas, diagnostic radiology rooms, and radiotherapy suites are exposed to ionizing radiation. We hypothesized that radiation may decrease the potency and thus the shelf life of medications stored in these areas. Atropine, dopamine, epinephrine, and isoproterenol were exposed to a wide range of ionizing radiation. The potency of the four drugs was unaffected by levels of radiation found in ED stretcher areas and high-volume diagnostic radiograph rooms (eg, chest radiograph, computed tomography, fluoroscopy). The potency of atropine may be reduced by gamma radiation in high-use radiotherapy suites. However, dopamine, epinephrine, and isoproterenol were unaffected by high doses of gamma radiation. Atropine, dopamine, epinephrine, and isoproterenol may be safely kept in ED stretcher areas and diagnostic radiology rooms without loss of potency over the shelf life of the drugs

  20. Making "ethical safe space" in the translation of contested knowledge: the role of community debate in defining end-of-life decision ethics.

    Science.gov (United States)

    Kaufert, Joseph; Schwartz, Karen; Wiebe, Rhonda; Derksen, Jim; Lutfiyya, Zana M; Richert, Dean

    2013-04-01

    The objectives of this article are, first, to document a unique process of research knowledge translation (KT), which the authors describe as the creation of "ethical safe space," and, second, to document the narratives of forum participants and describe their interaction in a dialogue about vulnerability, the authority of physicians, and the perspective of people with disabilities on the policy. Narrative data from qualitative interviews with individual key informants and focus groups were used to identify speakers with specific expertise on policy, disability perspectives, and bioethical issues, who were invited to participate in the Forum on Ethical Safe Space. The planning workgroup adopted a model for enabling representative participation in the public forum designed to reduce the impact of physical, sensory, financial, language, and professional status barriers. Using the transcripts and keynote speakers' printed texts, primary themes and patterns of interaction were identified reflecting the alternative perspectives. Through the development of a workshop on ethical, legal, and disability-related implications of professional policy guidelines developed by the College of Physicians and Surgeons of Manitoba, we provided a qualitative analysis of the discourse involving experts and disability community members supporting alternative positions on the impact of the policy statement, and discuss ethical, legal, and disability rights issues identified in the public debate. Contested policy and ethical frameworks for making decisions about withdrawing and withholding life supporting treatment may influence both the perspectives of palliative care providers and patients referred to palliative care facilities. An innovative model for KT using a public forum that enabled stakeholders with conflicting perspectives to engage with ethical and professional policy issues asserting the physician's authority in contested decisions involving withdrawing or withholding life-supporting

  1. The Environmental Control and Life Support System (ECLSS) advanced automation project

    Science.gov (United States)

    Dewberry, Brandon S.; Carnes, Ray

    1990-01-01

    The objective of the environmental control and life support system (ECLSS) Advanced Automation Project is to influence the design of the initial and evolutionary Space Station Freedom Program (SSFP) ECLSS toward a man-made closed environment in which minimal flight and ground manpower is needed. Another objective includes capturing ECLSS design and development knowledge future missions. Our approach has been to (1) analyze the SSFP ECLSS, (2) envision as our goal a fully automated evolutionary environmental control system - an augmentation of the baseline, and (3) document the advanced software systems, hooks, and scars which will be necessary to achieve this goal. From this analysis, prototype software is being developed, and will be tested using air and water recovery simulations and hardware subsystems. In addition, the advanced software is being designed, developed, and tested using automation software management plan and lifecycle tools. Automated knowledge acquisition, engineering, verification and testing tools are being used to develop the software. In this way, we can capture ECLSS development knowledge for future use develop more robust and complex software, provide feedback to the knowledge based system tool community, and ensure proper visibility of our efforts.

  2. Electrolyser and fuel cells, key elements for energy and life support

    Science.gov (United States)

    Bockstahler, Klaus; Funke, Helmut; Lucas, Joachim

    Both, Electrolyser and Fuel Cells are key elements for regenerative energy and life support systems. Electrolyser technology is originally intended for oxygen production in manned space habitats and in submarines, through splitting water into hydrogen and oxygen. Fuel cells serve for energy production through the reaction, triggered in the presence of an electrolyte, between a fuel and an oxidant. Now combining both technologies i.e. electrolyser and fuel cell makes it a Regenerative Fuel Cell System (RFCS). In charge mode, i.e. with energy supplied e.g. by solar cells, the electrolyser splits water into hydrogen and oxygen being stored in tanks. In discharge mode, when power is needed but no energy is available, the stored gases are converted in the fuel cell to generate electricity under the formation of water that is stored in tanks. Rerouting the water to the electrolyser makes it a closed-loop i.e. regenerative process. Different electrolyser and fuel cell technologies are being evolved. At Astrium emphasis is put on the development of an RFCS comprised of Fixed Alkaline Electrolyser (FAE) and Fuel Cell (AFC) as such technology offers a high electrical efficiency and thus reduced system weight, which is important in space applications. With increasing power demand and increasing discharge time an RFCS proves to be superior to batteries. Since the early technology development multiple design refinements were done at Astrium, funded by the European Space Agency ESA and the German National Agency DLR as well as based on company internal R and T funding. Today a complete RFCS energy system breadboard is established and the operational behavior of the system is being tested. In parallel the electrolyser itself is subject to design refinement and testing in terms of oxygen production in manned space habitats. In addition essential features and components for process monitoring and control are being developed. The present results and achievements and the dedicated

  3. Pediatric Basic Life Support Self-training is Comparable to Instructor-led Training: A randomized manikin study

    DEFF Research Database (Denmark)

    Vestergaard, L. D.; Løfgren, Bo; Jessen, C.

    2011-01-01

    Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study.......Pediatric Basic Life Support Self-training is comparable to Instructor-led Training: A randomized manikin study....

  4. Surviving space flight: case study on MELiSSA's CIII nitrifying compartment

    Science.gov (United States)

    Ilgrande, Chiara; Lasseur, Christophe; Mastroleo, Felice; Paille, Christel; Leys, Natalie; Morozova, Julia; Ilyin, Vyacheslav; Clauwaert, Peter; Christiaens, Marlies E. R.; Lindeboom, Ralph E. F.; Vlaeminck, Siegfried; Prat, Delphine; Arroyo, Jose M. C.; Conincx, Ilse; Van Hoey, Olivier; Roume, Hugo; Udert, Kai; Sas, Benedikt

    2016-07-01

    Space synthetic biology offers key opportunities for long-term space missions. Planets mining, terraformation, space medicine and Life Support technologies would all benefit from an integrative biological approach. However, space is a harsh environment for life: microgravity, temperature, UV and cosmic radiation can affect the health and functionality of microorganisms and plants, possibly preventing the optimal performance of the systems. The European Space Agency's Life Support System (MELiSSA) has been developed as a model for future long term Space missions and Space habitation. MELiSSA is a 5 compartment artificial ecosystem with microorganisms and higher, that aims at completely recycling gas, liquid and solid waste. In this study, the survival and functional activity after Lower Earth Orbit conditions of microbial nitrogen conversions, relevant for MELiSSA's CIII compartment, was tested. Synthetic communities containing Nitrosomonas europeae, Nitrosomonas ureae, Nitrobacter winogradskyi, Nitrospira moscoviensis and Cupriavidus pinatubonensis were exposed to the Lower Earth Orbit conditions of the International Space Station (ISS) for 7 days. Nitrosomonas europeae, Nitrobacter winogradskyi, Cupriavidus pinatubonensis, and three mixed communities (a urine nitrification sludge, a sludge containing aerobic ammonia oxidizing bacteria and anammox bacteria (OLAND), and an aquaculture sludge containing ammonia oxidizing archaea) were exposed to Lower Earth Orbit conditions for 44 days. Survival after both space flights was demonstrated because nitritation, nitratation, denitrification and anammox activity could be restored at a rate comparable to ground storage conditions. Our results validate the potential survival feasibility and suggest future space applications for N-related microorganisms.

  5. A review of the habitability aspects of prior space flights from the flight crew perspective with an orientation toward designing Space Station Freedom

    Science.gov (United States)

    Stramler, J. H.

    1990-01-01

    Habitability is a very important issue in long-duration spaceflight. With this concern, a review of much of the existing U.S. Skylab, Spacelab, and some Soviet literature on habitability aspects of long-duratioin space flight was completed for the Astronaut Space Station Support Office. The data were organized to follow as closely as possible the SSF distributed systems, such as Life Support, Data Management, etc. A new definition of habitability is proposed.

  6. Water Use and Requirements of PtFT1 Plums for Long Duration Space Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Early applications of bioregenerative life support technologies for space exploration will likely start with supplemental food production for the crew. This could...

  7. Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway

    Science.gov (United States)

    Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.

    2018-02-01

    We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.

  8. Pengaruh Persepsi Dukungan Organisasi Terhadap Work-Life Balance (The Influence of Perceived Organizational Support toward Work-Life Balance)

    OpenAIRE

    Sianturi, Elisabet Damayanti

    2017-01-01

    121301107 Work-life balance merupakan suatu keadaan dimana individu merasa terikat dan puas terhadap kehidupan pekerjaan dan kehidupan keluarganya. Salah satu faktor yang mempengaruhi work-life balance adalah organizational support (dukungan organisasi). Dalam hal ini, dukungan organisasi sangat penting karena ketersediaan dukungan terhadap karyawan dalam menjalankan perannya di tempat kerja dan keluarga akan membuat karyawan merasa bahwa organisasi memperhatikan kesejaht...

  9. Prehospital interventions for penetrating trauma victims: a prospective comparison between Advanced Life Support and Basic Life Support.

    Science.gov (United States)

    Seamon, Mark J; Doane, Stephen M; Gaughan, John P; Kulp, Heather; D'Andrea, Anthony P; Pathak, Abhijit S; Santora, Thomas A; Goldberg, Amy J; Wydro, Gerald C

    2013-05-01

    Advanced Life Support (ALS) providers may perform more invasive prehospital procedures, while Basic Life Support (BLS) providers offer stabilisation care and often "scoop and run". We hypothesised that prehospital interventions by urban ALS providers prolong prehospital time and decrease survival in penetrating trauma victims. We prospectively analysed 236 consecutive ambulance-transported, penetrating trauma patients an our urban Level-1 trauma centre (6/2008-12/2009). Inclusion criteria included ICU admission, length of stay >/=2 days, or in-hospital death. Demographics, clinical characteristics, and outcomes were compared between ALS and BLS patients. Single and multiple variable logistic regression analysis determined predictors of hospital survival. Of 236 patients, 71% were transported by ALS and 29% by BLS. When ALS and BLS patients were compared, no differences in age, penetrating mechanism, scene GCS score, Injury Severity Score, or need for emergency surgery were detected (p>0.05). Patients transported by ALS units more often underwent prehospital interventions (97% vs. 17%; p<0.01), including endotracheal intubation, needle thoracostomy, cervical collar, IV placement, and crystalloid resuscitation. While ALS ambulance on-scene time was significantly longer than that of BLS (p<0.01), total prehospital time was not (p=0.98) despite these prehospital interventions (1.8 ± 1.0 per ALS patient vs. 0.2 ± 0.5 per BLS patient; p<0.01). Overall, 69.5% ALS patients and 88.4% of BLS patients (p<0.01) survived to hospital discharge. Prehospital resuscitative interventions by ALS units performed on penetrating trauma patients may lengthen on-scene time but do not significantly increase total prehospital time. Regardless, these interventions did not appear to benefit our rapidly transported, urban penetrating trauma patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Prediction of Quality of Life of Non–Insulin-Dependent Diabetic Patients Based on Perceived Social Support

    Directory of Open Access Journals (Sweden)

    Hossein Shareh

    2012-04-01

    Full Text Available Background: The objective of this study was to predic quality of life based on perceived social support components in non–insulin-dependent diabetic patients.Materials and Method: Fifty patients with non–insulin-dependent diabetes mellitus from Al-Zahra diabetic center in Shiraz participated in a cross-sectional study via survey instrument. All subjects completed multidimensional scale of perceived social support (MSPSS and world health organization quality of life- brief (WHOQOL-BREF questionnaires. Results: On the basis of stepwise multiple regression analysis friends and family dimensions of perceived social support were the best predictors of the quality of life and its dimensions (p<0.01.Conclusion: Friends and family dimensions of perceived social support have significant contributions in predicting quality of life of patients with non–insulin-dependent diabetes mellitus.

  11. Mammalian development in space

    Science.gov (United States)

    Ronca, April E.

    2003-01-01

    Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young

  12. Effects of obligatory training and prior training experience on attitudes towards performing basic life support: a questionnaire survey.

    Science.gov (United States)

    Matsubara, Hiroki; Enami, Miki; Hirose, Keiko; Kamikura, Takahisa; Nishi, Taiki; Takei, Yutaka; Inaba, Hideo

    2015-04-01

    To determine the effect of Japanese obligatory basic life support training for new driver's license applicants on their willingness to carry out basic life support. We distributed a questionnaire to 9,807 participants of basic life support courses in authorized driving schools from May 2007 to April 2008 after the release of the 2006 Japanese guidelines. The questionnaire explored the participants' willingness to perform basic life support in four hypothetical scenarios: cardiopulmonary resuscitation on one's own initiative; compression-only cardiopulmonary resuscitation following telephone cardiopulmonary resuscitation; early emergency call; and use of an automated external defibrillator. The questionnaire was given at the beginning of the basic life support course in the first 6-month term and at the end in the second 6-month term. The 9,011 fully completed answer sheets were analyzed. The training significantly increased the proportion of respondents willing to use an automated external defibrillator and to perform cardiopulmonary resuscitation on their own initiative in those with and without prior basic life support training experience. It significantly increased the proportion of respondents willing to carry out favorable actions in all four scenarios. In multiple logistic regression analysis, basic life support training and prior training experiences within 3 years were associated with the attitude. The analysis of reasons for unwillingness suggested that the training reduced the lack of confidence in their skill but did not attenuate the lack of confidence in detection of arrest or clinical judgment to initiate a basic life support action. Obligatory basic life support training should be carried out periodically and modified to ensure that participants gain confidence in judging and detecting cardiac arrest.

  13. [The level of first aid and basic life support for the next generation of physicians

    NARCIS (Netherlands)

    Severien, I.; Tan, E.C.T.H.; Metz, J.C.; Biert, J.; Berden, H.J.J.M.

    2005-01-01

    According to Dutch medical-education guidelines junior doctors are expected to be able to carry out first aid and basic life support. We determined the level of first aid and basic life support of junior doctors at the Radboud University Nijmegen Medical Centre, The Netherlands. Of the 300 junior

  14. Reducing Human Radiation Risks on Deep Space Missions

    Science.gov (United States)

    2017-09-01

    101 Figure 49. Human Health, Life Support, and Habitation System...2013). These same studies reveal that for astronauts returning home, this may result in significant loss of lifespan and quality of life due to...warnings to the satellites in orbit at either planet , or to spacecraft in transit (Phys.org 2010). C. IMPROVEMENTS TO MEASUREMENTS OF SPACE RADIATION

  15. Controlled ecological life support system breadboard project, 1988

    Science.gov (United States)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  16. Withholding and withdrawing life-support therapy in an Emergency Department: prospective survey.

    Science.gov (United States)

    Le Conte, Philippe; Baron, Denis; Trewick, David; Touzé, Marie Dominique; Longo, Céline; Vial, Irshaad; Yatim, Danielle; Potel, Gille

    2004-12-01

    Few studies have focused on decisions to withdraw or withhold life-support therapies in the emergency department. Our objectives were to identify clinical situations where life-support was withheld or withdrawn, the criteria used by physicians to justify their decisions, the modalities necessary to implement these decisions, patient disposition, and outcome. Prospective unicenter survey in an Emergency Department of a tertiary care teaching hospital. All non-trauma patients (n=119) for whom a decision to withhold or withdraw life-sustaining treatments was taken between January and September 1998. Choice of criteria justifying the decision to withhold or withdraw life-sustaining treatments, time interval from ED admission to the decision; type of decision implemented, outcome. Fourteen thousand eight hundred and seventy-five non-trauma patients were admitted during the study period, 119 were included, mean age 75+/-13 years. Resuscitation procedures were instituted for 96 (80%) patients before a subsequent decision was taken. Physicians chose on average 6+/-2 items to justify their decision; the principal acute medical disorder and futility of care were the two criteria most often used. Median time interval to reach the decision was 187 min. Withdrawal involved 37% of patients and withholding 63% of patients. The family was involved in the decision-making process in 72% of patients. The median time interval from the decision to death was 16 h (5 min to 140 days). Withdrawing and withholding life-support therapy involved elderly patients with underlying chronic cardiopulmonary disease or metastatic cancer or patients with acute non-treatable illness.

  17. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Science.gov (United States)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  18. Phase Change Permeation Technology For Environmental Control Life Support Systems

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Use of a phase change permeation membrane (Dutyion [Trademark]) to passively and selectively mobilize water in microgravity to enable improved water recovery from urine/brine for Environment Control and Life Support Systems (ECLSS) and water delivery to plans for potential use in microgravity.

  19. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Science.gov (United States)

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  20. An Innovation in Learning and Teaching Basic Life Support: A Community Based Educational Intervention

    Directory of Open Access Journals (Sweden)

    Anne D Souza

    2018-01-01

    Full Text Available Background: Out of hospital deaths due to cardiac arrest would commonly occur because of the lack of awareness about the quick and right action to be taken. In this context the healthcare students undergo training in basic life support. However the lay persons are not exposed to such training. The present study was intended to train the auto drivers, the basic skills of basic life support by the medical and nursing students. Students got an opportunity to learn and teach the skills under the supervision of faculty. Methods: A total of fourteen students, 20 auto drivers of Manipal were included in the study population. The session on one and two rescuer cardio pulmonary resuscitation and relieving foreign body airway obstruction was conducted by the trained students for the auto drivers under the observation of the faculty. Prior knowledge of the study population was assessed by the pre-session questionnaire followed by a post-session questionnaire at the end of the session. The skill evaluation was carried out using a checklist. Results: The auto drivers participated in the session, gained required skills of providing basic life support. The students who trained the study population opined that they got an opportunity to teach basic life support which would help them build their teaching skills and confidence. Conclusion: The lay persons attaining basic life support skills have a high impact on the management of out of hospital cardiac arrest victims. Involving the healthcare students as instructors makes an innovation in learning.