WorldWideScience

Sample records for space including space

  1. Alternating phase focussing including space charge

    International Nuclear Information System (INIS)

    Cheng, W.H.; Gluckstern, R.L.

    1992-01-01

    Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs

  2. The immune system in space, including Earth-based benefits of space-based research.

    Science.gov (United States)

    Sonnenfeld, Gerald

    2005-08-01

    Exposure to space flight conditions has been shown to result in alterations in immune responses. Changes in immune responses of humans and experimental animals have been shown to be altered during and after space flight of humans and experimental animals or cell cultures of lymphoid cells. Exposure of subjects to ground-based models of space flight conditions, such as hindlimb unloading of rodents or chronic bed rest of humans, has also resulted in changes in the immune system. The relationship of these changes to compromised resistance to infection or tumors in space flight has not been fully established, but results from model systems suggest that alterations in the immune system that occur in space flight conditions may be related to decreases in resistance to infection. The establishment of such a relationship could lead to the development of countermeasures that could prevent or ameliorate any compromises in resistance to infection resulting from exposure to space flight conditions. An understanding of the mechanisms of space flight conditions effects on the immune response and development of countermeasures to prevent them could contribute to the development of treatments for compromised immunity on earth.

  3. Hilbert spaces contractively included in the Hardy space of the bidisk

    NARCIS (Netherlands)

    Alpay, D.; Bolotnikov, V.; Dijksma, A.; Sadosky, C.

    We study the reproducing kernel Hilbert spaces h(D-2,S) with kernels of the form I-S(z(1),z(2)>)S(w(1),w(2))*/(1-z(1)w(1)*) (1-z(2)w(2)*) where S(z(1),z(2)) is a Schur function of two variables z(1),z(2)is an element of D. They are analogs of the spaces h(D,S) with reproducing kernel

  4. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  5. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Science.gov (United States)

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  6. Space cannot be cut-why self-identity naturally includes neighbourhood.

    Science.gov (United States)

    Rayner, Alan David

    2011-06-01

    Psychology is not alone in its struggle with conceptualizing the dynamic relationship between space and individual or collective identity. This general epistemological issue haunts biology where it has a specific focus in evolutionary arguments. It arises because of the incompatibility between definitive logical systems of 'contradiction or unity', which can only apply to inert material systems, and natural evolutionary processes of cumulative energetic transformation. This incompatibility makes any attempt to apply definitive logic to evolutionary change unrealistic and paradoxical. It is important to recognise, because discrete perceptions of self and group, based on the supposition that any distinguishable identity can be completely cut free, as an 'independent singleness', from the space it inescapably includes and is included in, are a profound but unnecessary source of psychological, social and environmental conflict. These perceptions underlie Darwin's definition of 'natural selection' as 'the preservation of favoured races in the struggle for life'. They result in precedence being given to striving for homogeneous supremacy, through the competitive suppression of others, instead of seeking sustainable, co-creative evolutionary relationship in spatially and temporally heterogeneous communities. Here, I show how 'natural inclusion', a new, post-dialectic understanding of evolutionary process, becomes possible through recognising space as a limitless, indivisible, receptive (non-resistive) 'intangible presence' vital for movement and communication, not as empty distance between one tangible thing and another. The fluid boundary logic of natural inclusion as the co-creative, fluid dynamic transformation of all through all in receptive spatial context, allows all form to be understood as flow-form, distinctive but dynamically continuous, not singularly discrete. This simple move from regarding space and boundaries as sources of discontinuity and discrete

  7. Challenges for Life Support Systems in Space Environments, Including Food Production

    Science.gov (United States)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew

  8. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  9. NewSpace: The Emerging Commercial Space Industry

    Science.gov (United States)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  10. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    Science.gov (United States)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  11. Space-Time Crystal and Space-Time Group.

    Science.gov (United States)

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  12. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  13. Metric modular spaces

    CERN Document Server

    Chistyakov, Vyacheslav

    2015-01-01

    Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric  and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existe...

  14. Structures that Include a Semi-Outdoor Space

    DEFF Research Database (Denmark)

    Papachristou, C.; Foteinaki, Kyriaki; Kazanci, Ongun Berk

    2016-01-01

    The thermal environment of buildings with a second "skin" and semi-outdoor space is examined in the present study. A literature review was conducted on similar structures and only a few studies were found focusing on the thermal environment. Two different building case studies were chosen with di...

  15. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  16. SpaceTech—Postgraduate space education

    Science.gov (United States)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  17. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  18. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    Science.gov (United States)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  19. Budgeting Academic Space

    Science.gov (United States)

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  20. Space engineering

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  1. Space and energy. [space systems for energy generation, distribution and control

    Science.gov (United States)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  2. The politics of space - Who owns what? Earth law for space

    Science.gov (United States)

    Hosenball, S. N.

    1983-01-01

    Topics of concern in developing space law, i.e., international disagreements, the present status of space law, and requirements for future space activities, are discussed. Factors inhibiting agreements include governments that wish to control specific regions of GEO, the refusal of several countries to permit international DBS television broadcasts over their boundaries, the possibility that weapons may be placed in space, and the lack of international laws governing humans and industries in space. It is noted that any state entering an international agreement has relinquished some of its sovereignty. The Outer Space Treaty has removed celestial bodies from claims of national appropriation. States retain sovereignty over their citizens who travel in space, a problematical concept once internationally-manned settlements in space or on the moon are established. It is recommended that space law develop mainly in reaction to the implementation of new space capabilities in order to avoid hindering space activities.

  3. A primer on Hilbert space theory linear spaces, topological spaces, metric spaces, normed spaces, and topological groups

    CERN Document Server

    Alabiso, Carlo

    2015-01-01

    This book is an introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, resides in the very high mathematical difficulty of even the simplest physical case. Within an ordinary graduate course in physics there is insufficient time to cover the theory of Hilbert spaces and operators, as well as distribution theory, with sufficient mathematical rigor. Compromises must be found between full rigor and practical use of the instruments. The book is based on the author's lessons on functional analysis for graduate students in physics. It will equip the reader to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. With respect to the original lectures, the mathematical flavor in all sub...

  4. Probabilistic metric spaces

    CERN Document Server

    Schweizer, B

    2005-01-01

    Topics include special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. 1983 edition, updated with 3 new appendixes. Includes 17 illustrations.

  5. Weakly infinite-dimensional spaces

    International Nuclear Information System (INIS)

    Fedorchuk, Vitalii V

    2007-01-01

    In this survey article two new classes of spaces are considered: m-C-spaces and w-m-C-spaces, m=2,3,...,∞. They are intermediate between the class of weakly infinite-dimensional spaces in the Alexandroff sense and the class of C-spaces. The classes of 2-C-spaces and w-2-C-spaces coincide with the class of weakly infinite-dimensional spaces, while the compact ∞-C-spaces are exactly the C-compact spaces of Haver. The main results of the theory of weakly infinite-dimensional spaces, including classification via transfinite Lebesgue dimensions and Luzin-Sierpinsky indices, extend to these new classes of spaces. Weak m-C-spaces are characterised by means of essential maps to Henderson's m-compacta. The existence of hereditarily m-strongly infinite-dimensional spaces is proved.

  6. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  7. Theory of function spaces

    CERN Document Server

    Triebel, Hans

    1983-01-01

    The book deals with the two scales Bsp,q and Fsp,q of spaces of distributions, where -8include many classical and modern spaces, such as Hölder spaces, Zygmund classes, Sobolev spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and spaces of BMO-type. It is the main aim of this book to give a unified treatment of the corresponding spaces on the Euclidean n-space Rn in the framework of Fourier analysis, which is based on the technique of maximal functions, Fourier multipliers and interpolation assertions. These topics are treated in Chapter 2, which is the heart

  8. Strategy and space

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    in different periods and how these strategies can be related to the general conditions of the corporation. The strategic uncertainty of the corporation is investigated as a main determining factor for changes in space strategy based on theories of the relations between strategy and place. These theories......The article is based on results from a research project on space strategies and building values, which included a major case study of the development of facilities for the Danish Broadcasting Corporation over time. The focus is to identify, how different space strategies have been implemented...... include that corporations follows one of the three generic space strategies: Incrementalism, standardization, and value-based strategy. Among the conclusion are, that the space strategies mostly changes between incremental and value-based strategies, but one period of standardization was identified...

  9. Space development and space science together, an historic opportunity

    Science.gov (United States)

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  10. WORKSHOP: Inner space - outer space

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology

  11. WORKSHOP: Inner space - outer space

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-09-15

    During the first week of May, the Fermilab theoretical astrophysics group hosted an international conference on science at the interface of particle physics and cosmology/astrophysics. The conference (Inner Space-Outer Space) was attended by a very diverse group of more than 200 physical scientists, including astronomers, astrophysicists, cosmologists, low-temperature physicists, and elementary particle theorists and experimentalists. The common interest which brought this diverse group to gether is the connection between physics on the smallest scale probed by man - the realm of elementary particle physics - and physics on the largest scale imaginable (the entire Universe) - the realm of cosmology.

  12. Space Weather opportunities from the Swarm mission including near real time applications

    DEFF Research Database (Denmark)

    Stolle, Claudia; Floberghagen, Rune; Luehr, Hermann

    2013-01-01

    Sophisticated space weather monitoring aims at nowcasting and predicting solar-terrestrial interactions because their effects on the ionosphere and upper atmosphere may seriously impact advanced technology. Operating alert infrastructures rely heavily on ground-based measurements and satellite...... these products in timely manner will add significant value in monitoring present space weather and helping to predict the evolution of several magnetic and ionospheric events. Swarm will be a demonstrator mission for the valuable application of LEO satellite observations for space weather monitoring tools....

  13. Realizing spaces as path-component spaces

    OpenAIRE

    Banakh, Taras; Brazas, Jeremy

    2018-01-01

    The path component space of a topological space $X$ is the quotient space $\\pi_0(X)$ whose points are the path components of $X$. We show that every Tychonoff space $X$ is the path-component space of a Tychonoff space $Y$ of weight $w(Y)=w(X)$ such that the natural quotient map $Y\\to \\pi_0(Y)=X$ is a perfect map. Hence, many topological properties of $X$ transfer to $Y$. We apply this result to construct a compact space $X\\subset \\mathbb{R}^3$ for which the fundamental group $\\pi_1(X,x_0)$ is...

  14. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  15. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    Science.gov (United States)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  16. Space Environment Modeling

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes presentation materials and outputs from operational space environment models produced by the NOAA Space Weather Prediction Center (SWPC) and...

  17. Curved twistor spaces and H-space

    International Nuclear Information System (INIS)

    Tod, K.P.

    1980-01-01

    The curved twistor space construction of Penrose for anti-self-dual solutions to the Einstein vacuum equations is described. Curved twistor spaces are defined and it is shown with the aid of an example how to obtain them by deforming the complex structure of regions of flat twistor space. The connection of this procedure with Newman's H-space construction via asymptotic twistor space is outlined. (Auth.)

  18. Large size space construction for space exploitation

    Science.gov (United States)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  19. Elements of linear space

    CERN Document Server

    Amir-Moez, A R; Sneddon, I N

    1962-01-01

    Elements of Linear Space is a detailed treatment of the elements of linear spaces, including real spaces with no more than three dimensions and complex n-dimensional spaces. The geometry of conic sections and quadric surfaces is considered, along with algebraic structures, especially vector spaces and transformations. Problems drawn from various branches of geometry are given.Comprised of 12 chapters, this volume begins with an introduction to real Euclidean space, followed by a discussion on linear transformations and matrices. The addition and multiplication of transformations and matrices a

  20. SpacePy - a Python-based library of tools for the space sciences

    International Nuclear Information System (INIS)

    Morley, Steven K.; Welling, Daniel T.; Koller, Josef; Larsen, Brian A.; Henderson, Michael G.

    2010-01-01

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks to promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the

  1. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  2. Space 2000 Symposium

    Science.gov (United States)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  3. The Outer Space Treaty

    Science.gov (United States)

    Johnson, Christopher Daniel

    2018-01-01

    Negotiated at the United Nations and in force since 1967, the Outer Space Treaty has been ratified by over 100 countries and is the most important and foundational source of space law. The treaty, whose full title is "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies," governs all of humankind's activities in outer space, including activities on other celestial bodies and many activities on Earth related to outer space. All space exploration and human spaceflight, planetary sciences, and commercial uses of space—such as the global telecommunications industry and the use of space technologies such as position, navigation, and timing (PNT), take place against the backdrop of the general regulatory framework established in the Outer Space Treaty. A treaty is an international legal instrument which balances rights and obligations between states, and exists as a kind of mutual contract of shared understandings, rights, and responsibilities between them. Negotiated and drafted during the Cold War era of heightened political tensions, the Outer Space Treaty is largely the product of efforts by the United States and the USSR to agree on certain minimum standards and obligations to govern their competition in "conquering" space. Additionally, the Outer Space Treaty is similar to other treaties, including treaties governing the high seas, international airspace, and the Antarctic, all of which govern the behavior of states outside of their national borders. The treaty is brief in nature and only contains 17 articles, and is not comprehensive in addressing and regulating every possible scenario. The negotiating states knew that the Outer Space Treaty could only establish certain foundational concepts such as freedom of access, state responsibility and liability, non-weaponization of space, the treatment of astronauts in distress, and the prohibition of non-appropriation of

  4. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  5. Atoms for space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  6. Atoms for space

    International Nuclear Information System (INIS)

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig

  7. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  8. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    Science.gov (United States)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  9. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  10. Space commerce in a global economy - Comparison of international approaches to commercial space

    Science.gov (United States)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  11. Space Radiation Research at NASA

    Science.gov (United States)

    Norbury, John

    2016-01-01

    The harmful effects of space radiation on astronauts is one of the most important limiting factors for human exploration of space beyond low Earth orbit, including a journey to Mars. This talk will present an overview of space radiation issues that arise throughout the solar system and will describe research efforts at NASA aimed at studying space radiation effects on astronauts, including the experimental program at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Recent work on galactic cosmic ray simulation at ground based accelerators will also be presented. The three major sources of space radiation, namely geomagnetically trapped particles, solar particle events and galactic cosmic rays will be discussed as well as recent discoveries of the harmful effects of space radiation on the human body. Some suggestions will also be given for developing a space radiation program in the Republic of Korea.

  12. Management of outer space

    Science.gov (United States)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  13. Isometries on Banach spaces function spaces

    CERN Document Server

    Fleming, Richard J

    2002-01-01

    Fundamental to the study of any mathematical structure is an understanding of its symmetries. In the class of Banach spaces, this leads naturally to a study of isometries-the linear transformations that preserve distances. In his foundational treatise, Banach showed that every linear isometry on the space of continuous functions on a compact metric space must transform a continuous function x into a continuous function y satisfying y(t) = h(t)x(p(t)), where p is a homeomorphism and |h| is identically one.Isometries on Banach Spaces: Function Spaces is the first of two planned volumes that survey investigations of Banach-space isometries. This volume emphasizes the characterization of isometries and focuses on establishing the type of explicit, canonical form given above in a variety of settings. After an introductory discussion of isometries in general, four chapters are devoted to describing the isometries on classical function spaces. The final chapter explores isometries on Banach algebras.This treatment p...

  14. Study on Chinese space mutation breeding by integrating the earth with the space

    International Nuclear Information System (INIS)

    Wen Xianfang; Zhang Long; Dai Weixu; Li Chunhua

    2004-01-01

    This paper described the status of space mutation breeding in China. It emphasized that since 1978 Chinese Space scientists and agricultural biologists have send 50 kg seeds of more than 70 crops including cereals, cotton, oil, vegetable, fruit and pasture to the space using the facilities such as reture satellite 9 times, Shenzhou aircraft twice and high balloon 4 times, and 19 new varieties with high yield, high quality and disease-resistance, including five rice varieties, two wheat varieties, two cotton varieties, one sweat pepper, one tomato variety, one sesame variety, three water melon varieties, one lotus varieties and one ganaderma lucidum variety, have been bred though years of breeding at the Earth at more than 70 Chinese research institutes in 22 provinces. In addition more than 50 new lines and many other germ plasma resources have been obtained. Study on space breeding mechanism, such as biological effect of space induction, genetic variation by cell and molecular techniques and simulated study at the earth, has been conducted and some progresses have been achieved. Many space-breeding bases have been established in some provinces. Space varieties have been extended up to 270000 hectares, and some useful scientific achievements and social economic benefit had been made. The study of Chinese space mutation breading is going ahead in the world. The paper also introduced the contribution and results made by former three reture satellites in space science. Some basic parameters listed involved in study on space mutation breeding and the former three reture satellites. We also prospected the future of space mutation breeding. (authors)

  15. Space solar power for powering a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Laubscher, B. E. (Bryan E.); Kellum, M. J. (Mervyn J.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe a Space Solar Power (SSP) system capable of powering the climbers of an SE. The initial SE will use laser power beaming from floating platforms near the SE platform. This study outlines an SSP system, based near the SE at geosynchronous altitude (GEO), which powers the climbers traversing the elevator. Such a system would reduce the SE system's dependence on fuel supply from land for its power beaming facilities. Moreover, since deploying SSP systems is anticipated to be a major use for SE's, SSP's could represent an elegant solution to the problem of SE energy consumption. SSP systems for sending usable power to Earth have been designed for well over 30 years. Technologies pertinent to SSP systems are continually evolving. This slightly different application carries the added requirements of aiming the beamed power at a moving target and sending the power in a form the climbers can use. Systems considered include beaming power to the climbers directly from a traditional SSP and reflecting sunlight onto the climbers. One of our designs includes a very new technology, optical rectennas. Mars SEs are conceived as having space-based power systems. Therefore, it is important to consider the problems that will be encountered in these types of applications.

  16. The Morse oscillator in position space, momentum space, and phase space

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Springborg, Michael

    1988-01-01

    We present a unified description of the position-space wave functions, the momentum-space wave functions, and the phase-space Wigner functions for the bound states of a Morse oscillator. By comparing with the functions for the harmonic oscillator the effects of anharmonicity are visualized....... Analytical expressions for the wave functions and the phase space functions are given, and it is demonstrated how a numerical problem arising from the summation of an alternating series in evaluating Laguerre functions can be circumvented. The method is applicable also for other problems where Laguerre...... functions are to be calculated. The wave and phase space functions are displayed in a series of curves and contour diagrams. An Appendix discusses the calculation of the modified Bessel functions of real, positive argument and complex order, which is required for calculating the phase space functions...

  17. Dual spaces of local Morrey-type spaces

    OpenAIRE

    Gogatishvili, A. (Amiran); Mustafayev, R. (Rza)

    2011-01-01

    In this paper we show that associated spaces and dual spaces of the local Morrey-type spaces are so called complementary local Morrey-type spaces. Our method is based on an application of multidimensional reverse Hardy inequalities.

  18. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  19. Cognitive Neuroscience in Space

    Directory of Open Access Journals (Sweden)

    Gabriel G. De la Torre

    2014-07-01

    Full Text Available Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  20. Banach spaces of continuous functions as dual spaces

    CERN Document Server

    Dales, H G; Lau, A T -M; Strauss, D

    2016-01-01

    This book gives a coherent account of the theory of Banach spaces and Banach lattices, using the spaces C_0(K) of continuous functions on a locally compact space K as the main example. The study of C_0(K) has been an important area of functional analysis for many years. It gives several new constructions, some involving Boolean rings, of this space as well as many results on the Stonean space of Boolean rings. The book also discusses when Banach spaces of continuous functions are dual spaces and when they are bidual spaces.

  1. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  2. The human role in space. Volume 3: Generalizations on human roles in space

    Science.gov (United States)

    1984-01-01

    The human role in space was studied. The role and the degree of direct involvement of humans that will be required in future space missions, was investigated. Valid criteria for allocating functional activities between humans and machines were established. The technology requirements, ecnomics, and benefits of the human presence in space were examined. Factors which affect crew productivity include: internal architecture; crew support; crew activities; LVA systems; IVA/EVA interfaces; and remote systems management. The accomplished work is reported and the data and analyses from which the study results are derived are included. The results provide information and guidelines to enable NASA program managers and decision makers to establish, early in the design process, the most cost effective design approach for future space programs, through the optimal application of unique human skills and capabilities in space.

  3. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  4. Full Space Vectors Modulation for Nine-Switch Converters Including CF & DF Modes

    DEFF Research Database (Denmark)

    Dehghan Dehnavi, Seyed Mohammad; Mohamadian, Mustafa; Andersen, Michael A. E.

    2010-01-01

    converter. As a space vector modulation for DF mode has already been proposed by authors. This paper proposes a full space vector modulation (SVM) for both CF and DF modes. Also practical methods are presented for SVM proposed. In addition a special SVM is proposed that offers minimum total harmonic...... distortion (THD) in DF mode. The performance of the proposed SVM is verified by simulation results....

  5. Space weapon technology and policy

    Science.gov (United States)

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  6. Space Commercialization and the Development of Space Law

    Science.gov (United States)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  7. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  8. Solar origins of space weather and space climate

    CERN Document Server

    Komm, Rudolf; Pevtsov, Alexei; Leibacher, John

    2014-01-01

    This topical issue is based on the presentations given at the 26th National Solar Observatory (NSO) Summer Workshop held at the National Solar Observatory/Sacramento Peak, New Mexico, USA from 30 April to 4 May 2012. This unique forum brought together experts in different areas of solar and space physics to help in developing a full picture of the origin of solar phenomena that affect Earth’s technological systems.  The articles include theory, model, and observation research on the origin of the solar activity and its cycle, as well as a discussion on how to incorporate the research into space-weather forecasting tools.  This volume is aimed at graduate students and researchers active in solar physics and space science.  Previously published in Solar Physics, Vol. 289/2, 2014.

  9. Preparing future space leaders - International Space University

    Science.gov (United States)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  10. Yearbook on space policy 2015 access to space and the evolution of space activities

    CERN Document Server

    Baranes, Blandina; Hulsroj, Peter; Lahcen, Arne

    2017-01-01

    The Yearbook on Space Policy, edited by the European Space Policy Institute (ESPI), is the reference publication analysing space policy developments. Each year it presents issues and trends in space policy and the space sector as a whole. Its scope is global and its perspective is European. The Yearbook also links space policy with other policy areas. It highlights specific events and issues, and provides useful insights, data and information on space activities. The first part of the Yearbook sets out a comprehensive overview of the economic, political, technological and institutional trends that have affected space activities. The second part of the Yearbook offers a more analytical perspective on the yearly ESPI theme and consists of external contributions written by professionals with diverse backgrounds and areas of expertise. The third part of the Yearbook carries forward the character of the Yearbook as an archive of space activities. The Yearbook is designed for government decision-makers and agencies...

  11. Planning for a space infrastructure for disposal of nuclear space power systems

    International Nuclear Information System (INIS)

    Angelo, J. Jr.; Albert, T.E.; Lee, J.

    1989-01-01

    The development of safe, reliable, and compact power systems is vital to humanity's exploration, development, and, ultimately, civilization of space. Nuclear power systems appear to present to offer the only practical option of compact high-power systems. From the very beginning of US space nuclear power activities, safety has been a paramount requirement. Assurance of nuclear safety has included prelaunch ground handling operations, launch, and space operations of nuclear power sources, and more recently serious attention has been given to postoperational disposal of spent or errant nuclear reactor systems. The purpose of this paper is to describe the progress of a project to utilize the capabilities of an evolving space infrastructure for planning for disposal of space nuclear systems. Project SIREN (Search, Intercept, Retrieve, Expulsion - Nuclear) is a project that has been initiated to consider post-operational disposal options for nuclear space power systems. The key finding of Project SIREN was that although no system currently exists to affect the disposal of a nuclear space power system, the requisite technologies for such a system either exist or are planned for part of the evolving space infrastructure

  12. The International Space University

    Science.gov (United States)

    Davidian, Kenneth J.

    1990-01-01

    The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.

  13. public spaces

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2013-01-01

    Full Text Available The topic of this issue is PUBLIC SPACES. It is familiar and clear to every citizen. The streets and courtyards as childhood experiences remain with us forever. And these are the places where we come with our parents at weekends, where we meet friends, where we have dates and where we already come for a walk with our children.The history of public spaces is long and captivating. It was the main city squares where the most important events took place in history. The Agoras of Ancient Greece and the Roman Forums, the squares of Vatican, Paris and London, Moscow and Saint Petersburg… Greve, Trafalgar, Senate, Palace, Red, Bolotnaya – behind every name there is life of capitals, countries and nations.Public spaces, their shapes, image and development greatly influence the perception of the city as a whole. Both visitors and inhabitants can see in public spaces not only the visage but the heart, the soul and the mind of the city.Unfortunately, sometimes we have to prove the value of public spaces and defend them from those who consider them nothing but a blank space, nobody’s land destined for barbarous development.What should happen to make citizens perceive public spaces as their own and to make authorities consider development and maintenance of squares and parks their priority task against the  background of increasing competition between cities and the fight for human capital? Lately they more often say about “a high-quality human capital”. And now, when they say “the city should be liveable” they add “for all groups of citizens, including the creative class”.

  14. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  15. Twistor space, Minkowski space and the conformal group

    International Nuclear Information System (INIS)

    Broek, P.M. van den

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the transformation of twistor space under space inversion and time inversion. (orig.)

  16. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    Science.gov (United States)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  17. Space Threat Warning: Foundation for Space Superiority, Avoiding a Space Pearl Harbor

    National Research Council Canada - National Science Library

    Burke, Alan W

    2006-01-01

    ... have stated the US must avoid a space Pearl Harbor. This concern is due to the idea that a decrease in the perceived threat to space assets after the demise of the Soviet Union coupled with a competition for space resources has resulted...

  18. Space Science at Los Alamos National Laboratory

    Science.gov (United States)

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  19. An overview of space medicine.

    Science.gov (United States)

    Hodkinson, P D; Anderton, R A; Posselt, B N; Fong, K J

    2017-12-01

    Space medicine is fundamental to the human exploration of space. It supports survival, function and performance in this challenging and potentially lethal environment. It is international, intercultural and interdisciplinary, operating at the boundaries of exploration, science, technology and medicine. Space medicine is also the latest UK specialty to be recognized by the Royal College of Physicians in the UK and the General Medical Council. This review introduces the field of space medicine and describes the different types of spaceflight, environmental challenges, associated medical and physiological effects, and operational medical considerations. It will describe the varied roles of the space medicine doctor, including the conduct of surgery and anaesthesia, and concludes with a vision of the future for space medicine in the UK.Space medicine doctors have a responsibility to space workers and spaceflight participants. These 'flight surgeons' are key in developing mitigation strategies to ensure the safety, health and performance of space travellers in what is an extreme and hazardous environment. This includes all phases from selection, training and spaceflight itself to post-flight rehabilitation and long-term health. The recent recognition of the speciality provides a pathway to train in this fascinating field of medicine and is a key enabler for the UK Government's commercial spaceflight ambition. © Crown copyright 2017.

  20. SPACE: Enhancing Life on Earth. Proceedings Report

    Science.gov (United States)

    Hobden, Alan (Editor); Hobden, Beverly (Editor); Bagley, Larry E. (Editor); Bolton, Ed (Editor); Campaigne, Len O. (Editor); Cole, Ron (Editor); France, Marty (Editor); Hand, Rich (Editor); McKinley, Cynthia (Editor); Zimkas, Chuck (Editor)

    1996-01-01

    The proceedings of the 12th National Space Symposium on Enhancing Life on Earth is presented. Technological areas discussed include: Space applications and cooperation; Earth sensing, communication, and navigation applications; Global security interests in space; and International space station and space launch capabilities. An appendices that include featured speakers, program participants, and abbreviation & acronyms glossary is also attached.

  1. Space Sustainment: A New Approach for America in Space

    Science.gov (United States)

    2014-12-01

    international community toward promoting market incentives in international space law. This would open up the competitive space for new entrants ...announces- new -space-situational-awareness-satellite-program.aspx. 29. Gruss, “U.S. Space Assets Face Growing Threat .” 30. McDougall, Heavens and the...November–December 2014 Air & Space Power Journal | 117 SCHRIEVER ESSAY WINNER SECOND PLACE Space Sustainment A New Approach for America in Space Lt

  2. Just in Time in Space or Space Based JIT

    Science.gov (United States)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  3. Kin-aesthetic Space-making

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2016-01-01

    Body Space Object Symposium 26.02.2016 Strand: The (Moving) Body as Archive Title: Kin-aesthetic Space-making The paper presents a cross-medial practice exchanging body movement and tectonic space. Working with a performative model of gesture, the practice takes up a dialogue with Jean......’s How the Body Shapes the Mind forms part of the theoretical approach to motile kin-aesthetical forces of art-making, underlying this paper. In my practice I work with body- and space gestures, interchanging through a ‘third’ material, featured on screens. The hybrid production includes animated 2 and 3......D drawings, video sequences, and technological treatment constituted by movement of camera, light and diverse editing. Creating a mutable changing sensory surface, the modelling gestures draw attention to their actual occurring in space-time, articulating and transforming space-time configurations...

  4. SP-100 nuclear space power systems with application to space commercialization

    International Nuclear Information System (INIS)

    Smith, J.M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power

  5. 14th SpaceOps Conference

    CERN Document Server

    Schmidhuber, Michael; Lee, Young; Kim, Bangyeop

    2017-01-01

    This book includes a selection of 30 reviewed and enhanced manuscripts published during the 14th SpaceOps Conference held in May 2016 in Daejeon, South Korea. The selection was driven by their quality and relevance to the space operations community. The papers represent a cross-section of three main subject areas: · Mission Management – management tasks for designing, preparing and operating a particular mission. · Spacecraft Operations – preparation and implementation of all activities to operate a space vehicle (crewed and uncrewed) under all conditions. · Ground Operations – preparation, qualification, and operations of a mission dedicated ground segment and appropriate infrastructure including antennas, control centers, and communication means and interfaces. This book promotes the SpaceOps Committee’s mission to foster the technical interchange on all aspects of space mission operations and ground data systems while promoting and maintaining an international community of space operations exper...

  6. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  7. Compact space-like hypersurfaces in de Sitter space

    OpenAIRE

    Lv, Jinchi

    2005-01-01

    We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

  8. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  9. Space Physiology and Operational Space Medicine

    Science.gov (United States)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  10. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  11. Space Colonization Using Space-Elevators from Phobos

    Science.gov (United States)

    Weinstein, Leonard M.

    2003-01-01

    A novel approach is examined for creating an industrial civilization beyond Earth. The approach would take advantage of the unique configuration of Mars and its moon Phobos to make a transportation system capable of raising mass from the surface of Mars to space at a low cost. Mars would be used as the primary location for support personnel and infrastructure. Phobos would be used as a source of raw materials for space-based activity, and as an anchor for tethered carbon-nanotube-based space-elevators. One space-elevator would terminate at the upper edge of Mars' atmosphere. Small craft would be launched from Mars' surface to rendezvous with the moving elevator tip and their payloads detached and raised with solar powered loop elevators to Phobos. Another space-elevator would be extended outward from Phobos to launch craft toward the Earth/Moon system or the asteroid belt. The outward tip would also be used to catch arriving craft. This approach would allow Mars to be colonized, and allow transportation of people and supplies from Mars to support the space industry. In addition, large quantities of material obtained from Phobos could be used to construct space habitats and also supply propellant and material for space industry in the Earth/Moon system as well as around Mars.

  12. Analogies between Kruskal space and de Sitter space

    International Nuclear Information System (INIS)

    Rindler, W.

    1986-01-01

    Kruskal space is the analytical completion of Schwarzschild space and it consists of two outside and two inside Schwarzchild regions. Under suppression of the two angular coordinates, this space is usually diagrammed in terms of the Kruskal coordinates, μ,upsilon, much like Minkowski space is in terms of x, y. In particular, radial light paths correspond to +- 45 0 lines, the hyperbolas of μ/sup 2/ - upsilon/sup 2/ = a/sup 2/ represent uniformly accelerated particles (these being at rest in outer Schwarzschild space), and Lorentz transformations in μ, upsilon map the space into itself. Hermann Weyl first gave the analytic completion of de Sitter space as a hyper-hyperboloid μ/sub 1//sup 2/ + μ/sub 2//sup 2/ + μ/sub 3//sup 2/ + μ/sub 4//sup 2/ - upsilon/sup 2/ = a/sup 2/ in five-dimensional Minkowski space, which also contains two outside inside de Sitter regions. In a Weyl diagram, μ/sub 3/ and μ/sub 4/ are suppressed. There are many analogies: Lorentz transformations in μ/sub i/, upsilon map Weyl space into itself, the +- 45 0 generators are light paths, timelike plane hyperbolic sections are uniformly accelerated particles, and the horizon structure relative to each free worldline is analogous to the absolute horizon structure in Kruskal space

  13. Gymnastics in Phase Space

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  14. Space Ethics and Protection of the Space Environment

    Science.gov (United States)

    Williamson, Mark

    2002-01-01

    The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars - one day by means of manned missions - indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space `burials' and the sale of lunar `real estate' suggests that, some time in the 21st century, the space environment will become an extraterrestrial extension of our current business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. What, indeed, are the ethical considerations of space exploration and development? Ethics can be defined as "the philosophical study of the moral value of human conduct, and of the rules or principles that ought to govern it". More practically, it represents "an approved code of behaviour" adopted, for example, by a group or profession. If a set of ethics is to be developed for space, it is important that what we refer to as the `space community', or `space profession', is intimately involved. Indeed, if it is not, the profession risks having the job done for it, for example by politicians and members of the general public, who for their own reasons may wish to place restrictions on space development, or ban it altogether. The terrestrial nuclear power industry, for example, has already suffered this fate, while widespread ignorance of the subject has led to a moratorium on the use of RTGs in spacecraft. However, there is a danger in the discussion of ethics that consideration is confined to the philosophical aspects, thus excusing those involved from providing practical solutions to the problems that emerge. The fact that mankind has already affected, and arguably damaged, the space environment transports the discussion beyond the philosophical realm. This paper offers a pragmatic analysis of one

  15. Bridging the Worlds of Entertainment and Space - One Element of the Space Generation Foundation

    Science.gov (United States)

    Hildago, L.

    2002-01-01

    Programme on Space Applications, SGSabstracts@unsgac.org/fax +1(281)244-7478 The Space Generation Foundation, founder of ISU, is the current home for Space Rocks!, Yuri's Night, and other space projects focused on education, outreach, and sustainable development worldwide. One particular area of success in 2001/2002 has been the involvement of the entertainment community in space events. Yuri's Night brought together musicians, DJs, artists, and the public to celebrate space. Space Rocks will do the same on a much larger scale, employing film, theatre, poetry, music, art, advertising firms, and other unconventional media to communicate space to the public. We will present about the aims and future plans of the Foundation. The Space Generation Advisory Council in support of the United Nations Programme on Space Applications has as its main focus Space education and outreach. Since the Space Generation Forum in 1999, successful global education and outreach projects have been implemented by young people around the world. These and new ideas are being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) that will unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11-13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE- III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the results of these discussions.

  16. Space solar power satellite systems with a space elevator

    Energy Technology Data Exchange (ETDEWEB)

    Kellum, M. J. (Mervyn J.); Laubscher, B. E. (Bryan E.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in mankind's access to outer space. If the SE's promise of low-cost access to space can be realized, the economics of space-based business endeavors becomes much more feasible. In this paper, we describe a Solar Power Satellite (SPS) system and estimate its costs within the context of an SE. We also offer technical as well as financial comparisons between SPS and terrestrial solar photovoltaic technologies. Even though SPS systems have been designed for over 35 years, technologies pertinent to SPS systems are continually evolving. One of the designs we present includes an evolving technology, optical rectennas. SPS systems could be a long-term energy source that is clean, technologically feasible, and virtually limitless. Moreover, electrical energy could be distributed inexpensively to remote areas where such power does not currently exist, thereby raising the quality of life of the people living in those areas. The energy 'playing field' will be leveled across the world and the resulting economic growth will improve the lot of humankind everywhere.

  17. Assessing Space Utilisation Relative to Key Performance Indicators--How Well, Not How Much, Space Is Used

    Science.gov (United States)

    Fleming, Simon; Apps, Nathan; Harbon, Paul; Baldock, Clive

    2012-01-01

    Efficient use of resources, including space, is critical in academic departments. Traditional space auditing simply assesses occupancy levels. We present a novel approach which assesses not just the extent to which space is used, but also how well it is used. We link space use quantitatively to key performance indicators in a research-intensive…

  18. Space Psychology and Psychiatry

    Science.gov (United States)

    Kanas, N.; Manzey, D.

    2003-09-01

    This book deals with psychological, psychiatric, and psychosocial issues that affect people who live and work in space. Unlike other books that focus on anecdotal reports and ground-based simulation studies, this book emphasizes the findings from psychological research conducted during actual space missions. Both authors have been active in such research. What is presented in this readable text has previously been found only in scientific journal articles. Topics that are discussed include: behavioral adaptation to space; human performance and cognitive effects; crewmember interactions; psychiatric responses; psychological counter-measures related to habitability factors, work-design, selection, training, and in-flight monitoring and support; and the impact of expeditionary missions to Mars and beyond. People finding this book of interest will include: psychology and social science students and professors in universities; medical students and residents in psychiatry and aerospace medicine; human factors workers in space and aviation professions; individuals involved with isolated environments on Earth (e.g., the Antarctic, submarines); aerospace workers in businesses and space agencies such as NASA and ESA; and anyone who is interested in learning the facts about the human side of long-duration space missions. Link: http://www.wkap.nl/prod/b/1-4020-1341-8

  19. Managing the space sciences

    Science.gov (United States)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  20. SpaceCube v2.0 Space Flight Hybrid Reconfigurable Data Processing System

    Science.gov (United States)

    Petrick, Dave

    2014-01-01

    This paper details the design architecture, design methodology, and the advantages of the SpaceCube v2.0 high performance data processing system for space applications. The purpose in building the SpaceCube v2.0 system is to create a superior high performance, reconfigurable, hybrid data processing system that can be used in a multitude of applications including those that require a radiation hardened and reliable solution. The SpaceCube v2.0 system leverages seven years of board design, avionics systems design, and space flight application experiences. This paper shows how SpaceCube v2.0 solves the increasing computing demands of space data processing applications that cannot be attained with a standalone processor approach.The main objective during the design stage is to find a good system balance between power, size, reliability, cost, and data processing capability. These design variables directly impact each other, and it is important to understand how to achieve a suitable balance. This paper will detail how these critical design factors were managed including the construction of an Engineering Model for an experiment on the International Space Station to test out design concepts. We will describe the designs for the processor card, power card, backplane, and a mission unique interface card. The mechanical design for the box will also be detailed since it is critical in meeting the stringent thermal and structural requirements imposed by the processing system. In addition, the mechanical design uses advanced thermal conduction techniques to solve the internal thermal challenges.The SpaceCube v2.0 processing system is based on an extended version of the 3U cPCI standard form factor where each card is 190mm x 100mm in size The typical power draw of the processor card is 8 to 10W and scales with application complexity. The SpaceCube v2.0 data processing card features two Xilinx Virtex-5 QV Field Programmable Gate Arrays (FPGA), eight memory modules, a monitor

  1. Dual spaces of local Morrey-type spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Mustafayev, Rza

    2011-01-01

    Roč. 61, č. 3 (2011), s. 609-622 ISSN 0011-4642 R&D Projects: GA ČR GA201/05/2033; GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : local Morrey-type spaces * complementary local Morrey-type spaces * associated spaces * dual spaces * multidimensional reverse Hardy inequalities Subject RIV: BA - General Mathematics Impact factor: 0.262, year: 2011 http://www.springerlink.com/content/3166vu5uht8713t3/

  2. Non-commutative phase space and its space-time symmetry

    International Nuclear Information System (INIS)

    Li Kang; Dulat Sayipjamal

    2010-01-01

    First a description of 2+1 dimensional non-commutative (NC) phase space is presented, and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space. (authors)

  3. F-door spaces and F-submaximal spaces

    Directory of Open Access Journals (Sweden)

    Lobna Dridi

    2013-04-01

    Full Text Available Submaximal spaces and door spaces play an enigmatic role in topology. In this paper, reinforcing this role, we are concerned with reaching two main goals: The first one is to characterize topological spaces X such that F(X is a submaximal space (resp., door space for some covariant functor Ff rom the category Top to itself. T0, and FH functors are completely studied. Secondly, our interest is directed towards the characterization of maps f given by a flow (X, f in the category Set, such that (X,P(f is submaximal (resp., door where P(f is a topology on X whose closed sets are exactly the f-invariant sets.

  4. Re-humanising Public Urban Space

    DEFF Research Database (Denmark)

    Almahmood, Mohammed Abdulrahman M

    , this thesis suggests that re-humanising public urban space should not only be considered as a matter of design, but also as an on-going process which includes an inclusive spatial planning agenda and the management of space supplemented by background knowledge regarding the culture of use of space.......This PhD thesis aims to contribute to a better understanding of the spatial, social, and cultural dimensions of the formation of human-centred public urban space. ‘Re-humanising’ the city is a traveling concept which implies that public urban spaces are liveable, walkable, safe, enjoyable......, and inclusive thereby allowing vibrant social interaction. While the inclusiveness of space is considered as a core value in human-centred public urban space, social and spatial exclusion is a key challenge to the success of public urban space, especially in the Global South. The mainstream research in urban...

  5. Minimal and Maximal Operator Space Structures on Banach Spaces

    OpenAIRE

    P., Vinod Kumar; Balasubramani, M. S.

    2014-01-01

    Given a Banach space $X$, there are many operator space structures possible on $X$, which all have $X$ as their first matrix level. Blecher and Paulsen identified two extreme operator space structures on $X$, namely $Min(X)$ and $Max(X)$ which represents respectively, the smallest and the largest operator space structures admissible on $X$. In this note, we consider the subspace and the quotient space structure of minimal and maximal operator spaces.

  6. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  7. Space life sciences: A status report

    Science.gov (United States)

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  8. Sobolev Spaces on Locally Compact Abelian Groups: Compact Embeddings and Local Spaces

    Directory of Open Access Journals (Sweden)

    Przemysław Górka

    2014-01-01

    Full Text Available We continue our research on Sobolev spaces on locally compact abelian (LCA groups motivated by our work on equations with infinitely many derivatives of interest for string theory and cosmology. In this paper, we focus on compact embedding results and we prove an analog for LCA groups of the classical Rellich lemma and of the Rellich-Kondrachov compactness theorem. Furthermore, we introduce Sobolev spaces on subsets of LCA groups and study its main properties, including the existence of compact embeddings into Lp-spaces.

  9. Weighted semiconvex spaces of measurable functions

    International Nuclear Information System (INIS)

    Olaleru, J.O.

    2001-12-01

    Semiconvex spaces are intermediates between locally convex spaces and the non locally convex topological vector spaces. They include all locally convex spaces; hence it is a generalization of locally convex spaces. In this article, we make a study of weighted semiconvex spaces parallel to weighted locally convex spaces where continuous functions are replaced with measurable functions and N p family replaces Nachbin family on a locally compact space X. Among others, we examine the Hausdorffness, completeness, inductive limits, barrelledness and countably barrelledness of weighted semiconvex spaces. New results are obtained while we have a more elegant proofs of old results. Furthermore, we get extensions of some of the old results. It is observed that the technique of proving theorems in weighted locally convex spaces can be adapted to that of weighted semicovex spaces of measurable functions in most cases. (author)

  10. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  11. Space Van system update

    Science.gov (United States)

    Cormier, Len

    1992-07-01

    The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.

  12. Looking toward to the next-generation space weather forecast system. Comments former a former space weather forecaster

    International Nuclear Information System (INIS)

    Tomita, Fumihiko

    1999-01-01

    In the 21st century, man's space-based activities will increase significantly and many kinds of space utilization technologies will assume a vital role in the infrastructure, creating new businesses, securing the global environment, contributing much to human welfare in the world. Communications Research Laboratory (CRL) has been contributing to the safety of human activity in space and to the further understanding of the solar terrestrial environment through the study of space weather, including the upper atmosphere, magnetosphere, interplanetary space, and the sun. The next-generation Space Weather Integrated Monitoring System (SWIMS) for future space activities based on the present international space weather forecasting system is introduced in this paper. (author)

  13. A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

    Science.gov (United States)

    Choi, Eun-Jung; Cho, Sungki; Lee, Deok-Jin; Kim, Siwoo; Jo, Jung Hyun

    2017-12-01

    The key risk analysis technologies for the re-entry of space objects into Earth’s atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on re- entry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d’Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth’s atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.

  14. Public choice economics and space policy: realising space tourism

    Science.gov (United States)

    Collins, Patrick

    2001-03-01

    Government space agencies have the statutory responsibility to suport the commercialisation of space activities. NASA's 1998 report "General Public Space Travel and Tourism" concluded that passenger space travel can start using already existing technology, and is likely to grow into the largest commercial activity in space: it is therefore greatly in taxpayers' economic interest that passenger space travel and accommodation industries should be developed. However, space agencies are doing nothing to help realise this — indeed, they are actively delaying it. This behaviour is predicted by 'public choice' economics, pioneered by Professors George Stigler and James Buchanan who received the 1982 and 1986 Nobel prizes for Economics, which views government organisations as primarily self-interested. The paper uses this viewpoint to discuss public and private roles in the coming development of a space tourism industry.

  15. On RC-spaces

    OpenAIRE

    Bielas, Wojciech; Plewik, Szymon

    2018-01-01

    Following Frink's characterization of completely regular spaces, we say that a regular T_1-space is an RC-space whenever the family of all regular open sets constitutes a regular normal base. Normal spaces are RC-spaces and there exist completely regular spaces which are not RC-spaces. So the question arises, which of the known examples of completely regular and not normal spaces are RC-spaces. We show that the Niemytzki plane and the Sorgenfrey plane are RC-spaces.

  16. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  17. Priorities in national space strategies and governance of the member states of the European Space Agency

    Science.gov (United States)

    Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia

    2015-12-01

    The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits

  18. Space Biology and Medicine. Volume 4; Health, Performance, and Safety of Space Crews

    Science.gov (United States)

    Dietlein, Lawrence F. (Editor); Pestov, Igor D. (Editor)

    2004-01-01

    Volume IV is devoted to examining the medical and associated organizational measures used to maintain the health of space crews and to support their performance before, during, and after space flight. These measures, collectively known as the medical flight support system, are important contributors to the safety and success of space flight. The contributions of space hardware and the spacecraft environment to flight safety and mission success are covered in previous volumes of the Space Biology and Medicine series. In Volume IV, we address means of improving the reliability of people who are required to function in the unfamiliar environment of space flight as well as the importance of those who support the crew. Please note that the extensive collaboration between Russian and American teams for this volume of work resulted in a timeframe of publication longer than originally anticipated. Therefore, new research or insights may have emerged since the authors composed their chapters and references. This volume includes a list of authors' names and addresses should readers seek specifics on new information. At least three groups of factors act to perturb human physiological homeostasis during space flight. All have significant influence on health, psychological, and emotional status, tolerance, and work capacity. The first and most important of these factors is weightlessness, the most specific and radical change in the ambient environment; it causes a variety of functional and structural changes in human physiology. The second group of factors precludes the constraints associated with living in the sealed, confined environment of spacecraft. Although these factors are not unique to space flight, the limitations they entail in terms of an uncomfortable environment can diminish the well-being and performance of crewmembers in space. The third group of factors includes the occupational and social factors associated with the difficult, critical nature of the

  19. Neighborhood spaces

    OpenAIRE

    D. C. Kent; Won Keun Min

    2002-01-01

    Neighborhood spaces, pretopological spaces, and closure spaces are topological space generalizations which can be characterized by means of their associated interior (or closure) operators. The category NBD of neighborhood spaces and continuous maps contains PRTOP as a bicoreflective subcategory and CLS as a bireflective subcategory, whereas TOP is bireflectively embedded in PRTOP and bicoreflectively embedded in CLS. Initial and final structures are described in these categories, and it is s...

  20. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  1. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  2. Imaging of the perivertebral space.

    Science.gov (United States)

    Mills, Megan K; Shah, Lubdha M

    2015-01-01

    The perivertebral space extends from the skull base to the mediastinum and is delineated by the deep layer of the deep cervical fascia. The different tissue types, including muscles, bones, nerves, and vascular structures, give rise to the various disorders that can be seen in this space. This article defines the anatomy of the perivertebral space, guides lesion localization, discusses different disease processes arising within this space, and reviews the best imaging approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Sacred Space.

    Science.gov (United States)

    Adelstein, Pamela

    2018-01-01

    A space can be sacred, providing those who inhabit a particular space with sense of transcendence-being connected to something greater than oneself. The sacredness may be inherent in the space, as for a religious institution or a serene place outdoors. Alternatively, a space may be made sacred by the people within it and events that occur there. As medical providers, we have the opportunity to create sacred space in our examination rooms and with our patient interactions. This sacred space can be healing to our patients and can bring us providers opportunities for increased connection, joy, and gratitude in our daily work.

  4. Metric space construction for the boundary of space-time

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1986-01-01

    A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples

  5. Space Flight-Associated Neuro-ocular Syndrome.

    Science.gov (United States)

    Lee, Andrew G; Mader, Thomas H; Gibson, C Robert; Tarver, William

    2017-09-01

    New and unique physiologic and pathologic systemic and neuro-ocular responses have been documented in astronauts during and after long-duration space flight. Although the precise cause remains unknown, space flight-associated neuro-ocular syndrome (SANS) has been adopted as an appropriate descriptive term. The Space Medicine Operations Division of the US National Aeronautics and Space Administration (NASA) has documented the variable occurrence of SANS in astronauts returning from long-duration space flight on the International Space Station. These clinical findings have included unilateral and bilateral optic disc edema, globe flattening, choroidal and retinal folds, hyperopic refractive error shifts, and nerve fiber layer infarcts. The clinical findings of SANS have been correlated with structural changes on intraorbital and intracranial magnetic resonance imaging and in-flight and terrestrial ultrasonographic studies and ocular optical coherence tomography. Further study of SANS is ongoing for consideration of future manned missions to space, including a return trip to the moon or Mars.

  6. Urban Space as the Commons - New Modes for Urban Space Management

    Science.gov (United States)

    Ondrejicka, Vladimir; Finka, Maros; Husar, Milan; Jamecny, Lubomir

    2017-12-01

    The significant growing of urban population, globalization of social-ecological systems, fuzzification of spatial structures, the diversity of actors in spatial development, their power and interest in using the resources including space, especially in high-density urban areas. Spatial development is connected with a high concentration of economic activities and population in urban systems. In many cases very rapid processes of urbanization and suburbanization approach natural spatial/territorial limits, such as carrying capacity of land, transport and infrastructural systems, absorption capacities of recipients and others [1]. Growing shortage of space and problems in their accessibility (physical, functional, etc.) leads to growing tension and conflicts among the actors/users of urban spaces and represent the initial phase of space deprivations processes. There is a parallel with “tragedy of commons” as defined by Hardin [2] and was reinterpreted by many other academics and researchers. Urban space can be clearly interpreted as the commons or commons good for their community of users and relevant actors, so innovative governance modes overlapping defined “tragedy of commons” representing a possible approach for a new concept of urban public spaces management. This paper presents a possible new approach to the management of urban spaces reflecting the current challenges in spatial development based on the theory of commons and innovative governance modes. The new approach is built on innovations in institutional regimes, the algorithm of decision-making and economic expression and interpretation of quality of the space. The theory of the commons as the base source for this approach has been broadly proved in practice and Elinor Ostrom as the author of this theory [3-5] was awarded by Nobel Prize in 2009.

  7. Space Resources Roundtable 2

    Science.gov (United States)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  8. Esrange Space Center, a Gate to Space

    Science.gov (United States)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  9. Design spaces

    DEFF Research Database (Denmark)

    2005-01-01

    Digital technologies and media are becoming increasingly embodied and entangled in the spaces and places at work and at home. However, our material environment is more than a geometric abstractions of space: it contains familiar places, social arenas for human action. For designers, the integration...... of digital technology with space poses new challenges that call for new approaches. Creative alternatives to traditional systems methodologies are called for when designers use digital media to create new possibilities for action in space. Design Spaces explores how design and media art can provide creative...... alternatives for integrating digital technology with space. Connecting practical design work with conceptual development and theorizing, art with technology, and usesr-centered methods with social sciences, Design Spaces provides a useful research paradigm for designing ubiquitous computing. This book...

  10. National space legislation : future perspectives for Malaysian Space Law

    NARCIS (Netherlands)

    Saari, Che Zuhaida Binti

    2014-01-01

    This research studies the future perspectives for Malaysian space law. It aims at demonstrating the development of Malaysian outer space activities inclusive of her status with respect to United Nations space conventions and her membership of international and regional space-related organizations.

  11. Trump revives National Space Council

    Science.gov (United States)

    Johnston, Hamish

    2017-08-01

    US president Donald Trump has signed an executive order to re-establish the US National Space Council. The 12-member council will include key government officials with an interest in space exploration, including NASA’s acting administrator Robert Lightfoot and the secretaries of state, commerce and defence.

  12. Sobolev spaces

    CERN Document Server

    Adams, Robert A

    2003-01-01

    Sobolev Spaces presents an introduction to the theory of Sobolev Spaces and other related spaces of function, also to the imbedding characteristics of these spaces. This theory is widely used in pure and Applied Mathematics and in the Physical Sciences.This second edition of Adam''s ''classic'' reference text contains many additions and much modernizing and refining of material. The basic premise of the book remains unchanged: Sobolev Spaces is intended to provide a solid foundation in these spaces for graduate students and researchers alike.* Self-contained and accessible for readers in other disciplines.* Written at elementary level making it accessible to graduate students.

  13. Canadian space agency discipline working group for space dosimetry and radiation science

    International Nuclear Information System (INIS)

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  14. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  15. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  16. Business Context of Space Tourism

    Science.gov (United States)

    Schmitt, Harrison H.

    2003-01-01

    Broadly speaking, two types of potential commercial activity in space can be defined. First, there are those activities that represent an expansion and improvement on services with broad existing commercial foundations such as telecommunications. The second type of potential commercial activity in space is one that may offer a type of service with few or any existing commercial foundations such as space-based remote sensing. Space tourism clearly belongs in the first category of potential commercial activity in space. Roles in cooperation with the private sector that might be considered for NASA include 1) acceleration of the ``Professional-in Space'' initiative, 2) research and technology developments related to a) a ``Tourist Destination Module'' for the Space Station, b) an ``Extra Passengers Module'' for the payload bay of the Space Shuttle, and c) a ``Passenger-rated Expendable Launch Vehicle,'' 3) definition of criteria for qualifying candidate space tourists, and 4) initiatives to protect space tourism from unreasonable tort litigation. As baseline information for establishing fees, the cost of a possible tourist flight should be fully and objectively delineated. If it is correct that the marginal cost of each Space Shuttle flight to Earth-orbit is about $100 million and the effective Shuttle payload is about 50,000 pounds, then the marginal cost would be roughly $2,000 per pound.

  17. Another extension of Orlicz-Sobolev spaces to metric spaces

    Directory of Open Access Journals (Sweden)

    Noureddine Aïssaoui

    2004-01-01

    Full Text Available We propose another extension of Orlicz-Sobolev spaces to metric spaces based on the concepts of the Φ-modulus and Φ-capacity. The resulting space NΦ1 is a Banach space. The relationship between NΦ1 and MΦ1 (the first extension defined in Aïssaoui (2002 is studied. We also explore and compare different definitions of capacities and give a criterion under which NΦ1 is strictly smaller than the Orlicz space LΦ.

  18. Tank Space Alternatives Analysis Report

    International Nuclear Information System (INIS)

    Turner, D.A.; Kirch, N.W.; Washenfelder, D.J.; Schaus, P.S.; Wodrich, D.D.; Wiegman, S.A.

    2010-01-01

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  19. Topics in Banach space theory

    CERN Document Server

    Albiac, Fernando

    2016-01-01

    This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous f...

  20. Evolutionary space platform concept study. Volume 2, part B: Manned space platform concepts

    Science.gov (United States)

    1982-01-01

    Logical, cost-effective steps in the evolution of manned space platforms are investigated and assessed. Tasks included the analysis of requirements for a manned space platform, identifying alternative concepts, performing system analysis and definition of the concepts, comparing the concepts and performing programmatic analysis for a reference concept.

  1. Mobius invariant QK spaces

    CERN Document Server

    Wulan, Hasi

    2017-01-01

    This monograph summarizes the recent major achievements in Möbius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmüller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.

  2. Calcified neurofibroma at the masticator space

    International Nuclear Information System (INIS)

    Fuster, M. J.; Saez, J.; Alonso, S.; Fernandez, F.

    1999-01-01

    Odontogenic infections and invasive tumors or surrounding spaces are the main causes of lesions in the masticator space (MS). Primary tumors, including neurofibromas, are very uncommon within this compartment. We present a calcified neurofibroma at the masticator space. We emphasize the importance of CT to locate lesions at different neck spaces. This method allows to restraint differential diagnoses and to plan surgical approach. (Author) 8 refs

  3. A direct proof of Sobolev embeddings for Triebel-Lizorkin spaces, including mixed norms and quasi-homogeneity

    DEFF Research Database (Denmark)

    Johnsen, Jon

    The article deals with a simplified proof of the Sobolev embedding theorem for Triebel-Lizorkin spaces (that contain the $L_p$-Sobolev spaces $H^s_p$ as special cases). The method extends to a proof of the corresponding fact for general Triebel–Lizorkin spaces based on mixed $L_p$-norms...

  4. Compliance evaluation of removable space maintainer or space regainer usage

    Directory of Open Access Journals (Sweden)

    Revanti Ramadhani

    2018-01-01

    Full Text Available Premature loss could cause a problem with the tooth arrangement or the dental arch size. A space left by the primary tooth loss could cause migration of the adjacent teeth. As a result, space will be narrowed and undermined the eruption of the permanent teeth. The success of the space maintainer or space regainer usage due to the premature loss marked by space for the replacement of the permanent teeth. The purpose of this research was to evaluate the compliance of children in wearing a space maintainer or space regainer after insertion at Pedodontics Installation of Faculty of Dentistry Universitas Padjadjaran Dental Hospital, Bandung, Indonesia. The research method was descriptive survey technique. The sample consisted of 30 patients selected using the total sampling technique. Data were obtained with a questionnaire and statistically analyzed. The results showed that majority of the children uses the removable space maintainer or the space regainer daily was only about 23,3% overall. Most of the children only use the removable space maintainer or the space regainer for sometimes. The research concluded that the low rate of pedodontic patients compliance at Pedodontics Installation of Faculty of Dentistry Universitas Padjadjaran Dental Hospital in the usage of the removable space maintainer or the space regainer was usually caused by pain or discomfort. This fact was evidence of a low awareness of parents in preventing malocclusion to their children.

  5. 2004 Space Report: Environment and Strategy for Space Research at NATO's Research and Technology Organisation (RTO)

    Science.gov (United States)

    Woods-Vedeler, Jessica A.

    2007-01-01

    This report describes the motivation for and a strategy to enhance the NATO Research and Technology Organisation's (RTO) current space research effort to reflect NATO's growing military dependence on space systems. Such systems and services provided by these systems are critical elements of military operations. NATO uses space systems for operational planning and support, communication, radio navigation, multi-sensor and multi-domain demonstrations. Such systems are also used to promote regional stability. A quantitative analysis of work related to space in the NATO RTO showed that during the period of 1998 - 2004, 5% of the research pursued in the NATO RTO has been clearly focused on space applications. Challenging environmental and organizational barriers for increasing RTO space research were identified. In part, these include lack of sufficient space expertise representation on panels, the military sensitivity of space, current panel work loads and the need for specific technical recommendations from peers. A strategy for enhancing space research in the RTO is to create a limited-life Space Advisory Group (SAG) composed of Space Expert Consultants who are panel members with appropriate expertise and additional expertise from the nations. The SAG will recommend and find support in the nations for specific technical activities related to space in the areas of Space Science, Remote Sensing Data Analysis, Spacecraft Systems, Surveillance and Early Warning, Training and Simulation and Policy. An RTO Space Advisory Group will provide an organizational mechanism to gain recognition of RTO as a forum for trans-Atlantic defence space research and to enhance space research activities.

  6. Space Power Theory: Controlling the Medium Without Weapons in Space

    National Research Council Canada - National Science Library

    Wilkerson, Don L

    2008-01-01

    .... strategic space assets and the ability to negate enemy space systems is essential to U.S. space strategy in controlling the geographical environment of space, predominately in the Lower Earth Orbit (LEO...

  7. Assessment of Nutritional Intake During Space Flight and Space Flight Analogs

    Science.gov (United States)

    Rice, Barbara L.; Dlouhy, Holly; Zwart, Sara R.; Smith, Scott M.

    2011-01-01

    Background: Maintaining adequate nutrient intake in microgravity is important not only to meet health maintenance needs of astronauts but also to help counteract the negative effects of space flight. Beyond this, food provides psychosocial benefits throughout a mission. Objective: The purpose of this presentation is to discuss dietary intake data from multiple space programs, including Space Shuttle and the International Space Station. Description: These data arise from medical monitoring of both dietary intake and crew health, as well as research protocols designed to assess the role of diet in counteracting bone loss and other health concerns. Ground-based studies are conducted to better understand some of the negative issues related to space flight. Examples of these analog studies are extended bed rest studies, vitamin D supplementation studies in Antarctica, and saturation diving missions on the floor of the ocean. Methods and findings will be presented describing the use of weighed records, diet diaries, and food frequency questionnaires in these various environments. Provision of food and nutrients in spaceflight is important for many body systems including cardiovascular, musculoskeletal, endocrine, immune, and others. Some key areas of concern are loss of body mass, bone and muscle loss, radiation exposure, nutrient intakes during spacewalks, depletion of nutrient stores, and inadequate dietary intake. Initial experimental research studies using food and nutrition as a countermeasure to aid in mitigating these concerns are underway. Conclusion: Beyond their importance for the few individuals leaving the planet, these studies have significant implications for those remaining on Earth.

  8. Humans in Space: Summarizing the Medico-Biological Results of the Space Shuttle Program

    Science.gov (United States)

    Risin, Diana; Stepaniak, P. C.; Grounds, D. J.

    2011-01-01

    As we celebrate the 50th anniversary of Gagarin's flight that opened the era of Humans in Space we also commemorate the 30th anniversary of the Space Shuttle Program (SSP) which was triumphantly completed by the flight of STS-135 on July 21, 2011. These were great milestones in the history of Human Space Exploration. Many important questions regarding the ability of humans to adapt and function in space were answered for the past 50 years and many lessons have been learned. Significant contribution to answering these questions was made by the SSP. To ensure the availability of the Shuttle Program experiences to the international space community NASA has made a decision to summarize the medico-biological results of the SSP in a fundamental edition that is scheduled to be completed by the end of 2011 beginning 2012. The goal of this edition is to define the normal responses of the major physiological systems to short-duration space flights and provide a comprehensive source of information for planning, ensuring successful operational activities and for management of potential medical problems that might arise during future long-term space missions. The book includes the following sections: 1. History of Shuttle Biomedical Research and Operations; 2. Medical Operations Overview Systems, Monitoring, and Care; 3. Biomedical Research Overview; 4. System-specific Adaptations/Responses, Issues, and Countermeasures; 5. Multisystem Issues and Countermeasures. In addition, selected operational documents will be presented in the appendices. The chapters are written by well-recognized experts in appropriate fields, peer reviewed, and edited by physicians and scientists with extensive expertise in space medical operations and space-related biomedical research. As Space Exploration continues the major question whether humans are capable of adapting to long term presence and adequate functioning in space habitats remains to be answered We expect that the comprehensive review of

  9. Space weather in the EU’s FP7 Space Theme

    Directory of Open Access Journals (Sweden)

    Chiarini Paola

    2013-11-01

    Full Text Available Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7 of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic “Security of space assets from space weather events” of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic “Exploitation of space science and exploration data”, which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth’s surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects’ outcomes.

  10. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  11. Economic consequences of commercial space operations

    Science.gov (United States)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  12. Ecological aspects of the space-rocket technology effect on the magnetosphere and the near space

    International Nuclear Information System (INIS)

    Shushkova, V.B.; Khanan'yan, A.A.

    1991-01-01

    A brief review of the main types of authropogenic contamination of near-Earth space, linked with destruction of space vehicles and propulsion system operation is given. It is mentioned, that fragments of artificial origin including radioactive ones, represent a real danger now, while global changes of the environment (ionosphere exhaustion, exosphere density increase, climatic changes, etc.) can take place under the further intensification of space activity

  13. Twistor space, Minkowski space and the conformal group

    NARCIS (Netherlands)

    van den Broek, P.M.

    1983-01-01

    It is shown that the conformal group of compactified Minkowski space is isomorphic to a group of rays of semilinear transformations of twistor space. The action of the conformal group on twistor space is given by an explicit realisation of this isomorphism. In this way we determine the

  14. Y spaces and global smooth solution of fractional Navier-Stokes equations with initial value in the critical oscillation spaces

    Science.gov (United States)

    Yang, Qixiang; Yang, Haibo

    2018-04-01

    For fractional Navier-Stokes equations and critical initial spaces X, one used to establish the well-posedness in the solution space which is contained in C (R+ , X). In this paper, for heat flow, we apply parameter Meyer wavelets to introduce Y spaces Y m , β where Y m , β is not contained in C (R+, B˙∞ 1 - 2 β , ∞). Consequently, for 1/2 global well-posedness of fractional Navier-Stokes equations with small initial data in all the critical oscillation spaces. The critical oscillation spaces may be any Besov-Morrey spaces (B˙p,q γ1 ,γ2 (Rn)) n or any Triebel-Lizorkin-Morrey spaces (F˙p,q γ1 ,γ2 (Rn)) n where 1 ≤ p , q ≤ ∞ , 0 ≤γ2 ≤ n/p, γ1 -γ2 = 1 - 2 β. These critical spaces include many known spaces. For example, Besov spaces, Sobolev spaces, Bloch spaces, Q-spaces, Morrey spaces and Triebel-Lizorkin spaces etc.

  15. Kent in space: Cosmic dust to space debris

    Science.gov (United States)

    McDonnell, J. A. M.

    1994-10-01

    The dusty heritage of the University of Kent's Space Group commenced at Jodrell Bank, Cheshire, U.K., the home of the largest steerable radio telescope. While Professor Bernard Lovell's 250 ft. diameter telescope was used to command the U.S. deep space Pioneer spacecraft, Professor Tony McDonnell, as a research student in 1960, was developing a space dust detector for the US-UK Ariel program. It was successful. With a Ph.D. safely under the belt, it seemed an inevitable step to go for the next higher degree, a B.T.A.] Two years with NASA at Goddard Space Flight Center, Greenbelt, provided excellent qualifications for such a graduation ('Been to America'). A spirited return to the University of Kent at Canterbury followed, to one of the green field UK University sites springing from the Robbins Report on Higher Education. Swimming against the current of the brain drain, and taking a very considerable reduction in salary, it was with some disappointment that he found that the UK Premier Harold Wilson's 'white-hot technological revolution' never quite seemed to materialize in terms of research funding] Research expertise, centered initially on cosmic dust, enlarged to encompass planetology during the Apollo program, and rightly acquired international acclaim, notching up a history of space missions over 25 years. The group now comprises 38 people supported by four sources: the government's Research Councils, the University, the Space Agencies and Industry. This paper describes the thrust of the group's Research Plan in Space Science and Planetology; not so much based on existing international space missions, but more helping to shape the direction and selection of space missions ahead.

  16. Requirements for Space Settlement Design

    Science.gov (United States)

    Gale, Anita E.; Edwards, Richard P.

    2004-02-01

    When large space settlements are finally built, inevitably the customers who pay for them will start the process by specifying requirements with a Request for Proposal (RFP). Although we are decades away from seeing the first of these documents, some of their contents can be anticipated now, and provide insight into the variety of elements that must be researched and developed before space settlements can happen. Space Settlement Design Competitions for High School students present design challenges in the form of RFPs, which predict basic requirements for space settlement attributes in the future, including structural features, infrastructure, living conveniences, computers, business areas, and safety. These requirements are generically summarized, and unique requirements are noted for specific space settlement locations and applications.

  17. Rethinking humanitarian space

    OpenAIRE

    Ahmad, Sana

    2016-01-01

    This study looks at the humanitarian space in Myanmar which includes not just the humanitarian operations in the country, the access to volatile zones by the humanitarian organisations, the humanitarian principles, but also a space which permits a complementary arrangement of diverse actors holding different positions and skill sets and deliver to those in need. The study is based on the practical experiences and reflections of these different actors on field and their operations in different...

  18. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Science.gov (United States)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  19. Conformal Einstein spaces

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.; Tod, K.P.

    1985-01-01

    Conformal transformations in four-dimensional. In particular, a new set of two necessary and sufficient conditions for a space to be conformal to an Einstein space is presented. The first condition defines the class of spaces conformal to C spaces, whereas the last one (the vanishing of the Bach tensor) gives the particular subclass of C spaces which are conformally related to Einstein spaces. (author)

  20. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  1. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-07-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. We briefly discuss the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Author)

  2. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  3. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  4. Spaces on sets

    International Nuclear Information System (INIS)

    Triebel, Hans

    2005-01-01

    This paper deals with spaces B s pq and F s pq of positive smoothness s>0, based on L p -spaces with 0< p≤∞ and reproducing formulae for smooth functions. These spaces are compared with other B-spaces and F-spaces obtained by different means

  5. Human Adaptation to Space: Space Physiology and Countermeasures

    Science.gov (United States)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  6. Space Environment Information System (SPENVIS)

    Science.gov (United States)

    Kruglanski, Michel; de Donder, Erwin; Messios, Neophytos; Hetey, Laszlo; Calders, Stijn; Evans, Hugh; Daly, Eamonn

    SPENVIS is an ESA operational software developed and maintained at BIRA-IASB since 1996. It provides standardized access to most of the recent models of the hazardous space environment, through a user-friendly Web interface (http://www.spenvis.oma.be/). The system allows spacecraft engineers to perform a rapid analysis of environmental problems related to natural radiation belts, solar energetic particles, cosmic rays, plasmas, gases, magnetic fields and micro-particles. Various reporting and graphical utilities and extensive help facilities are included to allow engineers with relatively little familiarity to produce reliable results. SPENVIS also contains an active, integrated version of the ECSS Space Environment Standard and access to in-flight data on the space environment. Although SPENVIS in the first place is designed to help spacecraft designers, it is also used by technical universities in their educational programs. In the framework of the ESA Space Situational Awareness Preparatory Programme, SPENVIS will be part of the initial set of precursor services of the Space Weather segment. SPENVIS includes several engineering models to assess to effects of the space environment on spacecrafts such as surface and internal charging, energy deposition, solar cell damage and SEU rates. The presentation will review how such models could be connected to in situ measurements or forecasting models of the space environment in order to produce post event analysis or in orbit effects alert. The last developments and models implemented in SPENVIS will also be presented.

  7. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  8. Accelerated testing of space mechanisms

    Science.gov (United States)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  9. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  10. Diagrammatic methods in phase-space regularization

    International Nuclear Information System (INIS)

    Bern, Z.; Halpern, M.B.; California Univ., Berkeley

    1987-11-01

    Using the scalar prototype and gauge theory as the simplest possible examples, diagrammatic methods are developed for the recently proposed phase-space form of continuum regularization. A number of one-loop and all-order applications are given, including general diagrammatic discussions of the nogrowth theorem and the uniqueness of the phase-space stochastic calculus. The approach also generates an alternate derivation of the equivalence of the large-β phase-space regularization to the more conventional coordinate-space regularization. (orig.)

  11. 33-Foot-Diameter Space Station Leading to Space Base

    Science.gov (United States)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  12. Strategies and Policies for Space - Indian Perspective

    Science.gov (United States)

    Kasturirangan, K.; Sridhara Murthy, K. R.; Sundararmiah, V.; Rao, Mukund

    2002-01-01

    Indian Space Program, which was established as government effort about three decades ago has become a major force in providing vital services for social and economic sectors in India in the fields of satellite telecommunications, television broadcasting, meteorological services and remote sensing of natural resources. Capabilities have been developed over the years, following a step-by-step process to develop and operate space infrastructure in India, including state-of-the-art satellites and satellite launch vehicles. In carrying out these developments, Indian Space Research Organisation, which is the national agency responsible for space activities under Government of India, develop policies and programs, which promoted industrial participation in variety of space activities including manufacture of space hardware, conduct of value added activities and provision of services involving space systems. Policy initiatives have also been taken recently to promote private sector participation in the establishment of Indian Satellite Systems for telecommunications. Strategic alliances have also been developed with international space industries for marketing of services such as remote sensing data. The paper traces evaluation of the policies towards development of industrial participation in space and future transition into commercial space enterprise. Policy issues concerning the national requirements vis-à-vis the international environment will also be discussed to analyze the strategies for international cooperation.

  13. The Space Station as a Construction Base for Large Space Structures

    Science.gov (United States)

    Gates, R. M.

    1985-01-01

    The feasibility of using the Space Station as a construction site for large space structures is examined. An overview is presented of the results of a program entitled Definition of Technology Development Missions (TDM's) for Early Space Stations - Large Space Structures. The definition of LSS technology development missions must be responsive to the needs of future space missions which require large space structures. Long range plans for space were assembled by reviewing Space System Technology Models (SSTM) and other published sources. Those missions which will use large space structures were reviewed to determine the objectives which must be demonstrated by technology development missions. The three TDM's defined during this study are: (1) a construction storage/hangar facility; (2) a passive microwave radiometer; and (3) a precision optical system.

  14. Space tourism risks: A space insurance perspective

    Science.gov (United States)

    Bensoussan, Denis

    2010-06-01

    Space transportation is inherently risky to humans, whether they are trained astronauts or paying tourists, given that spaceflight is still in its relative infancy. However, this is easy to forget when subjected to the hype often associated with space tourism and the ventures seeking to enter that market. The development of commercial spaceflight constitutes a challenge as much as a great opportunity to the insurance industry as new risks emerge and standards, policies and procedures to minimise/mitigate and cover them still to be engineered. Therefore the creation of a viable and affordable insurance regime for future space tourists is a critical step in the development of a real space tourism market to address burning risk management issues that may otherwise ultimately hamper this nascent industry before it has a chance to prove itself.

  15. CASH 2021: Commercial access and space habitation

    Science.gov (United States)

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Ferretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frédéric; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J. Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-07-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed.

  16. Using Space to Inspire and Engage Children

    Science.gov (United States)

    Clements, Allan

    2015-01-01

    The European Space Education Resources Office (ESERO-UK) is a project of the European Space Agency (ESA) and national partners including the Department for Education (DfE), The UK Space Agency (UKSA) and the Science and Technology Facilities Council (STFC). The key objective of the project is to promote space as an exciting inspirational context…

  17. Space Nutrition

    Science.gov (United States)

    Smith, Scott M.

    2009-01-01

    Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.

  18. Incorporating space charge in the transverse phase-space matching and tomography at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Kourkafas, Georgios

    2015-11-15

    The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.

  19. Incorporating space charge in the transverse phase-space matching and tomography at PITZ

    International Nuclear Information System (INIS)

    Kourkafas, Georgios

    2015-11-01

    The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.

  20. Studying Space: Improving Space Planning with User Studies

    Science.gov (United States)

    Pierard, Cindy; Lee, Norice

    2011-01-01

    How can libraries best assess and improve user space, even if they are not in a position to undertake new construction or a major renovation? Staff at New Mexico State University used a variety of ethnographic methods to learn how our spaces were being used as well as what our users considered to be ideal library space. Our findings helped us make…

  1. Geometrical aspects of quantum spaces

    International Nuclear Information System (INIS)

    Ho, P.M.

    1996-01-01

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given

  2. Historical spaces of social psychology

    OpenAIRE

    Kalampalikis , Nikos; Delouvée , Sylvain; Pétard , Jean-Pierre

    2006-01-01

    International audience; An extensive analysis of all social psychology textbooks published, in french, between 1947 and 2001, including a history chapter, provides a rich corpus for the study of the history of social psychology. In this article we choose to study the historical spaces of social psychology, in order to show how the discipline was located in geographical, urban, institutional and collective spaces. We argue that, into this specific corpus, spaces are essentially related to some...

  3. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  4. Worship space acoustics 3 decades of design

    CERN Document Server

    Ryherd, Erica; Ronsse, Lauren

    2016-01-01

    This book takes the reader on a wide-ranging tour through churches, synagogues, mosques, and other worship spaces designed during the past 30 years. The book begins with a series of essays on topics ranging from the soundscape of worship spaces to ecclesiastical design at the turn of the 21st Century. Perspective pieces from an architect, audio designer, music director, and worship space owner are also included. The core of the book presents the acoustical and architectural design of a wide variety of individual worship space venues. Acoustical consulting firms, architects, and worship space designers from across the world contributed their recent innovative works in the area of worship space acoustics. The contributions include detailed renderings and architectural drawings, as well as informative acoustic data graphs and evocative descriptions of the spaces. Filled with beautiful photography and fascinating modern design, this book is a must-read for anyone interested in religious architecture, acoustical d...

  5. Foundations of symmetric spaces of measurable functions Lorentz, Marcinkiewicz and Orlicz spaces

    CERN Document Server

    Rubshtein, Ben-Zion A; Muratov, Mustafa A; Pashkova, Yulia S

    2016-01-01

    Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.

  6. Space power subsystem sizing

    International Nuclear Information System (INIS)

    Geis, J.W.

    1992-01-01

    This paper discusses a Space Power Subsystem Sizing program which has been developed by the Aerospace Power Division of Wright Laboratory, Wright-Patterson Air Force Base, Ohio. The Space Power Subsystem program (SPSS) contains the necessary equations and algorithms to calculate photovoltaic array power performance, including end-of-life (EOL) and beginning-of-life (BOL) specific power (W/kg) and areal power density (W/m 2 ). Additional equations and algorithms are included in the spreadsheet for determining maximum eclipse time as a function of orbital altitude, and inclination. The Space Power Subsystem Sizing program (SPSS) has been used to determine the performance of several candidate power subsystems for both Air Force and SDIO potential applications. Trade-offs have been made between subsystem weight and areal power density (W/m 2 ) as influenced by orbital high energy particle flux and time in orbit

  7. Achievable space elevators for space transportation and starship acceleration

    Science.gov (United States)

    Pearson, Jerome

    1990-04-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  8. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  9. Learning Spaces

    CERN Document Server

    Falmagne, Jean-Claude

    2011-01-01

    Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Learning spaces generalize partially ordered sets and are special cases of knowledge spaces. The various structures are investigated from the standpoints of combinatorial properties and stochastic processes. Leaning spaces have become the essential structures to be used in assessing students' competence of various topics. A practical example is offered by ALEKS, a Web-based, artificially intelligent assessment and learning system in mathematics and other scholarly fields. At the heart of A

  10. Long-term memory, sleep, and the spacing effect.

    Science.gov (United States)

    Bell, Matthew C; Kawadri, Nader; Simone, Patricia M; Wiseheart, Melody

    2014-01-01

    Many studies have shown that memory is enhanced when study sessions are spaced apart rather than massed. This spacing effect has been shown to have a lasting benefit to long-term memory when the study phase session follows the encoding session by 24 hours. Using a spacing paradigm we examined the impact of sleep and spacing gaps on long-term declarative memory for Swahili-English word pairs by including four spacing delay gaps (massed, 12 hours same-day, 12 hours overnight, and 24 hours). Results showed that a 12-hour spacing gap that includes sleep promotes long-term memory retention similar to the 24-hour gap. The findings support the importance of sleep to the long-term benefit of the spacing effect.

  11. European activities in space radiation biology and exobiology

    International Nuclear Information System (INIS)

    Horneck, G.

    1996-01-01

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  12. Scientific projection paper for space radiobiological research

    International Nuclear Information System (INIS)

    Vinograd, S.P.

    1980-01-01

    A nationale for the radiobiological research requirements for space is rooted in a national commitment to the exploration of space, mandated in the form of the National Space Act. This research is almost entirely centered on man; more specifically, on the effects of the space radiation environment on man and his protection from them. The research needs discussed in this presentation include the space radiation environment; dosimetry; radiation biology-high LET particles (dose/response); and operational countermeasures

  13. "Lomonosov" Satellite—Space Observatory to Study Extreme Phenomena in Space

    Science.gov (United States)

    Sadovnichii, V. A.; Panasyuk, M. I.; Amelyushkin, A. M.; Bogomolov, V. V.; Benghin, V. V.; Garipov, G. K.; Kalegaev, V. V.; Klimov, P. A.; Khrenov, B. A.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Svertilov, S. I.; Zotov, M. Y.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Lee, J.; Jeong, S.; Kim, M. B.; Jeong, H. M.; Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Runov, A.; Turner, D.; Strangeway, R. J.; Caron, R.; Biktemerova, S.; Grinyuk, A.; Lavrova, M.; Tkachev, L.; Tkachenko, A.; Martinez, O.; Salazar, H.; Ponce, E.

    2017-11-01

    The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organizations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-Zatsepin-Kuzmin (GZK) cutoff; Ultraviolet (UV) transient luminous events in the upper atmosphere; Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments.

  14. Analysis of space systems study for the space disposal of nuclear waste study report. Volume 2: Technical report

    Science.gov (United States)

    1981-01-01

    Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.

  15. International Charter "Space and Major Disasters": Typical Examples of Disaster Management Including Asian Tsunami

    Science.gov (United States)

    Cubero-Castan, Eliane; Bequignon, Jerome; Mahmood, Ahmed; Lauritson, Levin; Soma, P.; Platzeck, Gabriel; Chu, Ishida

    2005-03-01

    The International Charter 'Space and Major Disaster', now entering its 5th year of operation, has been activated nearly 80 times to provide space-based data and information in response to natural disasters. The disasters ranged from volcanic eruption in Columbia, floods in Europe, Argentina, Sudan to earthquakes in Iran, from landslides in Philippines to the tragic tsunami in Asia, all resulting in major loss of life and property. The Charter provided imagery and the related information were found to be useful in disaster relief and assessment. Since July 1st 2003, a framework cooperation agreement has been allowing United Nations organizations involved in disaster response to request activation of the Charter.The purpose of the Charter is to provide assistance in situations of emergencies caused by natural and technological disasters by pooling together the space and associated ground resources of the Charter participants, which are currently the European (ESA), French (CNES), Canadian (CSA), Indian (ISRO), American (NOAA), Argentinean (CONAE) and Japanese (JAXA) space organizations.This paper will point out some of the best cases of Charter activation for different disasters leading to change detection imagery and damage assessment products which could be used for disaster reduction in close co-ordination with the end users after the crisis period.

  16. NASA/BAE SYSTEMS SpaceWire Effort

    Science.gov (United States)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  17. q-Space Upsampling Using x-q Space Regularization.

    Science.gov (United States)

    Chen, Geng; Dong, Bin; Zhang, Yong; Shen, Dinggang; Yap, Pew-Thian

    2017-09-01

    Acquisition time in diffusion MRI increases with the number of diffusion-weighted images that need to be acquired. Particularly in clinical settings, scan time is limited and only a sparse coverage of the vast q -space is possible. In this paper, we show how non-local self-similar information in the x - q space of diffusion MRI data can be harnessed for q -space upsampling. More specifically, we establish the relationships between signal measurements in x - q space using a patch matching mechanism that caters to unstructured data. We then encode these relationships in a graph and use it to regularize an inverse problem associated with recovering a high q -space resolution dataset from its low-resolution counterpart. Experimental results indicate that the high-resolution datasets reconstructed using the proposed method exhibit greater quality, both quantitatively and qualitatively, than those obtained using conventional methods, such as interpolation using spherical radial basis functions (SRBFs).

  18. Automation of Space Inventory Management

    Science.gov (United States)

    Fink, Patrick W.; Ngo, Phong; Wagner, Raymond; Barton, Richard; Gifford, Kevin

    2009-01-01

    This viewgraph presentation describes the utilization of automated space-based inventory management through handheld RFID readers and BioNet Middleware. The contents include: 1) Space-Based INventory Management; 2) Real-Time RFID Location and Tracking; 3) Surface Acoustic Wave (SAW) RFID; and 4) BioNet Middleware.

  19. The Geostrategic, Techno-Nationalist Push Into Space

    Directory of Open Access Journals (Sweden)

    Joan Johnson-Freese

    2014-12-01

    Full Text Available The technological benefits of space hardware are universally recognized. One is hard pressed to find an area of the world where satellite dishes for television reception, satellite use for data transmission, or the Global Positioning System (GPS for multiple purposes are not utilized. But utilization of commercial or of other countries’ space assets does not equate to being a space-faring nation. Space-faring nations have, to varying degrees, their own capabilities. The importance of status as a space-faring nation comes from two sources: not having to rely on others for access to the benefits of space assets, and prestige that can translate into geopolitical influence. Beyond users and space-faring nations, there are those countries actively asserting space leadership in some form, whether regional or global. What pushes countries to go beyond being a spacefaring nation and assert leadership potential, including potentially engaging in an implicit or explicit space race, is techno-nationalism, which for the purposes of this paper refers to nationalism that becomes the impetus for technology development as an indicator of geostrategic power. It is often triggered by a threat or perception of a threat, including a threat to perceived leadership. Techno-nationalism carries with it an inherent quest for leadership, by some definition.

  20. Human tolerance to space flight

    Science.gov (United States)

    Huntoon, C. L.

    1989-01-01

    Medical studies of astronauts and cosmonauts before, during, and after space missions have identified several effects of weightlessness and other factors that influence the ability of humans to tolerate space flight. Weightlessness effects include space motion sickness, cardiovascular abnormalities, reduction in immune system function, loss of red blood cells, loss of bone mass, and muscle atrophy. Extravehicular activity (EVA) increases the likelihood that decompression sickness may occur. Radiation also gives reason for concern about health of crewmembers, and psychological factors are important on long-term flights. Countermeasures that have been used include sensory preadaptation, prebreathing and use of various air mixtures for EVA, loading with water and electrolytes, exercise, use of pharmacological agents and special diets, and psychological support. It appears that humans can tolerate and recover satisfactorily from at least one year of space flight, but a number of conditions must be further ameliorated before long-duration missions can be considered routine.

  1. GSFC contamination monitors for Space Station

    Science.gov (United States)

    Carosso, P. A.; Tveekrem, J. L.; Coopersmith, J. D.

    1988-01-01

    This paper describes the Work Package 3 activities in the area of neutral contamination monitoring for the Space Station. Goddard Space Flight Center's responsibilities include the development of the Attached Payload Accommodations Equipment (APAE), the Polar Orbiting Platform (POP), and the Flight Telerobotic Servicer (FTS). GSFC will also develop the Customer Servicing Facility (CSF) in Phase 2 of the Space Station.

  2. Banach frames for multivariate alpha-modulation spaces

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2006-01-01

    The α-modulation spaces [$Mathematical Term$], form a family of spaces that include the Besov and modulation spaces as special cases. This paper is concerned with construction of Banach frames for α-modulation spaces in the multivariate setting. The frames constructed are unions of independent Ri...... Riesz sequences based on tensor products of univariate brushlet functions, which simplifies the analysis of the full frame. We show that the multivariate α-modulation spaces can be completely characterized by the Banach frames constructed....

  3. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  4. Space activities and global popular music culture

    Science.gov (United States)

    Wessels, Allison Rae; Collins, Patrick

    During the "space age" era, space activities appear increasingly as a theme in Western popular music, as they do in popular culture generally. In combination with the electronics and tele-communications revolution, "pop/rock" music has grown explosively during the space age to become an effectively global culture. From this base a number of trends are emerging in the pattern of influences that space activities have on pop music. The paper looks at the use of themes and imagery in pop music; the role of space technology in the modern "globalization" of pop music; and current and future links between space activities and pop music culture, including how public space programmes are affected by its influence on popular attitudes.

  5. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  6. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  7. The Nonlinear Field Space Theory

    International Nuclear Information System (INIS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-01-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  8. The Austrian Space Plan

    Science.gov (United States)

    Pseiner, K.; Balogh, W.

    2002-01-01

    After several years of preparation and discussion among the involved players, the Austrian Space Plan was approved for implementation in November 2001. Based on careful benchmarking and analysis of the capabilities of the Austrian space sector it aims to create excellent conditions for the sector's further development. The new space strategy embraces Austria's participation in the mandatory and optional programmes of the European Space Agency and establishes a National Space Programme supported by separate funding opportunities. A set of clearly-defined indicators ensures that the progress in implementing the Space Plan can be objectively judged through independent, annual reviews. The National Space Programme promotes international cooperation in space research and space activities with the aim to strengthen the role of space science and to better prepare Austrian space industry for the commercial space market. In the framework of the Space Plan the Austrian Space Agency has been tasked with integrating the industry's growing involvement in aeronautics activities to better utilize synergies with the space sector. This paper reviews the various steps leading to the approval of the new space strategy and discusses the hurdles mastered in this process. It reports on the Space Plan's first results, specifically taking into account projects involving international cooperation. For the first the Austria aerospace-sector can rely on an integrated strategy for aeronautics- and space activities which is firmly rooted in the efforts to enhance the country's R&D activities. It may also act as a useful example for other small space- using countries planning to enhance their involvement in space activities.

  9. Calculation of CSF spaces in CT

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, H; Artmann, H [Frankfurt Univ. (Germany, F.R.). Abt. fuer Neuroradiologie

    1978-01-01

    Objective digital determination of CSF spaces is discussed, with ventricular and subarachnoid spaces handled separately. This method avoids the difficulty of visual definition of ventricular borders in planimetric measurements. The principle is to count automatically all pixels corresponding to CSF in a given region with a Hounsfield unit and to multiply this number by the pixel size. This will give the total surface area of CSF spaces in square millimeters. The calculation of pixel values for CSF spaces and brain tissue is experimentally formulated taking the intersection of the Gaussian curves for ventricular content and brain tissue. In practice, the determination of CSF spaces is done by first calculating a histogram of the total brain in a given slice defining all CSF spaces. Next a histogram of a region including ventricles with adjoining tissue is calculated and the ventricular size is calculated. By subtraction of the ventricle value from the total CSF space value, the subarachnoid space size is obtained. The advantages of this mehtod will be discussed.

  10. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  11. Space station astronauts discuss life in space during AGU interview

    Science.gov (United States)

    Showstack, Randy

    2012-07-01

    Just one day after China's Shenzhou-9 capsule, carrying three Chinese astronauts, docked with the Tiangong-1 space lab on 18 June, Donald Pettit, a NASA astronaut on the International Space Station (ISS), said it is “a step in the right direction” that more people are in space. “Before they launched, there were six people in space,” he said, referring to those on ISS, “and there are 7 billion people on Earth.” The astronauts were “like one in a billion. Now there are nine people in space,” Pettit said during a 19 June interview that he and two other astronauts onboard ISS had with AGU. Pettit continued, “So the gradient of human beings going into space is moving in the right direction. We need to change these numbers so that more and more human beings can call space their home so we can expand off of planet Earth and move out into our solar system.”

  12. Powering the Space Exploration Initiative

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  13. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  14. Space Microbiology

    Science.gov (United States)

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  15. Small satellites and space debris issues

    Science.gov (United States)

    Yakovlev, M.; Kulik, S.; Agapov, V.

    2001-10-01

    The objective of this report is the analysis of the tendencies in designing of small satellites (SS) and the effect of small satellites on space debris population. It is shown that SS to include nano- and pico-satellites should be considered as a particularly dangerous source of space debris when elaborating international standards and legal documents concerning the space debris problem, in particular "International Space Debris Mitigation Standard". These issues are in accordance with the IADC goals in its main activity areas and should be carefully considered within the IADC framework.

  16. Gravitational biology on the space station

    Science.gov (United States)

    Keefe, J. R.; Krikorian, A. D.

    1983-01-01

    The current status of gravitational biology is summarized, future areas of required basic research in earth-based and spaceflight projects are presented, and potential applications of gravitational biology on a space station are demonstrated. Topics covered include vertebrate reproduction, prenatal/postnatal development, a review of plant space experiments, the facilities needed for growing plants, gravimorphogenesis, thigmomorphogenesis, centrifuges, maintaining a vivarium, tissue culture, and artificial human organ generation. It is proposed that space stations carrying out these types of long-term research be called the National Space Research Facility.

  17. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  18. SPACE 365: Upgraded App for Aviation and Space-Related Information and Program Planning

    Science.gov (United States)

    Williams, S.; Maples, J. E.; Castle, C. E.

    2014-12-01

    Foreknowledge of upcoming events and anniversary dates can be extraordinarily valuable in the planning and preparation of a variety of aviation and Space-related educational programming. Alignment of programming with items "newsworthy" enough to attract media attention on their own can result in effective program promotion at low/no cost. Similarly, awareness and avoidance of dates upon which media and public attention will likely be elsewhere can keep programs from being lost in the noise.NASA has created a useful and entertaining app called "SPACE 365" to help supply that foreknowledge. The app contains an extensive database of historical aviation and Space exploration-related events, along with other events and birthdays to provide socio-historical context, as well as an extensive file of present and future space missions, complete with images and videos. The user can search by entry topic category, date, and key words. Upcoming Events allows the user to plan, participate, and engage in significant "don't miss" happenings.The historical database was originally developed for use at the National Air and Space Museum, then expanded significantly to include more NASA-related information. The CIMA team at NASA MSFC, sponsored by the Planetary Science Division, added NASA current events and NASA educational programming information, and are continually adding new information and improving the functionality and features of the app. Features of SPACE 365 now include: NASA Image of the Day, Upcoming NASA Events, Event Save, Do Not Miss, and Ask Dr. Steve functions, and the CIMA team recently added a new start page and added improved search and navigation capabilities. App users can now socialize the Images of the Day via Twitter, Pinterest, Facebook, and other social media outlets.SPACE 365 is available at no cost from both the Apple appstore and GooglePlay, and has helped NASA, NASM, and other educators plan and schedule programming events. It could help you, too!

  19. Big data for space situation awareness

    Science.gov (United States)

    Blasch, Erik; Pugh, Mark; Sheaff, Carolyn; Raquepas, Joe; Rocci, Peter

    2017-05-01

    Recent advances in big data (BD) have focused research on the volume, velocity, veracity, and variety of data. These developments enable new opportunities in information management, visualization, machine learning, and information fusion that have potential implications for space situational awareness (SSA). In this paper, we explore some of these BD trends as applicable for SSA towards enhancing the space operating picture. The BD developments could increase in measures of performance and measures of effectiveness for future management of the space environment. The global SSA influences include resident space object (RSO) tracking and characterization, cyber protection, remote sensing, and information management. The local satellite awareness can benefit from space weather, health monitoring, and spectrum management for situation space understanding. One area in big data of importance to SSA is value - getting the correct data/information at the right time, which corresponds to SSA visualization for the operator. A SSA big data example is presented supporting disaster relief for space situation awareness, assessment, and understanding.

  20. Space Flight Applications of Optical Fiber; 30 Years of Space Flight Success

    Science.gov (United States)

    Ott, Melanie N.

    2010-01-01

    For over thirty years NASA has had success with space flight missions that utilize optical fiber component technology. One of the early environmental characterization experiments that included optical fiber was launched as the Long Duration Exposure Facility in 1978. Since then, multiple missions have launched with optical fiber components that functioned as expected, without failure throughout the mission life. The use of optical fiber in NASA space flight communications links and exploration and science instrumentation is reviewed.

  1. Report of space experiment project, 'Rad Gene', performed in the International Space Station Kibo

    International Nuclear Information System (INIS)

    Ohnishi, Takeo; Takahashi, Akihisa; Nagamatsu, Aiko

    2010-01-01

    This report summarizes results of the project in the title adopted by Japan Aerospace Exploration Agency (JAXA) (in 2000) aiming to elucidate the biological effect of space environment, and contains 3 major parts of the process of the experiment, and of findings by analysis after flight and in radioadaptive response. The process for the experiment includes training of the experimenter crew (Dr. S. Magnus) in JAXA, preparation of samples (frozen cells with normal and mutated p53 genes derived from human lymphoblast TK6) and their transfer to the Space Shuttle Endeavour STS-126 launched on Nov. 15, 2008 (Japanese time) for cell culturing in Feb., 2009. Analyses after flight back to the Kennedy Space Center on Mar. 29, 2009, done on the ground in Japan thereafter include the physical evaluation, confirmation of DNA damage, and phenotypic expression with DNA- and protein-arrays (genes induced for expression of p53-related phenotypes in those cells which were stored frozen in the space, thawed on the ground and then cultured, genes induced for expressing the phenotypes and p53-related proteins expressed in cells cultured in space). Physically, total absorbed dose and dose equivalent are found to be respectively 43.5 mGy and 71.2 mSv (0.5 mSv/day). Interestingly, the biologically estimated dose by DNA-double strand breaks detected by γH2AX staining, 94.5 mSv (0.7 mSv/day), in living, frozen cells in space, is close to the above physical dose. Expression experiments of p53-related phenotypes have revealed that expression of 750 or more genes in 41,000 genes in the array is changed: enhanced or suppressed by space radiation, micro-gravity and/or their mixed effects in space environment. In 642 protein antibodies in the array, 2 proteins are found enhanced and 8, suppressed whereas heat-shock protein is unchanged. Radioadaptive response is the acquisition of radio-resistance to acute exposure by previous irradiation of small dose (window width 20-100 mSv) in normal p53

  2. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  3. The Second Space Race

    Science.gov (United States)

    Fawkes, S.

    This paper compares and contrasts the characteristics of the first space race, which ran from the late 1950s to the late 1990s, and the second space race that began with the successful space flight of SpaceShipOne in 2004. The first space race was between superpowers seeking to establish geo-political dominance in the Cold War. The second space race will be between competing companies seeking to establish low cost access to space for ordinary people. The first space race achieved its geo- political objectives but did not open up low cost access to space but rather restricted access to a select few, highly trained astronauts and cosmonauts. The second space race, driven by the size and growth of the travel and tourism industry, promises to open up access to space to millions of space tourists.

  4. Paradigm shift regarding the transversalis fascia, preperitoneal space, and Retzius' space.

    Science.gov (United States)

    Asakage, N

    2018-06-01

    There has been confusion in the anatomical recognition when performing inguinal hernia operations in Japan. From now on, a paradigm shift from the concept of two-dimensional layer structure to the three-dimensional space recognition is necessary to promote an understanding of anatomy. Along with the formation of the abdominal wall, the extraperitoneal space is formed by the transversalis fascia and preperitoneal space. The transversalis fascia is a somatic vascular fascia originating from an arteriovenous fascia. It is a dense areolar tissue layer at the outermost of the extraperitoneal space that runs under the diaphragm and widely lines the body wall muscle. The umbilical funiculus is taken into the abdominal wall and transformed into the preperitoneal space that is a local three-dimensional cavity enveloping preperitoneal fasciae composed of the renal fascia, vesicohypogastric fascia, and testiculoeferential fascia. The Retzius' space is an artificial cavity formed at the boundary between the transversalis fascia and preperitoneal space. In the underlay mesh repair, the mesh expands in the range spanning across the Retzius' space and preperitoneal space.

  5. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  6. Intrinsic space charge resonances and the space charge limit

    International Nuclear Information System (INIS)

    Parzen, G.

    1990-01-01

    A study has been done of the dependence of the space charge limit on the choice of ν-values using a simulation program. This study finds a strong dependence of the space charge limit on the location of the ν-values relative to the intrinsic space charge resonances, which are driven by the space charge forces due to the beam itself. Four accelerators were studied. For some of these accelerators the study suggest that the space charge limit can be increased by about a factor of 2 proper choice of the ν-values. The lower order 1/2 and 1/4 intrinsic resonances appear to be the important resonances. There is some evidence for effects due to the 1/6 and 1/8 intrinsic resonances, particularly for larger synchrotrons. 5 figs

  7. Space-Hotel Early Bird - Visions for a Commercial Space Hotel

    Science.gov (United States)

    Amekrane, R.; Holze, C.; Apel, U.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be

  8. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    proposed earlier by many space experts, but some of them have limitations in them. After some modification those measures can proved beneficial in the process of space debris mitigation. Some new methods of space debris mitigation have been proposed by us in this paper which includes use of nanobot and nanotube mesh technique. Moreover we have to use it for energy purpose or the making of space structures. We end this paper by appealing that ``We have already polluted our own planet earth; we should now ensure that the space is kept least polluted for our own safe exploration of the outer space and also for the safety of aliens from other planets if they happen to exist.

  9. Mapping spaces and automorphism groups of toric noncommutative spaces

    Science.gov (United States)

    Barnes, Gwendolyn E.; Schenkel, Alexander; Szabo, Richard J.

    2017-09-01

    We develop a sheaf theory approach to toric noncommutative geometry which allows us to formalize the concept of mapping spaces between two toric noncommutative spaces. As an application, we study the `internalized' automorphism group of a toric noncommutative space and show that its Lie algebra has an elementary description in terms of braided derivations.

  10. Working in the Space Between

    Directory of Open Access Journals (Sweden)

    Stephanie Hemelryk Donald

    2009-08-01

    Full Text Available All of the contributors to this special issue have reflected on the stakes involved in negotiating differences in language and culture. In their research and professional practice they inhabit the ‘space between’: the space between languages, the space between cultures, and the space between academic disciplines. While many of our contributors are located in the Australian university system, we also have contributors from outside that system, as well as contributors who are theorising disparate sites for the negotiation of difference. The most exciting aspect of the papers presented here is the ability to move between the spheres of cultural theory and the everyday. Analytical techniques originally developed for literary and cultural analysis are brought to bear on the texts and practices of everyday life. The loci for these investigations include the classroom, the police station, the streets, local government and the university itself. The practices examined include translating and interpreting, language teaching, academic writing, literary production and critique, language planning and small business and shadow economies. The academic disciplines drawn on include theoretical and applied linguistics, discourse analysis, language teaching pedagogy, policy studies, cultural studies, literary studies, political science, gender studies and postcolonial theory.

  11. Next Generation Space Surveillance System-of-Systems

    Science.gov (United States)

    McShane, B.

    2014-09-01

    International economic and military dependence on space assets is pervasive and ever-growing in an environment that is now congested, contested, and competitive. There are a number of natural and man-made risks that need to be monitored and characterized to protect and preserve the space environment and the assets within it. Unfortunately, today's space surveillance network (SSN) has gaps in coverage, is not resilient, and has a growing number of objects that get lost. Risks can be efficiently and effectively mitigated, gaps closed, resiliency improved, and performance increased within a next generation space surveillance network implemented as a system-of-systems with modern information architectures and analytic techniques. This also includes consideration for the newest SSN sensors (e.g. Space Fence) which are born Net-Centric out-of-the-box and able to seamlessly interface with the JSpOC Mission System, global information grid, and future unanticipated users. Significant opportunity exists to integrate legacy, traditional, and non-traditional sensors into a larger space system-of-systems (including command and control centers) for multiple clients through low cost sustainment, modification, and modernization efforts. Clients include operations centers (e.g. JSpOC, USSTRATCOM, CANSPOC), Intelligence centers (e.g. NASIC), space surveillance sensor sites (e.g. AMOS, GEODSS), international governments (e.g. Germany, UK), space agencies (e.g. NASA), and academic institutions. Each has differing priorities, networks, data needs, timeliness, security, accuracy requirements and formats. Enabling processes and technologies include: Standardized and type accredited methods for secure connections to multiple networks, machine-to-machine interfaces for near real-time data sharing and tip-and-queue activities, common data models for analytical processing across multiple radar and optical sensor types, an efficient way to automatically translate between differing client and

  12. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  13. Abelian properties of Anick spaces

    CERN Document Server

    Gray, Brayton

    2017-01-01

    Anick spaces are closely connected with both EHP sequences and the study of torsion exponents. In addition they refine the secondary suspension and enter unstable periodicity. This work describes their H-space properties as well as universal properties. Techniques include a new kind on Whitehead product defined for maps out of co-H spaces, calculations in an additive category that lies between the unstable category and the stable category, and a controlled version of the extension theorem of Gray and Theriault (Geom. Topol. 14 (2010), no. 1, 243-275).

  14. Why Deep Space Habitats Should Be Different from the International Space Station

    Science.gov (United States)

    Griffin, Brand; Brown, MacAulay

    2016-01-01

    It is tempting to view the International Space Station (ISS) as a model for deep space habitats. This is not a good idea for many reasons. The ISS does not have a habitation module; instead the individual crew quarters are dispersed across several modules, the galley is in the US Laboratory and the waste hygiene compartment is in a Node. This distributed arrangement may be inconvenient but more important differences distinguish a deep space habitat from the ISS. First, the Space Shuttle launch system that shaped, sized, and delivered most ISS elements has been retired. Its replacement, the Space Launch System (SLS), is specifically designed for human exploration beyond low-Earth orbit and is capable of transporting more efficient, large diameter, heavy-lift payloads. Next, because of the Earth's protective geomagnetic field, ISS crews are naturally shielded from lethal radiation. Deep space habitat designs must include either a storm shelter or strategically positioned equipment and stowage for radiation protection. Another important difference is the increased transit time with no opportunity for an ISS-type emergency return. It takes 7 to 10 days to go between Earth and cis-lunar locations and 1000 days for the Mars habitat transit. This long commute calls for greater crew autonomy with habitats designed for the crew to fix their own problems. The ISS rack-enclosed, densely packaged subsystems are a product of the Shuttle era and not maintenance friendly. A solution better suited for deep space habitats spreads systems out allowing direct access to single-layer packaging and providing crew access to each component without having to remove another. Operational readiness is another important discriminator. The ISS required over 100 flights to build, resupply, and transport the crew, whereas SLS offers the capability to launch a fully provisioned habitat that is operational without additional outfitting or resupply flights.

  15. International Conference on Function Spaces and Inequalities

    CERN Document Server

    Schmeisser, Hans-Jürgen

    2017-01-01

    This book features original research and survey articles on the topics of function spaces and inequalities. It focuses on (variable/grand/small) Lebesgue spaces, Orlicz spaces, Lorentz spaces, and Morrey spaces and deals with mapping properties of operators, (weighted) inequalities, pointwise multipliers and interpolation. Moreover, it considers Sobolev–Besov and Triebel–Lizorkin type smoothness spaces. The book includes papers by leading international researchers, presented at the International Conference on Function Spaces and Inequalities, held at the South Asian University, New Delhi, India, on 11–15 December 2015, which focused on recent developments in the theory of spaces with variable exponents. It also offers further investigations concerning Sobolev-type embeddings, discrete inequalities and harmonic analysis. Each chapter is dedicated to a specific topic and written by leading experts, providing an overview of the subject and stimulating future research.

  16. Computed tomography of the carotid space and related cervical spaces. Part 1. Anatomy

    International Nuclear Information System (INIS)

    Silver, A.J.; Mawad, M.E.; Hilal, S.K.; Sane, P.; Ganti, S.R.

    1984-01-01

    The carotid space, parapharyngeal space, and paraspinal space are described. The carotid space is shown on computed tomography (CT) to be posterior to the parapharyngeal space and separated from it by the styloid apparatus. The paraspinal space is posterior to the carotid space and separated from it by the longus and anterior scalene muscles

  17. Role of the Space Station in Private Development of Space

    Science.gov (United States)

    Uhran, M. L.

    2002-01-01

    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  18. Finiteness principle and the concept of space-time

    International Nuclear Information System (INIS)

    Tati, T.

    1984-01-01

    It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt

  19. Space Livability of Street Vendors in Simpang Lima Public Space, Semarang

    Science.gov (United States)

    Widjajanti, R.; Wahyono, H.

    2018-02-01

    Street vendors in Semarang have been growing rapidly and uncontrolled. They always use public space such as public roads, sidewalks, parks and fields as trading locations. The street vendors’ activities in the public space are considered as the cause of declining on environmental quality and aesthetics of the city. All these years, the government often evicted the street vendors than organized and provides adequate space for them. As one of the actual urban activities, the street vendors’ activities should be accommodated by the government and the location for them is managed in the urban spatial plan. Street vendors need spaces which livable and suitable to their activities’ requirements, has a relationship with users (street vendors’ doers and consumers) and the activities of street vendors themselves. Research on the aspect of space for street vendors is still less in quantity, whereas space for them is an urgent matter for the government in managing their activities. This study aims to identify the livability of space based on the street vendors’ behavior in their location. This research used descriptive quantitative method with questionnaires and GIS as the mapping tool for street vendors’ location. The result of the research shows that the livability of street vendor space is based on the activity of street vendors (type of merchandise, trading places’ size, trade place assessment, space dimension, trading time, duration and period) and space conditions (access, natural elements, safety and parking space).

  20. Legal Consequences of the Pollution of Outer Space with Space Debris

    Science.gov (United States)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  1. Peripersonal space in the brain.

    Science.gov (United States)

    di Pellegrino, Giuseppe; Làdavas, Elisabetta

    2015-01-01

    Research in neuroscience reveals that the brain constructs multiple representation of space. Here, we primarily focus on peripersonal space (PPS) representation, the region of space immediately surrounding our bodies and in which objects can be grasped and manipulated. We review convergent results from several generations of studies, including neurophysiological studies in animals, neuropsychological investigations in monkeys and brain-damaged patients with spatial cognition disorders, as well as recent neuroimaging experiments in neurologically normal individuals. Collectively, these studies show that the primate brain constructs multiple, rapidly modifiable representations of space, centered on different body parts (i.e., hand-centered, head-centered, and trunk-centered), which arise through extensive multisensory interactions within a set of interconnected parietal and frontal regions. PPS representations are pivotal in the sensory guidance of motor behavior, allowing us to interact with objects and, as demonstrated by recent studies, with other people in the space around us. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Initial Nine Space Settlements

    Science.gov (United States)

    Gale, Anita E.; Edwards, Richard P.

    2003-01-01

    The co-authors describe a chronology of space infrastructure development illustrating how each element of infrastructure enables development of subsequent more ambitious infrastructure. This is likened to the ``Southern California freeway phenomenon'', wherein a new freeway built in a remote area promotes establishment of gas stations, restaurants, hotels, housing, and eventually entire new communities. The chronology includes new launch vehicles, inter-orbit vehicles, multiple LEO space stations, lunar mining, on-orbit manufacturing, tourist destinations, and supporting technologies required to make it all happen. The space settlements encompassed by the chronology are in Earth orbit (L5 and L4), on the lunar surface, in Mars orbit, on the Martian surface, and in the asteroid belt. Each space settlement is justified with a business rationale for construction. This paper is based on materials developed for Space Settlement Design Competitions that enable high school students to experience the technical and management challenges of working on an industry proposal team.

  3. Animals in Space From Research Rockets to the Space Shuttle

    CERN Document Server

    Burgess, Colin

    2007-01-01

    Many readers will doubtless be astonished to learn that animals were being fired aloft in U.S. and Soviet research rockets in the late 1940s. In fact most people not only believe that the Russian space dog Laika was the first canine to be launched into space, but also that the high-profile, precursory Mercury flights of chimps Ham and Enos were the only primate flights conducted by the United States. In fact, both countries had sent literally dozens of animals aloft for many years prior to these events and continued to do so for many years after. Other latter-day space nations, such as France and China, would also begin to use animals in their own space research. Animals in Space will explain why dogs, primates, mice and other rodents were chosen and tested, at a time when dedicated scientists from both space nations were determined to establish the survivability of human subjects on both ballistic and orbital space flights. It will also recount the way this happened; the secrecy involved and the methods empl...

  4. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  5. Gender and Space: Analysis of Factors Conditioning Equity in the Public Space

    Directory of Open Access Journals (Sweden)

    Pablo Paramo Bernal

    2011-01-01

    Full Text Available This article discusses gender research in urban public space through three different perspectives: the social representations and differentiated uses of space, the division of roles in public and private spaces, and urban planning of public space. The paper gathers and analyses some studies that complement the state of art and literature on women and space giving evidence on how women have been segregated from public space and are victim of gender inequalities. Public space does not exist absolutely nor gender; instead both are socially constructed by social order and reproduced by social practices. Finally, some suggestions for urban planning and research are given in order to respond women’s needs in public space.

  6. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  7. Communication spaces.

    Science.gov (United States)

    Coiera, Enrico

    2014-01-01

    Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, 'programming through annotation'. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment.

  8. NASA's current activities in free space optical communications

    Science.gov (United States)

    Edwards, Bernard L.

    2017-11-01

    NASA and other space agencies around the world are currently developing free space optical communication systems for both space-to-ground links and space-to-space links. This paper provides an overview of NASA's current activities in free space optical communications with a focus on Near Earth applications. Activities to be discussed include the Lunar Laser Communication Demonstration, the Laser Communications Relay Demonstration, and the commercialization of the underlying technology. The paper will also briefly discuss ongoing efforts and studies for Deep Space optical communications. Finally the paper will discuss the development of international optical communication standards within the Consultative Committee for Space Data Systems.

  9. Finite Metric Spaces of Strictly negative Type

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    If a finite metric space is of strictly negative type then its transfinite diameter is uniquely realized by an infinite extent (“load vector''). Finite metric spaces that have this property include all trees, and all finite subspaces of Euclidean and Hyperbolic spaces. We prove that if the distance...

  10. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  11. Innovation in Deep Space Habitat Interior Design: Lessons Learned From Small Space Design in Terrestrial Architecture

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry

    2014-01-01

    Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.

  12. Space station interior design: Results of the NASA/AIA space station interior national design competition

    Science.gov (United States)

    Haines, R. F.

    1975-01-01

    The results of the NASA/AIA space station interior national design competition held during 1971 are presented in order to make available to those who work in the architectural, engineering, and interior design fields the results of this design activity in which the interiors of several space shuttle size modules were designed for optimal habitability. Each design entry also includes a final configuration of all modules into a complete space station. A brief history of the competition is presented with the competition guidelines and constraints. The first place award entry is presented in detail, and specific features from other selected designs are discussed. This is followed by a discussion of how some of these design features might be applied to terrestrial as well as space situations.

  13. κ-Rindler space

    International Nuclear Information System (INIS)

    Kowalski-Glikman, J.

    2009-01-01

    In this paper we construct, and investigate some thermal properties of, the noncommutative counterpart of Rindler space, which we call κ-Rindler space. This space is obtained by changing variables in the defining commutators of κ-Minkowski space. We then rederive the commutator structure of κ-Rindler space with the help of an appropriate star product, obtained from the κ-Minkowski one. Using this star product, following the idea of Padmanabhan, we find the leading order, 1/κ correction to the Hawking thermal spectrum.

  14. User participation in urban green spaces

    DEFF Research Database (Denmark)

    Fors, Hanna; Molin, Julie Frøik; Murphyc, Melissa Anna

    2015-01-01

    The provision and administration of high quality urban public green spaces intertwines issues of planning, design, management and maintenance with governance. The benefits of such spaces are often tied to social justice, public health and recreation, biodiversity and helping cities to deal...... with climate change. International policies and changes in public administration have encouraged user participation across multiple phases of green space development. Although sceptics towards participation are easily found supporting arguments sometimes stand without critique, not questioning how...... participation affects the physical quality of green spaces. This literature review surveyed empirical scientific studies seeking to answer the following research question: How does research to date reflect over user participation's contribution to public urban green space quality? The review includes 31...

  15. Space in Space: Designing for Privacy in the Workplace

    Science.gov (United States)

    Akin, Jonie

    2015-01-01

    Privacy is cultural, socially embedded in the spatial, temporal, and material aspects of the lived experience. Definitions of privacy are as varied among scholars as they are among those who fight for their personal rights in the home and the workplace. Privacy in the workplace has become a topic of interest in recent years, as evident in discussions on Big Data as well as the shrinking office spaces in which people work. An article in The New York Times published in February of this year noted that "many companies are looking to cut costs, and one way to do that is by trimming personal space". Increasingly, organizations ranging from tech start-ups to large corporations are downsizing square footage and opting for open-office floorplans hoping to trim the budget and spark creative, productive communication among their employees. The question of how much is too much to trim when it comes to privacy, is one that is being actively addressed by the National Aeronautics and Space Administration (NASA) as they explore habitat designs for future space missions. NASA recognizes privacy as a design-related stressor impacting human health and performance. Given the challenges of sustaining life in an isolated, confined, and extreme environment such as Mars, NASA deems it necessary to determine the acceptable minimal amount for habitable volume for activities requiring at least some level of privacy in order to support optimal crew performance. Ethnographic research was conducted in 2013 to explore perceptions of privacy and privacy needs among astronauts living and working in space as part of a long-distance, long-duration mission. The allocation of space, or habitable volume, becomes an increasingly complex issue in outer space due to the costs associated with maintaining an artificial, confined environment bounded by limitations of mass while located in an extreme environment. Privacy in space, or space in space, provides a unique case study of the complex notions of

  16. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    Science.gov (United States)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  17. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  18. New Space Weather Systems Under Development and Their Contribution to Space Weather Management

    Science.gov (United States)

    Tobiska, W.; Bouwer, D.; Schunk, R.; Garrett, H.; Mertens, C.; Bowman, B.

    2008-12-01

    There have been notable successes during the past decade in the development of operational space environment systems. Examples include the Magnetospheric Specification Model (MSM) of the Earth's magnetosphere, 2000; SOLAR2000 (S2K) solar spectral irradiances, 2001; High Accuracy Satellite Drag Model (HASDM) neutral atmosphere densities, 2004; Global Assimilation of Ionospheric Measurements (GAIM) ionosphere specification, 2006; Hakamada-Akasofu-Fry (HAF) solar wind parameters, 2007; Communication Alert and Prediction System (CAPS) ionosphere, high frequency radio, and scintillation S4 index prediction, 2008; and GEO Alert and Prediction System (GAPS) geosynchronous environment satellite charging specification and forecast, 2008. Operational systems that are in active operational implementation include the Jacchia-Bowman 2006/2008 (JB2006/2008) neutral atmosphere, 2009, and the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) aviation radiation model using the Radiation Alert and Prediction System (RAPS), 2010. U.S. national agency and commercial assets will soon reach a state where specification and prediction will become ubiquitous and where coordinated management of the space environment and space weather will become a necessity. We describe the status of the CAPS, GAPS, RAPS, and JB2008 operational development. We additionally discuss the conditions that are laying the groundwork for space weather management and estimate the unfilled needs as we move beyond specification and prediction efforts.

  19. Space physics strategy-implementation study. Volume 1: Goals, objectives, strategy. A report to the Space Physics Subcommittee of the Space Science and Applications Advisory Committee

    Science.gov (United States)

    1991-01-01

    Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.

  20. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  1. Biotechnological experiments in space flights on board of space stations

    Science.gov (United States)

    Nechitailo, Galina S.

    2012-07-01

    Space flight conditions are stressful for any plant and cause structural-functional transition due to mobiliation of adaptivity. In space flight experiments with pea tissue, wheat and arabidopsis we found anatomical-morphological transformations and biochemistry of plants. In following experiments, tissue of stevia (Stevia rebaudiana), potato (Solanum tuberosum), callus culture and culture and bulbs of suffron (Crocus sativus), callus culture of ginseng (Panax ginseng) were investigated. Experiments with stevia carried out in special chambers. The duration of experiment was 8-14 days. Board lamp was used for illumination of the plants. After experiment the plants grew in the same chamber and after 50 days the plants were moved into artificial ionexchange soil. The biochemical analysis of plants was done. The total concentration of glycozides and ratio of stevioside and rebauside were found different in space and ground plants. In following generations of stevia after flight the total concentration of stevioside and rebauside remains higher than in ground plants. Experiments with callus culture of suffron carried out in tubes. Duration of space flight experiment was 8-167 days. Board lamp was used for illumination of the plants. We found picrocitina pigment in the space plants but not in ground plants. Tissue culture of ginseng was grown in special container in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 167 days. Biological activity of space flight culutre was in 5 times higher than the ground culture. This difference was observed after recultivation of space flight samples on Earth during year after flight. Callus tissue of potato was grown in tubes in thermostate under stable temperature of 22 ± 0,5 C. Duration of space experiment was from 8 to 14 days. Concentration of regenerates in flight samples was in 5 times higher than in ground samples. The space flight experiments show, that microgravity and other

  2. 12 CFR 7.5010 - Shared electronic space.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Shared electronic space. 7.5010 Section 7.5010 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY BANK ACTIVITIES AND OPERATIONS Electronic Activities § 7.5010 Shared electronic space. National banks that share electronic space, including...

  3. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  4. Space and the historian. [rocketry

    Science.gov (United States)

    Emme, E. M.

    1973-01-01

    The history of modern rocketry begins with the launching of rockets for vertical soundings in the upper atmosphere. The launchings of the first earth satellites sparked space endeavors including manned flight accomplishments largely unforeseen as to the scope and rapidity of their happening. The scope of historical inquiry should include the entire historical spectrum involving space science and technology, i.e., political, economic, and social aspects, and the international environment. The methodology of contemporary history is discussed.

  5. The twenty-first century in space

    CERN Document Server

    Evans, Ben

    2015-01-01

    This final entry in the History of Human Space Exploration mini-series by Ben Evans continues with an in-depth look at the latter part of the 20th century and the start of the new millennium. Picking up where Partnership in Space left off, the story commemorating the evolution of manned space exploration unfolds in further detail. More than fifty years after Yuri Gagarin’s pioneering journey into space, Evans extends his overview of how that momentous voyage continued through the decades which followed. The Twenty-first Century in Space, the sixth book in the series, explores how the fledgling partnership between the United States and Russia in the 1990s gradually bore fruit and laid the groundwork for today’s International Space Station. The narrative follows the convergence of the Shuttle and Mir programs, together with standalone missions, including servicing the Hubble Space Telescope, many of whose technical and human lessons enabled the first efforts to build the ISS in orbit. The book also looks to...

  6. Study of space mutation breeding in China

    International Nuclear Information System (INIS)

    Wen Xianfang; Zhang Long; Dai Weixu; Li Chunhua

    2004-01-01

    This paper described the status of space mutation breeding in China. It emphasized that since 1978 Chinese space scientists and agricultural biologists have send 50 kg seeds of more than 70 crops including cereals, cotton, oil, vegetable, fruit and pasture to the space using the facilities such as return satellite 9 times, Shenzhou aircraft twice and high balloon 4 times. New varieties of 19 with high yield, high quality and disease-resistance, have been bred though years of breeding at the earth at more than 70 Chinese research institutes in 22 provinces. The new varieties include five rice varieties, two wheat varieties, two cotton varieties, one sweat pepper, one tomato variety, one sesame variety, three water melon varieties, three lotus varieties and one ganoderma lucidum variety. In addition more than 50 new lines and many other germplasm resources have been obtained. Study on space breeding mechanism, such as biological effect of space induction, genetic variation by cell and molecular techniques and simulated study at the earth, has been conducted, and some progresses have been achieved. Many space-breeding bases have been established in some provinces. Space varieties have been extended up to 270000 hectares, and some useful scientific achievements and social economic benefit had been made. The study of Chinese space mutation breeding is going ahead in the world. The paper also introduced the contribution and results made by return satellites of the first three generation in space science. Some basic parameters involved in the study on space mutation breeding of return satellites were listed

  7. National Coordination Office for Space-Based PNT

    Science.gov (United States)

    Shaw, M. E.

    2008-12-01

    In December 2004, President Bush issued the US Policy on space-based positioning, navigation, and timing (PNT), providing guidance on the management of the Global Positioning System (GPS) and other space- based PNT systems. The policy established the National Executive Committee (EXCOM) to advise and coordinate federal agencies on matters related to space-based PNT. Chaired jointly by the deputy secretaries of defense and transportation, the EXCOM includes equivalent level officials from the Departments of State, the Interior, Agriculture, Commerce, and Homeland Security, the Joint Chiefs of Staff, and the National Aeronautics and Space Administration (NASA). A National Coordination Office (NCO) supports the EXCOM through an interagency staff. Since establishing the EXCOM and NCO in 2005, the organizations have quickly grown in influence and effectiveness, leading or managing many interagency initiatives including the development of a Five-Year National Space-Based PNT Plan, the Space-Based PNT Interference Detection and Mitigation (IDM) Plan, and other strategic documents. The NCO has also facilitated interagency coordination on numerous policy issues and on external communications intended to spread a consistent, positive US message about space-based PNT. Role of the NCO - The purpose of the EXCOM is to provide top-level guidance to US agencies regarding space-based PNT infrastructure. The president established it at the deputy secretary level to ensure its strategic recommendations effect real change in agency budgets. Recognizing such high-level officials could only meet every few months, the president directed the EXCOM to establish an NCO to carry out its day-to-day business, including overseeing the implementation of EXCOM action items across the member agencies. These range from the resolution of funding issues to the assessment of strategic policy options. They also include the completion of specific tasks and documents requested by the EXCOM co

  8. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  9. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  10. SPACE MEDICINE and Medical Operations Overview

    Science.gov (United States)

    Dervay, Joe

    2009-01-01

    This presentation is an overview of the function of the work of the Space Medicine & Health Care Systems Office. The objective of the medical operations is to ensure the health, safety and well being of the astronaut corps and ground support team during all phases of space flight. There are many issues that impact the health of the astronauts. Some of them are physiological, and others relate to behavior, psychological issues and issues of the environment of space itself. Reviews of the medical events that have affected both Russian, and Americans while in space are included. Some views of shuttle liftoff, and ascent, the medical training aboard NASA's KC-135 and training in weightlessness, the Shuttle Orbiter Medical system (SOMS), and some of the medical equipment are included. Also included are a graphs showing Fluid loading countermeasures, and vertical pursuit tracking with head and eye. The final views are representations of the future crew exploration vehicle (CEV) approaching the International Space Station, and the moon, and a series of perspective representations of the earth in comparison to the other planets and the Sun, the Sun in relation to other stars, and a view of where in the galaxy the Sun is.

  11. (Ln-bar, g)-spaces. General relativity over V4-bar - spaces

    International Nuclear Information System (INIS)

    Manoff, S.; Kolarov, A.; Dimitrov, B.

    1998-01-01

    The results from the considerations of differentiable manifolds with contravariant and covariant affine connections and metrics are specialized for the case of (L n bar, g)-spaces with metric transport (∇ ξ g = 0 for all ξ is T (M), g ij;k = 0 and f j i = e φ · g j i (the s.c. (pseudo)Riemannian spaces with contravariant and covariant symmetric affine connections). Einstein's theory of gravitation is considered in (pseudo)Riemannian spaces with different (not only by sign) contravariant and covariant affine connections ((V n bar)-spaces, n = 4). The Euler-Lagrange equations and the corresponding energy-momentum tensors (EMT-s) are obtained and compared with the Einstein equations and the EMT-s in V 4 -spaces. The geodesic and autoparallel equations in V 4 bar -spaces are found as different equations in contrast to the case of V 4 -spaces

  12. Space-time interdependence: evidence against asymmetric mapping between time and space.

    Science.gov (United States)

    Cai, Zhenguang G; Connell, Louise

    2015-03-01

    Time and space are intimately related, but what is the real nature of this relationship? Is time mapped metaphorically onto space such that effects are always asymmetric (i.e., space affects time more than time affects space)? Or do the two domains share a common representational format and have the ability to influence each other in a flexible manner (i.e., time can sometimes affect space more than vice versa)? In three experiments, we examined whether spatial representations from haptic perception, a modality of relatively low spatial acuity, would lead the effect of time on space to be substantially stronger than the effect of space on time. Participants touched (but could not see) physical sticks while listening to an auditory note, and then reproduced either the length of the stick or the duration of the note. Judgements of length were affected by concurrent stimulus duration, but not vice versa. When participants were allowed to see as well as touch the sticks, however, the higher acuity of visuohaptic perception caused the effects to converge so length and duration influenced each other to a similar extent. These findings run counter to the spatial metaphor account of time, and rather support the spatial representation account in which time and space share a common representational format and the directionality of space-time interaction depends on the perceptual acuity of the modality used to perceive space. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  14. The Mini Space Farm—A Food Regenerative System in the Long-term Manned Space Mission.

    Science.gov (United States)

    Zhang, Mao

    In this invention we propose rearing six types of small animals which are mainly insects, all the biological wastes (bio-waste) in the space human life environment, including the human and animal feces, inedible parts of the plants and animals, food bits and other bio-wastes,can be feedstuff for rearing these six small animals, each one can recycle and digest the specific wastes to be their nourishing biomass. The biomass of these six animals, combine with the inedible parts of the space plants, will further be used as feedstuff for feeding edible animals of poultry, aquatics, amphibians, even the livestock. The meat, egg and milk from these edible animals are taken as human's animal food. Here we name these animals are as Edible Animal (EA), these six small animals are as Recycling Animals (RA). The water and nutrition left in the residues after rearing the RA can be recycled again by other RA or used to fertilize the space plants. The appropriate space plants include both terrestrial and aquatic species, such as vegetable,grain,feeding plant,edible algae and germs,also be cultivated as vegetarian food which have already successfully developed by NASA and other countries. These RA have strong reproduction ability, short life cycle, rich of nutrition, and can be easily reared in high densities with high efficiency in microgravity. Like the RA, the EA and space plants, they can be continuously reared in cages,boxes and water tanks as the solid manner, their optimal growth temperature and the humidity are same with RA, so they can be fed in the same cabin. Rearing RA, EA and plants together can provide a self-sustaining food system with minimum volume, weight, energy, labor and cost, which is the basis for realizing mini space farm in long term manned space missions. In this way, two kinds of mini space farm models have been designed: A cabin model to be used on ISS and flight craft functioning within a microgravity environment, and a greenhouse model to be used on

  15. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  16. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  17. Women in Space — Following Valentina

    CERN Document Server

    Shayler, David J

    2005-01-01

    Space exploration has developed from early, unmanned space probes through the pioneering years of the ‘Manned’ Mercury, Gemini, and Apollo missions, to missions that now include women in the crew as a matter of course. Dave Shayler tells the story of the first woman balloonist in 1784 to their breakthrough as astronauts and cosmonauts in a range of professional roles. He covers the contribution women have made to space exploration and draws on interviews with Shuttle and Mir crew members who were women. These interviews detail the achievements of the first female Shuttle commander and the first female resident crew member of the International Space Station. These and many other events are presented in a detailed and highly readable account that recalls the difficult path to space exploration by women.

  18. Topological vector spaces and their applications

    CERN Document Server

    Bogachev, V I

    2017-01-01

    This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. In addition, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.

  19. Space vehicle chassis

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Seitz, Daniel; Martinez, John; Storms, Steven; Kestell, Gayle

    2017-07-18

    A modular space vehicle chassis may facilitate convenient access to internal components of the space vehicle. Each module may be removable from the others such that each module may be worked on individually. Multiple panels of at least one of the modules may swing open or otherwise be removable, exposing large portions of the internal components of the space vehicle. Such chassis architectures may reduce the time required for and difficulty of performing maintenance or modifications, may allow multiple space vehicles to take advantage of a common chassis design, and may further allow for highly customizable space vehicles.

  20. Quasi-uniform Space

    OpenAIRE

    Coghetto Roland

    2016-01-01

    In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

  1. A Space Apart

    Directory of Open Access Journals (Sweden)

    Lisa Lynch

    2017-01-01

    Full Text Available This article examines how the preschool child is enabled to withdraw from the peer group and create a private, individual space within the institutional collective. The question under consideration is, “What factors are necessary to enable a child to create and maintain a withdrawal space in the preschool?” Data were collected through ethnographic fieldwork at two Montessori schools in the south of Sweden. Analysis of the results reveals that a child is enabled through a combination of two elements: a level of opportunity to create a space and a level of defense of a created space. These two factors are dependent on the teachers’ ability to correctly identify space creation, alongside their desire for the child’s space creation effort to be successful.

  2. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  3. Improving the quality of urban public space through the identification of space utilization index at Imam Bonjol Park, Padang city

    Science.gov (United States)

    Eriawan, Tomi; Setiawati, Lestari

    2017-06-01

    Padang City as a big city with a population approaching one million people has to address the issue of increased activities of the population and increased need for land and space for those activities. One of the effects of population growth and the development of activities in Padang is the decreasing number of open spaces for the outdoor public activities, both the natural and artificial public. However, Padang City has several open spaces that are built and managed by the government including 40 units of open spaces in the form of plansum parks, playgrounds, and sports parks, with a total area of 10.88 hectares. Despite their status as public open spaces, not all of them can be used and enjoyed by the public since most of them are passive parks, in which they are made only as a garden without any indulgences. This study was performed to assess the quality of public spaces in the central business of Padang City, namely Imam Bonjol Park (Taman Imam Bonjol). The methods of this study were done through several stages, which were to identify the typology of function space based on [1] Carmona (2008) and to assess the space utilization index based on the approach of Public Space Index according to Mehta [2] (2007). The purpose of this study was to assess the quality of space which is a public space in Padang City. The space quality was measured based on the variables in Good Public Space Index, the intensity of use, the intensity of social activity, the duration of activity, the variations in usage, and the diversity of use. The rate of the index of public space quality at Taman Imam Bonjol was determined by assessing 5 (five) variables of space quality. Based on the results of the analysis, public space utilization index was equal to 0.696. This result could be used to determine the quality of public space, in this case was Imam Bonjol Park was in Medium category. The parameters indicated several results including the lack of diversity in users' activity time, less

  4. Digital radiography in space.

    Science.gov (United States)

    Hart, Rob; Campbell, Mark R

    2002-06-01

    With the permanent habitation of the International Space Station, the planning of longer duration exploration missions, and the possibility of space tourism, it is likely that digital radiography will be needed in the future to support medical care in space. Ultrasound is currently the medical imaging modality of choice for spaceflight. Digital radiography in space is limited because of prohibitive launch costs (in the region of $20,000/kg) that severely restrict the volume, weight, and power requirements of medical care hardware. Technological increases in radiography, a predicted ten-fold decrease in future launch costs, and an increasing clinical need for definitive medical care in space will drive efforts to expand the ability to provide medical care in space including diagnostic imaging. Normal physiological responses to microgravity, in conjunction with the high-risk environment of spaceflight, increase the risk of injury and could imply an extended recovery period for common injuries. The advantages of gravity on Earth, such as the stabilization of patients undergoing radiography and the drainage of fluids, which provide radiographic contrast, are unavailable in space. This creates significant difficulties in patient immobilization and radiographic positioning. Gravity-dependent radiological signs, such as lipohemarthrosis in knee and shoulder trauma, air or fluid levels in pneumoperitoneum, pleural effusion, or bowel obstruction, and the apical pleural edge in pneumothorax become unavailable. Impaired healing processes such as delayed callus formation following fracture will have implications on imaging, and recovery time lines are unknown. The confined nature of spacecraft and the economic impossibility of launching lead-based personal protective equipment present significant challenges to crew radiation safety. A modified, free-floating radiographic C-arm device equipped with a digital detector and utilizing teleradiology support is proposed as a

  5. Leading the Public Face of Space

    Science.gov (United States)

    Dumbacher, Daniel L.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is fully committed to sharing the excitement of America's international space missions with its stakeholders, particularly the general public. In 2009, the Space Shuttle delivered astronauts to the Hubble Space Telescope to service that great observatory and to the International Space Station to install the observation platform on the Japanese Kibo laboratory. The Lunar Reconnaissance Orbiter is showing an unprecedented view of the Moon, confirming the presence of hardware left behind during the Apollo missions decades ago and helping scientists better understand Earth's natural satellite. These and numerous other exciting missions are fertile subjects for public education and outreach. NASA's core mission includes engaging the public face of space in many forms and forums. Agency goals include communicating with people across the United States and through international opportunities. NASA has created a culture where communication opportunities are valued avenues to deliver information about scientific findings and exploration possibilities. As this presentation will show, NASA's leaders act as ambassadors in the public arena and set expectations for involvement across their organizations. This presentation will focus on the qualities that NASA leaders cultivate to achieve challenging missions, to expand horizons and question "why". Leaders act with integrity and recognize the power of the team multiplier effect on delivering technical performance within budget and schedule, as well as through participation in education and outreach opportunities. Leaders are responsible for budgeting the resources needed to reach target audiences with compelling, relevant information and serve as role models, delivering key messages to various audiences. Examples that will be featured in this presentation include the Student Launch Projects and Great Moonbuggy race, which reach hundreds of students who are a promising

  6. Sterilization of space hardware.

    Science.gov (United States)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  7. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  8. Quantum group gauge theory on quantum spaces

    International Nuclear Information System (INIS)

    Brzezinski, T.; Majid, S.

    1993-01-01

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)

  9. Biological challenges of true space settlement

    Science.gov (United States)

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  10. Quasi-uniform Space

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2016-09-01

    Full Text Available In this article, using mostly Pervin [9], Kunzi [6], [8], [7], Williams [11] and Bourbaki [3] works, we formalize in Mizar [2] the notions of quasiuniform space, semi-uniform space and locally uniform space.

  11. Nuclear power plant wastes in space?

    International Nuclear Information System (INIS)

    Gertsenshtejn, M.E.; Klavdiev, V.V.

    1992-01-01

    Project of radioactive waste disposal into space by electric gun is discussed. The basic disadvantages of the project should include contamination of the near-the-earth space with radioactive containers as well as physical and technical difficulties related to developing electrical gun the shell of which should have the velocity exceeding 5 km/s. Idea of actinide gas atomization in the faraway space by multiply usable apparatus is proposed as alternative solution for the problem of radioactive waste disposal

  12. Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs

    Science.gov (United States)

    Millis, Marc G.

    1994-01-01

    spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.

  13. Countable Fuzzy Topological Space and Countable Fuzzy Topological Vector Space

    Directory of Open Access Journals (Sweden)

    Apu Kumar Saha

    2015-06-01

    Full Text Available This paper deals with countable fuzzy topological spaces, a generalization of the notion of fuzzy topological spaces. A collection of fuzzy sets F on a universe X forms a countable fuzzy topology if in the definition of a fuzzy topology, the condition of arbitrary supremum is relaxed to countable supremum. In this generalized fuzzy structure, the continuity of fuzzy functions and some other related properties are studied. Also the class of countable fuzzy topological vector spaces as a generalization of the class of fuzzy topological vector spaces has been introduced and investigated.

  14. Space Product Development: Bringing the Benefits of Space Down to Earth

    Science.gov (United States)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  15. Clausewitz on Space: Developing Military Space Theory Through a Comparative Analysis

    National Research Council Canada - National Science Library

    Streland, Arnold

    1999-01-01

    .... Our commercial space industry has become a huge economic center of gravity for our nation. Our enemies are discovering the benefits of space by developing their own systems and purchasing commercial space services...

  16. Topological Vector Space-Valued Cone Metric Spaces and Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Radenović Stojan

    2010-01-01

    Full Text Available We develop the theory of topological vector space valued cone metric spaces with nonnormal cones. We prove three general fixed point results in these spaces and deduce as corollaries several extensions of theorems about fixed points and common fixed points, known from the theory of (normed-valued cone metric spaces. Examples are given to distinguish our results from the known ones.

  17. On birecurrent spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1991-10-01

    A birecurrent space is defined with its classification and studied with involvement of Einstein, conformally flat, conformally symmetric and conformally recurrent spaces. A necessary and sufficient condition that a birecurrent space be recurrent is found. (author). 6 refs

  18. Publicly Available Geosynchronous (GEO) Space Object Catalog for Future Space Situational Awareness (SSA) Studies

    Science.gov (United States)

    Koblick, D. C.; Shankar, P.; Xu, S.

    Previously, there have been many commercial proposals and extensive academic studies regarding ground and space based sensors to assist a space surveillance network in obtaining metric observations of satellites and debris near Geosynchronous Earth Orbit (GEO). Most use physics based models for geometric constraints, lighting, and tasker/scheduler operations of sensor architectures. Under similar physics modeling assumptions, the space object catalog is often different due to proprietary standards and datasets. Lack of catalog commonality between studies creates barriers and difficulty comparing performance benefits of sensor trades. To solve this problem, we have constructed a future GEO space catalog from publicly available datasets and literature. The annual number of new payloads and rocket bodies is drawn from a Poisson distribution while the growth of the current GEO catalog is bootstrapped from the historical payload, upper stage, and debris data. We adopt a spherically symmetric explosion model and couple it with the NASA standard breakup model to simulate explosions of payloads and rocket bodies as they are the primary drivers of the debris population growth. The cumulative number of fragments follow a power-law distribution. Result from 1,000 random catalog growth simulations indicates that the GEO space object population in the year 2050 will include over 3,600 objects, nearly half of which are debris greater than 10 cm spherical diameter. The number of rocket bodies and dead payloads is projected to nearly double over the next 33 years. For comparison, the current Air Force Space Command catalog snapshot contains fewer than 50 pieces of debris and coarse Radar Cross Section (RCS) estimates which include: small, medium, and large. The current catalog may be sufficient for conjunction studies, but not for analyzing future sensor system performance. The 2050 GEO projected catalog will be available online for commercial/academic research and development.

  19. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  20. Drug Information in Space Medicine

    Science.gov (United States)

    Bayuse, Tina M.

    2009-01-01

    Published drug information is widely available for terrestrial conditions. However, information on dosing, administration, drug interactions, stability, and side effects is scant as it relates to use in Space Medicine. Multinational crews on board the International Space Station present additional challenges for drug information because medication nomenclature, information available for the drug as well as the intended use for the drug is not standard across countries. This presentation will look at unique needs for drug information and how the information is managed in Space Medicine. A review was conducted of the drug information requests submitted to the Johnson Space Center Pharmacy by Space Medicine practitioners, astronaut crewmembers and researchers. The information requested was defined and cataloged. A list of references used was maintained. The wide range of information was identified. Due to the information needs for the medications in the on-board medical kits, the Drug Monograph Project was created. A standard method for answering specific drug information questions was generated and maintained by the Johnson Space Center Pharmacy. The Drug Monograph Project will be presented. Topic-centered requests, including multinational drug information, drug-induced adverse reactions, and medication events due to the environment will be highlighted. Information management of the drug information will be explained. Future considerations for drug information needs will be outlined.

  1. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  2. Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces

    Directory of Open Access Journals (Sweden)

    Flavia Colonna

    2012-01-01

    Full Text Available The logarithmic Bloch space Blog⁡ is the Banach space of analytic functions on the open unit disk 𝔻 whose elements f satisfy the condition ∥f∥=sup⁡z∈𝔻(1-|z|2log⁡  (2/(1-|z|2|f'(z|<∞. In this work we characterize the bounded and the compact weighted composition operators from the Hardy space Hp (with 1≤p≤∞ into the logarithmic Bloch space. We also provide boundedness and compactness criteria for the weighted composition operator mapping Hp into the little logarithmic Bloch space defined as the subspace of Blog⁡ consisting of the functions f such that lim⁡|z|→1(1-|z|2log⁡  (2/(1-|z|2|f'(z|=0.

  3. Space Rescue

    Science.gov (United States)

    Muratore, John F.

    2007-01-01

    Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.

  4. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data.

    Directory of Open Access Journals (Sweden)

    J Rasmus Nielsen

    Full Text Available Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua and whiting (Merlangius merlangus, a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size. The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year.

  5. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  6. Space Guiding Us

    Science.gov (United States)

    Primikiri, Athina

    2016-04-01

    Taking into consideration the fact that general education provides the passport for a successful career the charting of Space consists of a constructive instrument available to every single teacher. Activities touching directly upon Space comprise a source of inspiration that encourages pupils to get acquainted with natural sciences and technology while consolidating their cross-curriculum knowledge. The applications and endeavors arising out of Space play a vital role for the further development and growth of our societies. Moreover, the prosperity of people is inextricably bound up with the implementation of Space policies adapted to different sectors such as the Environment, the phenomenon of climate change, matters affecting public or private safety, humanitarian aid and other technological issues. Therefore, the thorough analysis of Space endows us with insights about new products and innovative forms of industrial collaboration. As a teacher, I have consciously chosen to utilize the topic of Space in class as an instructive tool during the last 4 years. The lure of Space combined with the fascination provided by Space flights contributes to the enrichment of children's knowledge in the field of STEM. Space consists of the perfect cross-curriculum tool for the teaching of distinct subjects such as History, Geography, Science, Environment, Literature, Music, Religion and Physical Education. Following the Curriculum for pupils aged 9-10 I opted to teach the topic of Space under the title 'Space Guiding Us' as well as its subunits: • International Space Station • Cassini/Huygens, Mission to Titan • Rosetta & Philae • European Union and Space • Mission X: Train like an Astronaut The main purpose of choosing the module of 'Space' is to stimulate the scientific and critical thought of the pupils, to foster the co-operative spirit among them and to make them aware of how the application of Science affects their everyday lives. Aims • To incite pupils

  7. Interactive Space(s) -- the CTSG: bridging the real and virtual

    NARCIS (Netherlands)

    Eliëns, A.P.W.; Mao, W.; Vermeersch, L

    2010-01-01

    In this paper, ideas will be presented how to realize games or playful activities in interactive space(s), having a real (spatial) component as well as a representation in virtual 2D or 3D space, by means of web pages and/or online games. Apart from general design criteria, the paper discusses a

  8. Space Colonization-Benefits for the World

    Science.gov (United States)

    Siegfried, W. H.

    2003-01-01

    We have begun to colonize space, even to the extent of early space tourism. Our early Vostok, Mercury, Gemini, Apollo, Skylab, Spacehab, Mir and now ISS are humankind's first ventures toward colonization. Efforts are underway to provide short space tours, and endeavors such as the X-Prize are encouraging entrepreneurs to provide new systems. Many believe that extended space travel (colonization) will do for the 21st century what aviation did for the 20th. Our current concerns including terrorism, hunger, disease, and problems of air quality, safe abundant water, poverty, and weather vagaries tend to overshadow long-term activities such as Space Colonization in the minds of many. Our leading ``think tanks'' such as the Woodrow Wilson International Center for Scholars and the Brookings Institute do not rate space travel high on lists of future beneficial undertakings even though many of the concerns listed above are prominently featured. It is the contention of this paper that Space Colonization will lead toward solutions to many of the emerging problems of our Earth, both technological and sociological. The breadth of the enterprise far exceeds the scope of our normal single-purpose missions and, therefore, its benefits will be greater.

  9. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  10. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  11. The Cauchy problem for space-time monopole equations in Sobolev spaces

    Science.gov (United States)

    Huh, Hyungjin; Yim, Jihyun

    2018-04-01

    We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).

  12. The Alabama Space and Rocket Center: The Second Decade.

    Science.gov (United States)

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  13. A Foothold in Space

    Institute of Scientific and Technical Information of China (English)

    YAO BIN

    2011-01-01

    With the successful launch of Tiangong-I (Heavenly Palace -I)unmanned module on September 29,China took a significant step forward in realizing its ambitions in space.China's manned space program consists of three steps.The first step,to send an astronaut into space,was achieved in 2003.The second step,to realize multi-person space flight for extended periods of time,has been fulfilled twice.During China's third manned space flight in 2008,Chinese astronauts walked in space.

  14. Charge distributions in transverse coordinate space and in impact parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)], E-mail: dshwang@slac.stanford.edu; Kim, Dong Soo [Department of Physics, Kangnung National University, Kangnung 210-702 (Korea, Republic of); Kim, Jonghyun [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2008-11-27

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  15. Charge distributions in transverse coordinate space and in impact parameter space

    OpenAIRE

    Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun

    2008-01-01

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  16. Space Elevators: Building a Permanent Bridge for Space Exploration and Economic Development

    Science.gov (United States)

    Smitherman, David V., Jr.; Howell, Joe T. (Technical Monitor)

    2000-01-01

    A space elevator is a physical connection from the surface of the Earth to a geo-stationary orbit above the Earth approximately 35,786 km in altitude. Its center of mass is at the geo-stationary point such that it has a 24-hour orbit, and stays over the same point above the equator as the Earth rotates on its axis. The structure is utilized as a transportation and utility system for moving payloads, power, and gases between the surface of the Earth and space. It makes the physical connection from Earth to space in the same way a bridge connects two cities across a body of' water. The space elevator may be an important concept for the future development of space in the latter part of the 21th century. It has the potential to provide mass-transportation to space in the same way highways, railroads, power lines, and pipelines provide mass-transportation across the Earth's surface. The low energy requirements for moving payloads up and down the elevator make it one of only a few concepts that has the potential of lowering the cost to orbit to less than $10 per kilogram. This paper will summarize the findings from a 1999 NASA workshop on Space Elevators held at the NASA Marshall Space Flight Center (MSFC). The workshop was sponsored by the Advanced Projects Office in the Flight Projects Directorate at MSFC, and was organized in cooperation with the Advanced Space Transportation Program at MSFC and the Advanced Concepts Office in the Office of Space Flight at NASA Headquarters. New concepts will be examined for space elevator construction and a number of issues will be discussed that has helped to bring the space elevator concept out of the realm of science fiction and into the realm of possibility. In conclusion, it appears that the space elevator concept may well he possible in the latter part of the 21st century if proper planning and technology development is emphasized to resolve key issues in the development of this advanced space infrastructure concept.

  17. INFORMATION SPACE– EDUCATIONAL SPACE

    Directory of Open Access Journals (Sweden)

    Monica LIA

    2015-11-01

    Full Text Available This paper has set the objective of researching how education is influenced by the information society. The first step was to define more precisely the information space. The second step was to identify how information space intersects with the family space and institutional space educational levels represented by pre-school / school and pre-university (kindergarten, at elementary / middle school / high school. Interrelationship between the above mentioned areas was another objective of the research. All these elements have been investigated through the original intention to identify how the information space can become an educational tool to support the family space, education and institutional space. Also, the aim of this research is to offer some solutions in this regard. Often the educational efforts appear to be blocked by the existence of this space. But this paper demonstrates that Informational space can be an enemy of the educational system or can support systems if we knew the internal structure and mechanisms. We can make the Informational Space to work in order to accomplish the educational scope.

  18. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  19. Cyber space bullying

    Directory of Open Access Journals (Sweden)

    Popović-Ćitić Branislava

    2009-01-01

    Full Text Available Cyber space bullying is a relatively new phenomenon that has received increased attention by scientists, researchers and practitioners in recent years. It is usually defined as an intentionally and repeatedly expression of aggression towards other people through information and communication technologies. Cyber space bullying is characterized by all the primary characteristics of traditional bullying and some specifics ones that clearly differ it from other forms of bullying. In addition to the analysis of characteristics and specifics of cyber space bullying, the paper describes the basic forms of cyber space bullying (flaming, harassment, denigration, impersonation, outing, trickery, exclusion, stalking and happy slapping, as well as, the types of cyber space bullies (vengeful angel, power-hungry, revenge of the nerd, mean girls and inadvertent. The main goal of this paper is to provide initial theoretical guidelines for designing future empirical research on the complex phenomenon of cyber space bullying.

  20. Transoral robotic assisted resection of the parapharyngeal space.

    Science.gov (United States)

    Mendelsohn, Abie H

    2015-02-01

    Preliminary case series have reported clinical feasibility and safety of a transoral minimally invasive technique to approach parapharyngeal space masses. With the assistance of the surgical robotic system, tumors within the parapharyngeal space can now be excised safely without neck incisions. A detailed technical description is included. After developing compressive symptoms from a parapharyngeal space lipomatous tumor, the patient was referred by his primary otolaryngologist because of poor open surgical access to the nasopharyngeal component of the tumor. Transoral robotic assisted resection of a 54- × 46-mm parapharyngeal space mass was performed, utilizing 97 minutes of robotic surgical time. Pictorial demonstration of the robotic resection is provided. Parapharyngeal space tumors have traditionally been approached via transcervical skin incisions, typically including blunt dissection from tactile feedback. The transoral robotic approach offers magnified 3D visualization of the parapharyngeal space that allows for complete and safe resection. © 2014 Wiley Periodicals, Inc.

  1. USSR Space Life Sciences Digest, issue 13

    Science.gov (United States)

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  2. Strategy and Space for Broadcasting Facilities

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2006-01-01

    The paper is based on results from an ongoing research project on space strategies and building values, which in-cludes a major case study of the development of facilities for the Danish Broadcasting Corporation over time. The focus is to identify, how different space strategies have been...

  3. 3D space combat simulation game with artificial intelligence

    OpenAIRE

    Pernička, Václav

    2013-01-01

    The goal of this thesis is to design and implement a 3D space shooter with artifitial intelligence. This thesis includes theoretic analysis of space shooters, types of artifitial intelligence and assumptions important for developing in 3D space. The game also includes a simple artifitial intelligent player.

  4. Neurology of microgravity and space travel

    Science.gov (United States)

    Fujii, M. D.; Patten, B. M.

    1992-01-01

    Exposure to microgravity and space travel produce several neurologic changes, including SAS, ataxia, postural disturbances, perceptual illusions, neuromuscular weakness, and fatigue. Inflight SAS, perceptual illusions, and ocular changes are of more importance. After landing, however, ataxia, perceptual illusions, neuromuscular weakness, and fatigue play greater roles in astronaut health and readaptation to a terrestrial environment. Cardiovascular adjustments to microgravity, bone demineralization, and possible decompression sickness and excessive radiation exposure contribute further to medical problems of astronauts in space. A better understanding of the mechanisms by which microgravity adversely affects the nervous system and more effective treatments will provide healthier, happier, and longer stays in space on the space station Freedom and during the mission to Mars.

  5. Space research in the Netherlands 1980

    International Nuclear Information System (INIS)

    1981-01-01

    In 1960, the Royal Netherlands Academy of Arts and Sciences established a committee with the task of coordinating space research in the Netherlands and maintaining the necessary international contacts. This committe, usually called GROC, has instituted four working groups, in which most of the Netherlands space research is concentrated. These groups are: Working Group for Solar and Stellar Space Research, Working Group for Cosmic Rays, Working Group for Photometry and the Working Group for Satellite Geodesy. General information on space research in the Netherlands Anno 1980 is given. Detailed data about the working groups, their work during 1980 and their programmes are presented, together with a survey of their scientific publications. A financial summary is also included. (Auth.)

  6. The Space Mobile Network

    Science.gov (United States)

    Israel, David

    2017-01-01

    The definition and development of the next generation space communications and navigation architecture is underway. The primary goals are to remove communications and navigations constraints from missions and to enable increased autonomy. The Space Mobile Network (SMN) is an architectural concept that includes new technology and operations that will provide flight systems with an similar user experience to terrestrial wireless mobile networks. This talk will describe the SMN and its proposed new features, such as Disruption Tolerant Networking (DTN), optical communications, and User Initiated Services (UIS).

  7. Trends in space activities in 2014: The significance of the space activities of governments

    Science.gov (United States)

    Paikowsky, Deganit; Baram, Gil; Ben-Israel, Isaac

    2016-01-01

    This article addresses the principal events of 2014 in the field of space activities, and extrapolates from them the primary trends that can be identified in governmental space activities. In 2014, global space activities centered on two vectors. The first was geopolitical, and the second relates to the matrix between increasing commercial space activities and traditional governmental space activities. In light of these two vectors, the article outlines and analyzes trends of space exploration, human spaceflights, industry and technology, cooperation versus self-reliance, and space security and sustainability. It also reviews the space activities of the leading space-faring nations.

  8. Comparison of urea space, deuterium oxide space and body composition in growing pigs

    International Nuclear Information System (INIS)

    Mitchell, A.D.; Steele, N.C.

    1987-01-01

    Urea and deuterium oxide (D 2 O) space were compared by simultaneous infusion into pigs weighing approximately 55 or 90 kg. Urea was cleared from the plasma pool more rapidly than D 2 O and appeared to equilibrate at a relative concentration which was lower than that of D 2 O. Consequently, urea and D 2 O space values were closest when extrapolated to zero time values. Correlations between urea space and D 2 O space were highest at 15 minutes post infusion (R2 = .75) or between urea space at 15 minutes and D 2 O at equilibrium (R2 = .86). Results of urea and D 2 O space measurements were compared with water, lipid and protein content of the carcass. Urea space at 15 minutes and D 2 O space at 35 minutes most closely approximated total body water while D 2 O space at 15 minutes was nearly equivalent to empty body water. Overall, D 2 O space at equilibrium had the highest correlations with carcass values of water, lipid and protein and appears to be preferable to urea space for estimating carcass composition in pigs

  9. Sacred space, analytic space, the self, and god.

    Science.gov (United States)

    Rizzuto, Ana-María

    2009-01-01

    Parental figures influence the type of religious experiences a person may have. Clinical material from the analysis of a young woman documents the importance of having an actual sacred space in which one can be oneself in religious life and a psychoanalytic space during treatment to progressively experience oneself.

  10. Space Station Freedom - Accommodation for technology R&D

    Science.gov (United States)

    Holt, Alan C.

    1989-01-01

    The paper examines the features of the accommodation equipment designed for the candidate technology payloads of the Space Station, which include magnetic plasma thruster systems and a hypothetical advanced electromagnetic propulsion system utilizing high-temperature superconductivity materials. The review of the accommodation-equipment concepts supports the assumption that some propulsion technologies can be tested on the Space Station while being attached externally to the station's truss structure. For testing technologies with inherent operation or performance hazards, space platforms and smaller free-flyers coordinated with the Space Station can be used. Diagrams illustrating typical accommodation equipment configurations are included.

  11. The calculation of CSF spaces in CT

    International Nuclear Information System (INIS)

    Hacker, H.; Artmann, H.

    1978-01-01

    Objective digital determination of CSF spaces is discussed, with ventricular and subarachnoid spaces handled separately. This method avoids the difficulty of visual definition of ventricular borders in planimetric measurements. The principle is to count automatically all pixels corresponding to CSF in a given region with a Hounsfield unit and to multiply this number by the pixel size. This will give the total surface area of CSF spaces in square millimeters. The calculation of pixel values for CSF spaces and brain tissue is experimentally formulated taking the intersection of the Gaussian curves for ventricular content and brain tissue. In practice, the determination of CSF spaces is done by first calculating a histogram of the total brain in a given slice defining all CSF spaces. Next a histogram of a region including ventricles with adjoining tissue is calculated and the ventricular size is calculated. By subtraction of the ventricle value from the total CSF space value, the subarachnoid space size is obtained. The advantages of this mehtod will be discussed. (orig.) [de

  12. Space environment studies for the SZ-4 spacecraft

    International Nuclear Information System (INIS)

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  13. Handbook of space security policies, applications and programs

    CERN Document Server

    Hays, Peter; Robinson, Jana; Moura, Denis; Giannopapa, Christina

    2015-01-01

    Space Security involves the use of space (in particular communication, navigation, earth observation, and electronic intelligence satellites) for military and security purposes on earth and also the maintenance of space (in particular the earth orbits) as safe and secure areas for conducting peaceful activities. The two aspects can be summarized as "space for security on earth" and “the safeguarding of space for peaceful endeavors.” The Handbook will provide a sophisticated, cutting-edge resource on the space security policy portfolio and the associated assets, assisting fellow members of the global space community and other interested policy-making and academic audiences in keeping abreast of the current and future directions of this vital dimension of international space policy. The debate on coordinated space security measures, including relevant 'Transparency and Confidence-Building Measures,' remains at a relatively early stage of development. The book offers a comprehensive description of the variou...

  14. Composition operators on function spaces

    CERN Document Server

    Singh, RK

    1993-01-01

    This volume of the Mathematics Studies presents work done on composition operators during the last 25 years. Composition operators form a simple but interesting class of operators having interactions with different branches of mathematics and mathematical physics. After an introduction, the book deals with these operators on Lp-spaces. This study is useful in measurable dynamics, ergodic theory, classical mechanics and Markov process. The composition operators on functional Banach spaces (including Hardy spaces) are studied in chapter III. This chapter makes contact with the theory of analytic functions of complex variables. Chapter IV presents a study of these operators on locally convex spaces of continuous functions making contact with topological dynamics. In the last chapter of the book some applications of composition operators in isometries, ergodic theory and dynamical systems are presented. An interesting interplay of algebra, topology, and analysis is displayed. This comprehensive and up-to-date stu...

  15. Cuspidal discrete series for projective hyperbolic spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens

    2013-01-01

    Abstract. We have in [1] proposed a definition of cusp forms on semisimple symmetric spaces G/H, involving the notion of a Radon transform and a related Abel transform. For the real non-Riemannian hyperbolic spaces, we showed that there exists an infinite number of cuspidal discrete series......, and at most finitely many non-cuspidal discrete series, including in particular the spherical discrete series. For the projective spaces, the spherical discrete series are the only non-cuspidal discrete series. Below, we extend these results to the other hyperbolic spaces, and we also study the question...

  16. Armstrong Laboratory Space Visual Function Tester Program

    Science.gov (United States)

    Oneal, Melvin R.; Task, H. Lee; Gleason, Gerald A.

    1992-01-01

    Viewgraphs on space visual function tester program are presented. Many astronauts and cosmonauts have commented on apparent changes in their vision while on-orbit. Comments have included descriptions of earth features and objects that would suggest enhanced distance visual acuity. In contrast, some cosmonaut observations suggest a slight loss in their object discrimination during initial space flight. Astronauts have also mentioned a decreased near vision capability that did not recover to normal until return to earth. Duntley space vision experiment, USSR space vision experiments, and visual function testers are described.

  17. Public Spaces - Coexistence and Participation

    Science.gov (United States)

    Stasiak, Anna; Wojtowicz-Jankowska, Dorota

    2017-10-01

    The paper is an attempt to answer two questions: (1) how to develop positive social relations and citizenship among residents of cities in Poland and (2) how suitable shaping of public space affects the activation and integration of local residents. The specificity of the postwar process of urbanization in Poland - a country traditionally agricultural - was its political dimension (forced “nationalisation” of agriculture and industrialization of the country) ignoring the socio-cultural determinants and consequences of this process resulting in disappearance of traditional social bonds. According to forecasts, the number of urban dwellers is expected to grow by the year 2050 and increase up to 70 percent of the population. Such a rapid urban sprawl was not accompanied by appropriate social policies; the result was a low level of social organization and of a sense of citizenship. There are various attempts to change this situation. One of them is the development of a system of urban public spaces, according to the needs and preferences of residents (i.e. promotion of physical activity in public areas, introducing elements of art to the common external space, encouraging users to contribute to their surroundings and introducing the appearance of temporary, often cyclical, attractions). Regular interactions between people in public spaces are conducive to developing positive social relationships. Quality and development of the local community is dependent on the quality of space in which it is built. For this reason, attention has been paid to the factors influencing the perception of public space, i.e. geographical and natural conditions, cultural and architectural (arrangement, the availability and condition of these spaces). In the article, the examples of different types of Polish public spaces are described - permanent and temporal recreational spaces (including summer activities and winter attractions). Attempt has also been made to give an answer to the

  18. SpaceX making commercial spaceflight a reality

    CERN Document Server

    Seedhouse, Erik

    2013-01-01

    2012 - the year when the first ever privately-developed spacecraft visited the International Space Station. This is the story of how one company is transforming commercial space flight. It describes the extraordinary feats of engineering and human achievement that have resulted in the world's first fully reusable launch vehicles and the prospect of human travel to Mars. SpaceX - The First Ten Years: - explores the philosophy behind the success of SpaceX; - explains the practical management that enables SpaceX to keep it simple, reliable, and affordable; - details the developmentof the Falcon 1, Falcon 9 and Falcon Heavy rockets and the technology of the Merlin engines; - describes the collaboration with NASA; - introduces current SpaceX projects, including the Grasshopper reusable launch vehicle and the Stratolaunch System. SpaceX - The First Ten Years is a portrait of one of the most spectacular spaceflight triumphs of the 21st century, one that is laying the foundation for humanity to become a spacefaring c...

  19. ADS-B in space

    DEFF Research Database (Denmark)

    Knudsen, Bjarke Gosvig; Jensen, Morten; Birklykke, Alex

    2014-01-01

    ADS-B is increasingly used for air traffic control in areas covered by terrestrial receivers; however, its limited range makes it unsuitable for other areas such as the oceans. To overcome this limitation, it has been proposed to receive ADS-B signals from low earth orbit nano-satellites and relay...... them to the terrestrial receivers. This paper gives an overview of the GATOSS mission and of its highly-sensitive ADS-B software-defined radio receiver payload. Details of the design and implementation of the receiver's decoder are introduced. The first real-life, space-based results show that ADS......-B signals are indeed successfully received in space and retransmitted to a terrestrial station by the GATOSS nano-satellite orbiting at 700+ km altitudes, thus showing that GATOSS is capable of tracking flights, including transoceanic ones, from space....

  20. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  1. Wastes in space

    International Nuclear Information System (INIS)

    2011-01-01

    As human space activities have created more wastes on low and high Earth orbits over the past 50 years than the solar system injected meteorites over billions of years, this report gives an overview of this problem. It identifies the origins of these space debris and wastes (launchers, combustion residues, exploitation wastes, out-of-use satellites, accidental explosions, accidental collisions, voluntary destructions, space erosion), and proposes a stock list of space wastes. Then, it distinguishes the situation for the different orbits: low Earth orbit or LEO (traffic, presence of the International Space Station), medium Earth orbits or MEO (traffic, operating satellites, wastes), geostationary Earth orbit or GEO (traffic, operating satellites, wastes). It also discusses wastes and bacteria present on the moon (due to Apollo missions or to crash tests). It evokes how space and nuclear industry is concerned, and discusses the re-entry issue (radioactive boomerang, metallic boomerang). It also indicates elements of international law

  2. Flat-space singletons

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1987-01-01

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED

  3. Schur spaces and weighted spaces of type H

    African Journals Online (AJOL)

    We extend some results related to composition operators on Hv(G) to arbitrary linear operators on Hv0 (G) and Hv(G). We also give examples of rank-one operators on Hv(G) which cannot be approximated by composition operators. Keywords: Weighted Banach spaces of holomorphic functions, Schur spaces, weakly ...

  4. Space plasma observations - observations of solar-terrestrial environment. Space Weather Forecast

    International Nuclear Information System (INIS)

    Sagawa, Eiichi; Akioka, Maki

    1996-01-01

    The space environment becomes more important than ever before because of the expansion in the utilization of near-earth space and the increase in the vulnerability of large scale systems on the ground such as electrical power grids. The concept of the Space Weather Forecast program emerged from the accumulation of understanding on basic physical processes and from our activities as one of the regional warning centers of the international network of space environment services. (author)

  5. Commercial Space Travel, Ethics and Society

    Science.gov (United States)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  6. Kinematic space and wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian-dong [TianQin Research Center for Gravitational Physics, Sun Yat-sen University, Zhuhai 519082, Guangdong (China); Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, 5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University, 5 Yiheyuan Rd, Beijing 100871 (China)

    2017-01-23

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,ℝ) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  7. Forecasting Space Weather Hazards for Astronauts in Deep Space

    Science.gov (United States)

    Martens, P. C.

    2018-02-01

    Deep Space Gateway provides a unique platform to develop, calibrate, and test a space weather forecasting system for interplanetary travel in a real life setting. We will discuss requirements and design of such a system.

  8. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  9. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  10. Philosophy of physics space and time

    CERN Document Server

    Maudlin, Tim

    2012-01-01

    This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity using a geometrical approach, emphasizing intrinsic space-time structure rather than coordinate systems or reference frames. He gives readers enough detail about special relativity to solve concrete physical problems while presenting general relativity in a more qualitative way, with an informative discussion of the geometrization of gravity, the bending of light, and black holes. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed...

  11. Space Bugz!

    DEFF Research Database (Denmark)

    Birke, Alexander; Schoenau-Fog, Henrik; Reng, Lars

    2012-01-01

    This paper presents Space Bugz! - a novel crowd game for large venues or cinemas that utilises the audience's smartphones as controllers for the game. This paper explains what crowd gaming is and describes how the approach used in Space Bugz! enables more advanced gameplay concepts and individual...... player control than current technologies allow. The gameplay of Space Bugz! is then explained along with the technical architecture of the game. After this, the iterative design process used to create the game is described together with future perspectives. The article concludes with links to a video...

  12. Girls InSpace project: A new space physics outreach initiative.

    Science.gov (United States)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space

  13. Perancangan Small Private Space Pada Interior Public Space Di Perpustakaan Universitas Kristen Petra Surabaya

    OpenAIRE

    Lucky Basuki, Holiman Chandra Yusita Kusumarini

    2013-01-01

    Lifestyle of modern people use some time to move out of residence (public space) makes the most of the private activities can not be fulfilled. It is an idea and the idea of creating a space that can meet the needs of the private in public spaces with small dimensions. Private space in the design of the library is housed in Petra Christian University Surabaya as space scope of small private space (minimal private space dimension). The creation of small private space in the interior of the lib...

  14. Concept for an International Standard related to Space Weather Effects on Space Systems

    Science.gov (United States)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  15. Free topological vector spaces

    OpenAIRE

    Gabriyelyan, Saak S.; Morris, Sidney A.

    2016-01-01

    We define and study the free topological vector space $\\mathbb{V}(X)$ over a Tychonoff space $X$. We prove that $\\mathbb{V}(X)$ is a $k_\\omega$-space if and only if $X$ is a $k_\\omega$-space. If $X$ is infinite, then $\\mathbb{V}(X)$ contains a closed vector subspace which is topologically isomorphic to $\\mathbb{V}(\\mathbb{N})$. It is proved that if $X$ is a $k$-space, then $\\mathbb{V}(X)$ is locally convex if and only if $X$ is discrete and countable. If $X$ is a metrizable space it is shown ...

  16. Finding industrial space

    DEFF Research Database (Denmark)

    Riesto, Svava

    2011-01-01

    Spaces marked by industrial rationalities are easily overseen or rejected without further consideration during urban redevelopment processes. This is striking in an era where urban space is often seen as a cornerstone for the future city. This article investigates different concepts of open space...... that have been operative in the redevelopment of the so-called Carlsberg Square in Copenhagen between 2006-2009. It concludes with general remarcs on dealing with the complex matter open space in the practices of design and heritage management in urban redevelopment processes....

  17. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    Science.gov (United States)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that

  18. Intuitionistic supra fuzzy topological spaces

    International Nuclear Information System (INIS)

    Abbas, S.E.

    2004-01-01

    In this paper, We introduce an intuitionistic supra fuzzy closure space and investigate the relationship between intuitionistic supra fuzzy topological spaces and intuitionistic supra fuzzy closure spaces. Moreover, we can obtain intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space. We study the relationship between intuitionistic supra fuzzy closure space and the intuitionistic supra fuzzy topological space induced by an intuitionistic fuzzy bitopological space

  19. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  20. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    Science.gov (United States)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  1. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    Science.gov (United States)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  2. Which Space? Whose Space? An Experience in Involving Students and Teachers in Space Design

    Science.gov (United States)

    Casanova, Diogo; Di Napoli, Roberto; Leijon, Marie

    2018-01-01

    To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the…

  3. Conditions and constraints of food processing in space

    Science.gov (United States)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  4. Generalized 2-vector spaces and general linear 2-groups

    OpenAIRE

    Elgueta, Josep

    2008-01-01

    In this paper a notion of {\\it generalized 2-vector space} is introduced which includes Kapranov and Voevodsky 2-vector spaces. Various kinds of generalized 2-vector spaces are considered and examples are given. The existence of non free generalized 2-vector spaces and of generalized 2-vector spaces which are non Karoubian (hence, non abelian) categories is discussed, and it is shown how any generalized 2-vector space can be identified with a full subcategory of an (abelian) functor category ...

  5. Space-like surfaces with free boundary in the Lorentz-Minkowski space

    International Nuclear Information System (INIS)

    López, R; Pyo, J

    2012-01-01

    We investigate a variational problem in the Lorentz-Minkowski space L 3 whose critical points are space-like surfaces with a constant mean curvature and making a constant contact angle with a given support surface along its common boundary. We show that if the support surface is a pseudosphere, then the surface is a planar disc or a hyperbolic cap. We also study the problem of space-like hypersurfaces with free boundary in the higher dimensional Lorentz-Minkowski space L n+1 . (paper)

  6. Space Law and China

    Science.gov (United States)

    Tronchetti, Fabio

    2017-08-01

    Over the past few years, China has made remarkable achievements in the space sector and become one of the most relevant players in the outer space domain. Highlights of this process have been the deployment in orbit of the first Chinese space station, Tiangong-1, on September 29, 2011; and the landing of the Yutu rover on the lunar surface on December 14, 2013. While technological developments have occurred at such a rapid pace, the same cannot be said of the regulatory framework governing Chinese space activities, which still lays at its infant stage. Indeed, unlike other major space-faring countries, China lacks comprehensive and uniform national space legislation; as of now, China has enacted two low-level administrative regulations addressing the issues of launching and registration of space objects. With the growth of the Chinese space program, such a lack of a structured national space law is beginning to show its limits and to create concerns about its negative impact on business opportunities and the ability of China to fully comply with international obligations. One should keep in mind that the international space treaties (China is part to four international space law treaties) are not self-executing, thus requiring States to adopt domestic measures to ensure their effective implementation. Importantly, Chinese authorities appear to be aware of these issues; as stated by the secretary-general of the Chinese National Space Administration (CNSA) in 2014, national space law has been listed in the national legislation plan and the CNSA is directly engaged in such a process. However, questions remain as to how this drafting process will be conducted and what legal form and content the law will have. For example, China could either decide to proceed with a gradual approach, consisting in the adoption of laws addressing selected issues to be eventually assembled into one single law; or to directly move to the adoption of one comprehensive law. In any case, if

  7. Fibre optic gyroscopes for space use

    Science.gov (United States)

    Faussot, Nicolas; Cottreau, Yann; Hardy, Guillaume; Simonpietri, Pascal; Gaiffe, Thierry

    2017-11-01

    Among the technologies available for gyroscopes usable in space, the Fibre Optic Gyroscope (FOG) technology appears to be the most suitable: no moving parts, very good lifetime, low power consumption, very low random walk, arbitrarily low angular resolution and very good behaviour in radiations and vacuum. Benefiting from more than ten years of experience with this technology, Ixsea (formerly the Navigation Division of Photonetics) is developing space FOG under both CNES and ESA contracts since many years. In the 1996-1998 period, two space FOG demonstrators in the 0,01°/h class were manufactured, including an optical head (optic and optoelectronic part) designed for space use and a standard ground electronics. Beyond the demonstration of the specified FOG performances, the behaviour of the optical head has been validated for use in typical space environment: vibrations, shocks, radiations (up to 50 krad) and thermal vacuum. Since the beginning of 1999, Ixsea is developing a space electronics in order to manufacture two complete space FOG. The first one entered in qualification in October. The second one will be delivered beginning of next year, it will be used in a CNES attitude measurement experiment (MAGI) onboard the FrenchBrazilian Microsatellite (FBM) partly dedicated to technology evaluation.

  8. Space Toxicology

    Science.gov (United States)

    James, John T.

    2011-01-01

    Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.

  9. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  10. Spain: Success story in space

    Science.gov (United States)

    Longdon, Norman

    From the early 1960's, European governments were aware that they had to take part in the exploration, and potential exploitation, of space, or be left behind in a field of high-technology that had far-reaching possibilities. It was also realized that financial and manpower constraints would limit the extent to which individual nations could carry out their own national programs. They, therefor, joined forces in two organizations: the European Space Research Organization (ESRO) and the European Launcher Development Organization (ELDO). By 1975, when the potential of space development had been more fully appreciated, the two organizations were merged into the Europeans Space Agency (ESA) of which Spain was a founding member. ESA looks after the interest of 13 member states, one associated member state (Finland), and one cooperating state (Canada) in the peaceful uses of space. Its programs center around a mandatory core of technological research and space science to which member states contribute on the basis of their Gross National Product. Spain in 1992 contributes 6.46% to this mandatory program budget. The member states then have the chance to join optional programs that include telecommunications, observation of the earth and its environment, space transportation systems, microgravity research, and participation in the European contribution to the International Space Station Freedom. Each government decides whether it is in its interest to join a particular optional program, and the percentage that it wishes to contribute to the budget. Although in the early days of ESA, Spain participated in only a few optional programs, today Spain makes a significant contribution to nearly all of ESA's optional programs. This document presents Spain's contributions to particular ESA Programs and discusses Spain's future involvement in ESA.

  11. Robotics in near-earth space

    Science.gov (United States)

    Card, Michael E.

    1991-01-01

    The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.

  12. Astrometry VLBI in Space (AVS

    Science.gov (United States)

    Altunin, V.; Alekseev, V.; Akim, E.; Eubanks, M.; Kingham, K.; Treuhaft, R.; Sukhanov, K.

    1995-01-01

    A proposed new space radio astronomy mission for astrometry is described. The Astrometry VLBI (very long baseline) in Space (AVS) nominal mission includes two identical spacecraft, each with a 4-m antenna sending data to a 70-m ground station. The goals of AVS are improving astrometry accuracy to the microarcsecond level and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames.

  13. $L$-Topological Spaces

    Directory of Open Access Journals (Sweden)

    Ali Bajravani

    2018-04-01

    Full Text Available ‎By substituting the usual notion of open sets in a topological space $X$ with a suitable collection of maps from $X$ to a frame $L$, we introduce the notion of L-topological spaces. Then, we proceed to study the classical notions and properties of usual topological spaces to the newly defined mathematical notion. Our emphasis would be concentrated on the well understood classical connectedness, quotient and compactness notions, where we prove the Thychonoff's theorem and connectedness property for ultra product of $L$-compact and $L$-connected topological spaces, respectively.

  14. Defining Commercial Space's Place in the Battlespace

    National Research Council Canada - National Science Library

    DeMello, Bruce

    2004-01-01

    ... (to include ALLIED FORCE, ENDURING FREEDOM and IRAQI FREEDOM), the U.S. has needed to extend beyond the capabilities of dedicated DoD and national space assets, relying on the commercial space sector to provide...

  15. Space Shuttle - A personal view

    Science.gov (United States)

    Mark, H.

    1977-01-01

    A typical flight profile for the Space Shuttle is reviewed, and the operation of the Spacelab, as well as deployment of a satellite from the Shuttle, is considered. Selection of crews for a Space Shuttle mission, which may include as many as four payload specialists, is also discussed. Since medical requirements and flight training standards need not be as high for payload specialists as for the three members of the flight crew, the Shuttle may provide an opportunity for many scientists to perform experiments in space. Investigations of the critical opalescence of fluids and laser holography are proposed for Shuttle missions; X-ray astronomy is another likely candidate for inclusion in the program.

  16. Historical space steps of Turkey: It is high time to establish the Turkish space agency

    Science.gov (United States)

    Ercan, Cihan; Kale, İzzet

    2017-01-01

    This paper discusses the importance of space in today's space driven world, the current space activities of Turkey, its space organizations with legislation background information and calls for the necessity for the establishment of the Turkish Space Agency (TSA). Firstly, the importance of space is given which is followed by a brief background and current space activities in Turkey. Then, the answers to why Turkey needs a National Space Agency are outlined by stating its expected role and duties. Additionally, the framework for space policy for Turkey is proposed and the findings are compared with other developing regional space actors. Lastly, it is proposed and demonstrated that Turkey is on the right track with its space policy and it is suggested that the establishment of the TSA is critical both for a coherent space policy and progress as well as the successful development of its national space industry, security and international space relations.

  17. Deep Space Telecommunications

    Science.gov (United States)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  18. Space Network Devices Developed

    Science.gov (United States)

    Jones, Robert E.

    2004-01-01

    The NASA Glenn Research Center through a contract with Spectrum Astro, Inc., has been developing space network hardware as an enabling technology using open systems interconnect (OSI) standards for space-based communications applications. The OSI standard is a well-recognized layered reference model that specifies how data should be sent node to node in a communications network. Because of this research and technology development, a space-qualifiable Ethernet-based network interface card (similar to the type found in a networked personal computer) and the associated four-port hub were designed and developed to flight specifications. During this research and development, there also have been many lessons learned for determining approaches for migrating existing spacecraft architectures to an OSI-network-based platform. Industry has recognized the benefits of targeting hardware developed around OSI standards such as Transmission Control Protocol/Internet Protocol (TCP/IP) or similar protocols for use in future generations of space communication systems. Some of these tangible benefits include overall reductions in mission schedule and cost and in system complexity. This development also brings us a step closer to the realization of a principal investigator on a terrestrial Internet site being able to interact with space platform assets in near real time. To develop this hardware, Spectrum Astro first conducted a technology analysis of alternatives study. For this analysis, they looked at the features of three protocol specifications: Ethernet (IEEE 802.3), Firewire (IEEE 1394), and Spacewire (IEEE 1355). A thorough analysis was performed on the basis of criteria such as current protocol performance and suitability for future space applications. Spectrum Astro also projected future influences such as cost, hardware and software availability, throughput performance, and integration procedures for current and transitive space architectures. After a thorough analysis

  19. NASA's Space Launch System: Deep-Space Delivery for Smallsats

    Science.gov (United States)

    Robinson, Kimberly F.; Norris, George

    2017-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. While primarily focused on launching the large systems needed for crewed spaceflight beyond Earth orbit, SLS also offers a game-changing capability for the deployment of small satellites to deep-space destinations, beginning with its first flight. Currently, SLS is making rapid progress toward readiness for its first launch in two years, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight test of the Orion spacecraft around the moon, accompanying Orion on SLS will be small-satellite secondary payloads, which will deploy in cislunar space. The deployment berths are sized for "6U" CubeSats, and on EM-1 the spacecraft will be deployed into cislunar space following Orion separate from the SLS Interim Cryogenic Propulsion Stage. Payloads in 6U class will be limited to 14 kg maximum mass. Secondary payloads on EM-1 will be launched in the Orion Stage Adapter (OSA). Payload dispensers will be mounted on specially designed brackets, each attached to the interior wall of the OSA. For the EM-1 mission, a total of fourteen brackets will be installed, allowing for thirteen payload locations. The final location will be used for mounting an avionics unit, which will include a battery and sequencer for executing the mission deployment sequence. Following the launch of EM-1, deployments of the secondary payloads will commence after sufficient separation of the Orion spacecraft to the upper stage vehicle to minimize any possible contact of the deployed CubeSats to Orion. Currently this is estimated to require approximately 4 hours. The allowed deployment window for the CubeSats will be from the time the upper stage disposal maneuvers are complete to up to 10 days after launch. The upper stage

  20. Time: the enigma of space

    Science.gov (United States)

    Yu, Francis T. S.

    2017-08-01

    In this article we have based on the laws of physics to illustrate the enigma time as creating our physical space (i.e., the universe). We have shown that without time there would be no physical substances, no space and no life. In reference to Einstein's energy equation, we see that energy and mass can be traded, and every mass can be treated as an Energy Reservoir. We have further shown that physical space cannot be embedded in absolute empty space and cannot have any absolute empty subspace in it. Since all physical substances existed with time, our cosmos is created by time and every substance including our universe is coexisted with time. Although time initiates the creation, it is the physical substances which presented to us the existence of time. We are not alone with almost absolute certainty. Someday we may find a right planet, once upon a time, had harbored a civilization for a short period of light years.

  1. Coordinating Space Nuclear Research Advancement and Education

    International Nuclear Information System (INIS)

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  2. Space Architecture: The Role, Work and Aptitude

    Science.gov (United States)

    Griffin, Brand

    2014-01-01

    Space architecture has been an emerging discipline for at least 40 years. Has it arrived? Is space architecture a legitimate vocation or an avocation? If it leads to a job, what do employers want? In 2002, NASA Headquarters created a management position for a space architect whose job was to "lead the development of strategic architectures and identify high level requirements for systems that will accomplish the Nation's space exploration vision." This is a good job description with responsibility at the right level in NASA, but unfortunately, the office was discontinued two years later. Even though there is no accredited academic program or professional licensing for space architecture, there is a community of practitioners. They are civil servants, contractors and academicians supporting International Space Station and space exploration programs. In various ways, space architects currently contribute to human spaceflight, but there is a way for the discipline to be more effective in developing solutions to large scale complex problems. This paper organizes contributions from engineers, architects and psychologists into recommendations on the role of space architects in the organization, the process of creating and selecting options, and intrinsic personality traits including why they must have a high tolerance for ambiguity.

  3. Space-Hotel EARLY BIRD - A Visionary Prospect of a Space Station

    Science.gov (United States)

    Amekrane, R.; Holze, C.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. Space pioneers as Wernher von Braun, Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore this dream is still open. Asking the question "how should a space station should look like to host tourists?" the German Aerospace Society DGLR e.V. initiated in April 2001 a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA). Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The design are for sure not feasible today, but the designs are in that sense realistic that they could be built in future. This paper will present the overview of the 17 designs as visions of a future space hotel. The designs used

  4. The Canadian space program from Black Brant to the International Space Station

    CERN Document Server

    Godefroy, Andrew B

    2017-01-01

    Canada’s space efforts from its origins towards the end of the Second World War through to its participation in the ISS today are revealed in full in this complete and carefully researched history. Employing recently declassified archives and many never previously used sources, author Andrew B. Godefroy explains the history of the program through its policy and many fascinating projects. He assesses its effectiveness as a major partner in both US and international space programs, examines its current national priorities and capabilities, and outlines the country’s plans for the future. Despite being the third nation to launch a satellite into space after the Soviet Union and the United States; being a major partner in the US space shuttle program with the iconic Canadarm; being an international leader in the development of space robotics; and acting as one of the five major partners in the ISS, the Canadian Space Program remains one of the least well-known national efforts of the space age. This book atte...

  5. Space nuclear power and man's extraterrestrial civilization

    International Nuclear Information System (INIS)

    Angelo, J.J.; Buden, D.

    1983-01-01

    This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered

  6. Space reactors, a prospective for the future

    International Nuclear Information System (INIS)

    Wahlquist, E.; Voss, S.S.

    1989-01-01

    The power requirements for future space missions are increasing and alternate power systems will be required to meet these needs. Therefore, in the early 1980's a tri-agency space reactor program, the SP-100, was initiated that is capable of meeting the higher power requirements. To understand the current space reactor program, it is important to review it in the context of past space nuclear programs - including radioisotopes, nuclear rockets and reactors. Initial effort on these programs began in the mid-1950's. Radioisotope generators have been flown on a variety of missions and are continuing to be used. The space reactor and nuclear rocket programs were technically successful but were both terminated in 1973. The current SP-100 program builds on those earlier programs

  7. Cold War Space Sleuths The Untold Secrets of the Soviet Space Program

    CERN Document Server

    2013-01-01

    Cold War Space Sleuths reads like a Cold War espionage novel, but the reality of the story about the dedicated amateur observers bent on finding out about Soviet spaceflight during the Cold War is just as exciting and absorbing. Told in the sleuth's own words, each chapter unfolds a piece of the hidden history of what was happening behind the Iron Curtain. Coming from all over the world, including Russia itself, the amateur spies give first-hand accounts of often-forgotten aspects of the Cold War space race. Amongst others, their stories include: - the history of the Kettering Group; - looking inside the Russian archives; - unsolved mysteries, such as why cosmonauts were airbrushed out of the official archives; - reading between the lines of the Soviet media; - the impact of Gorbachev's glasnost on sleuthing; - new research, including chapters by James Oberg, Asif Siddiqi, and Bart Hendrickx.

  8. Pump Component Model in SPACE Code

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kyoung Doo

    2010-08-01

    This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report

  9. Designing informal learning spaces using student perspectives

    Directory of Open Access Journals (Sweden)

    Matthew David Riddle

    2012-06-01

    Full Text Available This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning space design, and a significant curriculum renewal process at the university. It demonstrates the ways in which evidence based on student perspectives and principles developed through applied research in teaching and learning can inform real world learning space design projects in a higher education context.

  10. Kin-aesthetic Space-making

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2016-01-01

    -Francois Lyotard’s Gestus , discussing the work-of-art as a sensuously expressed ‘torsion’ of space/ time/ matter, producing its own space/ time/ matter. Erin Brannigan in Dancefilm uses the gesture-model as well, and points to a hybrid practice where dance and film work on each other. Likewise Shaun Gallagher...... as well as their production of meaning. Concurrently the practice questions presentation/ representation and creator/ spectator relations. Gesture-models call for an understanding of the work-of-art as creating affordance; affordance in the sense that effects generated between embodied-enactive perception......’s How the Body Shapes the Mind forms part of the theoretical approach to motile kin-aesthetical forces of art-making, underlying this paper. In my practice I work with body- and space gestures, interchanging through a ‘third’ material, featured on screens. The hybrid production includes animated 2 and 3...

  11. National Aeronautics and Space Administration Biological Specimen Repository

    Science.gov (United States)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  12. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    Science.gov (United States)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  13. Fast Access to Space Tourism

    Science.gov (United States)

    Favata', P.; Martineau, N.

    2002-01-01

    creating a revolutionary space-orbiting habitat dedicated to tourism. Up to now, such proposals have focused on two approaches. The first accounts for financial and technological constraints on space flight and living, and sacrifices creativity for practicality. The second is more utopic in nature and proposes projects, which are imaginative but unfeasible in the near future. This proposal is innovative because it considers the current obstacles to space tourism and utilizes existing technologies and infrastructures, but also includes the forethinking of futuristic commercial projects. Project Objectives: NASA claims that commercialization of space activities is so difficult that it will require decades more funding of so-called space-technology development. The benefits of this project show that this is not true. First, safety has been addressed because this proposal utilizes already space tested and assured technologies. Second, the project demonstrates potential for significant economic profit within the near future. Because we are using the least expensive technology available, we have limited start up costs. We forecast up to forty flights per year, with a potential capacity of eighty tourists. The design objectives focus on the proposal of a new approach to space tourism. These include: the expansion of the living space in the interiors, innovative and creative interior design, increased concern for the physiological and psychological comfort of tourists, and attention to entertainment possibilities. Project Content: The efficiency of the launch and configuration phase is one of the strengths of the proposed project. We propose the use of the Zenith 2 launcher, a large two-stage vehicle developed in the Soviet Union in the early 1980s, for the configuration of the orbiting platform. Following the Russian outfitting philosophy, once in orbit, the platform is already functional. The interior design is based on advanced lightweight inflatable technologies which

  14. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  15. JAXA's Space Exploration Scenario

    Science.gov (United States)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  16. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  17. USSR Space Life Sciences Digest, issue 9

    Science.gov (United States)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  18. Pseudo-Riemannian VSI spaces

    International Nuclear Information System (INIS)

    Hervik, Sigbjoern; Coley, Alan

    2011-01-01

    In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S i - and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.

  19. Pseudo-Riemannian VSI spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hervik, Sigbjoern [Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger (Norway); Coley, Alan, E-mail: sigbjorn.hervik@uis.no, E-mail: aac@mathstat.dal.ca [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2011-01-07

    In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S{sub i}- and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.

  20. Registration of Space Objects

    Science.gov (United States)

    Schmidt-Tedd, Bernhard

    2017-07-01

    Space objects are subject to registration in order to allocate "jurisdiction and control" over those objects in the sovereign-free environment of outer space. This approach is similar to the registration of ships in view of the high sea and for aircrafts with respect to the international airspace. Registration is one of the basic principles of space law, starting with UN General Assembly Resolution 1721 B (XVI) of December 20, 1961, followed by Resolution 1962 (XVIII) of December 13, 1963, then formulated in Article VIII of the Outer Space Treaty of 1967 and as specified in the Registration Convention of 1975. Registration of space objects can be seen today as a principle of customary international law, relevant for each spacefaring state. Registration is divided into a national and an international level. The State Party establishes a national registry for its space objects, and those registrations have to be communicated via diplomatic channel to the UN Register of space objects. This UN Register is handled by the UN Office for Outer Space Affairs (UNOOSA) and is an open source of information for space objects worldwide. Registration is linked to the so-called launching state of the relevant space object. There might be more than one launching state for the specific launch event, but only one state actor can register a specific space object. The state of registry gains "jurisdiction and control" over the space object and therefore no double registration is permissible. Based on the established UN Space Law, registration practice was subject to some adaptions due to technical developments and legal challenges. After the privatization of the major international satellite organizations, a number of non-registrations had to be faced. The state actors reacted with the UN Registration Practice Resolution of 2007 as elaborated in the Legal Subcommittee of UNCOPUOS, the Committee for the Peaceful Use of Outer Space. In this context an UNOOSA Registration Information

  1. Prevention of an arms race in outer space

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The space age may be the to have begun in 1957, when for the first time a man-made object was lofted into orbit round the Earth. Since that date, the new problems of outer space have been discussed in the United Nations, particularly in the General Assembly, in the Committee on the Peaceful Uses of Outer Space and its subsidiary bodies, and in the Conference on Disarmament. The discussions have contributed to the conclusion of a number of international agreements concerning both military and peaceful aspects of the use of outer space. This paper reports that according to the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, known as the outer space Treaty, outer space, including the moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means (article II), and the parties undertake not to place in orbit around the earth any objects carrying nuclear weapons or any other kinds of weapons of ass destruction, install such weapons on celestial bodies, or station such weapons in outer space in any other manner (article IV). Detailed norms for States' actions in this environment are included in the 1979 Agreement Governing the Activities of States on the Moon and other Celestial Bodies to ensure that the Moon and other celestial bodies within the solar system, other than Earth, are used exclusively for peaceful purposes

  2. Space and astronomy

    CERN Document Server

    Kirkland, Kyle

    2010-01-01

    Some daring explorers like to study distant frontiers by venturing out into them, but others prefer to study them by bringing them, or representative samples, a little closer to the lab. Both options are pursued in the fields of space and astronomy. Space exploration and astronomy are intricately linked and are examined in-depth in this guide. Dedicated to the scientists who explore the frontiers of space and astronomy-and the results of their unfamiliar findings-each chapter in Space and Astronomy explores one of the frontiers of this science. The development of technology, such as rocket pro

  3. The role of the International Space University in building capacity in emerging space nations.

    Science.gov (United States)

    Richards, Robert

    The International Space University provides graduate-level training to the future leaders of the emerging global space community at its Central Campus in Strasbourg, France, and at locations around the world. In its two-month Summer Session and one-year Masters program, ISU offers its students a unique Core Curriculum covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. Both programs also involve an intense student research Team Project providing international graduate students and young space professionals the opportunity to solve complex problems by working together in an intercultural environment. Since its founding in 1987, ISU has graduated more than 2500 students from 96 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation.

  4. Free-piston Stirling technology for space power

    Science.gov (United States)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  5. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  6. Invariant subspaces in some function spaces on symmetric spaces. II

    International Nuclear Information System (INIS)

    Platonov, S S

    1998-01-01

    Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1

  7. Views from Space

    Science.gov (United States)

    Kitmacher, Gary H.

    2002-01-01

    Only in the last century have human beings flown in space and men and machines have explored the worlds of our solar system. Robots have gone to most of the our neighboring worlds, the valleys of Mars and the clouds and moons of Jupiter. Instruments like the Hubble Space Telescope have looked into deep space. Those of us on the earth have been able to participate as vicarious explorers through the records, and experiences and the photographs that have been returned. At the beginning of the space program hardly anyone thought of photographs from space as anything more than a branch of industrial photography. There were pictures of the spaceships, and launches and of astronauts in training, but these were all pictures taken on the ground. When John Glenn became America's first man in orbit, bringing a camera was an afterthought. An Ansco Autoset was purchased in a drug store and hastily modified so the astronaut could use it more easily while in his pressure suit. In 1962, everything that Glenn did was deemed an experiment. At the beginning of the program, no one knew for certain whether weightlessness would prevent a man from seeing, or from breathing, or from eating and swallowing. Photography was deemed nothing more than a recreational extra. Not only was little expected of those first pictures taken from space, but there was serious concern that taking pictures of other nations from orbit would be seen as an act of ill will and even one of war- as sovereign sensitive nations would resent having pictures taken by Americans orbiting overhead. A few years earlier, in 1957, in reaction to the Soviet launch of the first Sputnik satellite, scientists told congressman of the necessity of orbiting our own robot spacecraft-they predicted that one day we would take daily pictures of the world's weather. Congressman were incredulous. But space photography developed quickly. For security purposes, spy satellites took over many of the responsibilities we had depended upon

  8. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  9. USSR Space Life Sciences Digest, issue 14

    Science.gov (United States)

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  10. Space-time and matter in 'prephysics'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1985-05-01

    Many fundamental questions concerning the space-time and matter are asked and answered in ''prephysics'', a new line of physics (or philosophy but not metaphysics). They include the following: 1) ''Why is our space-time of 4 dimensions.'', 2) ''What is the ultimate form of matter.'' and 3) ''How was our universe created.''. (author)

  11. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2016-09-01

    Full Text Available Abstract We characterize the boundedness and compactness of a product-type operator, which, among others, includes all the products of the single composition, multiplication, and differentiation operators, from a general space to Bloch-type spaces. We also give some upper and lower bounds for the norm of the operator.

  12. Research Opportunities on board Virgin Galactic's SpaceShipTwo

    Science.gov (United States)

    Attenborough, S.; Pomerantz, W.; Stephens, K.

    2013-09-01

    Virgin Galactic is building the world's first commercial spaceline. Our suborbital spaceflight system, pictured in Figure 1, consists of two vehicles: WhiteKnightTwo (WK2) and SpaceShipTwo (SS2). WhiteKnightTwo is a four-engine, dual-fuselage jet aircraft capable of high-altitude heavy lift missions, including, but not limited to fulfilling its role as a mothership for SpaceShipTwo, an air-launched, suborbital spaceplane capable of routinely reaching an apogee up to 110 kilometers. In conjunction, these two vehicles allow access to space and to regions of the atmosphere ranging from the troposphere to the thermosphere; additionally, they provide extended periods of microgravity in a reliable and affordable way. SpaceShipTwo, with a payload capacity of up to 1,300 lbs. (~600 kg), features payload mounting interfaces that are compatible with standard architectures such as NASA Space Shuttle Middeck Lockers, Cargo Transfer Bags, and server racks, in addition to custom structures. With the standard interface, payloads are allowed access to the large 17 inch diameter cabin windows for external observations. Each dedicated research flight will be accompanied by a Virgin Galactic Flight Test Engineer, providing an opportunity for limited in-flight interaction. In addition, tended payloads - a flight that includes the researcher and his or her payload - are also an option. At a price point that is highly competitive with parabolic aircraft and sounding rockets and significantly cheaper than orbital flights, SpaceShipTwo is a unique platform that can provide frequent and repeatable research opportunities. Suborbital flights on SpaceShipTwo offer researchers several minutes of microgravity time and views of the external environment in the upper atmosphere and in outer space. In addition to serving as an important research platform in and of itself, SpaceShipTwo also offers researchers a means to test, iterate, and calibrate experiments designed for orbital platforms

  13. 46 CFR 169.631 - Separation of machinery and fuel tank spaces from accommodation spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Separation of machinery and fuel tank spaces from accommodation spaces. 169.631 Section 169.631 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... machinery and fuel tank spaces from accommodation spaces. (a) Machinery and fuel tank spaces must be...

  14. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    Perhaps one of the greatest gifts that has been given to the people of the world in the last few hundred years has been an emerging sense of the place of our planet and its inhabitants within the context of the vast universe. Our knowledge of the rest of the universe has not come quickly, nor was the process of attaining it only recently begun; however, the unprecedented acceleration of that process has benefitted from a fundamental new aspect of our species that has only manifested itself in the last 30 years or so, the ability to travel in space. Before the space age, the Universe was studied only through observations from the Earth. All that has changed with the beginning of the space age. Machines built by humans have flown to all but one of the nine planets that revolve around our Sun, have ventured billions of miles from the Earth and looked back, and have landed on three other worlds. Spacecraft in orbit around the Earth have viewed the sky at a vast number of electromagnetic wavelengths, detecting the shape of the galaxy and the universe, and even measuring the remnants of the universe's beginning. Human explorers have ventured forth, first for short stays in orbit, then, later, walking upon the Moon and living for long periods in space. As they did so, billions of people on the Earth came to view the Earth in a fundamentally different way, not just as the familiar day to- day backdrop for their lives, but as a small oasis suspended in the night sky above an alien landscape. It is this new view of the Earth that is the true gift of space exploration. Space exploration has at once given us a new perspective on the value of our world, and a new perspective from which to understand how it operates. It has shown us that the Earth is by far the most precious place in the solar system in terms of supporting human life, while revealing that other destinations may still be compelling. The exploration of space has at once become a challenge for humanity to overcome

  15. International Space Law

    Directory of Open Access Journals (Sweden)

    M. Lits

    2017-01-01

    Full Text Available It is well known that the modern day technologies that drive our global society are highly dependent on the use of outer space. For example, daily activities such as sending emails, making phone calls and carrying out bank transactions cannot be done unless satellite technologies are involved. When you catch a plane, the air traffic control is dependent on GPS. Even natural disaster management is dependent on satellite imaging. Taking into account the importance of this, it becomes increasingly necessary to be knowledgeable in the field of international law as it is the only sphere of law that reaches beyond the physical boundaries of the Earth, goes deep into space and provides protection for today’s society. With new steps being taken to exploit further the potentials of outer space, and with increasing talk of new space missions and new discoveries, current international space law is being placed under scrutiny, for it should be remembered that the major international legal documents in this field were adopted in the middle of the 20th century, and thus there are fears that the law may have become obsolete, irrelevant in the face of new challenges in the use of outer space. This paper delivers an analysis of existing international space law and attempts to raise several crucial issues pertinent in the area.

  16. At Home in Space

    Institute of Scientific and Technical Information of China (English)

    Yin Pumin

    2011-01-01

    CHINA'S first unmanned space module Tiangong-1,or Heavenly Palace-1,successfully lifted off from the Jiuquan Satellite Launch Center in northwest China's Gansu Province on September 29."The successfullaunch of the 8.5-ton prototype space laboratory has opened the gates for China's deep space exploration program," said Qi Faren,former chief designer of China's Shenzhou spacecraft."It is a decisive leap forward for the Chinese space industry and will bring about the rapid development of space science and related technologies."

  17. Cultural factors and the International Space Station.

    Science.gov (United States)

    Ritsher, Jennifer Boyd

    2005-06-01

    The American and Russian/Soviet space programs independently uncovered psychosocial risks inherent in long-duration space missions. Now that these two countries are working together on the International Space Station (ISS), American-Russian cultural differences pose an additional set of risk factors. These may echo cultural differences that have been observed in the general population of the two countries and in space analogue settings, but little is known about how relevant these are to the select population of space program personnel. The evidence for the existence of mission-relevant cultural differences is reviewed and includes cultural values, emotional expressivity, personal space norms, and personality characteristics. The review is focused primarily on Russia and the United States, but also includes other ISS partner countries. Cultural differences among space program personnel may have a wide range of effects. Moreover, culture-related strains may increase the probability of distress and impairment. Such factors could affect the individual and interpersonal functioning of both crewmembers and mission control personnel, whose performance is also critical for mission safety and success. Examples from the anecdotal and empirical literature are given to illustrate these points. The use of existing assessment strategies runs the risk of overlooking important early warning signs of behavioral health difficulties. By paying more attention to cultural differences and how they might be manifested, we are more likely to detect problems early while they are still mild and resolvable.

  18. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  19. Trade-space Analysis for Constellations

    Science.gov (United States)

    Le Moigne, J.; Dabney, P.; de Weck, O. L.; Foreman, V.; Grogan, P.; Holland, M. P.; Hughes, S. P.; Nag, S.

    2016-12-01

    Traditionally, space missions have relied on relatively large and monolithic satellites, but in the past few years, under a changing technological and economic environment, including instrument and spacecraft miniaturization, scalable launchers, secondary launches as well as hosted payloads, there is growing interest in implementing future NASA missions as Distributed Spacecraft Missions (DSM). The objective of our project is to provide a framework that facilitates DSM Pre-Phase A investigations and optimizes DSM designs with respect to a-priori Science goals. In this first version of our Trade-space Analysis Tool for Constellations (TAT-C), we are investigating questions such as: "How many spacecraft should be included in the constellation? Which design has the best cost/risk value?" The main goals of TAT-C are to: Handle multiple spacecraft sharing a mission objective, from SmallSats up through flagships, Explore the variables trade space for pre-defined science, cost and risk goals, and pre-defined metrics Optimize cost and performance across multiple instruments and platforms vs. one at a time. This paper describes the overall architecture of TAT-C including: a User Interface (UI) interacting with multiple users - scientists, missions designers or program managers; an Executive Driver gathering requirements from UI, then formulating Trade-space Search Requests for the Trade-space Search Iterator first with inputs from the Knowledge Base, then, in collaboration with the Orbit & Coverage, Reduction & Metrics, and Cost& Risk modules, generating multiple potential architectures and their associated characteristics. TAT-C leverages the use of the Goddard Mission Analysis Tool (GMAT) to compute coverage and ancillary data, streamlining the computations by modeling orbits in a way that balances accuracy and performance. TAT-C current version includes uniform Walker constellations as well as Ad-Hoc constellations, and its cost model represents an aggregate model

  20. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  1. Earth and space science information systems

    Energy Technology Data Exchange (ETDEWEB)

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  2. Topological properties of function spaces over ordinal spaces

    Czech Academy of Sciences Publication Activity Database

    Gabriyelyan, S.; Grebík, Jan; Kąkol, Jerzy; Zdomskyy, L.

    2017-01-01

    Roč. 111, č. 4 (2017), s. 1157-1161 ISSN 1578-7303 R&D Projects: GA ČR GF16-34860L Institutional support: RVO:67985840 Keywords : Ascoli * rK-space * ordinal space Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.690, year: 2016 https://link.springer.com/article/10.1007%2Fs13398-016-0354-7

  3. Autonomous Motion Learning for Intra-Vehicular Activity Space Robot

    Science.gov (United States)

    Watanabe, Yutaka; Yairi, Takehisa; Machida, Kazuo

    Space robots will be needed in the future space missions. So far, many types of space robots have been developed, but in particular, Intra-Vehicular Activity (IVA) space robots that support human activities should be developed to reduce human-risks in space. In this paper, we study the motion learning method of an IVA space robot with the multi-link mechanism. The advantage point is that this space robot moves using reaction force of the multi-link mechanism and contact forces from the wall as space walking of an astronaut, not to use a propulsion. The control approach is determined based on a reinforcement learning with the actor-critic algorithm. We demonstrate to clear effectiveness of this approach using a 5-link space robot model by simulation. First, we simulate that a space robot learn the motion control including contact phase in two dimensional case. Next, we simulate that a space robot learn the motion control changing base attitude in three dimensional case.

  4. Function spaces, 1

    CERN Document Server

    Pick, Luboš; John, Oldrich; Fucík, Svatopluk

    2012-01-01

    This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volum

  5. The space elevator: a new tool for space studies.

    Science.gov (United States)

    Edwards, Bradley C

    2003-06-01

    The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).

  6. Designing the robot inclusive space challenge

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2015-11-01

    Full Text Available A novel robotic challenge, namely the robot inclusive spaces (RIS challenge, is proposed in this paper, which is a cross disciplinary and design focused initiative. It aims to foster the roboticists, architects, and designers towards realizing robot friendly social spaces. Contrary to conventional robotics competitions focusing on designing robots and its component technologies, robot inclusive spaces challenge adopts an interdisciplinary “design for robots” strategy to overcome the traditional research problem in real world deployments of social robots. In order to realize the RIS, various architectural elements must be adapted including: design principles for inclusive spaces, lighting schemes, furniture choices and arrangement, wall and floor surfaces, pathways among others. This paper introduces the format and design principles of RIS challenge, presents a first run of the challenge, and gives the corresponding analysis.

  7. Space Guidelines for Libraries.

    Science.gov (United States)

    Wisconsin Coordinating Committee for Higher Education, Madison.

    The following guidelines are recommended: stack space--for each 10 volumes, one square foot of space; reading room--25 square feet per station x 20% of the total undergraduate population; carrel space--25% of the graduate enrollment x 45 square feet; office and auxilliary space--135 square feet x full time equivalent staff. (NI)

  8. urea space versus tritiated water space as an in vivo predtctor

    African Journals Online (AJOL)

    Kock (1973) consider urea space in the ruminant to be a measure of empty body water (total body water less the water in the digestive tract) rather than total body water. The study reported in this paper evaluates the pros and cons of urea space measurement as compared to tritiated water space measurement in terms of ...

  9. Inner Functions in Lipschitz, Besov, and Sobolev Spaces

    Directory of Open Access Journals (Sweden)

    Daniel Girela

    2011-01-01

    Full Text Available We study the membership of inner functions in Besov, Lipschitz, and Hardy-Sobolev spaces, finding conditions that enable an inner function to be in one of these spaces. Several results in this direction are given that complement or extend previous works on the subject from different authors. In particular, we prove that the only inner functions in either any of the Hardy-Sobolev spaces Hαp with 1/p≤α<∞ or any of the Besov spaces Bαp,  q with 0spaces B0∞,q, 0included in the space VMOA. We prove also that for 2space contains infinite Blaschke products. Furthermore, we obtain distinct results for other values of α relating the membership of an inner function I in the spaces under consideration with the distribution of the sequences of preimages {I-1(a}, |a|<1. In addition, we include a section devoted to Blaschke products with zeros in a Stolz angle.

  10. Topology with applications topological spaces via near and far

    CERN Document Server

    Naimpally, Somashekhar A

    2013-01-01

    The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and...

  11. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  12. The Space Place: Multifarious Merchandise for Omnifarious Folks

    Science.gov (United States)

    Leon, N. J.; Fisher, D. K.

    2002-12-01

    "The Space Place" is a coordinated NASA educational outreach program that seeks to reach a diverse and under-served audience, including minorities, girls, inner city children, and those living in rural areas. This audience also includes the more than 27 million Americans who, according to the 2000 census, speak Spanish as their first language. The Space Place began in 1998 with a child-oriented Web site (http://spaceplace.nasa.gov) presenting simple "make and do" activities and fun facts related to the technology validation space missions of NASA's New Millennium Program. The Web site is now sponsored by over 30 space science and Earth observing missions. And it is now also available in Spanish. Having materials available on the internet, however, does not guarantee that everyone in the target audience will have access to them. So, The Space Place went on to create a suite of products and a network of partnerships that would allow more direct and diverse ways to communicate. Thus was invented Club Space Place. Club Space Place works through two different types of partnerships: national and local. The products provided: quarterly guides for original Club Space Place group activities, plus NASA space and Earth science and technology bulletin board display materials. The first of the national organizations participating in Club Space Place was Boys and Girls Clubs of America. With 3100 chapters and 3.3 million members ages 6-18, 67% of whom are minorities, BGCA has been able to distribute the quarterly Space Place activity guides electronically via its Web sites to all chapters that have internet access and by hardcopy to those that don't. Other national organizations that receive the activity guides include YWCA, 21st Century Learning Centers, and Civil Air Patrol. Local community partners include about 240 museums, libraries, planetariums, zoos, and aquariums, largely in small cities, towns, and rural areas, with a combined annual visitorship of 26 million. These

  13. Harmonic space and quaternionic manifolds

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievetsky, O.; Ivanov, E.

    1992-10-01

    A principle of harmonic analyticity underlying the quaternionic (quaternion-Kaehler) geometry is found, and the differential constraints which define this geometry are solved. To this end the original 4n-dimensional quaternionic manifold is extended to a biharmonic space. The latter includes additional harmonic coordinates associated with both the tangent local Sp(1) group and an extra rigid SU(2) group rotating the complex structures. An one-to-one correspondence is established between the quaternionic spaces and off-shell N=2 supersymmetric sigma-models coupled to N=2 supergravity. Coordinates of the analytic subspace are identified with superfields describing N=2 matter hypermultiplets and a compensating hypermultiplet of N=2 supergravity. As an illustration the potentials for the symmetric quaternionic spaces are presented. (K.A.) 22 refs

  14. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  15. The legal regime for private space tourism activities—An overview

    Science.gov (United States)

    Hobe, Stephan

    2010-06-01

    "Space tourism" denotes any commercial activity that offers customers direct or indirect experience with space travel. Various models for space tourism activities exist including the use of an aircraft and/or spacecraft. The paper surveys some of the most important legal aspects relevant to space tourism activities, such as, the delimitation of airspace and outer space, the applicable legal regime and the definition of aircraft and space object, authorization, registration, liability, as well as the legal status of space tourists.

  16. Venturing Further Into Space

    Institute of Scientific and Technical Information of China (English)

    YIN PUMIN

    2011-01-01

    China's first unmanNed space module Tiangong-Ⅰ,or Heavenly Palace-Ⅰ,successfully lifted off from the Jiuquan Satellite Launch Center in northwest China's Gansu Province on September 29."The successful launch of the 8.5-ton prototype space laboratory has opened the gates for China's deep space exploration program," said Qi Faren,former chief designer of China's Shenzhou spacecraft.“It is a decisive leap forward for the Chinese space industry and will bring about the rapid development of space science and related techologies."

  17. Knowledge spaces

    CERN Document Server

    Doignon, Jean-Paul

    1999-01-01

    Knowledge spaces offer a rigorous mathematical foundation for various practical systems of knowledge assessment. An example is offered by the ALEKS system (Assessment and LEarning in Knowledge Spaces), a software for the assessment of mathematical knowledge. From a mathematical standpoint, knowledge spaces generalize partially ordered sets. They are investigated both from a combinatorial and a stochastic viewpoint. The results are applied to real and simulated data. The book gives a systematic presentation of research and extends the results to new situations. It is of interest to mathematically oriented readers in education, computer science and combinatorics at research and graduate levels. The text contains numerous examples and exercises and an extensive bibliography.

  18. USSR Space Life Sciences Digest, issue 29

    Science.gov (United States)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  19. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    Science.gov (United States)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  20. Our Future in Space

    Science.gov (United States)

    Impey, Chris David

    2017-06-01

    The Space Age is half a century old. Its early successes were driven by a fierce superpower rivalry between the Soviet Union and the United States, which tended to obscure the fact that exploration and risk-taking is built into human DNA. Decades after we last set foot on the Moon, and years after the Space Shuttle was retired, the space activity is finally leaving the doldrums. A vibrant private sector led by SpaceX, Blue Origins, and Virgin Galactic plans to launch supplies cheaply into Earth orbit and give anyone the chance of a sub-orbital joy ride. New materials are being developed that could lead to space elevators and transform the economics of space travel. Fighting gravity will always be difficult but engineers are rethinking rockets and developing new propulsion technologies. Permanent bases on the Moon and Mars are now within reach, and a new Space Race is brewing, with China ascendant. Medical advances might even allow us to reach for the stars. The talk will review the history and landmarks of the international space program, give a snapshot of the current dynamic situation, and plot the trajectory of the future of space travel. The time has come to envision our future off-Earth.

  1. Recent Pharmacology Studies on the International Space Station

    Science.gov (United States)

    Wotring, Virginia

    2014-01-01

    The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.

  2. Book Review: Physics of the Space Environment

    Science.gov (United States)

    Holman, Gordon D.

    1998-01-01

    Space physics, narrowly defined as the study of Earth's plasma environment, has had an identity crisis throughout its relatively brief existence as a discipline. - The limited and often serendipitous nature of the data requires the research style of an astrophysicist. However, the in situ observations and instrumentation that are central to the field are quite different from the remote observations and instrumentation of astronomy. Compared to neutral gases, the wealth of additional phenomena and the complexity associated with magnetized plasmas and their interaction leaves little in common with the atmospheric scientist. Although the phenomena studied in space physics are ultimately important to astrophysics, the intimate measurements of plasma properties provide a greater commonality with the plasma physicist. Space physics has experienced something of a renaissance in the past few years. The interdisciplinary umbrella "Solar-Terrestrial Physics" or "Sun-Earth Connection" has stimulated an increasing interaction of space physicists, solar physicists and atmospheric scientists. Spectacular images of the Sun from Yohkoh and SOHO and solar-activity-related damage to communications satellites have increased the public's awareness of and interest in "space weather". The dangers of energetic particles and currents in space to technological systems and to future space exploration have elevated space physics observations from interesting scientific measurements that can be included on a space probe to critically important measurements that must be made.

  3. Inventing a space mission the story of the Herschel space observatory

    CERN Document Server

    Minier, Vincent; Bontems, Vincent; de Graauw, Thijs; Griffin, Matt; Helmich, Frank; Pilbratt, Göran; Volonte, Sergio

    2017-01-01

    This book describes prominent technological achievements within a very successful space science mission: the Herschel space observatory. Focusing on the various processes of innovation it offers an analysis and discussion of the social, technological and scientific context of the mission that paved the way to its development. It addresses the key question raised by these processes in our modern society, i.e.: how knowledge management of innovation set the conditions for inventing the future? In that respect the book is based on a transdisciplinary analysis of the programmatic complexity of Herschel, with inputs from space scientists, managers, philosophers, and engineers. This book is addressed to decision makers, not only in space science, but also in other industries and sciences using or building large machines. It is also addressed to space engineers and scientists as well as students in science and management.

  4. On the radiation dosimetry in space

    International Nuclear Information System (INIS)

    Doke, Tadayoshi

    2005-01-01

    The radiation dosimetry in space is considerably different from that on the earth surface, because, on the earth surface, the quality factor for radiation is roughly given for its energy but, in space, it is defined as a continuous function of LET. Thus, the contribution to the dose equivalent from heavy charged particles included in galactic cosmic rays is more than 50%, because of their high LET values. To evaluate such dose equivalent within an uncertainty of 30%, we must determine the true LET distribution. This paper describes the essence of such a new radiation dosimetry in space. (author)

  5. Preliminary Cost Model for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd

    2009-01-01

    Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.

  6. SpaceCube Core Software

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a flexible, modular and user friendly SpaceCube Core Software system that will dramatically simplify SpaceCube application development and enable any...

  7. Longitudinal Phase Space Tomography with Space Charge

    CERN Document Server

    Hancock, S; Lindroos, M

    2000-01-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of...

  8. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Borel Spaces

    CERN Document Server

    Berberian, S K

    2002-01-01

    A detailed exposition of G.W. Mackey's theory of Borel spaces (standard, substandard, analytic), based on results in Chapter 9 of Bourbaki's General Topology. Appended are five informal lectures on the subject (given at the CIMPA/ICPAM Summer School, Nice, 1986), sketching the connection between Borel spaces and representations of operator algebras.

  10. Designing informal learning spaces using student perspectives

    OpenAIRE

    Matthew David Riddle; Kay Souter

    2012-01-01

    This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning space design, and a significant curriculum renewal process at the university. It demonstrates the ways in which evidence based on student perspectiv...

  11. Meals in orbit. [Space Shuttle food service planning

    Science.gov (United States)

    1980-01-01

    Space foods which will be available to the Space Shuttle crew are discussed in view of the research and development of proper nutrition in space that began with the pastelike tube meals of the Mercury and Gemini astronauts. The variety of food types proposed for the Space Shuttle crew which include thermostabilized, intermediate moisture, rehydratable, irradiated, freeze-dried and natural forms are shown to be a result of the successive improvements in the Apollo, Skylab and Apollo Soyuz test project flights. The Space Shuttle crew will also benefit from an increase of caloric content (3,000 cal./day), the convenience of a real oven and a comfortable dining and kitchen area.

  12. Making media work in space: an interdisciplinary perspective on media and communication requirements for current and future space communities

    Science.gov (United States)

    Babidge, S.; Cokley, J.; Gordon, F.; Louw, E.

    2005-10-01

    As humans expand into space communities will form. These have already begun to form in small ways, such as long-duration missions on the International Space Station and the space shuttle, and small-scale tourist excursions into space. Social, behavioural and communications data emerging from such existing communities in space suggest that the physically-bounded, work-oriented and traditionally male-dominated nature of these extremely remote groups present specific problems for the resident astronauts, groups of them viewed as ‘communities’, and their associated groups who remain on Earth, including mission controllers, management and astronauts’ families. Notionally feminine group attributes such as adaptive competence, social adaptation skills and social sensitivity will be crucial to the viability of space communities and in the absence of gender equity, ‘staying in touch’ by means of ‘news from home’ becomes more important than ever. A template of news and media forms and technologies is suggested to service those needs and enhance the social viability of future terraforming activities.

  13. Organic chemistry in space

    Science.gov (United States)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  14. Comparative study of standard space and real space analysis of quantitative MR brain data.

    Science.gov (United States)

    Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M

    2011-06-01

    To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.

  15. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  16. From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives

    Science.gov (United States)

    Finster, Felix

    This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.

  17. Source-space ICA for MEG source imaging.

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  18. Soviet/Russian-American space cooperation

    Science.gov (United States)

    Karash, Yuri Y.

    This dissertation seeks to answer two questions: (1) what are the necessary conditions for the emergence of meaningful space cooperation between Russia and the United States, and (2) might this cooperation continue developing on its own merit, contributing to the further rapprochement between the two countries, even if the conditions that originated the cooperation were to change? The study examines the entire space era up to this point, 1957 to 1997, from the first satellite launch through the joint U.S.-Russian work on the ISS project. It focuses on the analysis of three distinct periods of possible and real cooperation between the United States and the Soviet Union/Russia. The first possibility for a limited Soviet-American cooperation in space emerged in the late 1950s, together with the space age, and continued until the mid-1960s. The major potential joint project of this period was a human expedition to the Moon. The global competition/confrontation between the two countries prevented actual cooperation. The second period was from the late 1960s until 1985 with consideration of experimental docking missions, including the docking of a reusable U.S. shuttle to a Soviet Salyut-type station. The global U.S.-Soviet competition still continued, but the confrontation was replaced by detente for a brief period of time lasting from the end of 1960s until mid-1970s. Detente gave the first example of U.S.-Soviet cooperation in space---the Apollo-Soyuz joint space flight (ASTP) which took place in 1975. However, the lack of interest of political leaderships in continuation of broad-scale cooperation between the two countries, and the end of detente, removed ASTP-like projects out of question at least until 1985. The third period started together with Mikhail Gorbachev's Perestroika in 1985 and continues until now. It involves almost a hundred of joint space projects both at the governmental and at the private sectors levels. The mainstream of the joint activities

  19. Moduli space for endomorphisms of finite dimension vector spaces

    International Nuclear Information System (INIS)

    Kanarek, H.

    1990-12-01

    Consider the set (End n ) of endomorphisms of vector spaces of dimension n n ). What we present here is a decomposition of (End n ) in which each element has a fine moduli space and one of them is composed by the semisimple endomorphisms as D. Mumford shows. (author). 2 refs

  20. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  1. Space Shuttle Status News Conference

    Science.gov (United States)

    2005-01-01

    Richard Gilbech, External Tank "Tiger Team" Lead, begins this space shuttle news conference with detailing the two major objectives of the team. The objectives include: 1) Finding the root cause of the foam loss on STS-114; and 2) Near and long term improvements for the external tank. Wayne Hale, Space Shuttle Program Manager, presents a chart to explain the external tank foam loss during STS-114. He gives a possible launch date for STS-121 after there has been a repair to the foam on the External Tank. He further discusses the changes that need to be made to the surrounding areas of the plant in New Orleans, due to Hurricane Katrina. Bill Gerstemaier, NASA Associate Administrator for Space Operations, elaborates on the testing of the external tank foam loss. The discussion ends with questions from the news media about a fix for the foam, replacement of the tiles, foam loss avoidance, the root cause of foam loss and a possible date for a new external tank to be shipped to NASA Kennedy Space Center.

  2. Interacting Conceptual Spaces

    OpenAIRE

    Bolt, Josef; Coecke, Bob; Genovese, Fabrizio; Lewis, Martha; Marsden, Daniel; Piedeleu, Robin

    2016-01-01

    We propose applying the categorical compositional scheme of [6] to conceptual space models of cognition. In order to do this we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We show how conceptual spaces for composite types such as adjectives and verbs can be constructed. We illustrate this new model on detailed examples.

  3. Lasers in space

    Science.gov (United States)

    Michaelis, M. M.; Forbes, A.; Bingham, R.; Kellett, B. J.; Mathye, A.

    2008-05-01

    A variety of laser applications in space, past, present, future and far future are reviewed together with the contributions of some of the scientists and engineers involved, especially those that happen to have South African connections. Historically, two of the earliest laser applications in space, were atmospheric LIDAR and lunar ranging. These applications involved atmospheric physicists, several astronauts and many of the staff recruited into the Soviet and North American lunar exploration programmes. There is a strong interest in South Africa in both LIDAR and lunar ranging. Shortly after the birth of the laser (and even just prior) theoretical work on photonic propulsion and space propulsion by laser ablation was initiated by Georgii Marx, Arthur Kantrowitz and Eugen Saenger. Present or near future experimental programs are developing in the following fields: laser ablation propulsion, possibly coupled with rail gun or gas gun propulsion; interplanetary laser transmission; laser altimetry; gravity wave detection by space based Michelson interferometry; the de-orbiting of space debris by high power lasers; atom laser interferometry in space. Far future applications of laser-photonic space-propulsion were also pioneered by Carl Sagan and Robert Forward. They envisaged means of putting Saenger's ideas into practice. Forward also invented a laser based method for manufacturing solid antimatter or SANTIM, well before the ongoing experiments at CERN with anti-hydrogen production and laser-trapping. SANTIM would be an ideal propellant for interstellar missions if it could be manufactured in sufficient quantities. It would be equally useful as a power source for the transmission of information over light year distances. We briefly mention military lasers. Last but not least, we address naturally occurring lasers in space and pose the question: "did the Big Bang lase?"

  4. Human space flight and future major space astrophysics missions: servicing and assembly

    Science.gov (United States)

    Thronson, Harley; Peterson, Bradley M.; Greenhouse, Matthew; MacEwen, Howard; Mukherjee, Rudranarayan; Polidan, Ronald; Reed, Benjamin; Siegler, Nicholas; Smith, Hsiao

    2017-09-01

    Some concepts for candidate future "flagship" space observatories approach the payload limits of the largest launch vehicles planned for the next few decades, specifically in the available volume in the vehicle fairing. This indicates that an alternative to autonomous self-deployment similar to that of the James Webb Space Telescope will eventually be required. Moreover, even before this size limit is reached, there will be significant motivation to service, repair, and upgrade in-space missions of all sizes, whether to extend the life of expensive facilities or to replace outworn or obsolete onboard systems as was demonstrated so effectively by the Hubble Space Telescope program. In parallel with these challenges to future major space astronomy missions, the capabilities of in-space robotic systems and the goals for human space flight in the 2020s and 2030s offer opportunities for achieving the most exciting science goals of the early 21st Century. In this paper, we summarize the history of concepts for human operations beyond the immediate vicinity of the Earth, the importance of very large apertures for scientific discovery, and current capabilities and future developments in robot- and astronaut-enabled servicing and assembly.

  5. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  6. Experience with Space Forums and Engineering Courses Organized for the Broad Dissemination of Space-related Information

    Science.gov (United States)

    Dessimoz, J.-D.; D'Aquino, U.; Gander, J.-G.; Sekler, J.

    2002-01-01

    Space technologies have been recognised as being of major importance for the welfare of our civilisation, not only in our industrially developed countries, but also for the world at large. Dating back to 1959, the Swiss Association for Astronautics (SRV; see http://srv-ch.org) has a long tradition of public communication in view of fostering support for space activities on a national scale. In recent years, the SRV has notably organised (or contributed for) about a dozen of Introductory Courses into Space Technology at different Swiss Universities of Applied Sciences (UAS), as well as set-up four Space Forums for reaching young people and the public at large. Space Forums are organised for younger students and the public at large. They have been so far organised at Zurich, with increasing impact. In 2002 the Space Forum is located at the "Technopark", a structure aiming at fostering technology transfers between universities and business, as well as to help creating start-up's. Contributions come from highly qualified speakers, such as "our" ESA astronaut Claude Nicollier, or scientists from leading research organisations. An exhibition is also organised, which presents space projects and material with very positive impact on the audience. As favourable by-product, the event tends to trigger further echoes in media (e.g. major press representatives and local radios). A good place is also made for outstanding contributions from young teenagers / enthusiastic supporters, which brings additional fresh views and effective communication channels for reaching the younger public. The Space techniques courses aim at a different public: engineering students and graduates. They are organised on a semester basis, with a frequency of about 1 or 2 courses per year; they are nearly always offered at different locations (most of the time at UAS) and can also be viewed as continuing education initiatives. Topics typically include a historical overview of space-related developments

  7. Quantum Optics in Phase Space

    Science.gov (United States)

    Schleich, Wolfgang P.

    2001-04-01

    Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.

  8. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    De Boever, P.

    2006-01-01

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  9. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  10. Space operations and the human factor

    Science.gov (United States)

    Brody, Adam R.

    1993-10-01

    Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.

  11. Application of space benefits to education

    Science.gov (United States)

    Dannenberg, K. K.; Ordway, F. I., III

    1972-01-01

    Information on the conducting of a teacher workshop is presented. This educational pilot project updated instruction material, used improved teaching techniques, and increased student motivation. The NASA/MSFC industrial facilities, and the displays at the Alabama Space and Rocket Center (ASRC) were key elements of the program, including a permanent exhibit, at the latter, on selected benefits accruing from the space program.

  12. A Conceptual Space Logic

    DEFF Research Database (Denmark)

    Nilsson, Jørgen Fischer

    1999-01-01

    Conceptual spaces have been proposed as topological or geometric means for establishing conceptual structures and models. This paper, after briey reviewing conceptual spaces, focusses on the relationship between conceptual spaces and logical concept languages with operations for combining concepts...... to form concepts. Speci cally is introduced an algebraic concept logic, for which conceptual spaces are installed as semantic domain as replacement for, or enrichment of, the traditional....

  13. Space charge tracking code for a synchrotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, M.B.; Tajima, T. [Univ. of Texas, Austin, TX (United States); Hiramoto, K. [Hitachi Ltd., Hitachi, Ibaraki (Japan). Hitachi Research Lab.

    1997-06-01

    An algorithm has been developed to compute particle tracking, including self-consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons space charge plays a central role in enhancing emittance of the beam. The space charge effects are modeled by mutually interacting (through the Coulombic force) N cylindrical particles (2-{1/2}-dimensional dynamics) whose axis is in the direction of the equilibrium particle flow. On the other hand, their interaction with synchrotron lattice magnets is treated with the thin-lens approximation and in a fully 3-dimensional way. Since the existing method to treat space charge fully self-consistently involved 3-D space charge effect computation, the present method allows far more realistic physical parameters and runs in far shorter time (about 1/20). Some examples on space charge induced instabilities are presented.

  14. Making Space Cool - Successful Outreach at Yuri's Night Stuttgart

    Science.gov (United States)

    Hill, Christine; Bretschneider, Jens; Nathanson, Emil; Grossmann, Agnes

    Yuri’s Night - also known as the “World Space Party” - is the annual celebration commemorating Gagarin’s historic flight on April 12, 1961, and the maiden voyage of the American space shuttle on April 12, 1981. It was created by young space enthusiasts in 2000 at the annual Space Generation Congress and was first celebrated in 2001, registering more than 60 events around the world from the start. Since then the interest in celebrating human spaceflight grew constantly to over 350 events across all seven continents in 2013. The honoring of Yuri Gagarin’s first spaceflight in Stuttgart started in 2007 and resulted in one of the largest events outside the US, with five parties following in 2008, 2009, 2010, 2012 and 2013. The Stuttgart event was originally organized as space party for an audience at the age of 20 and beyond including informative aspects at the afternoon and a following party far into the night. Since 2010 the focus of the Yuri’s Night Stuttgart is to bring awareness of space exploration to people of all ages, including particularly many participatory hands-on space activities for kids and families that attract hundreds of visitors every year. As much as Yuri’s Night is a worldwide party, the events in Stuttgart successfully concentrate on educational aspects that help to inspire new generations of space enthusiasts who will ultimately shape the future of space exploration. It is therefore not only a look back to one of the greatest achievements of the 20th Century, but it is also a look into the future: from multinational cooperation on the International Space Station to benefit of space flight to the introduction of the next generation of space technology. This paper will introduce the celebrations of Yuri’s Night in Stuttgart of the past four years and compare them to the early events. It provides a summary of the development of the Yuri’s Night including educational aspects, public relations and media attraction and gives

  15. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  16. The ESA Space Weather Applications Pilot Project

    Science.gov (United States)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  17. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  18. Space Station Habitability Research

    Science.gov (United States)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  19. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  20. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    Science.gov (United States)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  1. Transatlantic Cooperation in Space: Eu-Canada Free Trade Agreement

    Directory of Open Access Journals (Sweden)

    Luise Weber-Steinhaus

    2014-12-01

    Full Text Available National governments are keenly aware of the need for investment in space. Canada, as a formal cooperating state in the European Space Agency (ESA, and Germany, as a leading member state of ESA, are interlinked in Europe’s space endeavours. Beyond ESA, Germany and Canada additionally have a strong history of bilateral cooperation on a range of space projects. This paper discusses the novel interdependencies between clear national and now supranational space policies, using the examples of the Canada-European Union (EU Comprehensive Economic and Trade Agreement (CETA. The agreement covers most aspects of the EU-Canada bilateral economic relationship and includes space. The paper focuses on international space policies, strategic bilateral co-operation, and technical accomplishments. It takes a closer look at German-Canadian collaboration in space programs and offers some reflection on the effect of both the EU and ESA’S transatlantic involvement in space.

  2. Elementary particles in curved spaces

    International Nuclear Information System (INIS)

    Lazanu, I.

    2004-01-01

    The theories in particle physics are developed currently, in Minkowski space-time starting from the Poincare group. A physical theory in flat space can be seen as the limit of a more general physical theory in a curved space. At the present time, a theory of particles in curved space does not exist, and thus the only possibility is to extend the existent theories in these spaces. A formidable obstacle to the extension of physical models is the absence of groups of motion in more general Riemann spaces. A space of constant curvature has a group of motion that, although differs from that of a flat space, has the same number of parameters and could permit some generalisations. In this contribution we try to investigate some physical implications of the presumable existence of elementary particles in curved space. In de Sitter space (dS) the invariant rest mass is a combination of the Poincare rest mass and the generalised angular momentum of a particle and it permits to establish a correlation with the vacuum energy and with the cosmological constant. The consequences are significant because in an experiment the local structure of space-time departs from the Minkowski space and becomes a dS or AdS space-time. Discrete symmetry characteristics of the dS/AdS group suggest some arguments for the possible existence of the 'mirror matter'. (author)

  3. Some normed binomial difference sequence spaces related to the [Formula: see text] spaces.

    Science.gov (United States)

    Song, Meimei; Meng, Jian

    2017-01-01

    The aim of this paper is to introduce the normed binomial sequence spaces [Formula: see text] by combining the binomial transformation and difference operator, where [Formula: see text]. We prove that these spaces are linearly isomorphic to the spaces [Formula: see text] and [Formula: see text], respectively. Furthermore, we compute Schauder bases and the α -, β - and γ -duals of these sequence spaces.

  4. Anthropogenic Space Weather

    Science.gov (United States)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  5. Space psychology

    Science.gov (United States)

    Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.

    1974-01-01

    Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.

  6. Quantum dynamics in dual spaces

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.

    1993-01-01

    Quantum mechanics gives us information about spectra of dynamical variables and transition rates including scattering cross sections. They can be exhibited as spectral information in analytically continued spaces and their duals. Quantum mechanics formulated in these generalized spaces is used to study scattering and time evolution. It is shown that the usual asymptotic condition is inadequate to deal with scattering of composite or unstable particles. Scattering theory needs amendment when the interacting system is not isospectral with the free Hamiltonian, and the amendment is formulated. Perturbation theory in generalized spaces is developed and used to study the deletion and augmentation of the spectrum of the Hamiltonian. A complete set of algebraically independent constants for an interacting system is obtained. The question of the breaking of time symmetry is discussed

  7. The role of space in the security and defence policy of Turkey. A change in outlook: Security in space versus security from space

    OpenAIRE

    Ercan, C.; Kale, I.

    2017-01-01

    Space and security domains are strongly related with each other. Nowadays, space is an indispensable part of security and defence policy, and it is increasingly becoming a critical infrastructure for strategic Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) systems. However, space is vulnerable itself to the new space threats. This study reviews the current and near future space role in Turkey's security and defence policy and aims to address...

  8. Laplacian eigenmodes for spherical spaces

    International Nuclear Information System (INIS)

    Lachieze-Rey, M; Caillerie, S

    2005-01-01

    The possibility that our space is multi-rather than singly-connected has gained renewed interest after the discovery of the low power for the first multipoles of the CMB by WMAP. To test the possibility that our space is a multi-connected spherical space, it is necessary to know the eigenmodes of such spaces. Except for lens and prism space, and to some extent for dodecahedral space, this remains an open problem. Here we derive the eigenmodes of all spherical spaces. For dodecahedral space, the demonstration is much shorter, and the calculation method much simpler than before. We also apply our method to tetrahedric, octahedric and icosahedric spaces. This completes the knowledge of eigenmodes for spherical spaces, and opens the door to new observational tests of the cosmic topology. The vector space V k of the eigenfunctions of the Laplacian on the 3-sphere S 3 , corresponding to the same eigenvalue λ k = -k(k + 2), has dimension (k + 1) 2 . We show that the Wigner functions provide a basis for such a space. Using the properties of the latter, we express the behaviour of a general function of V k under an arbitrary rotation G of SO(4). This offers the possibility of selecting those functions of V k which remain invariant under G. Specifying G to be a generator of the holonomy group of a spherical space X, we give the expression of the vector space V x k of the eigenfunctions of X. We provide a method to calculate the eigenmodes up to an arbitrary order. As an illustration, we give the first modes for the spherical spaces mentioned

  9. On Yang's Noncommutative Space Time Algebra, Holography, Area Quantization and C-space Relativity

    CERN Document Server

    Castro, C

    2004-01-01

    An isomorphism between Yang's Noncommutative space-time algebra (involving two length scales) and the holographic-area-coordinates algebra of C-spaces (Clifford spaces) is constructed via an AdS_5 space-time which is instrumental in explaining the origins of an extra (infrared) scale R in conjunction to the (ultraviolet) Planck scale lambda characteristic of C-spaces. Yang's space-time algebra allowed Tanaka to explain the origins behind the discrete nature of the spectrum for the spatial coordinates and spatial momenta which yields a minimum length-scale lambda (ultraviolet cutoff) and a minimum momentum p = (\\hbar / R) (maximal length R, infrared cutoff). The double-scaling limit of Yang's algebra : lambda goes to 0, and R goes to infinity, in conjunction with the large n infinity limit, leads naturally to the area quantization condition : lambda R = L^2 = n lambda^2 (in Planck area units) given in terms of the discrete angular-momentum eigenvalues n . The generalized Weyl-Heisenberg algebra in C-spaces is ...

  10. Topological properties of function spaces $C_k(X,2)$ over zero-dimensional metric spaces $X$

    OpenAIRE

    Gabriyelyan, S.

    2015-01-01

    Let $X$ be a zero-dimensional metric space and $X'$ its derived set. We prove the following assertions: (1) the space $C_k(X,2)$ is an Ascoli space iff $C_k(X,2)$ is $k_\\mathbb{R}$-space iff either $X$ is locally compact or $X$ is not locally compact but $X'$ is compact, (2) $C_k(X,2)$ is a $k$-space iff either $X$ is a topological sum of a Polish locally compact space and a discrete space or $X$ is not locally compact but $X'$ is compact, (3) $C_k(X,2)$ is a sequential space iff $X$ is a Pol...

  11. Global Trends in Space Access and Utilization

    Science.gov (United States)

    Rahman, Shamim A.; Keim, Nicholas S.; Zeender, Peter E.

    2010-01-01

    global interdependent effort with all its likely complexities is an increasingly viable and pragmatic option. The discussion includes a breakdown of space missions into those of civil (scientific), military, and strictly commercial nature. It concludes that all three are robust components of a globally diversified portfolio of activities relying, essentially, on a common space industrial base and space infrastructure. As in other industries, the distribution of space industry assets and knowledge across countries and continents enables a diverse suite of options and arrangements, particularly in the areas of civil and commercial space utilization. A survey of several ongoing bilateral and multilateral space collaboration examples are provided to augment the observations regarding multinational work in space.

  12. Hubble Space Telescope via the Web

    Science.gov (United States)

    O'Dea, Christopher P.

    The Space Telescope Science Institute (STScI) makes available a wide variety of information concerning the Hubble Space Telescope (HST) via the Space Telescope Electronic Information Service (STEIS). STEIS is accessible via anonymous ftp, gopher, WAIS, and WWW. The information on STEIS includes how to propose for time on the HST, the current status of HST, reports on the scientific instruments, the observing schedule, data reduction software, calibration files, and a set of publicly available images in JPEG, GIF and TIFF format. STEIS serves both the astronomical community as well as the larger Internet community. WWW is currently the most widely used interface to STEIS. Future developments on STEIS are expected to include larger amounts of hypertext, especially HST images and educational material of interest to students, educators, and the general public, and the ability to query proposal status.

  13. Compliant Space Mechanisms

    Data.gov (United States)

    National Aeronautics and Space Administration — OBJECTIVES The proposed research will combine the areas of compliant mechanisms and space technology. Compliant mechanisms perform their function through the elastic...

  14. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  15. Discourses of space

    CERN Document Server

    Ajtony, Zsuzsanna

    2013-01-01

    Ever since the emergence of the spatial turn in several scientific discourses, special attention has been paid to the surrounding space conceived as a construct created by the dynamics of human activity. The notion of space assists us in describing the most varied spheres of human existence. We can speak of various physical, metaphysical, social and cultural, and communicative spaces, as structuring components providing access to various literary, linguistic, social and cultural phenomena, th...

  16. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  17. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  18. The Space Puppets

    Science.gov (United States)

    Lago, M. Miguel; Esteban Berea, J.; Miñambres Fernández, M.; Rufino, M.

    2002-01-01

    This proposal is a response to the initiative "Physics on Stage 2" to excite interest in physics and science by a dance and puppetry performance. The purpose of this piece is to show the possibilities and characteristics of entertainment with space knowledge and education for the audience of teachers and children through a show. Two virtually opposite areas (science and arts), both generally inaccessible for children, will be introduced in a funny and amusing way, with the interaction of puppets. Education is not "fashion"... we need to develop an educational package to focus the attention of children on the uses of Space in everyday life. Our world today is mainly logic and mathematical. The presence of art in the children's lives is often scarce or even inexistent. With the performance children will gain a better understanding of space physics through the joy of a dance performance like an educational tool. Dance as body expression, is a very powerful tool to explain and interact with children and teachers. Through dance the physics of movement may be studied in a visual way, within the body's limits. We consider as priority the use of dance as well as theater (in this case, puppet theater) as an efficient and fun didactic method, which we may go further and explain in an imaginative funny way all those complex processes of physics, which are further unknown. Aiming to teach in a relaxing atmosphere the performance is based on the " Earth Space Alphabet", a first dictionary for Primary Schools combining Science, Space and Education... Did you ever realize that people are not interested in something because they do not understand the words or the meaning? The alphabet is intended to meet the overwhelming need that exists for education on space, and allows both teachers and children to learn about the "Art of Teaching Space" combining earth and space language linked by space technology. The performance explains many concepts of physics through a comet puppet, which

  19. Z-1 Prototype Space Suit Testing Summary

    Science.gov (United States)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  20. The space of extended orthomorphisms in a Riesz space

    NARCIS (Netherlands)

    De Pagter, B.

    1984-01-01

    We study the space Orth°°(L) of extended orthomorphisms in an Archimedean Riesz space L and its analogies with the complete ring of quotients of a commutative ring with unit element. It is shown that for any uniformly complete /-algebra A with unit element, Orth°°(?) is isomorphic with the complete